comparison dep/fmt/test/gtest/gmock-gtest-all.cc @ 343:1faa72660932

*: transfer back to cmake from autotools autotools just made lots of things more complicated than they should have and many things broke (i.e. translations)
author Paper <paper@paper.us.eu.org>
date Thu, 20 Jun 2024 05:56:06 -0400
parents
children
comparison
equal deleted inserted replaced
342:adb79bdde329 343:1faa72660932
1 // Copyright 2008, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 //
31 // Google C++ Testing and Mocking Framework (Google Test)
32 //
33 // Sometimes it's desirable to build Google Test by compiling a single file.
34 // This file serves this purpose.
35
36 // This line ensures that gtest.h can be compiled on its own, even
37 // when it's fused.
38 #include "gtest/gtest.h"
39
40 // The following lines pull in the real gtest *.cc files.
41 // Copyright 2005, Google Inc.
42 // All rights reserved.
43 //
44 // Redistribution and use in source and binary forms, with or without
45 // modification, are permitted provided that the following conditions are
46 // met:
47 //
48 // * Redistributions of source code must retain the above copyright
49 // notice, this list of conditions and the following disclaimer.
50 // * Redistributions in binary form must reproduce the above
51 // copyright notice, this list of conditions and the following disclaimer
52 // in the documentation and/or other materials provided with the
53 // distribution.
54 // * Neither the name of Google Inc. nor the names of its
55 // contributors may be used to endorse or promote products derived from
56 // this software without specific prior written permission.
57 //
58 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
59 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
60 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
61 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
62 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
63 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
64 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
68 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69
70 //
71 // The Google C++ Testing and Mocking Framework (Google Test)
72
73 // Copyright 2007, Google Inc.
74 // All rights reserved.
75 //
76 // Redistribution and use in source and binary forms, with or without
77 // modification, are permitted provided that the following conditions are
78 // met:
79 //
80 // * Redistributions of source code must retain the above copyright
81 // notice, this list of conditions and the following disclaimer.
82 // * Redistributions in binary form must reproduce the above
83 // copyright notice, this list of conditions and the following disclaimer
84 // in the documentation and/or other materials provided with the
85 // distribution.
86 // * Neither the name of Google Inc. nor the names of its
87 // contributors may be used to endorse or promote products derived from
88 // this software without specific prior written permission.
89 //
90 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
91 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
92 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
93 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
94 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
95 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
96 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
97 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
98 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
99 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
100 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
101
102 //
103 // Utilities for testing Google Test itself and code that uses Google Test
104 // (e.g. frameworks built on top of Google Test).
105
106 // GOOGLETEST_CM0004 DO NOT DELETE
107
108 #ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_SPI_H_
109 #define GOOGLETEST_INCLUDE_GTEST_GTEST_SPI_H_
110
111
112 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
113 /* class A needs to have dll-interface to be used by clients of class B */)
114
115 namespace testing {
116
117 // This helper class can be used to mock out Google Test failure reporting
118 // so that we can test Google Test or code that builds on Google Test.
119 //
120 // An object of this class appends a TestPartResult object to the
121 // TestPartResultArray object given in the constructor whenever a Google Test
122 // failure is reported. It can either intercept only failures that are
123 // generated in the same thread that created this object or it can intercept
124 // all generated failures. The scope of this mock object can be controlled with
125 // the second argument to the two arguments constructor.
126 class GTEST_API_ ScopedFakeTestPartResultReporter
127 : public TestPartResultReporterInterface {
128 public:
129 // The two possible mocking modes of this object.
130 enum InterceptMode {
131 INTERCEPT_ONLY_CURRENT_THREAD, // Intercepts only thread local failures.
132 INTERCEPT_ALL_THREADS // Intercepts all failures.
133 };
134
135 // The c'tor sets this object as the test part result reporter used
136 // by Google Test. The 'result' parameter specifies where to report the
137 // results. This reporter will only catch failures generated in the current
138 // thread. DEPRECATED
139 explicit ScopedFakeTestPartResultReporter(TestPartResultArray* result);
140
141 // Same as above, but you can choose the interception scope of this object.
142 ScopedFakeTestPartResultReporter(InterceptMode intercept_mode,
143 TestPartResultArray* result);
144
145 // The d'tor restores the previous test part result reporter.
146 ~ScopedFakeTestPartResultReporter() override;
147
148 // Appends the TestPartResult object to the TestPartResultArray
149 // received in the constructor.
150 //
151 // This method is from the TestPartResultReporterInterface
152 // interface.
153 void ReportTestPartResult(const TestPartResult& result) override;
154
155 private:
156 void Init();
157
158 const InterceptMode intercept_mode_;
159 TestPartResultReporterInterface* old_reporter_;
160 TestPartResultArray* const result_;
161
162 GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedFakeTestPartResultReporter);
163 };
164
165 namespace internal {
166
167 // A helper class for implementing EXPECT_FATAL_FAILURE() and
168 // EXPECT_NONFATAL_FAILURE(). Its destructor verifies that the given
169 // TestPartResultArray contains exactly one failure that has the given
170 // type and contains the given substring. If that's not the case, a
171 // non-fatal failure will be generated.
172 class GTEST_API_ SingleFailureChecker {
173 public:
174 // The constructor remembers the arguments.
175 SingleFailureChecker(const TestPartResultArray* results,
176 TestPartResult::Type type, const std::string& substr);
177 ~SingleFailureChecker();
178 private:
179 const TestPartResultArray* const results_;
180 const TestPartResult::Type type_;
181 const std::string substr_;
182
183 GTEST_DISALLOW_COPY_AND_ASSIGN_(SingleFailureChecker);
184 };
185
186 } // namespace internal
187
188 } // namespace testing
189
190 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
191
192 // A set of macros for testing Google Test assertions or code that's expected
193 // to generate Google Test fatal failures. It verifies that the given
194 // statement will cause exactly one fatal Google Test failure with 'substr'
195 // being part of the failure message.
196 //
197 // There are two different versions of this macro. EXPECT_FATAL_FAILURE only
198 // affects and considers failures generated in the current thread and
199 // EXPECT_FATAL_FAILURE_ON_ALL_THREADS does the same but for all threads.
200 //
201 // The verification of the assertion is done correctly even when the statement
202 // throws an exception or aborts the current function.
203 //
204 // Known restrictions:
205 // - 'statement' cannot reference local non-static variables or
206 // non-static members of the current object.
207 // - 'statement' cannot return a value.
208 // - You cannot stream a failure message to this macro.
209 //
210 // Note that even though the implementations of the following two
211 // macros are much alike, we cannot refactor them to use a common
212 // helper macro, due to some peculiarity in how the preprocessor
213 // works. The AcceptsMacroThatExpandsToUnprotectedComma test in
214 // gtest_unittest.cc will fail to compile if we do that.
215 #define EXPECT_FATAL_FAILURE(statement, substr) \
216 do { \
217 class GTestExpectFatalFailureHelper {\
218 public:\
219 static void Execute() { statement; }\
220 };\
221 ::testing::TestPartResultArray gtest_failures;\
222 ::testing::internal::SingleFailureChecker gtest_checker(\
223 &gtest_failures, ::testing::TestPartResult::kFatalFailure, (substr));\
224 {\
225 ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
226 ::testing::ScopedFakeTestPartResultReporter:: \
227 INTERCEPT_ONLY_CURRENT_THREAD, &gtest_failures);\
228 GTestExpectFatalFailureHelper::Execute();\
229 }\
230 } while (::testing::internal::AlwaysFalse())
231
232 #define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr) \
233 do { \
234 class GTestExpectFatalFailureHelper {\
235 public:\
236 static void Execute() { statement; }\
237 };\
238 ::testing::TestPartResultArray gtest_failures;\
239 ::testing::internal::SingleFailureChecker gtest_checker(\
240 &gtest_failures, ::testing::TestPartResult::kFatalFailure, (substr));\
241 {\
242 ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
243 ::testing::ScopedFakeTestPartResultReporter:: \
244 INTERCEPT_ALL_THREADS, &gtest_failures);\
245 GTestExpectFatalFailureHelper::Execute();\
246 }\
247 } while (::testing::internal::AlwaysFalse())
248
249 // A macro for testing Google Test assertions or code that's expected to
250 // generate Google Test non-fatal failures. It asserts that the given
251 // statement will cause exactly one non-fatal Google Test failure with 'substr'
252 // being part of the failure message.
253 //
254 // There are two different versions of this macro. EXPECT_NONFATAL_FAILURE only
255 // affects and considers failures generated in the current thread and
256 // EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS does the same but for all threads.
257 //
258 // 'statement' is allowed to reference local variables and members of
259 // the current object.
260 //
261 // The verification of the assertion is done correctly even when the statement
262 // throws an exception or aborts the current function.
263 //
264 // Known restrictions:
265 // - You cannot stream a failure message to this macro.
266 //
267 // Note that even though the implementations of the following two
268 // macros are much alike, we cannot refactor them to use a common
269 // helper macro, due to some peculiarity in how the preprocessor
270 // works. If we do that, the code won't compile when the user gives
271 // EXPECT_NONFATAL_FAILURE() a statement that contains a macro that
272 // expands to code containing an unprotected comma. The
273 // AcceptsMacroThatExpandsToUnprotectedComma test in gtest_unittest.cc
274 // catches that.
275 //
276 // For the same reason, we have to write
277 // if (::testing::internal::AlwaysTrue()) { statement; }
278 // instead of
279 // GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement)
280 // to avoid an MSVC warning on unreachable code.
281 #define EXPECT_NONFATAL_FAILURE(statement, substr) \
282 do {\
283 ::testing::TestPartResultArray gtest_failures;\
284 ::testing::internal::SingleFailureChecker gtest_checker(\
285 &gtest_failures, ::testing::TestPartResult::kNonFatalFailure, \
286 (substr));\
287 {\
288 ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
289 ::testing::ScopedFakeTestPartResultReporter:: \
290 INTERCEPT_ONLY_CURRENT_THREAD, &gtest_failures);\
291 if (::testing::internal::AlwaysTrue()) { statement; }\
292 }\
293 } while (::testing::internal::AlwaysFalse())
294
295 #define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr) \
296 do {\
297 ::testing::TestPartResultArray gtest_failures;\
298 ::testing::internal::SingleFailureChecker gtest_checker(\
299 &gtest_failures, ::testing::TestPartResult::kNonFatalFailure, \
300 (substr));\
301 {\
302 ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\
303 ::testing::ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, \
304 &gtest_failures);\
305 if (::testing::internal::AlwaysTrue()) { statement; }\
306 }\
307 } while (::testing::internal::AlwaysFalse())
308
309 #endif // GOOGLETEST_INCLUDE_GTEST_GTEST_SPI_H_
310
311 #include <ctype.h>
312 #include <stdarg.h>
313 #include <stdio.h>
314 #include <stdlib.h>
315 #include <time.h>
316 #include <wchar.h>
317 #include <wctype.h>
318
319 #include <algorithm>
320 #include <chrono> // NOLINT
321 #include <cmath>
322 #include <cstdint>
323 #include <iomanip>
324 #include <limits>
325 #include <list>
326 #include <map>
327 #include <ostream> // NOLINT
328 #include <sstream>
329 #include <vector>
330
331 #if GTEST_OS_LINUX
332
333 # include <fcntl.h> // NOLINT
334 # include <limits.h> // NOLINT
335 # include <sched.h> // NOLINT
336 // Declares vsnprintf(). This header is not available on Windows.
337 # include <strings.h> // NOLINT
338 # include <sys/mman.h> // NOLINT
339 # include <sys/time.h> // NOLINT
340 # include <unistd.h> // NOLINT
341 # include <string>
342
343 #elif GTEST_OS_ZOS
344 # include <sys/time.h> // NOLINT
345
346 // On z/OS we additionally need strings.h for strcasecmp.
347 # include <strings.h> // NOLINT
348
349 #elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE.
350
351 # include <windows.h> // NOLINT
352 # undef min
353
354 #elif GTEST_OS_WINDOWS // We are on Windows proper.
355
356 # include <windows.h> // NOLINT
357 # undef min
358
359 #ifdef _MSC_VER
360 # include <crtdbg.h> // NOLINT
361 #endif
362
363 # include <io.h> // NOLINT
364 # include <sys/timeb.h> // NOLINT
365 # include <sys/types.h> // NOLINT
366 # include <sys/stat.h> // NOLINT
367
368 # if GTEST_OS_WINDOWS_MINGW
369 # include <sys/time.h> // NOLINT
370 # endif // GTEST_OS_WINDOWS_MINGW
371
372 #else
373
374 // cpplint thinks that the header is already included, so we want to
375 // silence it.
376 # include <sys/time.h> // NOLINT
377 # include <unistd.h> // NOLINT
378
379 #endif // GTEST_OS_LINUX
380
381 #if GTEST_HAS_EXCEPTIONS
382 # include <stdexcept>
383 #endif
384
385 #if GTEST_CAN_STREAM_RESULTS_
386 # include <arpa/inet.h> // NOLINT
387 # include <netdb.h> // NOLINT
388 # include <sys/socket.h> // NOLINT
389 # include <sys/types.h> // NOLINT
390 #endif
391
392 // Copyright 2005, Google Inc.
393 // All rights reserved.
394 //
395 // Redistribution and use in source and binary forms, with or without
396 // modification, are permitted provided that the following conditions are
397 // met:
398 //
399 // * Redistributions of source code must retain the above copyright
400 // notice, this list of conditions and the following disclaimer.
401 // * Redistributions in binary form must reproduce the above
402 // copyright notice, this list of conditions and the following disclaimer
403 // in the documentation and/or other materials provided with the
404 // distribution.
405 // * Neither the name of Google Inc. nor the names of its
406 // contributors may be used to endorse or promote products derived from
407 // this software without specific prior written permission.
408 //
409 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
410 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
411 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
412 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
413 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
414 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
415 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
416 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
417 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
418 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
419 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
420
421 // Utility functions and classes used by the Google C++ testing framework.//
422 // This file contains purely Google Test's internal implementation. Please
423 // DO NOT #INCLUDE IT IN A USER PROGRAM.
424
425 #ifndef GOOGLETEST_SRC_GTEST_INTERNAL_INL_H_
426 #define GOOGLETEST_SRC_GTEST_INTERNAL_INL_H_
427
428 #ifndef _WIN32_WCE
429 # include <errno.h>
430 #endif // !_WIN32_WCE
431 #include <stddef.h>
432 #include <stdlib.h> // For strtoll/_strtoul64/malloc/free.
433 #include <string.h> // For memmove.
434
435 #include <algorithm>
436 #include <cstdint>
437 #include <memory>
438 #include <string>
439 #include <vector>
440
441
442 #if GTEST_CAN_STREAM_RESULTS_
443 # include <arpa/inet.h> // NOLINT
444 # include <netdb.h> // NOLINT
445 #endif
446
447 #if GTEST_OS_WINDOWS
448 # include <windows.h> // NOLINT
449 #endif // GTEST_OS_WINDOWS
450
451
452 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
453 /* class A needs to have dll-interface to be used by clients of class B */)
454
455 namespace testing {
456
457 // Declares the flags.
458 //
459 // We don't want the users to modify this flag in the code, but want
460 // Google Test's own unit tests to be able to access it. Therefore we
461 // declare it here as opposed to in gtest.h.
462 GTEST_DECLARE_bool_(death_test_use_fork);
463
464 namespace internal {
465
466 // The value of GetTestTypeId() as seen from within the Google Test
467 // library. This is solely for testing GetTestTypeId().
468 GTEST_API_ extern const TypeId kTestTypeIdInGoogleTest;
469
470 // Names of the flags (needed for parsing Google Test flags).
471 const char kAlsoRunDisabledTestsFlag[] = "also_run_disabled_tests";
472 const char kBreakOnFailureFlag[] = "break_on_failure";
473 const char kCatchExceptionsFlag[] = "catch_exceptions";
474 const char kColorFlag[] = "color";
475 const char kFailFast[] = "fail_fast";
476 const char kFilterFlag[] = "filter";
477 const char kListTestsFlag[] = "list_tests";
478 const char kOutputFlag[] = "output";
479 const char kBriefFlag[] = "brief";
480 const char kPrintTimeFlag[] = "print_time";
481 const char kPrintUTF8Flag[] = "print_utf8";
482 const char kRandomSeedFlag[] = "random_seed";
483 const char kRepeatFlag[] = "repeat";
484 const char kShuffleFlag[] = "shuffle";
485 const char kStackTraceDepthFlag[] = "stack_trace_depth";
486 const char kStreamResultToFlag[] = "stream_result_to";
487 const char kThrowOnFailureFlag[] = "throw_on_failure";
488 const char kFlagfileFlag[] = "flagfile";
489
490 // A valid random seed must be in [1, kMaxRandomSeed].
491 const int kMaxRandomSeed = 99999;
492
493 // g_help_flag is true if and only if the --help flag or an equivalent form
494 // is specified on the command line.
495 GTEST_API_ extern bool g_help_flag;
496
497 // Returns the current time in milliseconds.
498 GTEST_API_ TimeInMillis GetTimeInMillis();
499
500 // Returns true if and only if Google Test should use colors in the output.
501 GTEST_API_ bool ShouldUseColor(bool stdout_is_tty);
502
503 // Formats the given time in milliseconds as seconds.
504 GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms);
505
506 // Converts the given time in milliseconds to a date string in the ISO 8601
507 // format, without the timezone information. N.B.: due to the use the
508 // non-reentrant localtime() function, this function is not thread safe. Do
509 // not use it in any code that can be called from multiple threads.
510 GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms);
511
512 // Parses a string for an Int32 flag, in the form of "--flag=value".
513 //
514 // On success, stores the value of the flag in *value, and returns
515 // true. On failure, returns false without changing *value.
516 GTEST_API_ bool ParseInt32Flag(
517 const char* str, const char* flag, int32_t* value);
518
519 // Returns a random seed in range [1, kMaxRandomSeed] based on the
520 // given --gtest_random_seed flag value.
521 inline int GetRandomSeedFromFlag(int32_t random_seed_flag) {
522 const unsigned int raw_seed = (random_seed_flag == 0) ?
523 static_cast<unsigned int>(GetTimeInMillis()) :
524 static_cast<unsigned int>(random_seed_flag);
525
526 // Normalizes the actual seed to range [1, kMaxRandomSeed] such that
527 // it's easy to type.
528 const int normalized_seed =
529 static_cast<int>((raw_seed - 1U) %
530 static_cast<unsigned int>(kMaxRandomSeed)) + 1;
531 return normalized_seed;
532 }
533
534 // Returns the first valid random seed after 'seed'. The behavior is
535 // undefined if 'seed' is invalid. The seed after kMaxRandomSeed is
536 // considered to be 1.
537 inline int GetNextRandomSeed(int seed) {
538 GTEST_CHECK_(1 <= seed && seed <= kMaxRandomSeed)
539 << "Invalid random seed " << seed << " - must be in [1, "
540 << kMaxRandomSeed << "].";
541 const int next_seed = seed + 1;
542 return (next_seed > kMaxRandomSeed) ? 1 : next_seed;
543 }
544
545 // This class saves the values of all Google Test flags in its c'tor, and
546 // restores them in its d'tor.
547 class GTestFlagSaver {
548 public:
549 // The c'tor.
550 GTestFlagSaver() {
551 also_run_disabled_tests_ = GTEST_FLAG(also_run_disabled_tests);
552 break_on_failure_ = GTEST_FLAG(break_on_failure);
553 catch_exceptions_ = GTEST_FLAG(catch_exceptions);
554 color_ = GTEST_FLAG(color);
555 death_test_style_ = GTEST_FLAG(death_test_style);
556 death_test_use_fork_ = GTEST_FLAG(death_test_use_fork);
557 fail_fast_ = GTEST_FLAG(fail_fast);
558 filter_ = GTEST_FLAG(filter);
559 internal_run_death_test_ = GTEST_FLAG(internal_run_death_test);
560 list_tests_ = GTEST_FLAG(list_tests);
561 output_ = GTEST_FLAG(output);
562 brief_ = GTEST_FLAG(brief);
563 print_time_ = GTEST_FLAG(print_time);
564 print_utf8_ = GTEST_FLAG(print_utf8);
565 random_seed_ = GTEST_FLAG(random_seed);
566 repeat_ = GTEST_FLAG(repeat);
567 shuffle_ = GTEST_FLAG(shuffle);
568 stack_trace_depth_ = GTEST_FLAG(stack_trace_depth);
569 stream_result_to_ = GTEST_FLAG(stream_result_to);
570 throw_on_failure_ = GTEST_FLAG(throw_on_failure);
571 }
572
573 // The d'tor is not virtual. DO NOT INHERIT FROM THIS CLASS.
574 ~GTestFlagSaver() {
575 GTEST_FLAG(also_run_disabled_tests) = also_run_disabled_tests_;
576 GTEST_FLAG(break_on_failure) = break_on_failure_;
577 GTEST_FLAG(catch_exceptions) = catch_exceptions_;
578 GTEST_FLAG(color) = color_;
579 GTEST_FLAG(death_test_style) = death_test_style_;
580 GTEST_FLAG(death_test_use_fork) = death_test_use_fork_;
581 GTEST_FLAG(filter) = filter_;
582 GTEST_FLAG(fail_fast) = fail_fast_;
583 GTEST_FLAG(internal_run_death_test) = internal_run_death_test_;
584 GTEST_FLAG(list_tests) = list_tests_;
585 GTEST_FLAG(output) = output_;
586 GTEST_FLAG(brief) = brief_;
587 GTEST_FLAG(print_time) = print_time_;
588 GTEST_FLAG(print_utf8) = print_utf8_;
589 GTEST_FLAG(random_seed) = random_seed_;
590 GTEST_FLAG(repeat) = repeat_;
591 GTEST_FLAG(shuffle) = shuffle_;
592 GTEST_FLAG(stack_trace_depth) = stack_trace_depth_;
593 GTEST_FLAG(stream_result_to) = stream_result_to_;
594 GTEST_FLAG(throw_on_failure) = throw_on_failure_;
595 }
596
597 private:
598 // Fields for saving the original values of flags.
599 bool also_run_disabled_tests_;
600 bool break_on_failure_;
601 bool catch_exceptions_;
602 std::string color_;
603 std::string death_test_style_;
604 bool death_test_use_fork_;
605 bool fail_fast_;
606 std::string filter_;
607 std::string internal_run_death_test_;
608 bool list_tests_;
609 std::string output_;
610 bool brief_;
611 bool print_time_;
612 bool print_utf8_;
613 int32_t random_seed_;
614 int32_t repeat_;
615 bool shuffle_;
616 int32_t stack_trace_depth_;
617 std::string stream_result_to_;
618 bool throw_on_failure_;
619 } GTEST_ATTRIBUTE_UNUSED_;
620
621 // Converts a Unicode code point to a narrow string in UTF-8 encoding.
622 // code_point parameter is of type UInt32 because wchar_t may not be
623 // wide enough to contain a code point.
624 // If the code_point is not a valid Unicode code point
625 // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted
626 // to "(Invalid Unicode 0xXXXXXXXX)".
627 GTEST_API_ std::string CodePointToUtf8(uint32_t code_point);
628
629 // Converts a wide string to a narrow string in UTF-8 encoding.
630 // The wide string is assumed to have the following encoding:
631 // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin)
632 // UTF-32 if sizeof(wchar_t) == 4 (on Linux)
633 // Parameter str points to a null-terminated wide string.
634 // Parameter num_chars may additionally limit the number
635 // of wchar_t characters processed. -1 is used when the entire string
636 // should be processed.
637 // If the string contains code points that are not valid Unicode code points
638 // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output
639 // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding
640 // and contains invalid UTF-16 surrogate pairs, values in those pairs
641 // will be encoded as individual Unicode characters from Basic Normal Plane.
642 GTEST_API_ std::string WideStringToUtf8(const wchar_t* str, int num_chars);
643
644 // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file
645 // if the variable is present. If a file already exists at this location, this
646 // function will write over it. If the variable is present, but the file cannot
647 // be created, prints an error and exits.
648 void WriteToShardStatusFileIfNeeded();
649
650 // Checks whether sharding is enabled by examining the relevant
651 // environment variable values. If the variables are present,
652 // but inconsistent (e.g., shard_index >= total_shards), prints
653 // an error and exits. If in_subprocess_for_death_test, sharding is
654 // disabled because it must only be applied to the original test
655 // process. Otherwise, we could filter out death tests we intended to execute.
