Mercurial > codedump
view win95kggui/dep/ft2play/pmplay.c @ 133:0d8eabdd12ab default tip
create: write H:MM:SS timestamps, add option to fill with gaussian-blur instead of black
many albums are longer than one hour so writing H:MM:SS is a
necessity. if anything there will just be verbose info that
isn't important for my use-case.
however the gaussian-blur is simply broken. It works, and it plays
locally just fine, but YouTube in particular elongates the video
to fit the full width. I'm not entirely sure why it does this, but
it makes it useless and ugly.
| author | Paper <paper@tflc.us> |
|---|---|
| date | Sat, 03 Jan 2026 20:25:38 -0500 |
| parents | 8e4ee43d3b81 |
| children |
line wrap: on
line source
/* ** - loaders and replayer handlers - */ #define DEFAULT_AMP 4 #define DEFAULT_MASTER_VOL 256 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdint.h> #include <stdbool.h> #include <math.h> #include <assert.h> #include "pmplay.h" #include "pmp_mix.h" #include "snd_masm.h" #include "tables.h" #define INSTR_HEADER_SIZE 263 #define SWAP16(value) \ ( \ (((uint16_t)((value) & 0x00FF)) << 8) | \ (((uint16_t)((value) & 0xFF00)) >> 8) \ ) #ifdef _MSC_VER #pragma pack(push) #pragma pack(1) #endif typedef struct songHeaderTyp_t { char sig[17], name[21], progName[20]; uint16_t ver; int32_t headerSize; uint16_t len, repS, antChn, antPtn, antInstrs, flags, defTempo, defSpeed; uint8_t songTab[256]; } #ifdef __GNUC__ __attribute__ ((packed)) #endif songHeaderTyp; typedef struct modSampleTyp { char name[22]; uint16_t len; uint8_t fine, vol; uint16_t repS, repL; } #ifdef __GNUC__ __attribute__ ((packed)) #endif modSampleTyp; typedef struct songMOD31HeaderTyp { char name[20]; modSampleTyp sample[31]; uint8_t len, repS, songTab[128]; char Sig[4]; } #ifdef __GNUC__ __attribute__ ((packed)) #endif songMOD31HeaderTyp; typedef struct songMOD15HeaderTyp { char name[20]; modSampleTyp sample[15]; uint8_t len, repS, songTab[128]; } #ifdef __GNUC__ __attribute__ ((packed)) #endif songMOD15HeaderTyp; typedef struct sampleHeaderTyp_t { int32_t len, repS, repL; uint8_t vol; int8_t fine; uint8_t typ, pan; int8_t relTon; uint8_t skrap; char name[22]; } #ifdef __GNUC__ __attribute__ ((packed)) #endif sampleHeaderTyp; typedef struct instrHeaderTyp_t { int32_t instrSize; char name[22]; uint8_t typ; uint16_t antSamp; int32_t sampleSize; uint8_t ta[96]; int16_t envVP[12][2], envPP[12][2]; uint8_t envVPAnt, envPPAnt, envVSust, envVRepS, envVRepE, envPSust, envPRepS; uint8_t envPRepE, envVTyp, envPTyp, vibTyp, vibSweep, vibDepth, vibRate; uint16_t fadeOut; uint8_t midiOn, midiChannel; int16_t midiProgram, midiBend; int8_t mute; uint8_t reserved[15]; sampleHeaderTyp samp[32]; } #ifdef __GNUC__ __attribute__ ((packed)) #endif instrHeaderTyp; typedef struct patternHeaderTyp_t { int32_t patternHeaderSize; uint8_t typ; uint16_t pattLen, dataLen; } #ifdef __GNUC__ __attribute__ ((packed)) #endif patternHeaderTyp; #ifdef _MSC_VER #pragma pack(pop) #endif static int32_t soundBufferSize; // globalized volatile bool interpolationFlag, volumeRampingFlag, moduleLoaded, musicPaused, WAVDump_Flag; bool linearFrqTab; volatile const uint16_t *note2Period; uint16_t pattLens[256]; int16_t