656 GTEST_API_ bool ShouldShard(const char* total_shards_str,
657 const char* shard_index_str,
658 bool in_subprocess_for_death_test);
659
660 // Parses the environment variable var as a 32-bit integer. If it is unset,
661 // returns default_val. If it is not a 32-bit integer, prints an error and
662 // and aborts.
663 GTEST_API_ int32_t Int32FromEnvOrDie(const char* env_var, int32_t default_val);
664
665 // Given the total number of shards, the shard index, and the test id,
666 // returns true if and only if the test should be run on this shard. The test id
667 // is some arbitrary but unique non-negative integer assigned to each test
668 // method. Assumes that 0 <= shard_index < total_shards.
669 GTEST_API_ bool ShouldRunTestOnShard(
670 int total_shards, int shard_index, int test_id);
671
672 // STL container utilities.
673
674 // Returns the number of elements in the given container that satisfy
675 // the given predicate.
676 template <class Container, typename Predicate>
677 inline int CountIf(const Container& c, Predicate predicate) {
678 // Implemented as an explicit loop since std::count_if() in libCstd on
679 // Solaris has a non-standard signature.
680 int count = 0;
681 for (typename Container::const_iterator it = c.begin(); it != c.end(); ++it) {
682 if (predicate(*it))
683 ++count;
684 }
685 return count;
686 }
687
688 // Applies a function/functor to each element in the container.
689 template <class Container, typename Functor>
690 void ForEach(const Container& c, Functor functor) {
691 std::for_each(c.begin(), c.end(), functor);
692 }
693
694 // Returns the i-th element of the vector, or default_value if i is not
695 // in range [0, v.size()).
696 template <typename E>
697 inline E GetElementOr(const std::vector<E>& v, int i, E default_value) {
698 return (i < 0 || i >= static_cast<int>(v.size())) ? default_value
699 : v[static_cast<size_t>(i)];
700 }
701
702 // Performs an in-place shuffle of a range of the vector's elements.
703 // 'begin' and 'end' are element indices as an STL-style range;
704 // i.e. [begin, end) are shuffled, where 'end' == size() means to
705 // shuffle to the end of the vector.
706 template <typename E>
707 void ShuffleRange(internal::Random* random, int begin, int end,
708 std::vector<E>* v) {
709 const int size = static_cast<int>(v->size());
710 GTEST_CHECK_(0 <= begin && begin <= size)
711 << "Invalid shuffle range start " << begin << ": must be in range [0, "
712 << size << "].";
713 GTEST_CHECK_(begin <= end && end <= size)
714 << "Invalid shuffle range finish " << end << ": must be in range ["
715 << begin << ", " << size << "].";
716
717 // Fisher-Yates shuffle, from
718 // http://en.wikipedia.org/wiki/Fisher-Yates_shuffle
719 for (int range_width = end - begin; range_width >= 2; range_width--) {
720 const int last_in_range = begin + range_width - 1;
721 const int selected =
722 begin +
723 static_cast<int>(random->Generate(static_cast<uint32_t>(range_width)));
724 std::swap((*v)[static_cast<size_t>(selected)],
725 (*v)[static_cast<size_t>(last_in_range)]);
726 }
727 }
728
729 // Performs an in-place shuffle of the vector's elements.
730 template <typename E>
731 inline void Shuffle(internal::Random* random, std::vector<E>* v) {
732 ShuffleRange(random, 0, static_cast<int>(v->size()), v);
733 }
734
735 // A function for deleting an object. Handy for being used as a
736 // functor.
737 template <typename T>
738 static void Delete(T* x) {
739 delete x;
740 }
741
742 // A predicate that checks the key of a TestProperty against a known key.
743 //
744 // TestPropertyKeyIs is copyable.
745 class TestPropertyKeyIs {
746 public:
747 // Constructor.
748 //
749 // TestPropertyKeyIs has NO default constructor.
750 explicit TestPropertyKeyIs(const std::string& key) : key_(key) {}
751
752 // Returns true if and only if the test name of test property matches on key_.
753 bool operator()(const TestProperty& test_property) const {
754 return test_property.key() == key_;
755 }
756
757 private:
758 std::string key_;
759 };
760
761 // Class UnitTestOptions.
762 //
763 // This class contains functions for processing options the user
764 // specifies when running the tests. It has only static members.
765 //
766 // In most cases, the user can specify an option using either an
767 // environment variable or a command line flag. E.g. you can set the
768 // test filter using either GTEST_FILTER or --gtest_filter. If both
769 // the variable and the flag are present, the latter overrides the
770 // former.
771 class GTEST_API_ UnitTestOptions {
772 public:
773 // Functions for processing the gtest_output flag.
774
775 // Returns the output format, or "" for normal printed output.
776 static std::string GetOutputFormat();
777
778 // Returns the absolute path of the requested output file, or the
779 // default (test_detail.xml in the original working directory) if
780 // none was explicitly specified.
781 static std::string GetAbsolutePathToOutputFile();
782
783 // Functions for processing the gtest_filter flag.
784
785 // Returns true if and only if the user-specified filter matches the test
786 // suite name and the test name.
787 static bool FilterMatchesTest(const std::string& test_suite_name,
788 const std::string& test_name);
789
790 #if GTEST_OS_WINDOWS
791 // Function for supporting the gtest_catch_exception flag.
792
793 // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the
794 // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise.
795 // This function is useful as an __except condition.
796 static int GTestShouldProcessSEH(DWORD exception_code);
797 #endif // GTEST_OS_WINDOWS
798
799 // Returns true if "name" matches the ':' separated list of glob-style
800 // filters in "filter".
801 static bool MatchesFilter(const std::string& name, const char* filter);
802 };
803
804 // Returns the current application's name, removing directory path if that
805 // is present. Used by UnitTestOptions::GetOutputFile.
806 GTEST_API_ FilePath GetCurrentExecutableName();
807
808 // The role interface for getting the OS stack trace as a string.
809 class OsStackTraceGetterInterface {
810 public:
811 OsStackTraceGetterInterface() {}
812 virtual ~OsStackTraceGetterInterface() {}
813
814 // Returns the current OS stack trace as an std::string. Parameters:
815 //
816 // max_depth - the maximum number of stack frames to be included
817 // in the trace.
818 // skip_count - the number of top frames to be skipped; doesn't count
819 // against max_depth.
820 virtual std::string CurrentStackTrace(int max_depth, int skip_count) = 0;
821
822 // UponLeavingGTest() should be called immediately before Google Test calls
823 // user code. It saves some information about the current stack that
824 // CurrentStackTrace() will use to find and hide Google Test stack frames.
825 virtual void UponLeavingGTest() = 0;
826
827 // This string is inserted in place of stack frames that are part of
828 // Google Test's implementation.
829 static const char* const kElidedFramesMarker;
830
831 private:
832 GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetterInterface);
833 };
834
835 // A working implementation of the OsStackTraceGetterInterface interface.
836 class OsStackTraceGetter : public OsStackTraceGetterInterface {
837 public:
838 OsStackTraceGetter() {}
839
840 std::string CurrentStackTrace(int max_depth, int skip_count) override;
841 void UponLeavingGTest() override;
842
843 private:
844 #if GTEST_HAS_ABSL
845 Mutex mutex_; // Protects all internal state.
846
847 // We save the stack frame below the frame that calls user code.
848 // We do this because the address of the frame immediately below
849 // the user code changes between the call to UponLeavingGTest()
850 // and any calls to the stack trace code from within the user code.
851 void* caller_frame_ = nullptr;
852 #endif // GTEST_HAS_ABSL
853
854 GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetter);
855 };
856
857 // Information about a Google Test trace point.
858 struct TraceInfo {
859 const char* file;
860 int line;
861 std::string message;
862 };
863
864 // This is the default global test part result reporter used in UnitTestImpl.
865 // This class should only be used by UnitTestImpl.
866 class DefaultGlobalTestPartResultReporter
867 : public TestPartResultReporterInterface {
868 public:
869 explicit DefaultGlobalTestPartResultReporter(UnitTestImpl* unit_test);
870 // Implements the TestPartResultReporterInterface. Reports the test part
871 // result in the current test.
872 void ReportTestPartResult(const TestPartResult& result) override;
873
874 private:
875 UnitTestImpl* const unit_test_;
876
877 GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultGlobalTestPartResultReporter);
878 };
879
880 // This is the default per thread test part result reporter used in
881 // UnitTestImpl. This class should only be used by UnitTestImpl.
882 class DefaultPerThreadTestPartResultReporter
883 : public TestPartResultReporterInterface {
884 public:
885 explicit DefaultPerThreadTestPartResultReporter(UnitTestImpl* unit_test);
886 // Implements the TestPartResultReporterInterface. The implementation just
887 // delegates to the current global test part result reporter of *unit_test_.
888 void ReportTestPartResult(const TestPartResult& result) override;
889
890 private:
891 UnitTestImpl* const unit_test_;
892
893 GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultPerThreadTestPartResultReporter);
894 };
895
896 // The private implementation of the UnitTest class. We don't protect
897 // the methods under a mutex, as this class is not accessible by a
898 // user and the UnitTest class that delegates work to this class does
899 // proper locking.
900 class GTEST_API_ UnitTestImpl {
901 public:
902 explicit UnitTestImpl(UnitTest* parent);
903 virtual ~UnitTestImpl();
904
905 // There are two different ways to register your own TestPartResultReporter.
906 // You can register your own repoter to listen either only for test results
907 // from the current thread or for results from all threads.
908 // By default, each per-thread test result repoter just passes a new
909 // TestPartResult to the global test result reporter, which registers the
910 // test part result for the currently running test.
911
912 // Returns the global test part result reporter.
913 TestPartResultReporterInterface* GetGlobalTestPartResultReporter();
914
915 // Sets the global test part result reporter.
916 void SetGlobalTestPartResultReporter(
917 TestPartResultReporterInterface* reporter);
918
919 // Returns the test part result reporter for the current thread.
920 TestPartResultReporterInterface* GetTestPartResultReporterForCurrentThread();
921
922 // Sets the test part result reporter for the current thread.
923 void SetTestPartResultReporterForCurrentThread(
924 TestPartResultReporterInterface* reporter);
925
926 // Gets the number of successful test suites.
927 int successful_test_suite_count() const;
928
929 // Gets the number of failed test suites.
930 int failed_test_suite_count() const;
931
932 // Gets the number of all test suites.
933 int total_test_suite_count() const;
934
935 // Gets the number of all test suites that contain at least one test
936 // that should run.
937 int test_suite_to_run_count() const;
938
939 // Gets the number of successful tests.
940 int successful_test_count() const;
941
942 // Gets the number of skipped tests.
943 int skipped_test_count() const;
944
945 // Gets the number of failed tests.
946 int failed_test_count() const;
947
948 // Gets the number of disabled tests that will be reported in the XML report.
949 int reportable_disabled_test_count() const;
950
951 // Gets the number of disabled tests.
952 int disabled_test_count() const;
953
954 // Gets the number of tests to be printed in the XML report.
955 int reportable_test_count() const;
956
957 // Gets the number of all tests.
958 int total_test_count() const;
959
960 // Gets the number of tests that should run.
961 int test_to_run_count() const;
962
963 // Gets the time of the test program start, in ms from the start of the
964 // UNIX epoch.
965 TimeInMillis start_timestamp() const { return start_timestamp_; }
966
967 // Gets the elapsed time, in milliseconds.
968 TimeInMillis elapsed_time() const { return elapsed_time_; }
969
970 // Returns true if and only if the unit test passed (i.e. all test suites
971 // passed).
972 bool Passed() const { return !Failed(); }
973
974 // Returns true if and only if the unit test failed (i.e. some test suite
975 // failed or something outside of all tests failed).
976 bool Failed() const {
977 return failed_test_suite_count() > 0 || ad_hoc_test_result()->Failed();
978 }
979
980 // Gets the i-th test suite among all the test suites. i can range from 0 to
981 // total_test_suite_count() - 1. If i is not in that range, returns NULL.
982 const TestSuite* GetTestSuite(int i) const {
983 const int index = GetElementOr(test_suite_indices_, i, -1);
984 return index < 0 ? nullptr : test_suites_[static_cast<size_t>(i)];
985 }
986
987 // Legacy API is deprecated but still available
988 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
989 const TestCase* GetTestCase(int i) const { return GetTestSuite(i); }
990 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
991
992 // Gets the i-th test suite among all the test suites. i can range from 0 to
993 // total_test_suite_count() - 1. If i is not in that range, returns NULL.
994 TestSuite* GetMutableSuiteCase(int i) {
995 const int index = GetElementOr(test_suite_indices_, i, -1);
996 return index < 0 ? nullptr : test_suites_[static_cast<size_t>(index)];
997 }
998
999 // Provides access to the event listener list.
1000 TestEventListeners* listeners() { return &listeners_; }
1001
1002 // Returns the TestResult for the test that's currently running, or
1003 // the TestResult for the ad hoc test if no test is running.
1004 TestResult* current_test_result();
1005
1006 // Returns the TestResult for the ad hoc test.
1007 const TestResult* ad_hoc_test_result() const { return &ad_hoc_test_result_; }
1008
1009 // Sets the OS stack trace getter.
1010 //
1011 // Does nothing if the input and the current OS stack trace getter
1012 // are the same; otherwise, deletes the old getter and makes the
1013 // input the current getter.
1014 void set_os_stack_trace_getter(OsStackTraceGetterInterface* getter);
1015
1016 // Returns the current OS stack trace getter if it is not NULL;
1017 // otherwise, creates an OsStackTraceGetter, makes it the current
1018 // getter, and returns it.
1019 OsStackTraceGetterInterface* os_stack_trace_getter();
1020
1021 // Returns the current OS stack trace as an std::string.
1022 //
1023 // The maximum number of stack frames to be included is specified by
1024 // the gtest_stack_trace_depth flag. The skip_count parameter
1025 // specifies the number of top frames to be skipped, which doesn't
1026 // count against the number of frames to be included.
1027 //
1028 // For example, if Foo() calls Bar(), which in turn calls
1029 // CurrentOsStackTraceExceptTop(1), Foo() will be included in the
1030 // trace but Bar() and CurrentOsStackTraceExceptTop() won't.
1031 std::string CurrentOsStackTraceExceptTop(int skip_count) GTEST_NO_INLINE_;
1032
1033 // Finds and returns a TestSuite with the given name. If one doesn't
1034 // exist, creates one and returns it.
1035 //
1036 // Arguments:
1037 //
1038 // test_suite_name: name of the test suite
1039 // type_param: the name of the test's type parameter, or NULL if
1040 // this is not a typed or a type-parameterized test.
1041 // set_up_tc: pointer to the function that sets up the test suite
1042 // tear_down_tc: pointer to the function that tears down the test suite
1043 TestSuite* GetTestSuite(const char* test_suite_name, const char* type_param,
1044 internal::SetUpTestSuiteFunc set_up_tc,
1045 internal::TearDownTestSuiteFunc tear_down_tc);
1046
1047 // Legacy API is deprecated but still available
1048 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
1049 TestCase* GetTestCase(const char* test_case_name, const char* type_param,
1050 internal::SetUpTestSuiteFunc set_up_tc,
1051 internal::TearDownTestSuiteFunc tear_down_tc) {
1052 return GetTestSuite(test_case_name, type_param, set_up_tc, tear_down_tc);
1053 }
1054 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
1055
1056 // Adds a TestInfo to the unit test.
1057 //
1058 // Arguments:
1059 //
1060 // set_up_tc: pointer to the function that sets up the test suite
1061 // tear_down_tc: pointer to the function that tears down the test suite
1062 // test_info: the TestInfo object
1063 void AddTestInfo(internal::SetUpTestSuiteFunc set_up_tc,
1064 internal::TearDownTestSuiteFunc tear_down_tc,
1065 TestInfo* test_info) {
1066 #if GTEST_HAS_DEATH_TEST
1067 // In order to support thread-safe death tests, we need to
1068 // remember the original working directory when the test program
1069 // was first invoked. We cannot do this in RUN_ALL_TESTS(), as
1070 // the user may have changed the current directory before calling
1071 // RUN_ALL_TESTS(). Therefore we capture the current directory in
1072 // AddTestInfo(), which is called to register a TEST or TEST_F
1073 // before main() is reached.
1074 if (original_working_dir_.IsEmpty()) {
1075 original_working_dir_.Set(FilePath::GetCurrentDir());
1076 GTEST_CHECK_(!original_working_dir_.IsEmpty())
1077 << "Failed to get the current working directory.";
1078 }
1079 #endif // GTEST_HAS_DEATH_TEST
1080
1081 GetTestSuite(test_info->test_suite_name(), test_info->type_param(),
1082 set_up_tc, tear_down_tc)
1083 ->AddTestInfo(test_info);
1084 }
1085
1086 // Returns ParameterizedTestSuiteRegistry object used to keep track of
1087 // value-parameterized tests and instantiate and register them.
1088 internal::ParameterizedTestSuiteRegistry& parameterized_test_registry() {
1089 return parameterized_test_registry_;
1090 }
1091
1092 std::set<std::string>* ignored_parameterized_test_suites() {
1093 return &ignored_parameterized_test_suites_;
1094 }
1095
1096 // Returns TypeParameterizedTestSuiteRegistry object used to keep track of
1097 // type-parameterized tests and instantiations of them.
1098 internal::TypeParameterizedTestSuiteRegistry&
1099 type_parameterized_test_registry() {
1100 return type_parameterized_test_registry_;
1101 }
1102
1103 // Sets the TestSuite object for the test that's currently running.
1104 void set_current_test_suite(TestSuite* a_current_test_suite) {
1105 current_test_suite_ = a_current_test_suite;
1106 }
1107
1108 // Sets the TestInfo object for the test that's currently running. If
1109 // current_test_info is NULL, the assertion results will be stored in
1110 // ad_hoc_test_result_.
1111 void set_current_test_info(TestInfo* a_current_test_info) {
1112 current_test_info_ = a_current_test_info;
1113 }
1114
1115 // Registers all parameterized tests defined using TEST_P and
1116 // INSTANTIATE_TEST_SUITE_P, creating regular tests for each test/parameter
1117 // combination. This method can be called more then once; it has guards
1118 // protecting from registering the tests more then once. If
1119 // value-parameterized tests are disabled, RegisterParameterizedTests is
1120 // present but does nothing.
1121 void RegisterParameterizedTests();
1122
1123 // Runs all tests in this UnitTest object, prints the result, and
1124 // returns true if all tests are successful. If any exception is
1125 // thrown during a test, this test is considered to be failed, but
1126 // the rest of the tests will still be run.
1127 bool RunAllTests();
1128
1129 // Clears the results of all tests, except the ad hoc tests.
1130 void ClearNonAdHocTestResult() {
1131 ForEach(test_suites_, TestSuite::ClearTestSuiteResult);
1132 }
1133
1134 // Clears the results of ad-hoc test assertions.
1135 void ClearAdHocTestResult() {
1136 ad_hoc_test_result_.Clear();
1137 }
1138
1139 // Adds a TestProperty to the current TestResult object when invoked in a
1140 // context of a test or a test suite, or to the global property set. If the
1141 // result already contains a property with the same key, the value will be
1142 // updated.
1143 void RecordProperty(const TestProperty& test_property);
1144
1145 enum ReactionToSharding {
1146 HONOR_SHARDING_PROTOCOL,
1147 IGNORE_SHARDING_PROTOCOL
1148 };
1149
1150 // Matches the full name of each test against the user-specified
1151 // filter to decide whether the test should run, then records the
1152 // result in each TestSuite and TestInfo object.
1153 // If shard_tests == HONOR_SHARDING_PROTOCOL, further filters tests
1154 // based on sharding variables in the environment.
1155 // Returns the number of tests that should run.
1156 int FilterTests(ReactionToSharding shard_tests);
1157
1158 // Prints the names of the tests matching the user-specified filter flag.
1159 void ListTestsMatchingFilter();
1160
1161 const TestSuite* current_test_suite() const { return current_test_suite_; }
1162 TestInfo* current_test_info() { return current_test_info_; }
1163 const TestInfo* current_test_info() const { return current_test_info_; }
1164
1165 // Returns the vector of environments that need to be set-up/torn-down
1166 // before/after the tests are run.
1167 std::vector<Environment*>& environments() { return environments_; }
1168
1169 // Getters for the per-thread Google Test trace stack.
1170 std::vector<TraceInfo>& gtest_trace_stack() {
1171 return *(gtest_trace_stack_.pointer());
1172 }
1173 const std::vector<TraceInfo>& gtest_trace_stack() const {
1174 return gtest_trace_stack_.get();
1175 }
1176
1177 #if GTEST_HAS_DEATH_TEST
1178 void InitDeathTestSubprocessControlInfo() {
1179 internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag());
1180 }
1181 // Returns a pointer to the parsed --gtest_internal_run_death_test
1182 // flag, or NULL if that flag was not specified.
1183 // This information is useful only in a death test child process.
1184 // Must not be called before a call to InitGoogleTest.
1185 const InternalRunDeathTestFlag* internal_run_death_test_flag() const {
1186 return internal_run_death_test_flag_.get();
1187 }
1188
1189 // Returns a pointer to the current death test factory.
1190 internal::DeathTestFactory* death_test_factory() {
1191 return death_test_factory_.get();
1192 }
1193
1194 void SuppressTestEventsIfInSubprocess();
1195
1196 friend class ReplaceDeathTestFactory;
1197 #endif // GTEST_HAS_DEATH_TEST
1198
1199 // Initializes the event listener performing XML output as specified by
1200 // UnitTestOptions. Must not be called before InitGoogleTest.
1201 void ConfigureXmlOutput();
1202
1203 #if GTEST_CAN_STREAM_RESULTS_
1204 // Initializes the event listener for streaming test results to a socket.
1205 // Must not be called before InitGoogleTest.
1206 void ConfigureStreamingOutput();
1207 #endif
1208
1209 // Performs initialization dependent upon flag values obtained in
1210 // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to
1211 // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest
1212 // this function is also called from RunAllTests. Since this function can be
1213 // called more than once, it has to be idempotent.
1214 void PostFlagParsingInit();
1215
1216 // Gets the random seed used at the start of the current test iteration.
1217 int random_seed() const { return random_seed_; }
1218
1219 // Gets the random number generator.
1220 internal::Random* random() { return &random_; }
1221
1222 // Shuffles all test suites, and the tests within each test suite,
1223 // making sure that death tests are still run first.
1224 void ShuffleTests();
1225
1226 // Restores the test suites and tests to their order before the first shuffle.
1227 void UnshuffleTests();
1228
1229 // Returns the value of GTEST_FLAG(catch_exceptions) at the moment
1230 // UnitTest::Run() starts.
1231 bool catch_exceptions() const { return catch_exceptions_; }
1232
1233 private:
1234 friend class ::testing::UnitTest;
1235
1236 // Used by UnitTest::Run() to capture the state of
1237 // GTEST_FLAG(catch_exceptions) at the moment it starts.
1238 void set_catch_exceptions(bool value) { catch_exceptions_ = value; }
1239
1240 // The UnitTest object that owns this implementation object.
1241 UnitTest* const parent_;
1242
1243 // The working directory when the first TEST() or TEST_F() was
1244 // executed.
1245 internal::FilePath original_working_dir_;
1246
1247 // The default test part result reporters.
1248 DefaultGlobalTestPartResultReporter default_global_test_part_result_reporter_;
1249 DefaultPerThreadTestPartResultReporter
1250 default_per_thread_test_part_result_reporter_;
1251
1252 // Points to (but doesn't own) the global test part result reporter.
1253 TestPartResultReporterInterface* global_test_part_result_repoter_;
1254
1255 // Protects read and write access to global_test_part_result_reporter_.
1256 internal::Mutex global_test_part_result_reporter_mutex_;
1257
1258 // Points to (but doesn't own) the per-thread test part result reporter.
1259 internal::ThreadLocal<TestPartResultReporterInterface*>
1260 per_thread_test_part_result_reporter_;
1261
1262 // The vector of environments that need to be set-up/torn-down
1263 // before/after the tests are run.
1264 std::vector<Environment*> environments_;
1265
1266 // The vector of TestSuites in their original order. It owns the
1267 // elements in the vector.
1268 std::vector<TestSuite*> test_suites_;
1269
1270 // Provides a level of indirection for the test suite list to allow
1271 // easy shuffling and restoring the test suite order. The i-th
1272 // element of this vector is the index of the i-th test suite in the
1273 // shuffled order.
1274 std::vector<int> test_suite_indices_;
1275
1276 // ParameterizedTestRegistry object used to register value-parameterized
1277 // tests.
1278 internal::ParameterizedTestSuiteRegistry parameterized_test_registry_;
1279 internal::TypeParameterizedTestSuiteRegistry
1280 type_parameterized_test_registry_;
1281
1282 // The set holding the name of parameterized
1283 // test suites that may go uninstantiated.
1284 std::set<std::string> ignored_parameterized_test_suites_;
1285
1286 // Indicates whether RegisterParameterizedTests() has been called already.
1287 bool parameterized_tests_registered_;
1288
1289 // Index of the last death test suite registered. Initially -1.
1290 int last_death_test_suite_;
1291
1292 // This points to the TestSuite for the currently running test. It
1293 // changes as Google Test goes through one test suite after another.
1294 // When no test is running, this is set to NULL and Google Test
1295 // stores assertion results in ad_hoc_test_result_. Initially NULL.
1296 TestSuite* current_test_suite_;
1297
1298 // This points to the TestInfo for the currently running test. It
1299 // changes as Google Test goes through one test after another. When
1300 // no test is running, this is set to NULL and Google Test stores
1301 // assertion results in ad_hoc_test_result_. Initially NULL.
1302 TestInfo* current_test_info_;
1303
1304 // Normally, a user only writes assertions inside a TEST or TEST_F,
1305 // or inside a function called by a TEST or TEST_F. Since Google
1306 // Test keeps track of which test is current running, it can
1307 // associate such an assertion with the test it belongs to.
1308 //
1309 // If an assertion is encountered when no TEST or TEST_F is running,
1310 // Google Test attributes the assertion result to an imaginary "ad hoc"
1311 // test, and records the result in ad_hoc_test_result_.
1312 TestResult ad_hoc_test_result_;
1313
1314 // The list of event listeners that can be used to track events inside
1315 // Google Test.
1316 TestEventListeners listeners_;
1317
1318 // The OS stack trace getter. Will be deleted when the UnitTest
1319 // object is destructed. By default, an OsStackTraceGetter is used,
1320 // but the user can set this field to use a custom getter if that is
1321 // desired.
1322 OsStackTraceGetterInterface* os_stack_trace_getter_;
1323
1324 // True if and only if PostFlagParsingInit() has been called.
1325 bool post_flag_parse_init_performed_;
1326
1327 // The random number seed used at the beginning of the test run.
1328 int random_seed_;
1329
1330 // Our random number generator.
1331 internal::Random random_;
1332
1333 // The time of the test program start, in ms from the start of the
1334 // UNIX epoch.
1335 TimeInMillis start_timestamp_;
1336
1337 // How long the test took to run, in milliseconds.
1338 TimeInMillis elapsed_time_;
1339
1340 #if GTEST_HAS_DEATH_TEST
1341 // The decomposed components of the gtest_internal_run_death_test flag,
1342 // parsed when RUN_ALL_TESTS is called.
1343 std::unique_ptr<InternalRunDeathTestFlag> internal_run_death_test_flag_;
1344 std::unique_ptr<internal::DeathTestFactory> death_test_factory_;
1345 #endif // GTEST_HAS_DEATH_TEST
1346
1347 // A per-thread stack of traces created by the SCOPED_TRACE() macro.
1348 internal::ThreadLocal<std::vector<TraceInfo> > gtest_trace_stack_;
1349
1350 // The value of GTEST_FLAG(catch_exceptions) at the moment RunAllTests()
1351 // starts.
1352 bool catch_exceptions_;
1353
1354 GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestImpl);
1355 }; // class UnitTestImpl
1356
1357 // Convenience function for accessing the global UnitTest
1358 // implementation object.
1359 inline UnitTestImpl* GetUnitTestImpl() {
1360 return UnitTest::GetInstance()->impl();
1361 }
1362
1363 #if GTEST_USES_SIMPLE_RE
1364
1365 // Internal helper functions for implementing the simple regular
1366 // expression matcher.
1367 GTEST_API_ bool IsInSet(char ch, const char* str);
1368 GTEST_API_ bool IsAsciiDigit(char ch);
1369 GTEST_API_ bool IsAsciiPunct(char ch);
1370 GTEST_API_ bool IsRepeat(char ch);
1371 GTEST_API_ bool IsAsciiWhiteSpace(char ch);
1372 GTEST_API_ bool IsAsciiWordChar(char ch);
1373 GTEST_API_ bool IsValidEscape(char ch);
1374 GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch);
1375 GTEST_API_ bool ValidateRegex(const char* regex);
1376 GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str);
1377 GTEST_API_ bool MatchRepetitionAndRegexAtHead(
1378 bool escaped, char ch, char repeat, const char* regex, const char* str);
1379 GTEST_API_ bool MatchRegexAnywhere(const char* regex, const char* str);
1380
1381 #endif // GTEST_USES_SIMPLE_RE
1382
1383 // Parses the command line for Google Test flags, without initializing
1384 // other parts of Google Test.
1385 GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, char** argv);
1386 GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv);
1387
1388 #if GTEST_HAS_DEATH_TEST
1389
1390 // Returns the message describing the last system error, regardless of the
1391 // platform.
1392 GTEST_API_ std::string GetLastErrnoDescription();
1393
1394 // Attempts to parse a string into a positive integer pointed to by the
1395 // number parameter. Returns true if that is possible.
1396 // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we can use
1397 // it here.
1398 template <typename Integer>
1399 bool ParseNaturalNumber(const ::std::string& str, Integer* number) {
1400 // Fail fast if the given string does not begin with a digit;
1401 // this bypasses strtoXXX's "optional leading whitespace and plus
1402 // or minus sign" semantics, which are undesirable here.
1403 if (str.empty() || !IsDigit(str[0])) {
1404 return false;
1405 }
1406 errno = 0;
1407
1408 char* end;
1409 // BiggestConvertible is the largest integer type that system-provided
1410 // string-to-number conversion routines can return.
1411 using BiggestConvertible = unsigned long long; // NOLINT
1412
1413 const BiggestConvertible parsed = strtoull(str.c_str(), &end, 10); // NOLINT
1414 const bool parse_success = *end == '\0' && errno == 0;
1415
1416 GTEST_CHECK_(sizeof(Integer) <= sizeof(parsed));
1417
1418 const Integer result = static_cast<Integer>(parsed);
1419 if (parse_success && static_cast<BiggestConvertible>(result) == parsed) {
1420 *number = result;
1421 return true;
1422 }
1423 return false;
1424 }
1425 #endif // GTEST_HAS_DEATH_TEST
1426
1427 // TestResult contains some private methods that should be hidden from
1428 // Google Test user but are required for testing. This class allow our tests
1429 // to access them.
1430 //
1431 // This class is supplied only for the purpose of testing Google Test's own
1432 // constructs. Do not use it in user tests, either directly or indirectly.
1433 class TestResultAccessor {
1434 public:
1435 static void RecordProperty(TestResult* test_result,
1436 const std::string& xml_element,
1437 const TestProperty& property) {
1438 test_result->RecordProperty(xml_element, property);
1439 }
1440
1441 static void ClearTestPartResults(TestResult* test_result) {
1442 test_result->ClearTestPartResults();
1443 }
1444
1445 static const std::vector<testing::TestPartResult>& test_part_results(
1446 const TestResult& test_result) {
1447 return test_result.test_part_results();
1448 }
1449 };
1450
1451 #if GTEST_CAN_STREAM_RESULTS_
1452
1453 // Streams test results to the given port on the given host machine.
1454 class StreamingListener : public EmptyTestEventListener {
1455 public:
1456 // Abstract base class for writing strings to a socket.
1457 class AbstractSocketWriter {
1458 public:
1459 virtual ~AbstractSocketWriter() {}
1460
1461 // Sends a string to the socket.
1462 virtual void Send(const std::string& message) = 0;
1463
1464 // Closes the socket.
1465 virtual void CloseConnection() {}
1466
1467 // Sends a string and a newline to the socket.
1468 void SendLn(const std::string& message) { Send(message + "\n"); }
1469 };
1470
1471 // Concrete class for actually writing strings to a socket.
1472 class SocketWriter : public AbstractSocketWriter {
1473 public:
1474 SocketWriter(const std::string& host, const std::string& port)
1475 : sockfd_(-1), host_name_(host), port_num_(port) {
1476 MakeConnection();
1477 }
1478
1479 ~SocketWriter() override {
1480 if (sockfd_ != -1)
1481 CloseConnection();
1482 }
1483
1484 // Sends a string to the socket.
1485 void Send(const std::string& message) override {
1486 GTEST_CHECK_(sockfd_ != -1)
1487 << "Send() can be called only when there is a connection.";
1488
1489 const auto len = static_cast<size_t>(message.length());
1490 if (write(sockfd_, message.c_str(), len) != static_cast<ssize_t>(len)) {
1491 GTEST_LOG_(WARNING)
1492 << "stream_result_to: failed to stream to "
1493 << host_name_ << ":" << port_num_;
1494 }
1495 }
1496
1497 private:
1498 // Creates a client socket and connects to the server.
1499 void MakeConnection();
1500
1501 // Closes the socket.
1502 void CloseConnection() override {
1503 GTEST_CHECK_(sockfd_ != -1)
1504 << "CloseConnection() can be called only when there is a connection.";
1505
1506 close(sockfd_);
1507 sockfd_ = -1;
1508 }
1509
1510 int sockfd_; // socket file descriptor
1511 const std::string host_name_;
1512 const std::string port_num_;
1513
1514 GTEST_DISALLOW_COPY_AND_ASSIGN_(SocketWriter);
1515 }; // class SocketWriter
1516
1517 // Escapes '=', '&', '%', and '\n' characters in str as "%xx".
1518 static std::string UrlEncode(const char* str);
1519
1520 StreamingListener(const std::string& host, const std::string& port)
1521 : socket_writer_(new SocketWriter(host, port)) {
1522 Start();
1523 }
1524
1525 explicit StreamingListener(AbstractSocketWriter* socket_writer)
1526 : socket_writer_(socket_writer) { Start(); }
1527
1528 void OnTestProgramStart(const UnitTest& /* unit_test */) override {
1529 SendLn("event=TestProgramStart");
1530 }
1531
1532 void OnTestProgramEnd(const UnitTest& unit_test) override {
1533 // Note that Google Test current only report elapsed time for each
1534 // test iteration, not for the entire test program.
1535 SendLn("event=TestProgramEnd&passed=" + FormatBool(unit_test.Passed()));
1536
1537 // Notify the streaming server to stop.
1538 socket_writer_->CloseConnection();
1539 }
1540
1541 void OnTestIterationStart(const UnitTest& /* unit_test */,
1542 int iteration) override {
1543 SendLn("event=TestIterationStart&iteration=" +
1544 StreamableToString(iteration));
1545 }
1546
1547 void OnTestIterationEnd(const UnitTest& unit_test,
1548 int /* iteration */) override {
1549 SendLn("event=TestIterationEnd&passed=" +
1550 FormatBool(unit_test.Passed()) + "&elapsed_time=" +
1551 StreamableToString(unit_test.elapsed_time()) + "ms");
1552 }
1553
1554 // Note that "event=TestCaseStart" is a wire format and has to remain
1555 // "case" for compatibility
1556 void OnTestCaseStart(const TestCase& test_case) override {
1557 SendLn(std::string("event=TestCaseStart&name=") + test_case.name());
1558 }
1559
1560 // Note that "event=TestCaseEnd" is a wire format and has to remain
1561 // "case" for compatibility
1562 void OnTestCaseEnd(const TestCase& test_case) override {
1563 SendLn("event=TestCaseEnd&passed=" + FormatBool(test_case.Passed()) +
1564 "&elapsed_time=" + StreamableToString(test_case.elapsed_time()) +
1565 "ms");
1566 }
1567
1568 void OnTestStart(const TestInfo& test_info) override {
1569 SendLn(std::string("event=TestStart&name=") + test_info.name());
1570 }
1571
1572 void OnTestEnd(const TestInfo& test_info) override {
1573 SendLn("event=TestEnd&passed=" +
1574 FormatBool((test_info.result())->Passed()) +
1575 "&elapsed_time=" +
1576 StreamableToString((test_info.result())->elapsed_time()) + "ms");
1577 }
1578
1579 void OnTestPartResult(const TestPartResult& test_part_result) override {
1580 const char* file_name = test_part_result.file_name();
1581 if (file_name == nullptr) file_name = "";
1582 SendLn("event=TestPartResult&file=" + UrlEncode(file_name) +
1583 "&line=" + StreamableToString(test_part_result.line_number()) +
1584 "&message=" + UrlEncode(test_part_result.message()));
1585 }
1586
1587 private:
1588 // Sends the given message and a newline to the socket.
1589 void SendLn(const std::string& message) { socket_writer_->SendLn(message); }
1590
1591 // Called at the start of streaming to notify the receiver what
1592 // protocol we are using.
1593 void Start() { SendLn("gtest_streaming_protocol_version=1.0"); }
1594
1595 std::string FormatBool(bool value) { return value ? "1" : "0"; }
1596
1597 const std::unique_ptr<AbstractSocketWriter> socket_writer_;
1598
1599 GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener);
1600 }; // class StreamingListener
1601
1602 #endif // GTEST_CAN_STREAM_RESULTS_
1603
1604 } // namespace internal
1605 } // namespace testing
1606
1607 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
1608
1609 #endif // GOOGLETEST_SRC_GTEST_INTERNAL_INL_H_
1610
1611 #if GTEST_OS_WINDOWS
1612 # define vsnprintf _vsnprintf
1613 #endif // GTEST_OS_WINDOWS
1614
1615 #if GTEST_OS_MAC
1616 #ifndef GTEST_OS_IOS
1617 #include <crt_externs.h>
1618 #endif
1619 #endif
1620
1621 #if GTEST_HAS_ABSL
1622 #include "absl/debugging/failure_signal_handler.h"
1623 #include "absl/debugging/stacktrace.h"
1624 #include "absl/debugging/symbolize.h"
1625 #include "absl/strings/str_cat.h"
1626 #endif // GTEST_HAS_ABSL
1627
1628 namespace testing {
1629
1630 using internal::CountIf;
1631 using internal::ForEach;
1632 using internal::GetElementOr;
1633 using internal::Shuffle;
1634
1635 // Constants.
1636
1637 // A test whose test suite name or test name matches this filter is
1638 // disabled and not run.
1639 static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*";
1640
1641 // A test suite whose name matches this filter is considered a death
1642 // test suite and will be run before test suites whose name doesn't
1643 // match this filter.
1644 static const char kDeathTestSuiteFilter[] = "*DeathTest:*DeathTest/*";
1645
1646 // A test filter that matches everything.
1647 static const char kUniversalFilter[] = "*";
1648
1649 // The default output format.
1650 static const char kDefaultOutputFormat[] = "xml";
1651 // The default output file.
1652 static const char kDefaultOutputFile[] = "test_detail";
1653
1654 // The environment variable name for the test shard index.
1655 static const char kTestShardIndex[] = "GTEST_SHARD_INDEX";
1656 // The environment variable name for the total number of test shards.
1657 static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS";
1658 // The environment variable name for the test shard status file.
1659 static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE";
1660
1661 namespace internal {
1662
1663 // The text used in failure messages to indicate the start of the
1664 // stack trace.
1665 const char kStackTraceMarker[] = "\nStack trace:\n";
1666
1667 // g_help_flag is true if and only if the --help flag or an equivalent form
1668 // is specified on the command line.
1669 bool g_help_flag = false;
1670
1671 // Utilty function to Open File for Writing
1672 static FILE* OpenFileForWriting(const std::string& output_file) {
1673 FILE* fileout = nullptr;
1674 FilePath output_file_path(output_file);
1675 FilePath output_dir(output_file_path.RemoveFileName());
1676
1677 if (output_dir.CreateDirectoriesRecursively()) {
1678 fileout = posix::FOpen(output_file.c_str(), "w");
1679 }
1680 if (fileout == nullptr) {
1681 GTEST_LOG_(FATAL) << "Unable to open file \"" << output_file << "\"";
1682 }
1683 return fileout;
1684 }
1685
1686 } // namespace internal
1687
1688 // Bazel passes in the argument to '--test_filter' via the TESTBRIDGE_TEST_ONLY
1689 // environment variable.
1690 static const char* GetDefaultFilter() {
1691 const char* const testbridge_test_only =
1692 internal::posix::GetEnv("TESTBRIDGE_TEST_ONLY");
1693 if (testbridge_test_only != nullptr) {
1694 return testbridge_test_only;
1695 }
1696 return kUniversalFilter;
1697 }
1698
1699 // Bazel passes in the argument to '--test_runner_fail_fast' via the
1700 // TESTBRIDGE_TEST_RUNNER_FAIL_FAST environment variable.
1701 static bool GetDefaultFailFast() {
1702 const char* const testbridge_test_runner_fail_fast =
1703 internal::posix::GetEnv("TESTBRIDGE_TEST_RUNNER_FAIL_FAST");
1704 if (testbridge_test_runner_fail_fast != nullptr) {
1705 return strcmp(testbridge_test_runner_fail_fast, "1") == 0;
1706 }
1707 return false;
1708 }
1709
1710 GTEST_DEFINE_bool_(
1711 fail_fast, internal::BoolFromGTestEnv("fail_fast", GetDefaultFailFast()),
1712 "True if and only if a test failure should stop further test execution.");
1713
1714 GTEST_DEFINE_bool_(
1715 also_run_disabled_tests,
1716 internal::BoolFromGTestEnv("also_run_disabled_tests", false),
1717 "Run disabled tests too, in addition to the tests normally being run.");
1718
1719 GTEST_DEFINE_bool_(
1720 break_on_failure, internal::BoolFromGTestEnv("break_on_failure", false),
1721 "True if and only if a failed assertion should be a debugger "
1722 "break-point.");
1723
1724 GTEST_DEFINE_bool_(catch_exceptions,
1725 internal::BoolFromGTestEnv("catch_exceptions", true),
1726 "True if and only if " GTEST_NAME_
1727 " should catch exceptions and treat them as test failures.");
1728
1729 GTEST_DEFINE_string_(
1730 color,
1731 internal::StringFromGTestEnv("color", "auto"),
1732 "Whether to use colors in the output. Valid values: yes, no, "
1733 "and auto. 'auto' means to use colors if the output is "
1734 "being sent to a terminal and the TERM environment variable "
1735 "is set to a terminal type that supports colors.");
1736
1737 GTEST_DEFINE_string_(
1738 filter,
1739 internal::StringFromGTestEnv("filter", GetDefaultFilter()),
1740 "A colon-separated list of glob (not regex) patterns "
1741 "for filtering the tests to run, optionally followed by a "
1742 "'-' and a : separated list of negative patterns (tests to "
1743 "exclude). A test is run if it matches one of the positive "
1744 "patterns and does not match any of the negative patterns.");
1745
1746 GTEST_DEFINE_bool_(
1747 install_failure_signal_handler,
1748 internal::BoolFromGTestEnv("install_failure_signal_handler", false),
1749 "If true and supported on the current platform, " GTEST_NAME_ " should "
1750 "install a signal handler that dumps debugging information when fatal "
1751 "signals are raised.");
1752
1753 GTEST_DEFINE_bool_(list_tests, false,
1754 "List all tests without running them.");
1755
1756 // The net priority order after flag processing is thus:
1757 // --gtest_output command line flag
1758 // GTEST_OUTPUT environment variable
1759 // XML_OUTPUT_FILE environment variable
1760 // ''
1761 GTEST_DEFINE_string_(
1762 output,
1763 internal::StringFromGTestEnv("output",
1764 internal::OutputFlagAlsoCheckEnvVar().c_str()),
1765 "A format (defaults to \"xml\" but can be specified to be \"json\"), "
1766 "optionally followed by a colon and an output file name or directory. "
1767 "A directory is indicated by a trailing pathname separator. "
1768 "Examples: \"xml:filename.xml\", \"xml::directoryname/\". "
1769 "If a directory is specified, output files will be created "
1770 "within that directory, with file-names based on the test "
1771 "executable's name and, if necessary, made unique by adding "
1772 "digits.");
1773
1774 GTEST_DEFINE_bool_(
1775 brief, internal::BoolFromGTestEnv("brief", false),
1776 "True if only test failures should be displayed in text output.");
1777
1778 GTEST_DEFINE_bool_(print_time, internal::BoolFromGTestEnv("print_time", true),
1779 "True if and only if " GTEST_NAME_
1780 " should display elapsed time in text output.");
1781
1782 GTEST_DEFINE_bool_(print_utf8, internal::BoolFromGTestEnv("print_utf8", true),
1783 "True if and only if " GTEST_NAME_
1784 " prints UTF8 characters as text.");
1785
1786 GTEST_DEFINE_int32_(
1787 random_seed,
1788 internal::Int32FromGTestEnv("random_seed", 0),
1789 "Random number seed to use when shuffling test orders. Must be in range "
1790 "[1, 99999], or 0 to use a seed based on the current time.");
1791
1792 GTEST_DEFINE_int32_(
1793 repeat,
1794 internal::Int32FromGTestEnv("repeat", 1),
1795 "How many times to repeat each test. Specify a negative number "
1796 "for repeating forever. Useful for shaking out flaky tests.");
1797
1798 GTEST_DEFINE_bool_(show_internal_stack_frames, false,
1799 "True if and only if " GTEST_NAME_
1800 " should include internal stack frames when "
1801 "printing test failure stack traces.");
1802
1803 GTEST_DEFINE_bool_(shuffle, internal::BoolFromGTestEnv("shuffle", false),
1804 "True if and only if " GTEST_NAME_
1805 " should randomize tests' order on every run.");
1806
1807 GTEST_DEFINE_int32_(
1808 stack_trace_depth,
1809 internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth),
1810 "The maximum number of stack frames to print when an "
1811 "assertion fails. The valid range is 0 through 100, inclusive.");
1812
1813 GTEST_DEFINE_string_(
1814 stream_result_to,
1815 internal::StringFromGTestEnv("stream_result_to", ""),
1816 "This flag specifies the host name and the port number on which to stream "
1817 "test results. Example: \"localhost:555\". The flag is effective only on "
1818 "Linux.");
1819
1820 GTEST_DEFINE_bool_(
1821 throw_on_failure,
1822 internal::BoolFromGTestEnv("throw_on_failure", false),
1823 "When this flag is specified, a failed assertion will throw an exception "
1824 "if exceptions are enabled or exit the program with a non-zero code "
1825 "otherwise. For use with an external test framework.");
1826
1827 #if GTEST_USE_OWN_FLAGFILE_FLAG_
1828 GTEST_DEFINE_string_(
1829 flagfile,
1830 internal::StringFromGTestEnv("flagfile", ""),
1831 "This flag specifies the flagfile to read command-line flags from.");
1832 #endif // GTEST_USE_OWN_FLAGFILE_FLAG_
1833
1834 namespace internal {
1835
1836 // Generates a random number from [0, range), using a Linear
1837 // Congruential Generator (LCG). Crashes if 'range' is 0 or greater
1838 // than kMaxRange.
1839 uint32_t Random::Generate(uint32_t range) {
1840 // These constants are the same as are used in glibc's rand(3).
1841 // Use wider types than necessary to prevent unsigned overflow diagnostics.
1842 state_ = static_cast<uint32_t>(1103515245ULL*state_ + 12345U) % kMaxRange;
1843
1844 GTEST_CHECK_(range > 0)
1845 << "Cannot generate a number in the range [0, 0).";
1846 GTEST_CHECK_(range <= kMaxRange)
1847 << "Generation of a number in [0, " << range << ") was requested, "
1848 << "but this can only generate numbers in [0, " << kMaxRange << ").";
1849
1850 // Converting via modulus introduces a bit of downward bias, but
1851 // it's simple, and a linear congruential generator isn't too good
1852 // to begin with.
1853 return state_ % range;
1854 }
1855
1856 // GTestIsInitialized() returns true if and only if the user has initialized
1857 // Google Test. Useful for catching the user mistake of not initializing
1858 // Google Test before calling RUN_ALL_TESTS().
1859 static bool GTestIsInitialized() { return GetArgvs().size() > 0; }
1860
1861 // Iterates over a vector of TestSuites, keeping a running sum of the
1862 // results of calling a given int-returning method on each.
1863 // Returns the sum.
1864 static int SumOverTestSuiteList(const std::vector<TestSuite*>& case_list,
1865 int (TestSuite::*method)() const) {
1866 int sum = 0;
1867 for (size_t i = 0; i < case_list.size(); i++) {
1868 sum += (case_list[i]->*method)();
1869 }
1870 return sum;
1871 }
1872
1873 // Returns true if and only if the test suite passed.