PMPTmpActiveChannel, boostLevel = DEFAULT_AMP; int32_t masterVol = DEFAULT_MASTER_VOL, PMPLeft = 0; int32_t realReplayRate, quickVolSizeVal, speedVal; uint32_t frequenceDivFactor, frequenceMulFactor, CDA_Amp = 8*DEFAULT_AMP; tonTyp *patt[256]; instrTyp *instr[1+128]; songTyp song; stmTyp stm[32]; // ------------------ // 8bb: added these for loader typedef struct { uint8_t *_ptr, *_base; bool _eof; size_t _cnt, _bufsiz; } MEMFILE; static MEMFILE *mopen(const uint8_t *src, uint32_t length); static void mclose(MEMFILE **buf); static size_t mread(void *buffer, size_t size, size_t count, MEMFILE *buf); static bool meof(MEMFILE *buf); static void mseek(MEMFILE *buf, int32_t offset, int32_t whence); static void mrewind(MEMFILE *buf); // -------------------------- static void resetMusic(void); static void freeAllPatterns(void); static void setFrqTab(bool linear); static CIType *getVoice(int32_t ch) // 8bb: added this { if (ch < 0 || ch > 31) return NULL; return &CI[chnReloc[ch]]; } /*************************************************************************** * ROUTINES FOR SAMPLE HANDLING ETC. * ***************************************************************************/ // 8bb: modifies wrapped sample after loop/end (for branchless mixer interpolation) static void fixSample(sampleTyp *s) { if (s->pek == NULL) return; // empty sample const bool sample16Bit = !!(s->typ & SAMPLE_16BIT); uint8_t loopType = s->typ & 3; int16_t *ptr16 = (int16_t *)s->pek; int32_t len = s->len; int32_t loopStart = s->repS; int32_t loopEnd = s->repS + s->repL; if (sample16Bit) { len >>= 1; loopStart >>= 1; loopEnd >>= 1; } if (len < 1) return; /* 8bb: ** This is the exact bit test order of which FT2 handles ** the sample tap fix. ** ** This order is important for rare cases where both the ** "forward" and "pingpong" loop bits are set at once. ** ** This means that if both flags are set, the mixer will ** play the sample with pingpong looping, but the sample fix ** is handled as if it was a forward loop. This results in ** the wrong interpolation tap sample being written after the ** loop end point. */ if (loopType & LOOP_FORWARD) { if (sample16Bit) ptr16[loopEnd] = ptr16[loopStart]; else s->pek[loopEnd] = s->pek[loopStart]; return; } else if (loopType & LOOP_PINGPONG) { if (sample16Bit) ptr16[loopEnd] = ptr16[loopEnd-1]; else s->pek[loopEnd] = s->pek[loopEnd-1]; } else // no loop { if (sample16Bit) ptr16[len] = 0; else s->pek[len] = 0; } } static void checkSampleRepeat(int32_t nr, int32_t nr2) { instrTyp *i = instr[nr]; if (i == NULL) return; sampleTyp *s = &i->samp[nr2]; if (s->repS < 0) s->repS = 0; if (s->repL < 0) s->repL = 0; if (s->repS > s->len) s->repS = s->len; if (s->repS+s->repL > s->len) s->repL = s->len - s->repS; } static void upDateInstrs(void) { for (int32_t i = 0; i <= 128; i++) { instrTyp *ins = instr[i]; if (ins == NULL) continue; sampleTyp *s = ins->samp; for (int32_t j = 0; j < 16; j++, s++) { checkSampleRepeat(i, j); fixSample(s); if (s->pek == NULL) { s->len = 0; s->repS = 0; s->repL = 0; } } } } static bool patternEmpty(uint16_t nr) { if (patt[nr] == NULL) return true; const uint8_t *scanPtr = (const uint8_t *)patt[nr]; const int32_t scanLen = pattLens[nr] * song.antChn * sizeof (tonTyp); for (int32_t i = 0; i < scanLen; i++) { if (scanPtr[i] != 0) return false; } return true; } static bool allocateInstr(uint16_t i) { if (instr[i] != NULL) return true; instrTyp *p = (instrTyp *)calloc(1, sizeof (instrTyp)); if (p == NULL) return false; sampleTyp *s = p->samp; for (int32_t j = 0; j < 16; j++, s++) { s->pan = 128; s->vol = 64; } instr[i] = p; return true; } static void freeInstr(uint16_t nr) { if (nr > 128) return; instrTyp *ins = instr[nr]; if (ins == NULL) return; sampleTyp *s = ins->samp; for (uint8_t i = 0; i < 16; i++, s++) { if (s->pek != NULL) free(s->pek); } free(ins); instr[nr] = NULL; } static void freeAllInstr(void) { for (uint16_t i = 0; i <= 128; i++) freeInstr(i); } static void freeAllPatterns(void) // 8bb: added this one, since it's handy { for (int32_t i = 0; i < 256; i++) { if (patt[i] != NULL) { free(patt[i]); patt[i] = NULL; } pattLens[i] = 64; } } static void delta2Samp(int8_t *p, uint32_t len, bool sample16Bit) { if (sample16Bit) { len >>= 1; int16_t *p16 = (int16_t *)p; int16_t olds16 = 0; for (uint32_t i = 0; i < len; i++) { const int16_t news16 = p16[i] + olds16; p16[i] = news16; olds16 = news16; } } else { int8_t *p8 = (int8_t *)p; int8_t olds8 = 0; for (uint32_t i = 0; i < len; i++) { const int8_t news8 = p8[i] + olds8; p8[i] = news8; olds8 = news8; } } } static void unpackPatt(uint8_t *dst, uint16_t inn, uint16_t len, uint8_t antChn) { if (dst == NULL) return; const uint8_t *src = dst + inn; const int32_t srcEnd = len * (sizeof (tonTyp) * antChn); int32_t srcIdx = 0; for (int32_t i = 0; i < len; i++) { for (int32_t j = 0; j < antChn; j++) { if (srcIdx >= srcEnd) return; // error! const uint8_t note = *src++; if (note & 0x80) { *dst++ = (note & 0x01) ? *src++ : 0; *dst++ = (note & 0x02) ? *src++ : 0; *dst++ = (note & 0x04) ? *src++ : 0; *dst++ = (note & 0x08) ? *src++ : 0; *dst++ = (note & 0x10) ? *src++ : 0; } else { *dst++ = note; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; } // 8bb: added this. If note >97, remove it (prevents out-of-range read in note->sample LUT) if (*(dst-5) > 97) *(dst-5) = 0; srcIdx += sizeof (tonTyp); } } } void freeMusic(void) { stopMusic(); freeAllInstr(); freeAllPatterns(); song.tempo = 6; song.speed = 125; song.timer = 1; setFrqTab(true); resetMusic(); } void stopVoices(void) { lockMixer(); stmTyp *ch = stm; for (uint8_t i = 0; i < 32; i++, ch++) { ch->tonTyp = 0; ch->relTonNr = 0; ch->instrNr = 0; ch->instrSeg = instr[0]; // 8bb: placeholder instrument ch->status = IS_Vol; ch->realVol = 0; ch->outVol = 0; ch->oldVol = 0; ch->finalVol = 0; ch->oldPan = 128; ch->outPan = 128; ch->finalPan = 128; ch->vibDepth = 0; } unlockMixer(); } static void resetMusic(void) { song.timer = 1; stopVoices(); setPos(0, 0); } void setPos(int32_t pos, int32_t row) // -1 = don't change { if (pos != -1) { song.songPos = (int16_t)pos; if (song.len > 0 && song.songPos >= song.len) song.songPos = song.len - 1; song.pattNr = song.songTab[song.songPos]; song.pattLen = pattLens[song.pattNr]; } if (row != -1) { song.pattPos = (int16_t)row; if (song.pattPos >= song.pattLen) song.pattPos = song.pattLen - 1; } song.timer = 1; } /*************************************************************************** * MODULE