1874 static bool TestSuitePassed(const TestSuite* test_suite) {
1875 return test_suite->should_run() && test_suite->Passed();
1876 }
1877
1878 // Returns true if and only if the test suite failed.
1879 static bool TestSuiteFailed(const TestSuite* test_suite) {
1880 return test_suite->should_run() && test_suite->Failed();
1881 }
1882
1883 // Returns true if and only if test_suite contains at least one test that
1884 // should run.
1885 static bool ShouldRunTestSuite(const TestSuite* test_suite) {
1886 return test_suite->should_run();
1887 }
1888
1889 // AssertHelper constructor.
1890 AssertHelper::AssertHelper(TestPartResult::Type type,
1891 const char* file,
1892 int line,
1893 const char* message)
1894 : data_(new AssertHelperData(type, file, line, message)) {
1895 }
1896
1897 AssertHelper::~AssertHelper() {
1898 delete data_;
1899 }
1900
1901 // Message assignment, for assertion streaming support.
1902 void AssertHelper::operator=(const Message& message) const {
1903 UnitTest::GetInstance()->
1904 AddTestPartResult(data_->type, data_->file, data_->line,
1905 AppendUserMessage(data_->message, message),
1906 UnitTest::GetInstance()->impl()
1907 ->CurrentOsStackTraceExceptTop(1)
1908 // Skips the stack frame for this function itself.
1909 ); // NOLINT
1910 }
1911
1912 namespace {
1913
1914 // When TEST_P is found without a matching INSTANTIATE_TEST_SUITE_P
1915 // to creates test cases for it, a synthetic test case is
1916 // inserted to report ether an error or a log message.
1917 //
1918 // This configuration bit will likely be removed at some point.
1919 constexpr bool kErrorOnUninstantiatedParameterizedTest = true;
1920 constexpr bool kErrorOnUninstantiatedTypeParameterizedTest = true;
1921
1922 // A test that fails at a given file/line location with a given message.
1923 class FailureTest : public Test {
1924 public:
1925 explicit FailureTest(const CodeLocation& loc, std::string error_message,
1926 bool as_error)
1927 : loc_(loc),
1928 error_message_(std::move(error_message)),
1929 as_error_(as_error) {}
1930
1931 void TestBody() override {
1932 if (as_error_) {
1933 AssertHelper(TestPartResult::kNonFatalFailure, loc_.file.c_str(),
1934 loc_.line, "") = Message() << error_message_;
1935 } else {
1936 std::cout << error_message_ << std::endl;
1937 }
1938 }
1939
1940 private:
1941 const CodeLocation loc_;
1942 const std::string error_message_;
1943 const bool as_error_;
1944 };
1945
1946
1947 } // namespace
1948
1949 std::set<std::string>* GetIgnoredParameterizedTestSuites() {
1950 return UnitTest::GetInstance()->impl()->ignored_parameterized_test_suites();
1951 }
1952
1953 // Add a given test_suit to the list of them allow to go un-instantiated.
1954 MarkAsIgnored::MarkAsIgnored(const char* test_suite) {
1955 GetIgnoredParameterizedTestSuites()->insert(test_suite);
1956 }
1957
1958 // If this parameterized test suite has no instantiations (and that
1959 // has not been marked as okay), emit a test case reporting that.
1960 void InsertSyntheticTestCase(const std::string& name, CodeLocation location,
1961 bool has_test_p) {
1962 const auto& ignored = *GetIgnoredParameterizedTestSuites();
1963 if (ignored.find(name) != ignored.end()) return;
1964
1965 const char kMissingInstantiation[] = //
1966 " is defined via TEST_P, but never instantiated. None of the test cases "
1967 "will run. Either no INSTANTIATE_TEST_SUITE_P is provided or the only "
1968 "ones provided expand to nothing."
1969 "\n\n"
1970 "Ideally, TEST_P definitions should only ever be included as part of "
1971 "binaries that intend to use them. (As opposed to, for example, being "
1972 "placed in a library that may be linked in to get other utilities.)";
1973
1974 const char kMissingTestCase[] = //
1975 " is instantiated via INSTANTIATE_TEST_SUITE_P, but no tests are "
1976 "defined via TEST_P . No test cases will run."
1977 "\n\n"
1978 "Ideally, INSTANTIATE_TEST_SUITE_P should only ever be invoked from "
1979 "code that always depend on code that provides TEST_P. Failing to do "
1980 "so is often an indication of dead code, e.g. the last TEST_P was "
1981 "removed but the rest got left behind.";
1982
1983 std::string message =
1984 "Parameterized test suite " + name +
1985 (has_test_p ? kMissingInstantiation : kMissingTestCase) +
1986 "\n\n"
1987 "To suppress this error for this test suite, insert the following line "
1988 "(in a non-header) in the namespace it is defined in:"
1989 "\n\n"
1990 "GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" + name + ");";
1991
1992 std::string full_name = "UninstantiatedParameterizedTestSuite<" + name + ">";
1993 RegisterTest( //
1994 "GoogleTestVerification", full_name.c_str(),
1995 nullptr, // No type parameter.
1996 nullptr, // No value parameter.
1997 location.file.c_str(), location.line, [message, location] {
1998 return new FailureTest(location, message,
1999 kErrorOnUninstantiatedParameterizedTest);
2000 });
2001 }
2002
2003 void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
2004 CodeLocation code_location) {
2005 GetUnitTestImpl()->type_parameterized_test_registry().RegisterTestSuite(
2006 test_suite_name, code_location);
2007 }
2008
2009 void RegisterTypeParameterizedTestSuiteInstantiation(const char* case_name) {
2010 GetUnitTestImpl()
2011 ->type_parameterized_test_registry()
2012 .RegisterInstantiation(case_name);
2013 }
2014
2015 void TypeParameterizedTestSuiteRegistry::RegisterTestSuite(
2016 const char* test_suite_name, CodeLocation code_location) {
2017 suites_.emplace(std::string(test_suite_name),
2018 TypeParameterizedTestSuiteInfo(code_location));
2019 }
2020
2021 void TypeParameterizedTestSuiteRegistry::RegisterInstantiation(
2022 const char* test_suite_name) {
2023 auto it = suites_.find(std::string(test_suite_name));
2024 if (it != suites_.end()) {
2025 it->second.instantiated = true;
2026 } else {
2027 GTEST_LOG_(ERROR) << "Unknown type parameterized test suit '"
2028 << test_suite_name << "'";
2029 }
2030 }
2031
2032 void TypeParameterizedTestSuiteRegistry::CheckForInstantiations() {
2033 const auto& ignored = *GetIgnoredParameterizedTestSuites();
2034 for (const auto& testcase : suites_) {
2035 if (testcase.second.instantiated) continue;
2036 if (ignored.find(testcase.first) != ignored.end()) continue;
2037
2038 std::string message =
2039 "Type parameterized test suite " + testcase.first +
2040 " is defined via REGISTER_TYPED_TEST_SUITE_P, but never instantiated "
2041 "via INSTANTIATE_TYPED_TEST_SUITE_P. None of the test cases will run."
2042 "\n\n"
2043 "Ideally, TYPED_TEST_P definitions should only ever be included as "
2044 "part of binaries that intend to use them. (As opposed to, for "
2045 "example, being placed in a library that may be linked in to get other "
2046 "utilities.)"
2047 "\n\n"
2048 "To suppress this error for this test suite, insert the following line "
2049 "(in a non-header) in the namespace it is defined in:"
2050 "\n\n"
2051 "GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" +
2052 testcase.first + ");";
2053
2054 std::string full_name =
2055 "UninstantiatedTypeParameterizedTestSuite<" + testcase.first + ">";
2056 RegisterTest( //
2057 "GoogleTestVerification", full_name.c_str(),
2058 nullptr, // No type parameter.
2059 nullptr, // No value parameter.
2060 testcase.second.code_location.file.c_str(),
2061 testcase.second.code_location.line, [message, testcase] {
2062 return new FailureTest(testcase.second.code_location, message,
2063 kErrorOnUninstantiatedTypeParameterizedTest);
2064 });
2065 }
2066 }
2067
2068 // A copy of all command line arguments. Set by InitGoogleTest().
2069 static ::std::vector<std::string> g_argvs;
2070
2071 ::std::vector<std::string> GetArgvs() {
2072 #if defined(GTEST_CUSTOM_GET_ARGVS_)
2073 // GTEST_CUSTOM_GET_ARGVS_() may return a container of std::string or
2074 // ::string. This code converts it to the appropriate type.
2075 const auto& custom = GTEST_CUSTOM_GET_ARGVS_();
2076 return ::std::vector<std::string>(custom.begin(), custom.end());
2077 #else // defined(GTEST_CUSTOM_GET_ARGVS_)
2078 return g_argvs;
2079 #endif // defined(GTEST_CUSTOM_GET_ARGVS_)
2080 }
2081
2082 // Returns the current application's name, removing directory path if that
2083 // is present.
2084 FilePath GetCurrentExecutableName() {
2085 FilePath result;
2086
2087 #if GTEST_OS_WINDOWS || GTEST_OS_OS2
2088 result.Set(FilePath(GetArgvs()[0]).RemoveExtension("exe"));
2089 #else
2090 result.Set(FilePath(GetArgvs()[0]));
2091 #endif // GTEST_OS_WINDOWS
2092
2093 return result.RemoveDirectoryName();
2094 }
2095
2096 // Functions for processing the gtest_output flag.
2097
2098 // Returns the output format, or "" for normal printed output.
2099 std::string UnitTestOptions::GetOutputFormat() {
2100 const char* const gtest_output_flag = GTEST_FLAG(output).c_str();
2101 const char* const colon = strchr(gtest_output_flag, ':');
2102 return (colon == nullptr)
2103 ? std::string(gtest_output_flag)
2104 : std::string(gtest_output_flag,
2105 static_cast<size_t>(colon - gtest_output_flag));
2106 }
2107
2108 // Returns the name of the requested output file, or the default if none
2109 // was explicitly specified.
2110 std::string UnitTestOptions::GetAbsolutePathToOutputFile() {
2111 const char* const gtest_output_flag = GTEST_FLAG(output).c_str();
2112
2113 std::string format = GetOutputFormat();
2114 if (format.empty())
2115 format = std::string(kDefaultOutputFormat);
2116
2117 const char* const colon = strchr(gtest_output_flag, ':');
2118 if (colon == nullptr)
2119 return internal::FilePath::MakeFileName(
2120 internal::FilePath(
2121 UnitTest::GetInstance()->original_working_dir()),
2122 internal::FilePath(kDefaultOutputFile), 0,
2123 format.c_str()).string();
2124
2125 internal::FilePath output_name(colon + 1);
2126 if (!output_name.IsAbsolutePath())
2127 output_name = internal::FilePath::ConcatPaths(
2128 internal::FilePath(UnitTest::GetInstance()->original_working_dir()),
2129 internal::FilePath(colon + 1));
2130
2131 if (!output_name.IsDirectory())
2132 return output_name.string();
2133
2134 internal::FilePath result(internal::FilePath::GenerateUniqueFileName(
2135 output_name, internal::GetCurrentExecutableName(),
2136 GetOutputFormat().c_str()));
2137 return result.string();
2138 }
2139
2140 // Returns true if and only if the wildcard pattern matches the string. Each
2141 // pattern consists of regular characters, single-character wildcards (?), and
2142 // multi-character wildcards (*).
2143 //
2144 // This function implements a linear-time string globbing algorithm based on
2145 // https://research.swtch.com/glob.
2146 static bool PatternMatchesString(const std::string& name_str,
2147 const char* pattern, const char* pattern_end) {
2148 const char* name = name_str.c_str();
2149 const char* const name_begin = name;
2150 const char* const name_end = name + name_str.size();
2151
2152 const char* pattern_next = pattern;
2153 const char* name_next = name;
2154
2155 while (pattern < pattern_end || name < name_end) {
2156 if (pattern < pattern_end) {
2157 switch (*pattern) {
2158 default: // Match an ordinary character.
2159 if (name < name_end && *name == *pattern) {
2160 ++pattern;
2161 ++name;
2162 continue;
2163 }
2164 break;
2165 case '?': // Match any single character.
2166 if (name < name_end) {
2167 ++pattern;
2168 ++name;
2169 continue;
2170 }
2171 break;
2172 case '*':
2173 // Match zero or more characters. Start by skipping over the wildcard
2174 // and matching zero characters from name. If that fails, restart and
2175 // match one more character than the last attempt.
2176 pattern_next = pattern;
2177 name_next = name + 1;
2178 ++pattern;
2179 continue;
2180 }
2181 }
2182 // Failed to match a character. Restart if possible.
2183 if (name_begin < name_next && name_next <= name_end) {
2184 pattern = pattern_next;
2185 name = name_next;
2186 continue;
2187 }
2188 return false;
2189 }
2190 return true;
2191 }
2192
2193 bool UnitTestOptions::MatchesFilter(const std::string& name_str,
2194 const char* filter) {
2195 // The filter is a list of patterns separated by colons (:).
2196 const char* pattern = filter;
2197 while (true) {
2198 // Find the bounds of this pattern.
2199 const char* const next_sep = strchr(pattern, ':');
2200 const char* const pattern_end =
2201 next_sep != nullptr ? next_sep : pattern + strlen(pattern);
2202
2203 // Check if this pattern matches name_str.
2204 if (PatternMatchesString(name_str, pattern, pattern_end)) {
2205 break;
2206 }
2207
2208 // Give up on this pattern. However, if we found a pattern separator (:),
2209 // advance to the next pattern (skipping over the separator) and restart.
2210 if (next_sep == nullptr) {
2211 return false;
2212 }
2213 pattern = next_sep + 1;
2214 }
2215 return true;
2216 }
2217
2218 // Returns true if and only if the user-specified filter matches the test
2219 // suite name and the test name.
2220 bool UnitTestOptions::FilterMatchesTest(const std::string& test_suite_name,
2221 const std::string& test_name) {
2222 const std::string& full_name = test_suite_name + "." + test_name.c_str();
2223
2224 // Split --gtest_filter at '-', if there is one, to separate into
2225 // positive filter and negative filter portions
2226 const char* const p = GTEST_FLAG(filter).c_str();
2227 const char* const dash = strchr(p, '-');
2228 std::string positive;
2229 std::string negative;
2230 if (dash == nullptr) {
2231 positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter
2232 negative = "";
2233 } else {
2234 positive = std::string(p, dash); // Everything up to the dash
2235 negative = std::string(dash + 1); // Everything after the dash
2236 if (positive.empty()) {
2237 // Treat '-test1' as the same as '*-test1'
2238 positive = kUniversalFilter;
2239 }
2240 }
2241
2242 // A filter is a colon-separated list of patterns. It matches a
2243 // test if any pattern in it matches the test.
2244 return (MatchesFilter(full_name, positive.c_str()) &&
2245 !MatchesFilter(full_name, negative.c_str()));
2246 }
2247
2248 #if GTEST_HAS_SEH
2249 // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the
2250 // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise.
2251 // This function is useful as an __except condition.
2252 int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) {
2253 // Google Test should handle a SEH exception if:
2254 // 1. the user wants it to, AND
2255 // 2. this is not a breakpoint exception, AND
2256 // 3. this is not a C++ exception (VC++ implements them via SEH,
2257 // apparently).
2258 //
2259 // SEH exception code for C++ exceptions.
2260 // (see http://support.microsoft.com/kb/185294 for more information).
2261 const DWORD kCxxExceptionCode = 0xe06d7363;
2262
2263 bool should_handle = true;
2264
2265 if (!GTEST_FLAG(catch_exceptions))
2266 should_handle = false;
2267 else if (exception_code == EXCEPTION_BREAKPOINT)
2268 should_handle = false;
2269 else if (exception_code == kCxxExceptionCode)
2270 should_handle = false;
2271
2272 return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH;
2273 }
2274 #endif // GTEST_HAS_SEH
2275
2276 } // namespace internal
2277
2278 // The c'tor sets this object as the test part result reporter used by
2279 // Google Test. The 'result' parameter specifies where to report the
2280 // results. Intercepts only failures from the current thread.
2281 ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
2282 TestPartResultArray* result)
2283 : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD),
2284 result_(result) {
2285 Init();
2286 }
2287
2288 // The c'tor sets this object as the test part result reporter used by
2289 // Google Test. The 'result' parameter specifies where to report the
2290 // results.
2291 ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
2292 InterceptMode intercept_mode, TestPartResultArray* result)
2293 : intercept_mode_(intercept_mode),
2294 result_(result) {
2295 Init();
2296 }
2297
2298 void ScopedFakeTestPartResultReporter::Init() {
2299 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
2300 if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
2301 old_reporter_ = impl->GetGlobalTestPartResultReporter();
2302 impl->SetGlobalTestPartResultReporter(this);
2303 } else {
2304 old_reporter_ = impl->GetTestPartResultReporterForCurrentThread();
2305 impl->SetTestPartResultReporterForCurrentThread(this);
2306 }
2307 }
2308
2309 // The d'tor restores the test part result reporter used by Google Test
2310 // before.
2311 ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() {
2312 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
2313 if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
2314 impl->SetGlobalTestPartResultReporter(old_reporter_);
2315 } else {
2316 impl->SetTestPartResultReporterForCurrentThread(old_reporter_);
2317 }
2318 }
2319
2320 // Increments the test part result count and remembers the result.
2321 // This method is from the TestPartResultReporterInterface interface.
2322 void ScopedFakeTestPartResultReporter::ReportTestPartResult(
2323 const TestPartResult& result) {
2324 result_->Append(result);
2325 }
2326
2327 namespace internal {
2328
2329 // Returns the type ID of ::testing::Test. We should always call this
2330 // instead of GetTypeId< ::testing::Test>() to get the type ID of
2331 // testing::Test. This is to work around a suspected linker bug when
2332 // using Google Test as a framework on Mac OS X. The bug causes
2333 // GetTypeId< ::testing::Test>() to return different values depending
2334 // on whether the call is from the Google Test framework itself or
2335 // from user test code. GetTestTypeId() is guaranteed to always
2336 // return the same value, as it always calls GetTypeId<>() from the
2337 // gtest.cc, which is within the Google Test framework.
2338 TypeId GetTestTypeId() {
2339 return GetTypeId<Test>();
2340 }
2341
2342 // The value of GetTestTypeId() as seen from within the Google Test
2343 // library. This is solely for testing GetTestTypeId().
2344 extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId();
2345
2346 // This predicate-formatter checks that 'results' contains a test part
2347 // failure of the given type and that the failure message contains the
2348 // given substring.
2349 static AssertionResult HasOneFailure(const char* /* results_expr */,
2350 const char* /* type_expr */,
2351 const char* /* substr_expr */,
2352 const TestPartResultArray& results,
2353 TestPartResult::Type type,
2354 const std::string& substr) {
2355 const std::string expected(type == TestPartResult::kFatalFailure ?
2356 "1 fatal failure" :
2357 "1 non-fatal failure");
2358 Message msg;
2359 if (results.size() != 1) {
2360 msg << "Expected: " << expected << "\n"
2361 << " Actual: " << results.size() << " failures";
2362 for (int i = 0; i < results.size(); i++) {
2363 msg << "\n" << results.GetTestPartResult(i);
2364 }
2365 return AssertionFailure() << msg;
2366 }
2367
2368 const TestPartResult& r = results.GetTestPartResult(0);
2369 if (r.type() != type) {
2370 return AssertionFailure() << "Expected: " << expected << "\n"
2371 << " Actual:\n"
2372 << r;
2373 }
2374
2375 if (strstr(r.message(), substr.c_str()) == nullptr) {
2376 return AssertionFailure() << "Expected: " << expected << " containing \""
2377 << substr << "\"\n"
2378 << " Actual:\n"
2379 << r;
2380 }
2381
2382 return AssertionSuccess();
2383 }
2384
2385 // The constructor of SingleFailureChecker remembers where to look up
2386 // test part results, what type of failure we expect, and what
2387 // substring the failure message should contain.
2388 SingleFailureChecker::SingleFailureChecker(const TestPartResultArray* results,
2389 TestPartResult::Type type,
2390 const std::string& substr)
2391 : results_(results), type_(type), substr_(substr) {}
2392
2393 // The destructor of SingleFailureChecker verifies that the given
2394 // TestPartResultArray contains exactly one failure that has the given
2395 // type and contains the given substring. If that's not the case, a
2396 // non-fatal failure will be generated.
2397 SingleFailureChecker::~SingleFailureChecker() {
2398 EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_);
2399 }
2400
2401 DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter(
2402 UnitTestImpl* unit_test) : unit_test_(unit_test) {}
2403
2404 void DefaultGlobalTestPartResultReporter::ReportTestPartResult(
2405 const TestPartResult& result) {
2406 unit_test_->current_test_result()->AddTestPartResult(result);
2407 unit_test_->listeners()->repeater()->OnTestPartResult(result);
2408 }
2409
2410 DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter(
2411 UnitTestImpl* unit_test) : unit_test_(unit_test) {}
2412
2413 void DefaultPerThreadTestPartResultReporter::ReportTestPartResult(
2414 const TestPartResult& result) {
2415 unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result);
2416 }
2417
2418 // Returns the global test part result reporter.
2419 TestPartResultReporterInterface*
2420 UnitTestImpl::GetGlobalTestPartResultReporter() {
2421 internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
2422 return global_test_part_result_repoter_;
2423 }
2424
2425 // Sets the global test part result reporter.
2426 void UnitTestImpl::SetGlobalTestPartResultReporter(
2427 TestPartResultReporterInterface* reporter) {
2428 internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
2429 global_test_part_result_repoter_ = reporter;
2430 }
2431
2432 // Returns the test part result reporter for the current thread.
2433 TestPartResultReporterInterface*
2434 UnitTestImpl::GetTestPartResultReporterForCurrentThread() {
2435 return per_thread_test_part_result_reporter_.get();
2436 }
2437
2438 // Sets the test part result reporter for the current thread.
2439 void UnitTestImpl::SetTestPartResultReporterForCurrentThread(
2440 TestPartResultReporterInterface* reporter) {
2441 per_thread_test_part_result_reporter_.set(reporter);
2442 }
2443
2444 // Gets the number of successful test suites.
2445 int UnitTestImpl::successful_test_suite_count() const {
2446 return CountIf(test_suites_, TestSuitePassed);
2447 }
2448
2449 // Gets the number of failed test suites.
2450 int UnitTestImpl::failed_test_suite_count() const {
2451 return CountIf(test_suites_, TestSuiteFailed);
2452 }
2453
2454 // Gets the number of all test suites.
2455 int UnitTestImpl::total_test_suite_count() const {
2456 return static_cast<int>(test_suites_.size());
2457 }
2458
2459 // Gets the number of all test suites that contain at least one test
2460 // that should run.
2461 int UnitTestImpl::test_suite_to_run_count() const {
2462 return CountIf(test_suites_, ShouldRunTestSuite);
2463 }
2464
2465 // Gets the number of successful tests.
2466 int UnitTestImpl::successful_test_count() const {
2467 return SumOverTestSuiteList(test_suites_, &TestSuite::successful_test_count);
2468 }
2469
2470 // Gets the number of skipped tests.
2471 int UnitTestImpl::skipped_test_count() const {
2472 return SumOverTestSuiteList(test_suites_, &TestSuite::skipped_test_count);
2473 }
2474
2475 // Gets the number of failed tests.
2476 int UnitTestImpl::failed_test_count() const {
2477 return SumOverTestSuiteList(test_suites_, &TestSuite::failed_test_count);
2478 }
2479
2480 // Gets the number of disabled tests that will be reported in the XML report.
2481 int UnitTestImpl::reportable_disabled_test_count() const {
2482 return SumOverTestSuiteList(test_suites_,
2483 &TestSuite::reportable_disabled_test_count);
2484 }
2485
2486 // Gets the number of disabled tests.
2487 int UnitTestImpl::disabled_test_count() const {
2488 return SumOverTestSuiteList(test_suites_, &TestSuite::disabled_test_count);
2489 }
2490
2491 // Gets the number of tests to be printed in the XML report.
2492 int UnitTestImpl::reportable_test_count() const {
2493 return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_test_count);
2494 }
2495
2496 // Gets the number of all tests.
2497 int UnitTestImpl::total_test_count() const {
2498 return SumOverTestSuiteList(test_suites_, &TestSuite::total_test_count);
2499 }
2500
2501 // Gets the number of tests that should run.
2502 int UnitTestImpl::test_to_run_count() const {
2503 return SumOverTestSuiteList(test_suites_, &TestSuite::test_to_run_count);
2504 }
2505
2506 // Returns the current OS stack trace as an std::string.
2507 //
2508 // The maximum number of stack frames to be included is specified by
2509 // the gtest_stack_trace_depth flag. The skip_count parameter
2510 // specifies the number of top frames to be skipped, which doesn't
2511 // count against the number of frames to be included.
2512 //
2513 // For example, if Foo() calls Bar(), which in turn calls
2514 // CurrentOsStackTraceExceptTop(1), Foo() will be included in the
2515 // trace but Bar() and CurrentOsStackTraceExceptTop() won't.
2516 std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) {
2517 return os_stack_trace_getter()->CurrentStackTrace(
2518 static_cast<int>(GTEST_FLAG(stack_trace_depth)),
2519 skip_count + 1
2520 // Skips the user-specified number of frames plus this function
2521 // itself.
2522 ); // NOLINT
2523 }
2524
2525 // A helper class for measuring elapsed times.
2526 class Timer {
2527 public:
2528 Timer() : start_(std::chrono::steady_clock::now()) {}
2529
2530 // Return time elapsed in milliseconds since the timer was created.
2531 TimeInMillis Elapsed() {
2532 return std::chrono::duration_cast<std::chrono::milliseconds>(
2533 std::chrono::steady_clock::now() - start_)
2534 .count();
2535 }
2536
2537 private:
2538 std::chrono::steady_clock::time_point start_;
2539 };
2540
2541 // Returns a timestamp as milliseconds since the epoch. Note this time may jump
2542 // around subject to adjustments by the system, to measure elapsed time use
2543 // Timer instead.
2544 TimeInMillis GetTimeInMillis() {
2545 return std::chrono::duration_cast<std::chrono::milliseconds>(
2546 std::chrono::system_clock::now() -
2547 std::chrono::system_clock::from_time_t(0))
2548 .count();
2549 }
2550
2551 // Utilities
2552
2553 // class String.
2554
2555 #if GTEST_OS_WINDOWS_MOBILE
2556 // Creates a UTF-16 wide string from the given ANSI string, allocating
2557 // memory using new. The caller is responsible for deleting the return
2558 // value using delete[]. Returns the wide string, or NULL if the
2559 // input is NULL.
2560 LPCWSTR String::AnsiToUtf16(const char* ansi) {
2561 if (!ansi) return nullptr;
2562 const int length = strlen(ansi);
2563 const int unicode_length =
2564 MultiByteToWideChar(CP_ACP, 0, ansi, length, nullptr, 0);
2565 WCHAR* unicode = new WCHAR[unicode_length + 1];
2566 MultiByteToWideChar(CP_ACP, 0, ansi, length,
2567 unicode, unicode_length);
2568 unicode[unicode_length] = 0;
2569 return unicode;
2570 }
2571
2572 // Creates an ANSI string from the given wide string, allocating
2573 // memory using new. The caller is responsible for deleting the return
2574 // value using delete[]. Returns the ANSI string, or NULL if the
2575 // input is NULL.
2576 const char* String::Utf16ToAnsi(LPCWSTR utf16_str) {
2577 if (!utf16_str) return nullptr;
2578 const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, nullptr,
2579 0, nullptr, nullptr);
2580 char* ansi = new char[ansi_length + 1];
2581 WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, nullptr,
2582 nullptr);
2583 ansi[ansi_length] = 0;
2584 return ansi;
2585 }
2586
2587 #endif // GTEST_OS_WINDOWS_MOBILE
2588
2589 // Compares two C strings. Returns true if and only if they have the same
2590 // content.
2591 //
2592 // Unlike strcmp(), this function can handle NULL argument(s). A NULL
2593 // C string is considered different to any non-NULL C string,
2594 // including the empty string.
2595 bool String::CStringEquals(const char * lhs, const char * rhs) {
2596 if (lhs == nullptr) return rhs == nullptr;
2597
2598 if (rhs == nullptr) return false;
2599
2600 return strcmp(lhs, rhs) == 0;
2601 }
2602
2603 #if GTEST_HAS_STD_WSTRING
2604
2605 // Converts an array of wide chars to a narrow string using the UTF-8
2606 // encoding, and streams the result to the given Message object.
2607 static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length,
2608 Message* msg) {
2609 for (size_t i = 0; i != length; ) { // NOLINT
2610 if (wstr[i] != L'\0') {
2611 *msg << WideStringToUtf8(wstr + i, static_cast<int>(length - i));
2612 while (i != length && wstr[i] != L'\0')
2613 i++;
2614 } else {
2615 *msg << '\0';
2616 i++;
2617 }
2618 }
2619 }
2620
2621 #endif // GTEST_HAS_STD_WSTRING
2622
2623 void SplitString(const ::std::string& str, char delimiter,
2624 ::std::vector< ::std::string>* dest) {
2625 ::std::vector< ::std::string> parsed;
2626 ::std::string::size_type pos = 0;
2627 while (::testing::internal::AlwaysTrue()) {
2628 const ::std::string::size_type colon = str.find(delimiter, pos);
2629 if (colon == ::std::string::npos) {
2630 parsed.push_back(str.substr(pos));
2631 break;
2632 } else {
2633 parsed.push_back(str.substr(pos, colon - pos));
2634 pos = colon + 1;
2635 }
2636 }
2637 dest->swap(parsed);
2638 }
2639
2640 } // namespace internal
2641
2642 // Constructs an empty Message.
2643 // We allocate the stringstream separately because otherwise each use of
2644 // ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's
2645 // stack frame leading to huge stack frames in some cases; gcc does not reuse
2646 // the stack space.
2647 Message::Message() : ss_(new ::std::stringstream) {
2648 // By default, we want there to be enough precision when printing
2649 // a double to a Message.
2650 *ss_ << std::setprecision(std::numeric_limits<double>::digits10 + 2);
2651 }
2652
2653 // These two overloads allow streaming a wide C string to a Message
2654 // using the UTF-8 encoding.
2655 Message& Message::operator <<(const wchar_t* wide_c_str) {
2656 return *this << internal::String::ShowWideCString(wide_c_str);
2657 }
2658 Message& Message::operator <<(wchar_t* wide_c_str) {
2659 return *this << internal::String::ShowWideCString(wide_c_str);
2660 }
2661
2662 #if GTEST_HAS_STD_WSTRING
2663 // Converts the given wide string to a narrow string using the UTF-8
2664 // encoding, and streams the result to this Message object.
2665 Message& Message::operator <<(const ::std::wstring& wstr) {
2666 internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this);
2667 return *this;
2668 }
2669 #endif // GTEST_HAS_STD_WSTRING
2670
2671 // Gets the text streamed to this object so far as an std::string.
2672 // Each '\0' character in the buffer is replaced with "\\0".
2673 std::string Message::GetString() const {
2674 return internal::StringStreamToString(ss_.get());
2675 }
2676
2677 // AssertionResult constructors.
2678 // Used in EXPECT_TRUE/FALSE(assertion_result).
2679 AssertionResult::AssertionResult(const AssertionResult& other)
2680 : success_(other.success_),
2681 message_(other.message_.get() != nullptr
2682 ? new ::std::string(*other.message_)
2683 : static_cast< ::std::string*>(nullptr)) {}
2684
2685 // Swaps two AssertionResults.
2686 void AssertionResult::swap(AssertionResult& other) {
2687 using std::swap;
2688 swap(success_, other.success_);
2689 swap(message_, other.message_);
2690 }
2691
2692 // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE.
2693 AssertionResult AssertionResult::operator!() const {
2694 AssertionResult negation(!success_);
2695 if (message_.get() != nullptr) negation << *message_;
2696 return negation;
2697 }
2698
2699 // Makes a successful assertion result.
2700 AssertionResult AssertionSuccess() {
2701 return AssertionResult(true);
2702 }
2703
2704 // Makes a failed assertion result.
2705 AssertionResult AssertionFailure() {
2706 return AssertionResult(false);
2707 }
2708
2709 // Makes a failed assertion result with the given failure message.
2710 // Deprecated; use AssertionFailure() << message.
2711 AssertionResult AssertionFailure(const Message& message) {
2712 return AssertionFailure() << message;
2713 }
2714
2715 namespace internal {
2716
2717 namespace edit_distance {
2718 std::vector<EditType> CalculateOptimalEdits(const std::vector<size_t>& left,
2719 const std::vector<size_t>& right) {
2720 std::vector<std::vector<double> > costs(
2721 left.size() + 1, std::vector<double>(right.size() + 1));
2722 std::vector<std::vector<EditType> > best_move(
2723 left.size() + 1, std::vector<EditType>(right.size() + 1));
2724
2725 // Populate for empty right.
2726 for (size_t l_i = 0; l_i < costs.size(); ++l_i) {
2727 costs[l_i][0] = static_cast<double>(l_i);
2728 best_move[l_i][0] = kRemove;
2729 }
2730 // Populate for empty left.
2731 for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) {
2732 costs[0][r_i] = static_cast<double>(r_i);
2733 best_move[0][r_i] = kAdd;
2734 }
2735
2736 for (size_t l_i = 0; l_i < left.size(); ++l_i) {
2737 for (size_t r_i = 0; r_i < right.size(); ++r_i) {
2738 if (left[l_i] == right[r_i]) {
2739 // Found a match. Consume it.
2740 costs[l_i + 1][r_i + 1] = costs[l_i][r_i];
2741 best_move[l_i + 1][r_i + 1] = kMatch;
2742 continue;
2743 }
2744
2745 const double add = costs[l_i + 1][r_i];
2746 const double remove = costs[l_i][r_i + 1];
2747 const double replace = costs[l_i][r_i];
2748 if (add < remove && add < replace) {
2749 costs[l_i + 1][r_i + 1] = add + 1;
2750 best_move[l_i + 1][r_i + 1] = kAdd;
2751 } else if (remove < add && remove < replace) {
2752 costs[l_i + 1][r_i + 1] = remove + 1;
2753 best_move[l_i + 1][r_i + 1] = kRemove;
2754 } else {
2755 // We make replace a little more expensive than add/remove to lower
2756 // their priority.
2757 costs[l_i + 1][r_i + 1] = replace + 1.00001;
2758 best_move[l_i + 1][r_i + 1] = kReplace;
2759 }
2760 }
2761 }
2762
2763 // Reconstruct the best path. We do it in reverse order.
2764 std::vector<EditType> best_path;
2765 for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) {
2766 EditType move = best_move[l_i][r_i];
2767 best_path.push_back(move);
2768 l_i -= move != kAdd;
2769 r_i -= move != kRemove;
2770 }
2771 std::reverse(best_path.begin(), best_path.end());
2772 return best_path;
2773 }
2774
2775 namespace {
2776
2777 // Helper class to convert string into ids with deduplication.
2778 class InternalStrings {
2779 public:
2780 size_t GetId(const std::string& str) {
2781 IdMap::iterator it = ids_.find(str);
2782 if (it != ids_.end()) return it->second;
2783 size_t id = ids_.size();
2784 return ids_[str] = id;
2785 }
2786
2787 private:
2788 typedef std::map<std::string, size_t> IdMap;
2789 IdMap ids_;
2790 };
2791
2792 } // namespace
2793
2794 std::vector<EditType> CalculateOptimalEdits(
2795 const std::vector<std::string>& left,
2796 const std::vector<std::string>& right) {
2797 std::vector<size_t> left_ids, right_ids;
2798 {
2799 InternalStrings intern_table;
2800 for (size_t i = 0; i < left.size(); ++i) {
2801 left_ids.push_back(intern_table.GetId(left[i]));
2802 }
2803 for (size_t i = 0; i < right.size(); ++i) {
2804 right_ids.push_back(intern_table.GetId(right[i]));
2805 }
2806 }
2807 return CalculateOptimalEdits(left_ids, right_ids);
2808 }
2809
2810 namespace {
2811
2812 // Helper class that holds the state for one hunk and prints it out to the
2813 // stream.
2814 // It reorders adds/removes when possible to group all removes before all
2815 // adds. It also adds the hunk header before printint into the stream.
2816 class Hunk {
2817 public:
2818 Hunk(size_t left_start, size_t right_start)
2819 : left_start_(left_start),
2820 right_start_(right_start),
2821 adds_(),
2822 removes_(),
2823 common_() {}
2824
2825 void PushLine(char edit, const char* line) {
2826 switch (edit) {
2827 case ' ':
2828 ++common_;
2829 FlushEdits();
2830 hunk_.push_back(std::make_pair(' ', line));
2831 break;
2832 case '-':
2833 ++removes_;
2834 hunk_removes_.push_back(std::make_pair('-', line));
2835 break;
2836 case '+':
2837 ++adds_;
2838 hunk_adds_.push_back(std::make_pair('+', line));
2839 break;
2840 }
2841 }
2842
2843 void PrintTo(std::ostream* os) {
2844 PrintHeader(os);
2845 FlushEdits();
2846 for (std::list<std::pair<char, const char*> >::const_iterator it =
2847 hunk_.begin();
2848 it != hunk_.end(); ++it) {
2849 *os << it->first << it->second << "\n";
2850 }
2851 }
2852
2853 bool has_edits() const { return adds_ || removes_; }
2854
2855 private:
2856 void FlushEdits() {
2857 hunk_.splice(hunk_.end(), hunk_removes_);
2858 hunk_.splice(hunk_.end(), hunk_adds_);
2859 }
2860
2861 // Print a unified diff header for one hunk.
2862 // The format is
2863 // "@@ -<left_start>,<left_length> +<right_start>,<right_length> @@"
2864 // where the left/right parts are omitted if unnecessary.
2865 void PrintHeader(std::ostream* ss) const {
2866 *ss << "@@ ";
2867 if (removes_) {
2868 *ss << "-" << left_start_ << "," << (removes_ + common_);
2869 }
2870 if (removes_ && adds_) {
2871 *ss << " ";
2872 }
2873 if (adds_) {
2874 *ss << "+" << right_start_ << "," << (adds_ + common_);
2875 }
2876 *ss << " @@\n";
2877 }
2878
2879 size_t left_start_, right_start_;
2880 size_t adds_, removes_, common_;
2881 std::list<std::pair<char, const char*> > hunk_, hunk_adds_, hunk_removes_;
2882 };
2883
2884 } // namespace
2885
2886 // Create a list of diff hunks in Unified diff format.
2887 // Each hunk has a header generated by PrintHeader above plus a body with
2888 // lines prefixed with ' ' for no change, '-' for deletion and '+' for
2889 // addition.
2890 // 'context' represents the desired unchanged prefix/suffix around the diff.
2891 // If two hunks are close enough that their contexts overlap, then they are
2892 // joined into one hunk.
2893 std::string CreateUnifiedDiff(const std::vector<std::string>& left,
2894 const std::vector<std::string>& right,
2895 size_t context) {
2896 const std::vector<EditType> edits = CalculateOptimalEdits(left, right);
2897
2898 size_t l_i = 0, r_i = 0, edit_i = 0;
2899 std::stringstream ss;
2900 while (edit_i < edits.size()) {
2901 // Find first edit.
2902 while (edit_i < edits.size() && edits[edit_i] == kMatch) {
2903 ++l_i;
2904 ++r_i;
2905 ++edit_i;
2906 }
2907
2908 // Find the first line to include in the hunk.
2909 const size_t prefix_context = std::min(l_i, context);
2910 Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1);
2911 for (size_t i = prefix_context; i > 0; --i) {
2912 hunk.PushLine(' ', left[l_i - i].c_str());
2913 }
2914
2915 // Iterate the edits until we found enough suffix for the hunk or the input
2916 // is over.
2917 size_t n_suffix = 0;
2918 for (; edit_i < edits.size(); ++edit_i) {
2919 if (n_suffix >= context) {
2920 // Continue only if the next hunk is very close.
2921 auto it = edits.begin() + static_cast<int>(edit_i);
2922 while (it != edits.end() && *it == kMatch) ++it;
2923 if (it == edits.end() ||
2924 static_cast<size_t>(it - edits.begin()) - edit_i >= context) {
2925 // There is no next edit or it is too far away.
2926 break;
2927 }
2928 }
2929
2930 EditType edit = edits[edit_i];
2931 // Reset count when a non match is found.
2932 n_suffix = edit == kMatch ? n_suffix + 1 : 0;
2933
2934 if (edit == kMatch || edit == kRemove || edit == kReplace) {
2935 hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str());
2936 }
2937 if (edit == kAdd || edit == kReplace) {
2938 hunk.PushLine('+', right[r_i].c_str());
2939 }
2940
2941 // Advance indices, depending on edit type.
2942 l_i += edit != kAdd;
2943 r_i += edit != kRemove;
2944 }
2945
2946 if (!hunk.has_edits()) {
2947 // We are done. We don't want this hunk.
2948 break;
2949 }
2950
2951 hunk.PrintTo(&ss);
2952 }
2953 return ss.str();
2954 }
2955
2956 } // namespace edit_distance
2957
2958 namespace {
2959
2960 // The string representation of the values received in EqFailure() are already
2961 // escaped. Split them on escaped '\n' boundaries. Leave all other escaped
2962 // characters the same.
2963 std::vector<std::string> SplitEscapedString(const std::string& str) {
2964 std::vector<std::string> lines;
2965 size_t start = 0, end = str.size();
2966 if (end > 2 && str[0] == '"' && str[end - 1] == '"') {
2967 ++start;
2968 --end;
2969 }
2970 bool escaped = false;
2971 for (size_t i = start; i + 1 < end; ++i) {
2972 if (escaped) {
2973 escaped = false;
2974 if (str[i] == 'n') {
2975 lines.push_back(str.substr(start, i - start - 1));
2976 start = i + 1;
2977 }
2978 } else {
2979 escaped = str[i] == '\\';
2980 }
2981 }
2982 lines.push_back(str.substr(start, end - start));
2983 return lines;
2984 }
2985
2986 } // namespace
2987
2988 // Constructs and returns the message for an equality assertion
2989 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
2990 //
2991 // The first four parameters are the expressions used in the assertion
2992 // and their values, as strings. For example, for ASSERT_EQ(foo, bar)
2993 // where foo is 5 and bar is 6, we have:
2994 //
2995 // lhs_expression: "foo"
2996 // rhs_expression: "bar"
2997 // lhs_value: "5"
2998 // rhs_value: "6"
2999 //
3000 // The ignoring_case parameter is true if and only if the assertion is a
3001 // *_STRCASEEQ*. When it's true, the string "Ignoring case" will
3002 // be inserted into the message.
3003 AssertionResult EqFailure(const char* lhs_expression,
3004 const char* rhs_expression,
3005 const std::string& lhs_value,
3006 const std::string& rhs_value,
3007 bool ignoring_case) {
3008 Message msg;
3009 msg << "Expected equality of these values:";
3010 msg << "\n " << lhs_expression;
3011 if (lhs_value != lhs_expression) {
3012 msg << "\n Which is: " << lhs_value;
3013 }
3014 msg << "\n " << rhs_expression;
3015 if (rhs_value != rhs_expression) {
3016 msg << "\n Which is: " << rhs_value;
3017 }
3018
3019 if (ignoring_case) {
3020 msg << "\nIgnoring case";
3021 }
3022
3023 if (!lhs_value.empty() && !rhs_value.empty()) {
3024 const std::vector<std::string> lhs_lines =
3025 SplitEscapedString(lhs_value);
3026 const std::vector<std::string> rhs_lines =
3027 SplitEscapedString(rhs_value);
3028 if (lhs_lines.size() > 1 || rhs_lines.size() > 1) {
3029 msg << "\nWith diff:\n"
3030 << edit_distance::CreateUnifiedDiff(lhs_lines, rhs_lines);
3031 }
3032 }
3033
3034 return AssertionFailure() << msg;
3035 }
3036
3037 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
3038 std::string GetBoolAssertionFailureMessage(
3039 const AssertionResult& assertion_result,
3040 const char* expression_text,
3041 const char* actual_predicate_value,
3042 const char* expected_predicate_value) {
3043 const char* actual_message = assertion_result.message();
3044 Message msg;
3045 msg << "Value of: " << expression_text
3046 << "\n Actual: " << actual_predicate_value;
3047 if (actual_message[0] != '\0')
3048 msg << " (" << actual_message << ")";
3049 msg << "\nExpected: " << expected_predicate_value;
3050 return msg.GetString();
3051 }
3052
3053 // Helper function for implementing ASSERT_NEAR.
3054 AssertionResult DoubleNearPredFormat(const char* expr1,
3055 const char* expr2,
3056 const char* abs_error_expr,
3057 double val1,
3058 double val2,
3059 double abs_error) {
3060 const double diff = fabs(val1 - val2);
3061 if (diff <= abs_error) return AssertionSuccess();
3062
3063 // Find the value which is closest to zero.
3064 const double min_abs = std::min(fabs(val1), fabs(val2));
3065 // Find the distance to the next double from that value.
3066 const double epsilon =
3067 nextafter(min_abs, std::numeric_limits<double>::infinity()) - min_abs;
3068 // Detect the case where abs_error is so small that EXPECT_NEAR is
3069 // effectively the same as EXPECT_EQUAL, and give an informative error
3070 // message so that the situation can be more easily understood without
3071 // requiring exotic floating-point knowledge.
3072 // Don't do an epsilon check if abs_error is zero because that implies
3073 // that an equality check was actually intended.
3074 if (!(std::isnan)(val1) && !(std::isnan)(val2) && abs_error > 0 &&
3075 abs_error < epsilon) {
3076 return AssertionFailure()
3077 << "The difference between " << expr1 << " and " << expr2 << " is "
3078 << diff << ", where\n"
3079 << expr1 << " evaluates to " << val1 << ",\n"
3080 << expr2 << " evaluates to " << val2 << ".\nThe abs_error parameter "
3081 << abs_error_expr << " evaluates to " << abs_error
3082 << " which is smaller than the minimum distance between doubles for "
3083 "numbers of this magnitude which is "
3084 << epsilon
3085 << ", thus making this EXPECT_NEAR check equivalent to "
3086 "EXPECT_EQUAL. Consider using EXPECT_DOUBLE_EQ instead.";
3087 }
3088 return AssertionFailure()
3089 << "The difference between " << expr1 << " and " << expr2
3090 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n"
3091 << expr1 << " evaluates to " << val1 << ",\n"
3092 << expr2 << " evaluates to " << val2 << ", and\n"
3093 << abs_error_expr << " evaluates to " << abs_error << ".";
3094 }
3095
3096
3097 // Helper template for implementing FloatLE() and DoubleLE().
3098 template <typename RawType>
3099 AssertionResult FloatingPointLE(const char* expr1,
3100 const char* expr2,
3101 RawType val1,
3102 RawType val2) {
3103 // Returns success if val1 is less than val2,
3104 if (val1 < val2) {
3105 return AssertionSuccess();
3106 }
3107
3108 // or if val1 is almost equal to val2.
3109 const FloatingPoint<RawType> lhs(val1), rhs(val2);
3110 if (lhs.AlmostEquals(rhs)) {
3111 return AssertionSuccess();
3112 }
3113
3114 // Note that the above two checks will both fail if either val1 or
3115 // val2 is NaN, as the IEEE floating-point standard requires that
3116 // any predicate involving a NaN must return false.
3117
3118 ::std::stringstream val1_ss;
3119 val1_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
3120 << val1;
3121
3122 ::std::stringstream val2_ss;
3123 val2_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
3124 << val2;
3125
3126 return AssertionFailure()
3127 << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n"
3128 << " Actual: " << StringStreamToString(&val1_ss) << " vs "
3129 << StringStreamToString(&val2_ss);
3130 }
3131
3132 } // namespace internal
3133
3134 // Asserts that val1 is less than, or almost equal to, val2. Fails
3135 // otherwise. In particular, it fails if either val1 or val2 is NaN.
3136 AssertionResult FloatLE(const char* expr1, const char* expr2,
3137 float val1, float val2) {
3138 return internal::FloatingPointLE<float>(expr1, expr2, val1, val2);
3139 }
3140
3141 // Asserts that val1 is less than, or almost equal to, val2. Fails
3142 // otherwise. In particular, it fails if either val1 or val2 is NaN.
3143 AssertionResult DoubleLE(const char* expr1, const char* expr2,
3144 double val1, double val2) {
3145 return internal::FloatingPointLE<double>(expr1, expr2, val1, val2);
3146 }
3147
3148 namespace internal {
3149
3150 // The helper function for {ASSERT|EXPECT}_STREQ.