LOADING ROUTINES * ***************************************************************************/ static bool loadInstrHeader(MEMFILE *f, uint16_t i) { instrHeaderTyp ih; memset(&ih, 0, INSTR_HEADER_SIZE); mread(&ih.instrSize, 4, 1, f); if (ih.instrSize > INSTR_HEADER_SIZE) ih.instrSize = INSTR_HEADER_SIZE; if (ih.instrSize < 4) // 8bb: added protection return false; mread(ih.name, ih.instrSize-4, 1, f); if (ih.antSamp > 16) return false; if (ih.antSamp > 0) { if (!allocateInstr(i)) return false; instrTyp *ins = instr[i]; memcpy(ins->name, ih.name, 22); ins->name[22] = '\0'; // 8bb: copy instrument header elements to our instrument struct memcpy(ins->ta, ih.ta, 96); memcpy(ins->envVP, ih.envVP, 12*2*sizeof(int16_t)); memcpy(ins->envPP, ih.envPP, 12*2*sizeof(int16_t)); ins->envVPAnt = ih.envVPAnt; ins->envPPAnt = ih.envPPAnt; ins->envVSust = ih.envVSust; ins->envVRepS = ih.envVRepS; ins->envVRepE = ih.envVRepE; ins->envPSust = ih.envPSust; ins->envPRepS = ih.envPRepS; ins->envPRepE = ih.envPRepE; ins->envVTyp = ih.envVTyp; ins->envPTyp = ih.envPTyp; ins->vibTyp = ih.vibTyp; ins->vibSweep = ih.vibSweep; ins->vibDepth = ih.vibDepth; ins->vibRate = ih.vibRate; ins->fadeOut = ih.fadeOut; ins->mute = (ih.mute == 1) ? true : false; // 8bb: correct logic! ins->antSamp = ih.antSamp; if (mread(ih.samp, ih.antSamp * sizeof (sampleHeaderTyp), 1, f) != 1) return false; sampleTyp *s = instr[i]->samp; sampleHeaderTyp *src = ih.samp; for (int32_t j = 0; j < ih.antSamp; j++, s++, src++) { memcpy(s->name, src->name, 22); s->name[22] = '\0'; s->len = src->len; s->repS = src->repS; s->repL = src->repL; s->vol = src->vol; s->fine = src->fine; s->typ = src->typ; s->pan = src->pan; s->relTon = src->relTon; } } return true; } static bool loadInstrSample(MEMFILE *f, uint16_t i) { if (instr[i] == NULL) return true; // empty instrument sampleTyp *s = instr[i]->samp; for (uint16_t j = 0; j < instr[i]->antSamp; j++, s++) { if (s->len > 0) { bool sample16Bit = !!(s->typ & SAMPLE_16BIT); s->pek = (int8_t *)malloc(s->len+2); // 8bb: +2 for fixed interpolation tap sample if (s->pek == NULL) return false; mread(s->pek, 1, s->len, f); delta2Samp(s->pek, s->len, sample16Bit); } checkSampleRepeat(i, j); } return true; } static bool loadPatterns(MEMFILE *f, uint16_t antPtn) { uint8_t tmpLen; patternHeaderTyp ph; for (uint16_t i = 0; i < antPtn; i++) { mread(&ph.patternHeaderSize, 4, 1, f); mread(&ph.typ, 1, 1, f); ph.pattLen = 0; if (song.ver == 0x0102) { mread(&tmpLen, 1, 1, f); mread(&ph.dataLen, 2, 1, f); ph.pattLen = (uint16_t)tmpLen + 1; // 8bb: +1 in v1.02 if (ph.patternHeaderSize > 8) mseek(f, ph.patternHeaderSize - 8, SEEK_CUR); } else { mread(&ph.pattLen, 2, 1, f); mread(&ph.dataLen, 2, 1, f); if (ph.patternHeaderSize > 9) mseek(f, ph.patternHeaderSize - 9, SEEK_CUR); } if (meof(f)) { mclose(&f); return false; } pattLens[i] = ph.pattLen; if (ph.dataLen) { const uint16_t a = ph.pattLen * song.antChn * sizeof (tonTyp); patt[i] = (tonTyp *)malloc(a); if (patt[i] == NULL) return false; uint8_t *pattPtr = (uint8_t *)patt[i]; memset(pattPtr, 0, a); mread(&pattPtr[a - ph.dataLen], 1, ph.dataLen, f); unpackPatt(pattPtr, a - ph.dataLen, ph.pattLen, song.antChn); } if (patternEmpty(i)) { if (patt[i] != NULL) { free(patt[i]); patt[i] = NULL; } pattLens[i] = 64; } } return true; } static bool loadMusicMOD(MEMFILE *f) { uint8_t ha[sizeof (songMOD31HeaderTyp)]; songMOD31HeaderTyp *h_MOD31 = (songMOD31HeaderTyp *)ha; songMOD15HeaderTyp *h_MOD15 = (songMOD15HeaderTyp *)ha; mread(ha, sizeof (ha), 1, f); if (meof(f)) goto loadError2; memcpy(song.name, h_MOD31->name, 20); song.name[20] = '\0'; uint8_t j = 0; for (uint8_t i = 1; i <= 16; i++) { if (memcmp(h_MOD31->Sig, MODSig[i-1], 4) == 0) j = i + i; } if (memcmp(h_MOD31->Sig, "M!K!", 4) == 0 || memcmp(h_MOD31->Sig, "FLT4", 4) == 0) j = 4; if (memcmp(h_MOD31->Sig, "OCTA", 4) == 0) j = 8; uint8_t typ; if (j > 0) { typ = 1; song.antChn = j; } else { typ = 2; song.antChn = 4; } int16_t ai; if (typ == 1) { mseek(f, sizeof (songMOD31HeaderTyp), SEEK_SET); song.len = h_MOD31->len; song.repS = h_MOD31->repS; memcpy(song.songTab, h_MOD31->songTab, 128); ai = 31; } else { mseek(f, sizeof (songMOD15HeaderTyp), SEEK_SET); song.len = h_MOD15->len; song.repS = h_MOD15->repS; memcpy(song.songTab, h_MOD15->songTab, 128); ai = 15; } song.antInstrs = ai; // 8bb: added this if (meof(f)) goto loadError2; int32_t b = 0; for (int32_t a = 0; a < 128; a++) { if (song.songTab[a] > b) b = song.songTab[a]; } uint8_t pattBuf[32 * 4 * 64]; // 8bb: max pattern size (32 channels, 64 rows) for (uint16_t a = 0; a <= b; a++) { patt[a] = (tonTyp *)calloc(song.antChn * 64, sizeof (tonTyp)); if (patt[a] == NULL) goto loadError; pattLens[a] = 64; mread(pattBuf, 1, song.antChn * 4 * 64, f); if (meof(f)) goto loadError; // convert pattern uint8_t *bytes = pattBuf; tonTyp *ton = patt[a]; for (int32_t i = 0; i < 64 * song.antChn; i++, bytes += 4, ton++) { const uint16_t period = ((bytes[0] & 0x0F) << 8) | bytes[1]; for (uint8_t k = 0; k < 96; k++) { if (period >= amigaPeriod[k]) { ton->ton = k+1; break; } } ton->instr = (bytes[0] & 0xF0) | (bytes[2] >> 4); ton->effTyp = bytes[2] & 0x0F; ton->eff = bytes[3]; switch (ton->effTyp) { case 0xC: { if (ton->eff > 64) ton->eff = 64; } break; case 0x1: case 0x2: { if (ton->eff == 0) ton->effTyp = 0; } break; case 0x5: { if (ton->eff == 0) ton->effTyp = 3; } break; case 0x6: { if (ton->eff == 0) ton->effTyp = 4; } break; case 0xA: { if (ton->eff == 0) ton->effTyp = 0; } break; case 0xE: { const uint8_t effTyp = ton->effTyp >> 4; const uint8_t eff = ton->effTyp & 15; if (eff == 0 && (effTyp == 0x1 || effTyp == 0x2 || effTyp == 0xA || effTyp == 0xB)) { ton->eff = 0; ton->effTyp = 0; } } break; default: break; } } if (patternEmpty(a)) { free(patt[a]); patt[a] = NULL; pattLens[a] = 64; } } for (uint16_t a = 1; a <= ai; a++) { modSampleTyp *modSmp = &h_MOD31->sample[a-1]; uint32_t len = 2 * SWAP16(modSmp->len); if (len == 0) continue; if (!allocateInstr(a)) goto loadError; sampleTyp *xmSmp = &instr[a]->samp[0]; memcpy(xmSmp->name, modSmp->name, 22); xmSmp->name[22] = '\0'; uint32_t repS = 2 * SWAP16(modSmp->repS); uint32_t repL = 2 * SWAP16(modSmp->repL); if (repL <= 2) { repS = 0; repL = 0; } if (repS+repL > len) { if (repS >= len) { repS = 0; repL = 0; } else { repL = len-repS; } } xmSmp->typ = (repL > 2) ? 