3151 AssertionResult CmpHelperSTREQ(const char* lhs_expression,
3152 const char* rhs_expression,
3153 const char* lhs,
3154 const char* rhs) {
3155 if (String::CStringEquals(lhs, rhs)) {
3156 return AssertionSuccess();
3157 }
3158
3159 return EqFailure(lhs_expression,
3160 rhs_expression,
3161 PrintToString(lhs),
3162 PrintToString(rhs),
3163 false);
3164 }
3165
3166 // The helper function for {ASSERT|EXPECT}_STRCASEEQ.
3167 AssertionResult CmpHelperSTRCASEEQ(const char* lhs_expression,
3168 const char* rhs_expression,
3169 const char* lhs,
3170 const char* rhs) {
3171 if (String::CaseInsensitiveCStringEquals(lhs, rhs)) {
3172 return AssertionSuccess();
3173 }
3174
3175 return EqFailure(lhs_expression,
3176 rhs_expression,
3177 PrintToString(lhs),
3178 PrintToString(rhs),
3179 true);
3180 }
3181
3182 // The helper function for {ASSERT|EXPECT}_STRNE.
3183 AssertionResult CmpHelperSTRNE(const char* s1_expression,
3184 const char* s2_expression,
3185 const char* s1,
3186 const char* s2) {
3187 if (!String::CStringEquals(s1, s2)) {
3188 return AssertionSuccess();
3189 } else {
3190 return AssertionFailure() << "Expected: (" << s1_expression << ") != ("
3191 << s2_expression << "), actual: \""
3192 << s1 << "\" vs \"" << s2 << "\"";
3193 }
3194 }
3195
3196 // The helper function for {ASSERT|EXPECT}_STRCASENE.
3197 AssertionResult CmpHelperSTRCASENE(const char* s1_expression,
3198 const char* s2_expression,
3199 const char* s1,
3200 const char* s2) {
3201 if (!String::CaseInsensitiveCStringEquals(s1, s2)) {
3202 return AssertionSuccess();
3203 } else {
3204 return AssertionFailure()
3205 << "Expected: (" << s1_expression << ") != ("
3206 << s2_expression << ") (ignoring case), actual: \""
3207 << s1 << "\" vs \"" << s2 << "\"";
3208 }
3209 }
3210
3211 } // namespace internal
3212
3213 namespace {
3214
3215 // Helper functions for implementing IsSubString() and IsNotSubstring().
3216
3217 // This group of overloaded functions return true if and only if needle
3218 // is a substring of haystack. NULL is considered a substring of
3219 // itself only.
3220
3221 bool IsSubstringPred(const char* needle, const char* haystack) {
3222 if (needle == nullptr || haystack == nullptr) return needle == haystack;
3223
3224 return strstr(haystack, needle) != nullptr;
3225 }
3226
3227 bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) {
3228 if (needle == nullptr || haystack == nullptr) return needle == haystack;
3229
3230 return wcsstr(haystack, needle) != nullptr;
3231 }
3232
3233 // StringType here can be either ::std::string or ::std::wstring.
3234 template <typename StringType>
3235 bool IsSubstringPred(const StringType& needle,
3236 const StringType& haystack) {
3237 return haystack.find(needle) != StringType::npos;
3238 }
3239
3240 // This function implements either IsSubstring() or IsNotSubstring(),
3241 // depending on the value of the expected_to_be_substring parameter.
3242 // StringType here can be const char*, const wchar_t*, ::std::string,
3243 // or ::std::wstring.
3244 template <typename StringType>
3245 AssertionResult IsSubstringImpl(
3246 bool expected_to_be_substring,
3247 const char* needle_expr, const char* haystack_expr,
3248 const StringType& needle, const StringType& haystack) {
3249 if (IsSubstringPred(needle, haystack) == expected_to_be_substring)
3250 return AssertionSuccess();
3251
3252 const bool is_wide_string = sizeof(needle[0]) > 1;
3253 const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
3254 return AssertionFailure()
3255 << "Value of: " << needle_expr << "\n"
3256 << " Actual: " << begin_string_quote << needle << "\"\n"
3257 << "Expected: " << (expected_to_be_substring ? "" : "not ")
3258 << "a substring of " << haystack_expr << "\n"
3259 << "Which is: " << begin_string_quote << haystack << "\"";
3260 }
3261
3262 } // namespace
3263
3264 // IsSubstring() and IsNotSubstring() check whether needle is a
3265 // substring of haystack (NULL is considered a substring of itself
3266 // only), and return an appropriate error message when they fail.
3267
3268 AssertionResult IsSubstring(
3269 const char* needle_expr, const char* haystack_expr,
3270 const char* needle, const char* haystack) {
3271 return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
3272 }
3273
3274 AssertionResult IsSubstring(
3275 const char* needle_expr, const char* haystack_expr,
3276 const wchar_t* needle, const wchar_t* haystack) {
3277 return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
3278 }
3279
3280 AssertionResult IsNotSubstring(
3281 const char* needle_expr, const char* haystack_expr,
3282 const char* needle, const char* haystack) {
3283 return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
3284 }
3285
3286 AssertionResult IsNotSubstring(
3287 const char* needle_expr, const char* haystack_expr,
3288 const wchar_t* needle, const wchar_t* haystack) {
3289 return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
3290 }
3291
3292 AssertionResult IsSubstring(
3293 const char* needle_expr, const char* haystack_expr,
3294 const ::std::string& needle, const ::std::string& haystack) {
3295 return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
3296 }
3297
3298 AssertionResult IsNotSubstring(
3299 const char* needle_expr, const char* haystack_expr,
3300 const ::std::string& needle, const ::std::string& haystack) {
3301 return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
3302 }
3303
3304 #if GTEST_HAS_STD_WSTRING
3305 AssertionResult IsSubstring(
3306 const char* needle_expr, const char* haystack_expr,
3307 const ::std::wstring& needle, const ::std::wstring& haystack) {
3308 return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
3309 }
3310
3311 AssertionResult IsNotSubstring(
3312 const char* needle_expr, const char* haystack_expr,
3313 const ::std::wstring& needle, const ::std::wstring& haystack) {
3314 return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
3315 }
3316 #endif // GTEST_HAS_STD_WSTRING
3317
3318 namespace internal {
3319
3320 #if GTEST_OS_WINDOWS
3321
3322 namespace {
3323
3324 // Helper function for IsHRESULT{SuccessFailure} predicates
3325 AssertionResult HRESULTFailureHelper(const char* expr,
3326 const char* expected,
3327 long hr) { // NOLINT
3328 # if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_TV_TITLE
3329
3330 // Windows CE doesn't support FormatMessage.
3331 const char error_text[] = "";
3332
3333 # else
3334
3335 // Looks up the human-readable system message for the HRESULT code
3336 // and since we're not passing any params to FormatMessage, we don't
3337 // want inserts expanded.
3338 const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM |
3339 FORMAT_MESSAGE_IGNORE_INSERTS;
3340 const DWORD kBufSize = 4096;
3341 // Gets the system's human readable message string for this HRESULT.
3342 char error_text[kBufSize] = { '\0' };
3343 DWORD message_length = ::FormatMessageA(kFlags,
3344 0, // no source, we're asking system
3345 static_cast<DWORD>(hr), // the error
3346 0, // no line width restrictions
3347 error_text, // output buffer
3348 kBufSize, // buf size
3349 nullptr); // no arguments for inserts
3350 // Trims tailing white space (FormatMessage leaves a trailing CR-LF)
3351 for (; message_length && IsSpace(error_text[message_length - 1]);
3352 --message_length) {
3353 error_text[message_length - 1] = '\0';
3354 }
3355
3356 # endif // GTEST_OS_WINDOWS_MOBILE
3357
3358 const std::string error_hex("0x" + String::FormatHexInt(hr));
3359 return ::testing::AssertionFailure()
3360 << "Expected: " << expr << " " << expected << ".\n"
3361 << " Actual: " << error_hex << " " << error_text << "\n";
3362 }
3363
3364 } // namespace
3365
3366 AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT
3367 if (SUCCEEDED(hr)) {
3368 return AssertionSuccess();
3369 }
3370 return HRESULTFailureHelper(expr, "succeeds", hr);
3371 }
3372
3373 AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT
3374 if (FAILED(hr)) {
3375 return AssertionSuccess();
3376 }
3377 return HRESULTFailureHelper(expr, "fails", hr);
3378 }
3379
3380 #endif // GTEST_OS_WINDOWS
3381
3382 // Utility functions for encoding Unicode text (wide strings) in
3383 // UTF-8.
3384
3385 // A Unicode code-point can have up to 21 bits, and is encoded in UTF-8
3386 // like this:
3387 //
3388 // Code-point length Encoding
3389 // 0 - 7 bits 0xxxxxxx
3390 // 8 - 11 bits 110xxxxx 10xxxxxx
3391 // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx
3392 // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
3393
3394 // The maximum code-point a one-byte UTF-8 sequence can represent.
3395 constexpr uint32_t kMaxCodePoint1 = (static_cast<uint32_t>(1) << 7) - 1;
3396
3397 // The maximum code-point a two-byte UTF-8 sequence can represent.
3398 constexpr uint32_t kMaxCodePoint2 = (static_cast<uint32_t>(1) << (5 + 6)) - 1;
3399
3400 // The maximum code-point a three-byte UTF-8 sequence can represent.
3401 constexpr uint32_t kMaxCodePoint3 = (static_cast<uint32_t>(1) << (4 + 2*6)) - 1;
3402
3403 // The maximum code-point a four-byte UTF-8 sequence can represent.
3404 constexpr uint32_t kMaxCodePoint4 = (static_cast<uint32_t>(1) << (3 + 3*6)) - 1;
3405
3406 // Chops off the n lowest bits from a bit pattern. Returns the n
3407 // lowest bits. As a side effect, the original bit pattern will be
3408 // shifted to the right by n bits.
3409 inline uint32_t ChopLowBits(uint32_t* bits, int n) {
3410 const uint32_t low_bits = *bits & ((static_cast<uint32_t>(1) << n) - 1);
3411 *bits >>= n;
3412 return low_bits;
3413 }
3414
3415 // Converts a Unicode code point to a narrow string in UTF-8 encoding.
3416 // code_point parameter is of type uint32_t because wchar_t may not be
3417 // wide enough to contain a code point.
3418 // If the code_point is not a valid Unicode code point
3419 // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted
3420 // to "(Invalid Unicode 0xXXXXXXXX)".
3421 std::string CodePointToUtf8(uint32_t code_point) {
3422 if (code_point > kMaxCodePoint4) {
3423 return "(Invalid Unicode 0x" + String::FormatHexUInt32(code_point) + ")";
3424 }
3425
3426 char str[5]; // Big enough for the largest valid code point.
3427 if (code_point <= kMaxCodePoint1) {
3428 str[1] = '\0';
3429 str[0] = static_cast<char>(code_point); // 0xxxxxxx
3430 } else if (code_point <= kMaxCodePoint2) {
3431 str[2] = '\0';
3432 str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
3433 str[0] = static_cast<char>(0xC0 | code_point); // 110xxxxx
3434 } else if (code_point <= kMaxCodePoint3) {
3435 str[3] = '\0';
3436 str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
3437 str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
3438 str[0] = static_cast<char>(0xE0 | code_point); // 1110xxxx
3439 } else { // code_point <= kMaxCodePoint4
3440 str[4] = '\0';
3441 str[3] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
3442 str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
3443 str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
3444 str[0] = static_cast<char>(0xF0 | code_point); // 11110xxx
3445 }
3446 return str;
3447 }
3448
3449 // The following two functions only make sense if the system
3450 // uses UTF-16 for wide string encoding. All supported systems
3451 // with 16 bit wchar_t (Windows, Cygwin) do use UTF-16.
3452
3453 // Determines if the arguments constitute UTF-16 surrogate pair
3454 // and thus should be combined into a single Unicode code point
3455 // using CreateCodePointFromUtf16SurrogatePair.
3456 inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) {
3457 return sizeof(wchar_t) == 2 &&
3458 (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00;
3459 }
3460
3461 // Creates a Unicode code point from UTF16 surrogate pair.
3462 inline uint32_t CreateCodePointFromUtf16SurrogatePair(wchar_t first,
3463 wchar_t second) {
3464 const auto first_u = static_cast<uint32_t>(first);
3465 const auto second_u = static_cast<uint32_t>(second);
3466 const uint32_t mask = (1 << 10) - 1;
3467 return (sizeof(wchar_t) == 2)
3468 ? (((first_u & mask) << 10) | (second_u & mask)) + 0x10000
3469 :
3470 // This function should not be called when the condition is
3471 // false, but we provide a sensible default in case it is.
3472 first_u;
3473 }
3474
3475 // Converts a wide string to a narrow string in UTF-8 encoding.
3476 // The wide string is assumed to have the following encoding:
3477 // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin)
3478 // UTF-32 if sizeof(wchar_t) == 4 (on Linux)
3479 // Parameter str points to a null-terminated wide string.
3480 // Parameter num_chars may additionally limit the number
3481 // of wchar_t characters processed. -1 is used when the entire string
3482 // should be processed.
3483 // If the string contains code points that are not valid Unicode code points
3484 // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output
3485 // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding
3486 // and contains invalid UTF-16 surrogate pairs, values in those pairs
3487 // will be encoded as individual Unicode characters from Basic Normal Plane.
3488 std::string WideStringToUtf8(const wchar_t* str, int num_chars) {
3489 if (num_chars == -1)
3490 num_chars = static_cast<int>(wcslen(str));
3491
3492 ::std::stringstream stream;
3493 for (int i = 0; i < num_chars; ++i) {
3494 uint32_t unicode_code_point;
3495
3496 if (str[i] == L'\0') {
3497 break;
3498 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
3499 unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i],
3500 str[i + 1]);
3501 i++;
3502 } else {
3503 unicode_code_point = static_cast<uint32_t>(str[i]);
3504 }
3505
3506 stream << CodePointToUtf8(unicode_code_point);
3507 }
3508 return StringStreamToString(&stream);
3509 }
3510
3511 // Converts a wide C string to an std::string using the UTF-8 encoding.
3512 // NULL will be converted to "(null)".
3513 std::string String::ShowWideCString(const wchar_t * wide_c_str) {
3514 if (wide_c_str == nullptr) return "(null)";
3515
3516 return internal::WideStringToUtf8(wide_c_str, -1);
3517 }
3518
3519 // Compares two wide C strings. Returns true if and only if they have the
3520 // same content.
3521 //
3522 // Unlike wcscmp(), this function can handle NULL argument(s). A NULL
3523 // C string is considered different to any non-NULL C string,
3524 // including the empty string.
3525 bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) {
3526 if (lhs == nullptr) return rhs == nullptr;
3527
3528 if (rhs == nullptr) return false;
3529
3530 return wcscmp(lhs, rhs) == 0;
3531 }
3532
3533 // Helper function for *_STREQ on wide strings.
3534 AssertionResult CmpHelperSTREQ(const char* lhs_expression,
3535 const char* rhs_expression,
3536 const wchar_t* lhs,
3537 const wchar_t* rhs) {
3538 if (String::WideCStringEquals(lhs, rhs)) {
3539 return AssertionSuccess();
3540 }
3541
3542 return EqFailure(lhs_expression,
3543 rhs_expression,
3544 PrintToString(lhs),
3545 PrintToString(rhs),
3546 false);
3547 }
3548
3549 // Helper function for *_STRNE on wide strings.
3550 AssertionResult CmpHelperSTRNE(const char* s1_expression,
3551 const char* s2_expression,
3552 const wchar_t* s1,
3553 const wchar_t* s2) {
3554 if (!String::WideCStringEquals(s1, s2)) {
3555 return AssertionSuccess();
3556 }
3557
3558 return AssertionFailure() << "Expected: (" << s1_expression << ") != ("
3559 << s2_expression << "), actual: "
3560 << PrintToString(s1)
3561 << " vs " << PrintToString(s2);
3562 }
3563
3564 // Compares two C strings, ignoring case. Returns true if and only if they have
3565 // the same content.
3566 //
3567 // Unlike strcasecmp(), this function can handle NULL argument(s). A
3568 // NULL C string is considered different to any non-NULL C string,
3569 // including the empty string.
3570 bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) {
3571 if (lhs == nullptr) return rhs == nullptr;
3572 if (rhs == nullptr) return false;
3573 return posix::StrCaseCmp(lhs, rhs) == 0;
3574 }
3575
3576 // Compares two wide C strings, ignoring case. Returns true if and only if they
3577 // have the same content.
3578 //
3579 // Unlike wcscasecmp(), this function can handle NULL argument(s).
3580 // A NULL C string is considered different to any non-NULL wide C string,
3581 // including the empty string.
3582 // NB: The implementations on different platforms slightly differ.
3583 // On windows, this method uses _wcsicmp which compares according to LC_CTYPE
3584 // environment variable. On GNU platform this method uses wcscasecmp
3585 // which compares according to LC_CTYPE category of the current locale.
3586 // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the
3587 // current locale.
3588 bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs,
3589 const wchar_t* rhs) {
3590 if (lhs == nullptr) return rhs == nullptr;
3591
3592 if (rhs == nullptr) return false;
3593
3594 #if GTEST_OS_WINDOWS
3595 return _wcsicmp(lhs, rhs) == 0;
3596 #elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID
3597 return wcscasecmp(lhs, rhs) == 0;
3598 #else
3599 // Android, Mac OS X and Cygwin don't define wcscasecmp.
3600 // Other unknown OSes may not define it either.
3601 wint_t left, right;
3602 do {
3603 left = towlower(static_cast<wint_t>(*lhs++));
3604 right = towlower(static_cast<wint_t>(*rhs++));
3605 } while (left && left == right);
3606 return left == right;
3607 #endif // OS selector
3608 }
3609
3610 // Returns true if and only if str ends with the given suffix, ignoring case.
3611 // Any string is considered to end with an empty suffix.
3612 bool String::EndsWithCaseInsensitive(
3613 const std::string& str, const std::string& suffix) {
3614 const size_t str_len = str.length();
3615 const size_t suffix_len = suffix.length();
3616 return (str_len >= suffix_len) &&
3617 CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len,
3618 suffix.c_str());
3619 }
3620
3621 // Formats an int value as "%02d".
3622 std::string String::FormatIntWidth2(int value) {
3623 return FormatIntWidthN(value, 2);
3624 }
3625
3626 // Formats an int value to given width with leading zeros.
3627 std::string String::FormatIntWidthN(int value, int width) {
3628 std::stringstream ss;
3629 ss << std::setfill('0') << std::setw(width) << value;
3630 return ss.str();
3631 }
3632
3633 // Formats an int value as "%X".
3634 std::string String::FormatHexUInt32(uint32_t value) {
3635 std::stringstream ss;
3636 ss << std::hex << std::uppercase << value;
3637 return ss.str();
3638 }
3639
3640 // Formats an int value as "%X".
3641 std::string String::FormatHexInt(int value) {
3642 return FormatHexUInt32(static_cast<uint32_t>(value));
3643 }
3644
3645 // Formats a byte as "%02X".
3646 std::string String::FormatByte(unsigned char value) {
3647 std::stringstream ss;
3648 ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase
3649 << static_cast<unsigned int>(value);
3650 return ss.str();
3651 }
3652
3653 // Converts the buffer in a stringstream to an std::string, converting NUL
3654 // bytes to "\\0" along the way.
3655 std::string StringStreamToString(::std::stringstream* ss) {
3656 const ::std::string& str = ss->str();
3657 const char* const start = str.c_str();
3658 const char* const end = start + str.length();
3659
3660 std::string result;
3661 result.reserve(static_cast<size_t>(2 * (end - start)));
3662 for (const char* ch = start; ch != end; ++ch) {
3663 if (*ch == '\0') {
3664 result += "\\0"; // Replaces NUL with "\\0";
3665 } else {
3666 result += *ch;
3667 }
3668 }
3669
3670 return result;
3671 }
3672
3673 // Appends the user-supplied message to the Google-Test-generated message.
3674 std::string AppendUserMessage(const std::string& gtest_msg,
3675 const Message& user_msg) {
3676 // Appends the user message if it's non-empty.
3677 const std::string user_msg_string = user_msg.GetString();
3678 if (user_msg_string.empty()) {
3679 return gtest_msg;
3680 }
3681 if (gtest_msg.empty()) {
3682 return user_msg_string;
3683 }
3684 return gtest_msg + "\n" + user_msg_string;
3685 }
3686
3687 } // namespace internal
3688
3689 // class TestResult
3690
3691 // Creates an empty TestResult.
3692 TestResult::TestResult()
3693 : death_test_count_(0), start_timestamp_(0), elapsed_time_(0) {}
3694
3695 // D'tor.
3696 TestResult::~TestResult() {
3697 }
3698
3699 // Returns the i-th test part result among all the results. i can
3700 // range from 0 to total_part_count() - 1. If i is not in that range,
3701 // aborts the program.
3702 const TestPartResult& TestResult::GetTestPartResult(int i) const {
3703 if (i < 0 || i >= total_part_count())
3704 internal::posix::Abort();
3705 return test_part_results_.at(static_cast<size_t>(i));
3706 }
3707
3708 // Returns the i-th test property. i can range from 0 to
3709 // test_property_count() - 1. If i is not in that range, aborts the
3710 // program.
3711 const TestProperty& TestResult::GetTestProperty(int i) const {
3712 if (i < 0 || i >= test_property_count())
3713 internal::posix::Abort();
3714 return test_properties_.at(static_cast<size_t>(i));
3715 }
3716
3717 // Clears the test part results.
3718 void TestResult::ClearTestPartResults() {
3719 test_part_results_.clear();
3720 }
3721
3722 // Adds a test part result to the list.
3723 void TestResult::AddTestPartResult(const TestPartResult& test_part_result) {
3724 test_part_results_.push_back(test_part_result);
3725 }
3726
3727 // Adds a test property to the list. If a property with the same key as the
3728 // supplied property is already represented, the value of this test_property
3729 // replaces the old value for that key.
3730 void TestResult::RecordProperty(const std::string& xml_element,
3731 const TestProperty& test_property) {
3732 if (!ValidateTestProperty(xml_element, test_property)) {
3733 return;
3734 }
3735 internal::MutexLock lock(&test_properties_mutex_);
3736 const std::vector<TestProperty>::iterator property_with_matching_key =
3737 std::find_if(test_properties_.begin(), test_properties_.end(),
3738 internal::TestPropertyKeyIs(test_property.key()));
3739 if (property_with_matching_key == test_properties_.end()) {
3740 test_properties_.push_back(test_property);
3741 return;
3742 }
3743 property_with_matching_key->SetValue(test_property.value());
3744 }
3745
3746 // The list of reserved attributes used in the <testsuites> element of XML
3747 // output.
3748 static const char* const kReservedTestSuitesAttributes[] = {
3749 "disabled",
3750 "errors",
3751 "failures",
3752 "name",
3753 "random_seed",
3754 "tests",
3755 "time",
3756 "timestamp"
3757 };
3758
3759 // The list of reserved attributes used in the <testsuite> element of XML
3760 // output.
3761 static const char* const kReservedTestSuiteAttributes[] = {
3762 "disabled", "errors", "failures", "name",
3763 "tests", "time", "timestamp", "skipped"};
3764
3765 // The list of reserved attributes used in the <testcase> element of XML output.
3766 static const char* const kReservedTestCaseAttributes[] = {
3767 "classname", "name", "status", "time", "type_param",
3768 "value_param", "file", "line"};
3769
3770 // Use a slightly different set for allowed output to ensure existing tests can
3771 // still RecordProperty("result") or "RecordProperty(timestamp")
3772 static const char* const kReservedOutputTestCaseAttributes[] = {
3773 "classname", "name", "status", "time", "type_param",
3774 "value_param", "file", "line", "result", "timestamp"};
3775
3776 template <size_t kSize>
3777 std::vector<std::string> ArrayAsVector(const char* const (&array)[kSize]) {
3778 return std::vector<std::string>(array, array + kSize);
3779 }
3780
3781 static std::vector<std::string> GetReservedAttributesForElement(
3782 const std::string& xml_element) {
3783 if (xml_element == "testsuites") {
3784 return ArrayAsVector(kReservedTestSuitesAttributes);
3785 } else if (xml_element == "testsuite") {
3786 return ArrayAsVector(kReservedTestSuiteAttributes);
3787 } else if (xml_element == "testcase") {
3788 return ArrayAsVector(kReservedTestCaseAttributes);
3789 } else {
3790 GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element;
3791 }
3792 // This code is unreachable but some compilers may not realizes that.
3793 return std::vector<std::string>();
3794 }
3795
3796 // TODO(jdesprez): Merge the two getReserved attributes once skip is improved
3797 static std::vector<std::string> GetReservedOutputAttributesForElement(
3798 const std::string& xml_element) {
3799 if (xml_element == "testsuites") {
3800 return ArrayAsVector(kReservedTestSuitesAttributes);
3801 } else if (xml_element == "testsuite") {
3802 return ArrayAsVector(kReservedTestSuiteAttributes);
3803 } else if (xml_element == "testcase") {
3804 return ArrayAsVector(kReservedOutputTestCaseAttributes);
3805 } else {
3806 GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element;
3807 }
3808 // This code is unreachable but some compilers may not realizes that.
3809 return std::vector<std::string>();
3810 }
3811
3812 static std::string FormatWordList(const std::vector<std::string>& words) {
3813 Message word_list;
3814 for (size_t i = 0; i < words.size(); ++i) {
3815 if (i > 0 && words.size() > 2) {
3816 word_list << ", ";
3817 }
3818 if (i == words.size() - 1) {
3819 word_list << "and ";
3820 }
3821 word_list << "'" << words[i] << "'";
3822 }
3823 return word_list.GetString();
3824 }
3825
3826 static bool ValidateTestPropertyName(
3827 const std::string& property_name,
3828 const std::vector<std::string>& reserved_names) {
3829 if (std::find(reserved_names.begin(), reserved_names.end(), property_name) !=
3830 reserved_names.end()) {
3831 ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name
3832 << " (" << FormatWordList(reserved_names)
3833 << " are reserved by " << GTEST_NAME_ << ")";
3834 return false;
3835 }
3836 return true;
3837 }
3838
3839 // Adds a failure if the key is a reserved attribute of the element named
3840 // xml_element. Returns true if the property is valid.
3841 bool TestResult::ValidateTestProperty(const std::string& xml_element,
3842 const TestProperty& test_property) {
3843 return ValidateTestPropertyName(test_property.key(),
3844 GetReservedAttributesForElement(xml_element));
3845 }
3846
3847 // Clears the object.
3848 void TestResult::Clear() {
3849 test_part_results_.clear();
3850 test_properties_.clear();
3851 death_test_count_ = 0;
3852 elapsed_time_ = 0;
3853 }
3854
3855 // Returns true off the test part was skipped.
3856 static bool TestPartSkipped(const TestPartResult& result) {
3857 return result.skipped();
3858 }
3859
3860 // Returns true if and only if the test was skipped.
3861 bool TestResult::Skipped() const {
3862 return !Failed() && CountIf(test_part_results_, TestPartSkipped) > 0;
3863 }
3864
3865 // Returns true if and only if the test failed.
3866 bool TestResult::Failed() const {
3867 for (int i = 0; i < total_part_count(); ++i) {
3868 if (GetTestPartResult(i).failed())
3869 return true;
3870 }
3871 return false;
3872 }
3873
3874 // Returns true if and only if the test part fatally failed.
3875 static bool TestPartFatallyFailed(const TestPartResult& result) {
3876 return result.fatally_failed();
3877 }
3878
3879 // Returns true if and only if the test fatally failed.
3880 bool TestResult::HasFatalFailure() const {
3881 return CountIf(test_part_results_, TestPartFatallyFailed) > 0;
3882 }
3883
3884 // Returns true if and only if the test part non-fatally failed.
3885 static bool TestPartNonfatallyFailed(const TestPartResult& result) {
3886 return result.nonfatally_failed();
3887 }
3888
3889 // Returns true if and only if the test has a non-fatal failure.
3890 bool TestResult::HasNonfatalFailure() const {
3891 return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0;
3892 }
3893
3894 // Gets the number of all test parts. This is the sum of the number
3895 // of successful test parts and the number of failed test parts.
3896 int TestResult::total_part_count() const {
3897 return static_cast<int>(test_part_results_.size());
3898 }
3899
3900 // Returns the number of the test properties.
3901 int TestResult::test_property_count() const {
3902 return static_cast<int>(test_properties_.size());
3903 }
3904
3905 // class Test
3906
3907 // Creates a Test object.
3908
3909 // The c'tor saves the states of all flags.
3910 Test::Test()
3911 : gtest_flag_saver_(new GTEST_FLAG_SAVER_) {
3912 }
3913
3914 // The d'tor restores the states of all flags. The actual work is
3915 // done by the d'tor of the gtest_flag_saver_ field, and thus not
3916 // visible here.
3917 Test::~Test() {
3918 }
3919
3920 // Sets up the test fixture.
3921 //
3922 // A sub-class may override this.
3923 void Test::SetUp() {
3924 }
3925
3926 // Tears down the test fixture.
3927 //
3928 // A sub-class may override this.
3929 void Test::TearDown() {
3930 }
3931
3932 // Allows user supplied key value pairs to be recorded for later output.
3933 void Test::RecordProperty(const std::string& key, const std::string& value) {
3934 UnitTest::GetInstance()->RecordProperty(key, value);
3935 }
3936
3937 // Allows user supplied key value pairs to be recorded for later output.
3938 void Test::RecordProperty(const std::string& key, int value) {
3939 Message value_message;
3940 value_message << value;
3941 RecordProperty(key, value_message.GetString().c_str());
3942 }
3943
3944 namespace internal {
3945
3946 void ReportFailureInUnknownLocation(TestPartResult::Type result_type,
3947 const std::string& message) {
3948 // This function is a friend of UnitTest and as such has access to
3949 // AddTestPartResult.
3950 UnitTest::GetInstance()->AddTestPartResult(
3951 result_type,
3952 nullptr, // No info about the source file where the exception occurred.
3953 -1, // We have no info on which line caused the exception.
3954 message,
3955 ""); // No stack trace, either.
3956 }
3957
3958 } // namespace internal
3959
3960 // Google Test requires all tests in the same test suite to use the same test
3961 // fixture class. This function checks if the current test has the
3962 // same fixture class as the first test in the current test suite. If
3963 // yes, it returns true; otherwise it generates a Google Test failure and
3964 // returns false.
3965 bool Test::HasSameFixtureClass() {
3966 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
3967 const TestSuite* const test_suite = impl->current_test_suite();
3968
3969 // Info about the first test in the current test suite.
3970 const TestInfo* const first_test_info = test_suite->test_info_list()[0];
3971 const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_;
3972 const char* const first_test_name = first_test_info->name();
3973
3974 // Info about the current test.
3975 const TestInfo* const this_test_info = impl->current_test_info();
3976 const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_;
3977 const char* const this_test_name = this_test_info->name();
3978
3979 if (this_fixture_id != first_fixture_id) {
3980 // Is the first test defined using TEST?
3981 const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId();
3982 // Is this test defined using TEST?
3983 const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId();
3984
3985 if (first_is_TEST || this_is_TEST) {
3986 // Both TEST and TEST_F appear in same test suite, which is incorrect.
3987 // Tell the user how to fix this.
3988
3989 // Gets the name of the TEST and the name of the TEST_F. Note
3990 // that first_is_TEST and this_is_TEST cannot both be true, as
3991 // the fixture IDs are different for the two tests.
3992 const char* const TEST_name =
3993 first_is_TEST ? first_test_name : this_test_name;
3994 const char* const TEST_F_name =
3995 first_is_TEST ? this_test_name : first_test_name;
3996
3997 ADD_FAILURE()
3998 << "All tests in the same test suite must use the same test fixture\n"
3999 << "class, so mixing TEST_F and TEST in the same test suite is\n"
4000 << "illegal. In test suite " << this_test_info->test_suite_name()
4001 << ",\n"
4002 << "test " << TEST_F_name << " is defined using TEST_F but\n"
4003 << "test " << TEST_name << " is defined using TEST. You probably\n"
4004 << "want to change the TEST to TEST_F or move it to another test\n"
4005 << "case.";
4006 } else {
4007 // Two fixture classes with the same name appear in two different
4008 // namespaces, which is not allowed. Tell the user how to fix this.
4009 ADD_FAILURE()
4010 << "All tests in the same test suite must use the same test fixture\n"
4011 << "class. However, in test suite "
4012 << this_test_info->test_suite_name() << ",\n"
4013 << "you defined test " << first_test_name << " and test "
4014 << this_test_name << "\n"
4015 << "using two different test fixture classes. This can happen if\n"
4016 << "the two classes are from different namespaces or translation\n"
4017 << "units and have the same name. You should probably rename one\n"
4018 << "of the classes to put the tests into different test suites.";
4019 }
4020 return false;
4021 }
4022
4023 return true;
4024 }
4025
4026 #if GTEST_HAS_SEH
4027
4028 // Adds an "exception thrown" fatal failure to the current test. This
4029 // function returns its result via an output parameter pointer because VC++
4030 // prohibits creation of objects with destructors on stack in functions
4031 // using __try (see error C2712).
4032 static std::string* FormatSehExceptionMessage(DWORD exception_code,
4033 const char* location) {
4034 Message message;
4035 message << "SEH exception with code 0x" << std::setbase(16) <<
4036 exception_code << std::setbase(10) << " thrown in " << location << ".";
4037
4038 return new std::string(message.GetString());
4039 }
4040
4041 #endif // GTEST_HAS_SEH
4042
4043 namespace internal {
4044
4045 #if GTEST_HAS_EXCEPTIONS
4046
4047 // Adds an "exception thrown" fatal failure to the current test.
4048 static std::string FormatCxxExceptionMessage(const char* description,
4049 const char* location) {
4050 Message message;
4051 if (description != nullptr) {
4052 message << "C++ exception with description \"" << description << "\"";
4053 } else {
4054 message << "Unknown C++ exception";
4055 }
4056 message << " thrown in " << location << ".";
4057
4058 return message.GetString();
4059 }
4060
4061 static std::string PrintTestPartResultToString(
4062 const TestPartResult& test_part_result);
4063
4064 GoogleTestFailureException::GoogleTestFailureException(
4065 const TestPartResult& failure)
4066 : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {}
4067
4068 #endif // GTEST_HAS_EXCEPTIONS
4069
4070 // We put these helper functions in the internal namespace as IBM's xlC
4071 // compiler rejects the code if they were declared static.
4072
4073 // Runs the given method and handles SEH exceptions it throws, when
4074 // SEH is supported; returns the 0-value for type Result in case of an
4075 // SEH exception. (Microsoft compilers cannot handle SEH and C++
4076 // exceptions in the same function. Therefore, we provide a separate
4077 // wrapper function for handling SEH exceptions.)
4078 template <class T, typename Result>
4079 Result HandleSehExceptionsInMethodIfSupported(
4080 T* object, Result (T::*method)(), const char* location) {
4081 #if GTEST_HAS_SEH
4082 __try {
4083 return (object->*method)();
4084 } __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT
4085 GetExceptionCode())) {
4086 // We create the exception message on the heap because VC++ prohibits
4087 // creation of objects with destructors on stack in functions using __try
4088 // (see error C2712).
4089 std::string* exception_message = FormatSehExceptionMessage(
4090 GetExceptionCode(), location);
4091 internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure,
4092 *exception_message);
4093 delete exception_message;
4094 return static_cast<Result>(0);
4095 }
4096 #else
4097 (void)location;
4098 return (object->*method)();
4099 #endif // GTEST_HAS_SEH
4100 }
4101
4102 // Runs the given method and catches and reports C++ and/or SEH-style
4103 // exceptions, if they are supported; returns the 0-value for type
4104 // Result in case of an SEH exception.
4105 template <class T, typename Result>
4106 Result HandleExceptionsInMethodIfSupported(
4107 T* object, Result (T::*method)(), const char* location) {
4108 // NOTE: The user code can affect the way in which Google Test handles
4109 // exceptions by setting GTEST_FLAG(catch_exceptions), but only before
4110 // RUN_ALL_TESTS() starts. It is technically possible to check the flag
4111 // after the exception is caught and either report or re-throw the
4112 // exception based on the flag's value:
4113 //
4114 // try {
4115 // // Perform the test method.
4116 // } catch (...) {
4117 // if (GTEST_FLAG(catch_exceptions))
4118 // // Report the exception as failure.
4119 // else
4120 // throw; // Re-throws the original exception.
4121 // }
4122 //
4123 // However, the purpose of this flag is to allow the program to drop into
4124 // the debugger when the exception is thrown. On most platforms, once the
4125 // control enters the catch block, the exception origin information is
4126 // lost and the debugger will stop the program at the point of the
4127 // re-throw in this function -- instead of at the point of the original
4128 // throw statement in the code under test. For this reason, we perform
4129 // the check early, sacrificing the ability to affect Google Test's
4130 // exception handling in the method where the exception is thrown.
4131 if (internal::GetUnitTestImpl()->catch_exceptions()) {
4132 #if GTEST_HAS_EXCEPTIONS
4133 try {
4134 return HandleSehExceptionsInMethodIfSupported(object, method, location);
4135 } catch (const AssertionException&) { // NOLINT
4136 // This failure was reported already.
4137 } catch (const internal::GoogleTestFailureException&) { // NOLINT
4138 // This exception type can only be thrown by a failed Google
4139 // Test assertion with the intention of letting another testing
4140 // framework catch it. Therefore we just re-throw it.
4141 throw;
4142 } catch (const std::exception& e) { // NOLINT
4143 internal::ReportFailureInUnknownLocation(
4144 TestPartResult::kFatalFailure,
4145 FormatCxxExceptionMessage(e.what(), location));
4146 } catch (...) { // NOLINT
4147 internal::ReportFailureInUnknownLocation(
4148 TestPartResult::kFatalFailure,
4149 FormatCxxExceptionMessage(nullptr, location));
4150 }
4151 return static_cast<Result>(0);
4152 #else
4153 return HandleSehExceptionsInMethodIfSupported(object, method, location);
4154 #endif // GTEST_HAS_EXCEPTIONS
4155 } else {
4156 return (object->*method)();
4157 }
4158 }
4159
4160 } // namespace internal
4161
4162 // Runs the test and updates the test result.
4163 void Test::Run() {
4164 if (!HasSameFixtureClass()) return;
4165
4166 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
4167 impl->os_stack_trace_getter()->UponLeavingGTest();
4168 internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()");
4169 // We will run the test only if SetUp() was successful and didn't call
4170 // GTEST_SKIP().
4171 if (!HasFatalFailure() && !IsSkipped()) {
4172 impl->os_stack_trace_getter()->UponLeavingGTest();
4173 internal::HandleExceptionsInMethodIfSupported(
4174 this, &Test::TestBody, "the test body");
4175 }
4176
4177 // However, we want to clean up as much as possible. Hence we will
4178 // always call TearDown(), even if SetUp() or the test body has
4179 // failed.
4180 impl->os_stack_trace_getter()->UponLeavingGTest();
4181 internal::HandleExceptionsInMethodIfSupported(
4182 this, &Test::TearDown, "TearDown()");
4183 }
4184
4185 // Returns true if and only if the current test has a fatal failure.
4186 bool Test::HasFatalFailure() {
4187 return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure();
4188 }
4189
4190 // Returns true if and only if the current test has a non-fatal failure.
4191 bool Test::HasNonfatalFailure() {
4192 return internal::GetUnitTestImpl()->current_test_result()->
4193 HasNonfatalFailure();
4194 }
4195
4196 // Returns true if and only if the current test was skipped.
4197 bool Test::IsSkipped() {
4198 return internal::GetUnitTestImpl()->current_test_result()->Skipped();
4199 }
4200
4201 // class TestInfo
4202
4203 // Constructs a TestInfo object. It assumes ownership of the test factory
4204 // object.
4205 TestInfo::TestInfo(const std::string& a_test_suite_name,
4206 const std::string& a_name, const char* a_type_param,
4207 const char* a_value_param,
4208 internal::CodeLocation a_code_location,
4209 internal::TypeId fixture_class_id,
4210 internal::TestFactoryBase* factory)
4211 : test_suite_name_(a_test_suite_name),
4212 name_(a_name),
4213 type_param_(a_type_param ? new std::string(a_type_param) : nullptr),
4214 value_param_(a_value_param ? new std::string(a_value_param) : nullptr),
4215 location_(a_code_location),
4216 fixture_class_id_(fixture_class_id),
4217 should_run_(false),
4218 is_disabled_(false),
4219 matches_filter_(false),
4220 is_in_another_shard_(false),
4221 factory_(factory),
4222 result_() {}
4223
4224 // Destructs a TestInfo object.
4225 TestInfo::~TestInfo() { delete factory_; }
4226
4227 namespace internal {
4228
4229 // Creates a new TestInfo object and registers it with Google Test;
4230 // returns the created object.
4231 //
4232 // Arguments:
4233 //
4234 // test_suite_name: name of the test suite
4235 // name: name of the test
4236 // type_param: the name of the test's type parameter, or NULL if
4237 // this is not a typed or a type-parameterized test.
4238 // value_param: text representation of the test's value parameter,
4239 // or NULL if this is not a value-parameterized test.
4240 // code_location: code location where the test is defined
4241 // fixture_class_id: ID of the test fixture class
4242 // set_up_tc: pointer to the function that sets up the test suite
4243 // tear_down_tc: pointer to the function that tears down the test suite
4244 // factory: pointer to the factory that creates a test object.
4245 // The newly created TestInfo instance will assume
4246 // ownership of the factory object.
4247 TestInfo* MakeAndRegisterTestInfo(
4248 const char* test_suite_name, const char* name, const char* type_param,
4249 const char* value_param, CodeLocation code_location,
4250 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
4251 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory) {
4252 TestInfo* const test_info =
4253 new TestInfo(test_suite_name, name, type_param, value_param,
4254 code_location, fixture_class_id, factory);
4255 GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info);
4256 return test_info;
4257 }
4258
4259 void ReportInvalidTestSuiteType(const char* test_suite_name,
4260 CodeLocation code_location) {
4261 Message errors;
4262 errors
4263 << "Attempted redefinition of test suite " << test_suite_name << ".\n"
4264 << "All tests in the same test suite must use the same test fixture\n"
4265 << "class. However, in test suite " << test_suite_name << ", you tried\n"
4266 << "to define a test using a fixture class different from the one\n"
4267 << "used earlier. This can happen if the two fixture classes are\n"
4268 << "from different namespaces and have the same name. You should\n"
4269 << "probably rename one of the classes to put the tests into different\n"
4270 << "test suites.";
4271
4272 GTEST_LOG_(ERROR) << FormatFileLocation(code_location.file.c_str(),
4273 code_location.line)
4274 << " " << errors.GetString();
4275 }
4276 } // namespace internal
4277
4278 namespace {
4279
4280 // A predicate that checks the test name of a TestInfo against a known
4281 // value.
4282 //
4283 // This is used for implementation of the TestSuite class only. We put
4284 // it in the anonymous namespace to prevent polluting the outer
4285 // namespace.
4286 //
4287 // TestNameIs is copyable.
4288 class TestNameIs {
4289 public:
4290 // Constructor.
4291 //
4292 // TestNameIs has NO default constructor.
4293 explicit TestNameIs(const char* name)
4294 : name_(name) {}
4295
4296 // Returns true if and only if the test name of test_info matches name_.
4297 bool operator()(const TestInfo * test_info) const {
4298 return test_info && test_info->name() == name_;
4299 }
4300
4301 private:
4302 std::string name_;
4303 };
4304
4305 } // namespace
4306
4307 namespace internal {
4308
4309 // This method expands all parameterized tests registered with macros TEST_P
4310 // and INSTANTIATE_TEST_SUITE_P into regular tests and registers those.
4311 // This will be done just once during the program runtime.
4312 void UnitTestImpl::RegisterParameterizedTests() {
4313 if (!parameterized_tests_registered_) {
4314 parameterized_test_registry_.RegisterTests();
4315 type_parameterized_test_registry_.CheckForInstantiations();
4316 parameterized_tests_registered_ = true;
4317 }
4318 }
4319
4320 } // namespace internal
4321
4322 // Creates the test object, runs it, records its result, and then
4323 // deletes it.
4324 void TestInfo::Run() {
4325 if (!should_run_) return;
4326
4327 // Tells UnitTest where to store test result.
4328 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
4329 impl->set_current_test_info(this);
4330
4331 TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
4332
4333 // Notifies the unit test event listeners that a test is about to start.
4334 repeater->OnTestStart(*this);
4335
4336 result_.set_start_timestamp(internal::GetTimeInMillis());
4337 internal::Timer timer;
4338
4339 impl->os_stack_trace_getter()->UponLeavingGTest();
4340
4341 // Creates the test object.
4342 Test* const test = internal::HandleExceptionsInMethodIfSupported(
4343 factory_, &internal::TestFactoryBase::CreateTest,
4344 "the test fixture's constructor");
4345
4346 // Runs the test if the constructor didn't generate a fatal failure or invoke
4347 // GTEST_SKIP().
4348 // Note that the object will not be null
4349 if (!Test::HasFatalFailure() && !Test::IsSkipped()) {
4350 // This doesn't throw as all user code that can throw are wrapped into
4351 // exception handling code.
4352 test->Run();
4353 }
4354
4355 if (test != nullptr) {
4356 // Deletes the test object.
4357 impl->os_stack_trace_getter()->UponLeavingGTest();
4358 internal::HandleExceptionsInMethodIfSupported(
4359 test, &Test::DeleteSelf_, "the test fixture's destructor");
4360 }
4361
4362 result_.set_elapsed_time(timer.Elapsed());
4363
4364 // Notifies the unit test event listener that a test has just finished.
4365 repeater->OnTestEnd(*this);
4366
4367 // Tells UnitTest to stop associating assertion results to this
4368 // test.
4369 impl->set_current_test_info(nullptr);
4370 }
4371
4372 // Skip and records a skipped test result for this object.
4373 void TestInfo::Skip() {
4374 if (!should_run_) return;
4375
4376 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
4377 impl->set_current_test_info(this);
4378
4379 TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
4380
4381 // Notifies the unit test event listeners that a test is about to start.
4382 repeater->OnTestStart(*this);
4383
4384 const TestPartResult test_part_result =
4385 TestPartResult(TestPartResult::kSkip, this->file(), this->line(), "");
4386 impl->GetTestPartResultReporterForCurrentThread()->ReportTestPartResult(
4387 test_part_result);
4388
4389 // Notifies the unit test event listener that a test has just finished.
4390 repeater->OnTestEnd(*this);
4391 impl->set_current_test_info(nullptr);
4392 }
4393
4394 // class TestSuite
4395
4396 // Gets the number of successful tests in this test suite.
4397 int TestSuite::successful_test_count() const {
4398 return CountIf(test_info_list_, TestPassed);
4399 }
4400
4401 // Gets the number of successful tests in this test suite.
4402 int TestSuite::skipped_test_count() const {
4403 return CountIf(test_info_list_, TestSkipped);
4404 }
4405
4406 // Gets the number of failed tests in this test suite.
4407 int TestSuite::failed_test_count() const {
4408 return CountIf(test_info_list_, TestFailed);
4409 }
4410
4411 // Gets the number of disabled tests that will be reported in the XML report.
4412 int TestSuite::reportable_disabled_test_count() const {
4413 return CountIf(test_info_list_, TestReportableDisabled);
4414 }
4415
4416 // Gets the number of disabled tests in this test suite.
4417 int TestSuite::disabled_test_count() const {
4418 return CountIf(test_info_list_, TestDisabled);
4419 }
4420
4421 // Gets the number of tests to be printed in the XML report.
4422 int TestSuite::reportable_test_count() const {
4423 return CountIf(test_info_list_, TestReportable);
4424 }
4425
4426 // Get the number of tests in this test suite that should run.
4427 int TestSuite::test_to_run_count() const {
4428 return CountIf(test_info_list_, ShouldRunTest);
4429 }
4430
4431 // Gets the number of all tests.
4432 int TestSuite::total_test_count() const {
4433 return static_cast<int>(test_info_list_.size());
4434 }
4435
4436 // Creates a TestSuite with the given name.
4437 //
4438 // Arguments:
4439 //
4440 // a_name: name of the test suite
4441 // a_type_param: the name of the test suite's type parameter, or NULL if
4442 // this is not a typed or a type-parameterized test suite.
4443 // set_up_tc: pointer to the function that sets up the test suite
4444 // tear_down_tc: pointer to the function that tears down the test suite
4445 TestSuite::TestSuite(const char* a_name, const char* a_type_param,
4446 internal::SetUpTestSuiteFunc set_up_tc,
4447 internal::TearDownTestSuiteFunc tear_down_tc)
4448 : name_(a_name),
4449 type_param_(a_type_param ? new std::string(a_type_param) : nullptr),
4450 set_up_tc_(set_up_tc),
4451 tear_down_tc_(tear_down_tc),
4452 should_run_(false),
4453 start_timestamp_(0),
4454 elapsed_time_(0) {}
4455
4456 // Destructor of TestSuite.