1 : 0; xmSmp->len = len; xmSmp->vol = (modSmp->vol <= 64) ? modSmp->vol : 64; xmSmp->fine = 8 * ((2 * ((modSmp->fine & 15) ^ 8)) - 16); xmSmp->repL = repL; xmSmp->repS = repS; xmSmp->pek = (int8_t *)malloc(len + 2); if (xmSmp->pek == NULL) goto loadError; mread(xmSmp->pek, 1, len, f); } mclose(&f); if (song.repS > song.len) song.repS = 0; resetMusic(); upDateInstrs(); moduleLoaded = true; return true; loadError: freeAllInstr(); freeAllPatterns(); loadError2: mclose(&f); return false; } bool loadMusicFromData(const uint8_t *data, uint32_t dataLength) // .XM/.MOD/.FT { uint16_t i; songHeaderTyp h; freeMusic(); setFrqTab(false); moduleLoaded = false; MEMFILE *f = mopen(data, dataLength); if (f == NULL) return false; // 8bb: instr 0 is a placeholder for empty instruments allocateInstr(0); instr[0]->samp[0].vol = 0; mread(&h, sizeof (h), 1, f); if (meof(f)) goto loadError2; if (memcmp(h.sig, "Extended Module: ", 17) != 0) { mrewind(f); return loadMusicMOD(f); } if (h.ver < 0x0102 || h.ver > 0x104 || h.antChn < 2 || h.antChn > 32 || (h.antChn & 1) != 0 || h.antPtn > 256 || h.antInstrs > 128) { goto loadError2; } mseek(f, 60+h.headerSize, SEEK_SET); if (meof(f)) goto loadError2; memcpy(song.name, h.name, 20); song.name[20] = '\0'; song.len = h.len; song.repS = h.repS; song.antChn = (uint8_t)h.antChn; bool linearFrequencies = !!(h.flags & LINEAR_FREQUENCIES); setFrqTab(linearFrequencies); memcpy(song.songTab, h.songTab, 256); song.antInstrs = h.antInstrs; // 8bb: added this if (h.defSpeed == 0) h.defSpeed = 125; // 8bb: (BPM) FT2 doesn't do this, but we do it for safety song.speed = h.defSpeed; song.tempo = h.defTempo; song.ver = h.ver; // 8bb: bugfixes... if (song.speed < 1) song.speed = 1; if (song.tempo < 1) song.tempo = 1; // ---------------- if (song.ver < 0x0104) // old FT2 XM format { for (i = 1; i <= h.antInstrs; i++) { if (!loadInstrHeader(f, i)) goto loadError; } if (!loadPatterns(f, h.antPtn)) goto loadError; for (i = 1; i <= h.antInstrs; i++) { if (!loadInstrSample(f, i)) goto loadError; } } else // latest FT2 XM format { if (!loadPatterns(f, h.antPtn)) goto loadError; for (i = 1; i <= h.antInstrs; i++) { if (!loadInstrHeader(f, i)) goto loadError; if (!loadInstrSample(f, i)) goto loadError; } } mclose(&f); if (song.repS > song.len) song.repS = 0; resetMusic(); upDateInstrs(); moduleLoaded = true; return true; loadError: freeAllInstr(); freeAllPatterns(); loadError2: mclose(&f); return false; } bool loadMusic(const char *fileName) // .XM/.MOD/.FT { FILE *f = fopen(fileName, "rb"); if (f == NULL) return false; fseek(f, 0, SEEK_END); const uint32_t fileSize = (uint32_t)ftell(f); rewind(f); uint8_t *fileBuffer = (uint8_t *)malloc(fileSize); if (fileBuffer == NULL) { fclose(f); return false; } if (fread(fileBuffer, 1, fileSize, f) != fileSize) { free(fileBuffer); fclose(f); return false; } fclose(f); if (!loadMusicFromData((const uint8_t *)fileBuffer, fileSize)) { free(fileBuffer); return false; } free(fileBuffer); return true; } /*************************************************************************** * PROCESS HANDLING * ***************************************************************************/ bool startMusic(void) { if (!moduleLoaded || song.speed == 0) return false; mix_ClearChannels(); stopVoices(); song.globVol = 64; speedVal = ((realReplayRate * 5) / 2) / song.speed; quickVolSizeVal = realReplayRate / 200; if (!mix_Init(soundBufferSize)) return false; if (openMixer(realReplayRate, soundBufferSize)) { musicPaused = false; return true; } return false; } void stopMusic(void) { pauseMusic(); closeMixer(); mix_Free(); song.globVol = 64; resumeMusic(); } void startPlaying(void) { stopMusic(); song.pattDelTime = song.pattDelTime2 = 0; // 8bb: added these setPos(0, 0); startMusic(); } void stopPlaying(void) { stopMusic(); stopVoices(); } void pauseMusic(void) { musicPaused = true; } void resumeMusic(void) { musicPaused = false; } // 8bb: added these three, handy void toggleMusic(void) { musicPaused ^= 1; } void setInterpolation(bool on) { interpolationFlag = on; mix_ClearChannels(); } void setVolumeRamping(bool on) { volumeRampingFlag = on; mix_ClearChannels(); } /*************************************************************************** * CONFIGURATION ROUTINES * ***************************************************************************/ void setMasterVol(int32_t v) // 0..256 { masterVol = CLAMP(v, 0, 256); stmTyp *ch = stm; for (int32_t i = 0; i < 32; i++, ch++) ch->status |= IS_Vol; } void setAmp(int32_t level) // 1..32 { boostLevel = (int16_t)CLAMP(level, 1, 32); CDA_Amp = boostLevel * 8; } int32_t getMasterVol(void) // 8bb: added this { return masterVol; } int32_t getAmp(void) // 8bb: added this { return boostLevel; } uint8_t getNumActiveVoices(void) // 8bb: added this { uint8_t activeVoices = 0; for (int32_t i = 0; i < song.antChn; i++) { CIType *v = getVoice(i); if (!(v->SType & SType_Off) && v->SVol > 0) activeVoices++; } return activeVoices; } static void setFrqTab(bool linear) { linearFrqTab = linear; note2Period = linear ? linearPeriods : amigaPeriods; } void updateReplayRate(void) { lockMixer(); // 8bb: bit-exact to FT2 frequenceDivFactor = (uint32_t)round(65536.0*1712.0/realReplayRate*8363.0); frequenceMulFactor = (uint32_t)round(256.0*65536.0/realReplayRate*8363.0); unlockMixer(); } /*************************************************************************** * INITIALIZATION ROUTINES * ***************************************************************************/ bool initMusic(int32_t audioFrequency, int32_t audioBufferSize, bool interpolation, bool volumeRamping) { closeMixer(); freeMusic(); memset(stm, 0, sizeof (stm)); realReplayRate = CLAMP(audioFrequency, 8000, 96000); updateReplayRate(); soundBufferSize = audioBufferSize; interpolationFlag = interpolation; volumeRampingFlag = volumeRamping; song.tempo = 6; song.speed = 125; setFrqTab(true); resetMusic(); return true; } /*************************************************************************** * WAV DUMPING ROUTINES * ***************************************************************************/ static void WAV_WriteHeader(FILE *f, int32_t frq) { uint16_t w; uint32_t l; // 12 bytes const uint32_t RIFF = 0x46464952; fwrite(&RIFF, 4, 1, f); fseek(f, 4, SEEK_CUR); const uint32_t WAVE = 0x45564157; fwrite(&WAVE, 4, 1, f); // 24 bytes const uint32_t fmt = 0x20746D66; fwrite(&fmt, 4, 1, f); l = 16; fwrite(&l, 4, 1, f); w = 1; fwrite(&w, 2, 1, f); w = 2; fwrite(&w, 2, 1, f); l = frq; fwrite(&l, 4, 1, f); l = frq*2*2; fwrite(&l, 4, 1, f); w = 2*2; fwrite(&w, 2, 1, f); w = 8*2; fwrite(&w, 2, 1, f); // 8 bytes const uint32_t DATA = 0x61746164; fwrite(&DATA, 4, 1, f); fseek(f, 4, SEEK_CUR); } static void WAV_WriteEnd(FILE *f, uint32_t size) { fseek(f, 4, SEEK_SET); uint32_t l = size+4+24+8; fwrite(&l, 4, 1, f); fseek(f, 12+24+4, SEEK_SET); fwrite(&size, 4, 1, f); } void WAVDump_Abort(void) // 8bb: added this { WAVDump_Flag = false; } bool WAVDump_Record(const char *filenameOut) { FILE *fil = fopen(filenameOut, "wb"); if (fil == NULL) { WAVDump_Flag = false; return false; } const int32_t WDFrequency = realReplayRate; const int32_t WDAmp = boostLevel; const uint32_t maxSamplesPerTick = (WDFrequency*5 / 2) / 1; // 8bb: added this (min. BPM = 1, through hex editing) int16_t *pBlock = (int16_t *)malloc(maxSamplesPerTick * (2 * sizeof (int16_t))); if (pBlock == NULL) { fclose(fil); WAVDump_Flag = false; return false; } WAV_WriteHeader(fil, WDFrequency); stopMusic(); mix_Init(maxSamplesPerTick); uint16_t WDStartPos = 0; uint16_t WDStopPos = song.len-1; dump_Init(WDFrequency, WDAmp, WDStartPos); uint32_t totSize = 0; WAVDump_Flag = true; while (!dump_EndOfTune(WDStopPos)) { if (!WAVDump_Flag) // extra check so that external threads can force-abort render break; const uint32_t size = dump_GetFrame(pBlock); fwrite(pBlock, 1, size, fil); totSize += size; } WAVDump_Flag = false; mix_Free(); WAV_WriteEnd(fil, totSize); dump_Close(); stopMusic(); fclose(fil); free(pBlock); WAVDump_Flag = false; return true; } /*************************************************************************** * MEMORY READ ROUTINES (8bb: added these) * ***************************************************************************/ static MEMFILE *mopen(const uint8_t *src, uint32_t length) { if (src == NULL || length == 0) return NULL; MEMFILE *b = (MEMFILE *)malloc(sizeof (MEMFILE)); if (b == NULL) return NULL; b->_base = (uint8_t *)src; b->_ptr = (uint8_t *)src; b->_cnt = length; b->_bufsiz = length; b->_eof = false; return b; } static void mclose(MEMFILE **buf) { if (*buf != NULL) { free(*buf); *buf = NULL; } } static size_t mread(void *buffer, size_t size, size_t count, MEMFILE *buf) { if (buf == NULL || buf->_ptr == NULL) return 0; size_t wrcnt = size * count; if (size == 0 || buf->_eof) return 0; int32_t pcnt = (buf->_cnt > wrcnt) ? (int32_t)wrcnt : (int32_t)buf->_cnt; memcpy(buffer, buf->_ptr, pcnt); buf->_cnt -= pcnt; buf->_ptr += pcnt; if (buf->_cnt <= 0) { buf->_ptr = buf->_base + buf->_bufsiz; buf->_cnt = 0; buf->_eof = true; } return pcnt / size; } static bool meof(MEMFILE *buf) { if (buf == NULL) return true; return buf->_eof; } static void mseek(MEMFILE *buf, int32_t offset, int32_t whence) { if (buf == NULL) return; if (buf->_base) { switch (whence) { case SEEK_SET: buf->_ptr = buf->_base + offset; break; case SEEK_CUR: buf->_ptr += offset; break; case SEEK_END: buf->_ptr = buf->_base + buf->_bufsiz + offset; break; default: break; } buf->_eof = false; if (buf->_ptr >= buf->_base+buf->_bufsiz) { buf->_ptr = buf->_base + buf->_bufsiz; buf->_eof = true; } buf->_cnt = (buf->_base + buf->_bufsiz) - buf->_ptr; } } static void mrewind(MEMFILE *buf) { mseek(buf, 0, SEEK_SET); }