4457 TestSuite::~TestSuite() {
4458 // Deletes every Test in the collection.
4459 ForEach(test_info_list_, internal::Delete<TestInfo>);
4460 }
4461
4462 // Returns the i-th test among all the tests. i can range from 0 to
4463 // total_test_count() - 1. If i is not in that range, returns NULL.
4464 const TestInfo* TestSuite::GetTestInfo(int i) const {
4465 const int index = GetElementOr(test_indices_, i, -1);
4466 return index < 0 ? nullptr : test_info_list_[static_cast<size_t>(index)];
4467 }
4468
4469 // Returns the i-th test among all the tests. i can range from 0 to
4470 // total_test_count() - 1. If i is not in that range, returns NULL.
4471 TestInfo* TestSuite::GetMutableTestInfo(int i) {
4472 const int index = GetElementOr(test_indices_, i, -1);
4473 return index < 0 ? nullptr : test_info_list_[static_cast<size_t>(index)];
4474 }
4475
4476 // Adds a test to this test suite. Will delete the test upon
4477 // destruction of the TestSuite object.
4478 void TestSuite::AddTestInfo(TestInfo* test_info) {
4479 test_info_list_.push_back(test_info);
4480 test_indices_.push_back(static_cast<int>(test_indices_.size()));
4481 }
4482
4483 // Runs every test in this TestSuite.
4484 void TestSuite::Run() {
4485 if (!should_run_) return;
4486
4487 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
4488 impl->set_current_test_suite(this);
4489
4490 TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
4491
4492 // Call both legacy and the new API
4493 repeater->OnTestSuiteStart(*this);
4494 // Legacy API is deprecated but still available
4495 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4496 repeater->OnTestCaseStart(*this);
4497 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4498
4499 impl->os_stack_trace_getter()->UponLeavingGTest();
4500 internal::HandleExceptionsInMethodIfSupported(
4501 this, &TestSuite::RunSetUpTestSuite, "SetUpTestSuite()");
4502
4503 start_timestamp_ = internal::GetTimeInMillis();
4504 internal::Timer timer;
4505 for (int i = 0; i < total_test_count(); i++) {
4506 GetMutableTestInfo(i)->Run();
4507 if (GTEST_FLAG(fail_fast) && GetMutableTestInfo(i)->result()->Failed()) {
4508 for (int j = i + 1; j < total_test_count(); j++) {
4509 GetMutableTestInfo(j)->Skip();
4510 }
4511 break;
4512 }
4513 }
4514 elapsed_time_ = timer.Elapsed();
4515
4516 impl->os_stack_trace_getter()->UponLeavingGTest();
4517 internal::HandleExceptionsInMethodIfSupported(
4518 this, &TestSuite::RunTearDownTestSuite, "TearDownTestSuite()");
4519
4520 // Call both legacy and the new API
4521 repeater->OnTestSuiteEnd(*this);
4522 // Legacy API is deprecated but still available
4523 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4524 repeater->OnTestCaseEnd(*this);
4525 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4526
4527 impl->set_current_test_suite(nullptr);
4528 }
4529
4530 // Skips all tests under this TestSuite.
4531 void TestSuite::Skip() {
4532 if (!should_run_) return;
4533
4534 internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
4535 impl->set_current_test_suite(this);
4536
4537 TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
4538
4539 // Call both legacy and the new API
4540 repeater->OnTestSuiteStart(*this);
4541 // Legacy API is deprecated but still available
4542 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4543 repeater->OnTestCaseStart(*this);
4544 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4545
4546 for (int i = 0; i < total_test_count(); i++) {
4547 GetMutableTestInfo(i)->Skip();
4548 }
4549
4550 // Call both legacy and the new API
4551 repeater->OnTestSuiteEnd(*this);
4552 // Legacy API is deprecated but still available
4553 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4554 repeater->OnTestCaseEnd(*this);
4555 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4556
4557 impl->set_current_test_suite(nullptr);
4558 }
4559
4560 // Clears the results of all tests in this test suite.
4561 void TestSuite::ClearResult() {
4562 ad_hoc_test_result_.Clear();
4563 ForEach(test_info_list_, TestInfo::ClearTestResult);
4564 }
4565
4566 // Shuffles the tests in this test suite.
4567 void TestSuite::ShuffleTests(internal::Random* random) {
4568 Shuffle(random, &test_indices_);
4569 }
4570
4571 // Restores the test order to before the first shuffle.
4572 void TestSuite::UnshuffleTests() {
4573 for (size_t i = 0; i < test_indices_.size(); i++) {
4574 test_indices_[i] = static_cast<int>(i);
4575 }
4576 }
4577
4578 // Formats a countable noun. Depending on its quantity, either the
4579 // singular form or the plural form is used. e.g.
4580 //
4581 // FormatCountableNoun(1, "formula", "formuli") returns "1 formula".
4582 // FormatCountableNoun(5, "book", "books") returns "5 books".
4583 static std::string FormatCountableNoun(int count,
4584 const char * singular_form,
4585 const char * plural_form) {
4586 return internal::StreamableToString(count) + " " +
4587 (count == 1 ? singular_form : plural_form);
4588 }
4589
4590 // Formats the count of tests.
4591 static std::string FormatTestCount(int test_count) {
4592 return FormatCountableNoun(test_count, "test", "tests");
4593 }
4594
4595 // Formats the count of test suites.
4596 static std::string FormatTestSuiteCount(int test_suite_count) {
4597 return FormatCountableNoun(test_suite_count, "test suite", "test suites");
4598 }
4599
4600 // Converts a TestPartResult::Type enum to human-friendly string
4601 // representation. Both kNonFatalFailure and kFatalFailure are translated
4602 // to "Failure", as the user usually doesn't care about the difference
4603 // between the two when viewing the test result.
4604 static const char * TestPartResultTypeToString(TestPartResult::Type type) {
4605 switch (type) {
4606 case TestPartResult::kSkip:
4607 return "Skipped\n";
4608 case TestPartResult::kSuccess:
4609 return "Success";
4610
4611 case TestPartResult::kNonFatalFailure:
4612 case TestPartResult::kFatalFailure:
4613 #ifdef _MSC_VER
4614 return "error: ";
4615 #else
4616 return "Failure\n";
4617 #endif
4618 default:
4619 return "Unknown result type";
4620 }
4621 }
4622
4623 namespace internal {
4624 namespace {
4625 enum class GTestColor { kDefault, kRed, kGreen, kYellow };
4626 } // namespace
4627
4628 // Prints a TestPartResult to an std::string.
4629 static std::string PrintTestPartResultToString(
4630 const TestPartResult& test_part_result) {
4631 return (Message()
4632 << internal::FormatFileLocation(test_part_result.file_name(),
4633 test_part_result.line_number())
4634 << " " << TestPartResultTypeToString(test_part_result.type())
4635 << test_part_result.message()).GetString();
4636 }
4637
4638 // Prints a TestPartResult.
4639 static void PrintTestPartResult(const TestPartResult& test_part_result) {
4640 const std::string& result =
4641 PrintTestPartResultToString(test_part_result);
4642 printf("%s\n", result.c_str());
4643 fflush(stdout);
4644 // If the test program runs in Visual Studio or a debugger, the
4645 // following statements add the test part result message to the Output
4646 // window such that the user can double-click on it to jump to the
4647 // corresponding source code location; otherwise they do nothing.
4648 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
4649 // We don't call OutputDebugString*() on Windows Mobile, as printing
4650 // to stdout is done by OutputDebugString() there already - we don't
4651 // want the same message printed twice.
4652 ::OutputDebugStringA(result.c_str());
4653 ::OutputDebugStringA("\n");
4654 #endif
4655 }
4656
4657 // class PrettyUnitTestResultPrinter
4658 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \
4659 !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW
4660
4661 // Returns the character attribute for the given color.
4662 static WORD GetColorAttribute(GTestColor color) {
4663 switch (color) {
4664 case GTestColor::kRed:
4665 return FOREGROUND_RED;
4666 case GTestColor::kGreen:
4667 return FOREGROUND_GREEN;
4668 case GTestColor::kYellow:
4669 return FOREGROUND_RED | FOREGROUND_GREEN;
4670 default: return 0;
4671 }
4672 }
4673
4674 static int GetBitOffset(WORD color_mask) {
4675 if (color_mask == 0) return 0;
4676
4677 int bitOffset = 0;
4678 while ((color_mask & 1) == 0) {
4679 color_mask >>= 1;
4680 ++bitOffset;
4681 }
4682 return bitOffset;
4683 }
4684
4685 static WORD GetNewColor(GTestColor color, WORD old_color_attrs) {
4686 // Let's reuse the BG
4687 static const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN |
4688 BACKGROUND_RED | BACKGROUND_INTENSITY;
4689 static const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN |
4690 FOREGROUND_RED | FOREGROUND_INTENSITY;
4691 const WORD existing_bg = old_color_attrs & background_mask;
4692
4693 WORD new_color =
4694 GetColorAttribute(color) | existing_bg | FOREGROUND_INTENSITY;
4695 static const int bg_bitOffset = GetBitOffset(background_mask);
4696 static const int fg_bitOffset = GetBitOffset(foreground_mask);
4697
4698 if (((new_color & background_mask) >> bg_bitOffset) ==
4699 ((new_color & foreground_mask) >> fg_bitOffset)) {
4700 new_color ^= FOREGROUND_INTENSITY; // invert intensity
4701 }
4702 return new_color;
4703 }
4704
4705 #else
4706
4707 // Returns the ANSI color code for the given color. GTestColor::kDefault is
4708 // an invalid input.
4709 static const char* GetAnsiColorCode(GTestColor color) {
4710 switch (color) {
4711 case GTestColor::kRed:
4712 return "1";
4713 case GTestColor::kGreen:
4714 return "2";
4715 case GTestColor::kYellow:
4716 return "3";
4717 default:
4718 return nullptr;
4719 }
4720 }
4721
4722 #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
4723
4724 // Returns true if and only if Google Test should use colors in the output.
4725 bool ShouldUseColor(bool stdout_is_tty) {
4726 const char* const gtest_color = GTEST_FLAG(color).c_str();
4727
4728 if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) {
4729 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW
4730 // On Windows the TERM variable is usually not set, but the
4731 // console there does support colors.
4732 return stdout_is_tty;
4733 #else
4734 // On non-Windows platforms, we rely on the TERM variable.
4735 const char* const term = posix::GetEnv("TERM");
4736 const bool term_supports_color =
4737 String::CStringEquals(term, "xterm") ||
4738 String::CStringEquals(term, "xterm-color") ||
4739 String::CStringEquals(term, "xterm-256color") ||
4740 String::CStringEquals(term, "screen") ||
4741 String::CStringEquals(term, "screen-256color") ||
4742 String::CStringEquals(term, "tmux") ||
4743 String::CStringEquals(term, "tmux-256color") ||
4744 String::CStringEquals(term, "rxvt-unicode") ||
4745 String::CStringEquals(term, "rxvt-unicode-256color") ||
4746 String::CStringEquals(term, "linux") ||
4747 String::CStringEquals(term, "cygwin");
4748 return stdout_is_tty && term_supports_color;
4749 #endif // GTEST_OS_WINDOWS
4750 }
4751
4752 return String::CaseInsensitiveCStringEquals(gtest_color, "yes") ||
4753 String::CaseInsensitiveCStringEquals(gtest_color, "true") ||
4754 String::CaseInsensitiveCStringEquals(gtest_color, "t") ||
4755 String::CStringEquals(gtest_color, "1");
4756 // We take "yes", "true", "t", and "1" as meaning "yes". If the
4757 // value is neither one of these nor "auto", we treat it as "no" to
4758 // be conservative.
4759 }
4760
4761 // Helpers for printing colored strings to stdout. Note that on Windows, we
4762 // cannot simply emit special characters and have the terminal change colors.
4763 // This routine must actually emit the characters rather than return a string
4764 // that would be colored when printed, as can be done on Linux.
4765
4766 GTEST_ATTRIBUTE_PRINTF_(2, 3)
4767 static void ColoredPrintf(GTestColor color, const char *fmt, ...) {
4768 va_list args;
4769 va_start(args, fmt);
4770
4771 #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_ZOS || GTEST_OS_IOS || \
4772 GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT || defined(ESP_PLATFORM)
4773 const bool use_color = AlwaysFalse();
4774 #else
4775 static const bool in_color_mode =
4776 ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0);
4777 const bool use_color = in_color_mode && (color != GTestColor::kDefault);
4778 #endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_ZOS
4779
4780 if (!use_color) {
4781 vprintf(fmt, args);
4782 va_end(args);
4783 return;
4784 }
4785
4786 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \
4787 !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW
4788 const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
4789
4790 // Gets the current text color.
4791 CONSOLE_SCREEN_BUFFER_INFO buffer_info;
4792 GetConsoleScreenBufferInfo(stdout_handle, &buffer_info);
4793 const WORD old_color_attrs = buffer_info.wAttributes;
4794 const WORD new_color = GetNewColor(color, old_color_attrs);
4795
4796 // We need to flush the stream buffers into the console before each
4797 // SetConsoleTextAttribute call lest it affect the text that is already
4798 // printed but has not yet reached the console.
4799 fflush(stdout);
4800 SetConsoleTextAttribute(stdout_handle, new_color);
4801
4802 vprintf(fmt, args);
4803
4804 fflush(stdout);
4805 // Restores the text color.
4806 SetConsoleTextAttribute(stdout_handle, old_color_attrs);
4807 #else
4808 printf("\033[0;3%sm", GetAnsiColorCode(color));
4809 vprintf(fmt, args);
4810 printf("\033[m"); // Resets the terminal to default.
4811 #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
4812 va_end(args);
4813 }
4814
4815 // Text printed in Google Test's text output and --gtest_list_tests
4816 // output to label the type parameter and value parameter for a test.
4817 static const char kTypeParamLabel[] = "TypeParam";
4818 static const char kValueParamLabel[] = "GetParam()";
4819
4820 static void PrintFullTestCommentIfPresent(const TestInfo& test_info) {
4821 const char* const type_param = test_info.type_param();
4822 const char* const value_param = test_info.value_param();
4823
4824 if (type_param != nullptr || value_param != nullptr) {
4825 printf(", where ");
4826 if (type_param != nullptr) {
4827 printf("%s = %s", kTypeParamLabel, type_param);
4828 if (value_param != nullptr) printf(" and ");
4829 }
4830 if (value_param != nullptr) {
4831 printf("%s = %s", kValueParamLabel, value_param);
4832 }
4833 }
4834 }
4835
4836 // This class implements the TestEventListener interface.
4837 //
4838 // Class PrettyUnitTestResultPrinter is copyable.
4839 class PrettyUnitTestResultPrinter : public TestEventListener {
4840 public:
4841 PrettyUnitTestResultPrinter() {}
4842 static void PrintTestName(const char* test_suite, const char* test) {
4843 printf("%s.%s", test_suite, test);
4844 }
4845
4846 // The following methods override what's in the TestEventListener class.
4847 void OnTestProgramStart(const UnitTest& /*unit_test*/) override {}
4848 void OnTestIterationStart(const UnitTest& unit_test, int iteration) override;
4849 void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override;
4850 void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {}
4851 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4852 void OnTestCaseStart(const TestCase& test_case) override;
4853 #else
4854 void OnTestSuiteStart(const TestSuite& test_suite) override;
4855 #endif // OnTestCaseStart
4856
4857 void OnTestStart(const TestInfo& test_info) override;
4858
4859 void OnTestPartResult(const TestPartResult& result) override;
4860 void OnTestEnd(const TestInfo& test_info) override;
4861 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4862 void OnTestCaseEnd(const TestCase& test_case) override;
4863 #else
4864 void OnTestSuiteEnd(const TestSuite& test_suite) override;
4865 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4866
4867 void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override;
4868 void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {}
4869 void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
4870 void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {}
4871
4872 private:
4873 static void PrintFailedTests(const UnitTest& unit_test);
4874 static void PrintFailedTestSuites(const UnitTest& unit_test);
4875 static void PrintSkippedTests(const UnitTest& unit_test);
4876 };
4877
4878 // Fired before each iteration of tests starts.
4879 void PrettyUnitTestResultPrinter::OnTestIterationStart(
4880 const UnitTest& unit_test, int iteration) {
4881 if (GTEST_FLAG(repeat) != 1)
4882 printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1);
4883
4884 const char* const filter = GTEST_FLAG(filter).c_str();
4885
4886 // Prints the filter if it's not *. This reminds the user that some
4887 // tests may be skipped.
4888 if (!String::CStringEquals(filter, kUniversalFilter)) {
4889 ColoredPrintf(GTestColor::kYellow, "Note: %s filter = %s\n", GTEST_NAME_,
4890 filter);
4891 }
4892
4893 if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) {
4894 const int32_t shard_index = Int32FromEnvOrDie(kTestShardIndex, -1);
4895 ColoredPrintf(GTestColor::kYellow, "Note: This is test shard %d of %s.\n",
4896 static_cast<int>(shard_index) + 1,
4897 internal::posix::GetEnv(kTestTotalShards));
4898 }
4899
4900 if (GTEST_FLAG(shuffle)) {
4901 ColoredPrintf(GTestColor::kYellow,
4902 "Note: Randomizing tests' orders with a seed of %d .\n",
4903 unit_test.random_seed());
4904 }
4905
4906 ColoredPrintf(GTestColor::kGreen, "[==========] ");
4907 printf("Running %s from %s.\n",
4908 FormatTestCount(unit_test.test_to_run_count()).c_str(),
4909 FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str());
4910 fflush(stdout);
4911 }
4912
4913 void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart(
4914 const UnitTest& /*unit_test*/) {
4915 ColoredPrintf(GTestColor::kGreen, "[----------] ");
4916 printf("Global test environment set-up.\n");
4917 fflush(stdout);
4918 }
4919
4920 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4921 void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) {
4922 const std::string counts =
4923 FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
4924 ColoredPrintf(GTestColor::kGreen, "[----------] ");
4925 printf("%s from %s", counts.c_str(), test_case.name());
4926 if (test_case.type_param() == nullptr) {
4927 printf("\n");
4928 } else {
4929 printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param());
4930 }
4931 fflush(stdout);
4932 }
4933 #else
4934 void PrettyUnitTestResultPrinter::OnTestSuiteStart(
4935 const TestSuite& test_suite) {
4936 const std::string counts =
4937 FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests");
4938 ColoredPrintf(GTestColor::kGreen, "[----------] ");
4939 printf("%s from %s", counts.c_str(), test_suite.name());
4940 if (test_suite.type_param() == nullptr) {
4941 printf("\n");
4942 } else {
4943 printf(", where %s = %s\n", kTypeParamLabel, test_suite.type_param());
4944 }
4945 fflush(stdout);
4946 }
4947 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4948
4949 void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) {
4950 ColoredPrintf(GTestColor::kGreen, "[ RUN ] ");
4951 PrintTestName(test_info.test_suite_name(), test_info.name());
4952 printf("\n");
4953 fflush(stdout);
4954 }
4955
4956 // Called after an assertion failure.
4957 void PrettyUnitTestResultPrinter::OnTestPartResult(
4958 const TestPartResult& result) {
4959 switch (result.type()) {
4960 // If the test part succeeded, we don't need to do anything.
4961 case TestPartResult::kSuccess:
4962 return;
4963 default:
4964 // Print failure message from the assertion
4965 // (e.g. expected this and got that).
4966 PrintTestPartResult(result);
4967 fflush(stdout);
4968 }
4969 }
4970
4971 void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) {
4972 if (test_info.result()->Passed()) {
4973 ColoredPrintf(GTestColor::kGreen, "[ OK ] ");
4974 } else if (test_info.result()->Skipped()) {
4975 ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
4976 } else {
4977 ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
4978 }
4979 PrintTestName(test_info.test_suite_name(), test_info.name());
4980 if (test_info.result()->Failed())
4981 PrintFullTestCommentIfPresent(test_info);
4982
4983 if (GTEST_FLAG(print_time)) {
4984 printf(" (%s ms)\n", internal::StreamableToString(
4985 test_info.result()->elapsed_time()).c_str());
4986 } else {
4987 printf("\n");
4988 }
4989 fflush(stdout);
4990 }
4991
4992 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
4993 void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) {
4994 if (!GTEST_FLAG(print_time)) return;
4995
4996 const std::string counts =
4997 FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
4998 ColoredPrintf(GTestColor::kGreen, "[----------] ");
4999 printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(),
5000 internal::StreamableToString(test_case.elapsed_time()).c_str());
5001 fflush(stdout);
5002 }
5003 #else
5004 void PrettyUnitTestResultPrinter::OnTestSuiteEnd(const TestSuite& test_suite) {
5005 if (!GTEST_FLAG(print_time)) return;
5006
5007 const std::string counts =
5008 FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests");
5009 ColoredPrintf(GTestColor::kGreen, "[----------] ");
5010 printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_suite.name(),
5011 internal::StreamableToString(test_suite.elapsed_time()).c_str());
5012 fflush(stdout);
5013 }
5014 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5015
5016 void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart(
5017 const UnitTest& /*unit_test*/) {
5018 ColoredPrintf(GTestColor::kGreen, "[----------] ");
5019 printf("Global test environment tear-down\n");
5020 fflush(stdout);
5021 }
5022
5023 // Internal helper for printing the list of failed tests.
5024 void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) {
5025 const int failed_test_count = unit_test.failed_test_count();
5026 ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
5027 printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str());
5028
5029 for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
5030 const TestSuite& test_suite = *unit_test.GetTestSuite(i);
5031 if (!test_suite.should_run() || (test_suite.failed_test_count() == 0)) {
5032 continue;
5033 }
5034 for (int j = 0; j < test_suite.total_test_count(); ++j) {
5035 const TestInfo& test_info = *test_suite.GetTestInfo(j);
5036 if (!test_info.should_run() || !test_info.result()->Failed()) {
5037 continue;
5038 }
5039 ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
5040 printf("%s.%s", test_suite.name(), test_info.name());
5041 PrintFullTestCommentIfPresent(test_info);
5042 printf("\n");
5043 }
5044 }
5045 printf("\n%2d FAILED %s\n", failed_test_count,
5046 failed_test_count == 1 ? "TEST" : "TESTS");
5047 }
5048
5049 // Internal helper for printing the list of test suite failures not covered by
5050 // PrintFailedTests.
5051 void PrettyUnitTestResultPrinter::PrintFailedTestSuites(
5052 const UnitTest& unit_test) {
5053 int suite_failure_count = 0;
5054 for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
5055 const TestSuite& test_suite = *unit_test.GetTestSuite(i);
5056 if (!test_suite.should_run()) {
5057 continue;
5058 }
5059 if (test_suite.ad_hoc_test_result().Failed()) {
5060 ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
5061 printf("%s: SetUpTestSuite or TearDownTestSuite\n", test_suite.name());
5062 ++suite_failure_count;
5063 }
5064 }
5065 if (suite_failure_count > 0) {
5066 printf("\n%2d FAILED TEST %s\n", suite_failure_count,
5067 suite_failure_count == 1 ? "SUITE" : "SUITES");
5068 }
5069 }
5070
5071 // Internal helper for printing the list of skipped tests.
5072 void PrettyUnitTestResultPrinter::PrintSkippedTests(const UnitTest& unit_test) {
5073 const int skipped_test_count = unit_test.skipped_test_count();
5074 if (skipped_test_count == 0) {
5075 return;
5076 }
5077
5078 for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
5079 const TestSuite& test_suite = *unit_test.GetTestSuite(i);
5080 if (!test_suite.should_run() || (test_suite.skipped_test_count() == 0)) {
5081 continue;
5082 }
5083 for (int j = 0; j < test_suite.total_test_count(); ++j) {
5084 const TestInfo& test_info = *test_suite.GetTestInfo(j);
5085 if (!test_info.should_run() || !test_info.result()->Skipped()) {
5086 continue;
5087 }
5088 ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
5089 printf("%s.%s", test_suite.name(), test_info.name());
5090 printf("\n");
5091 }
5092 }
5093 }
5094
5095 void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
5096 int /*iteration*/) {
5097 ColoredPrintf(GTestColor::kGreen, "[==========] ");
5098 printf("%s from %s ran.",
5099 FormatTestCount(unit_test.test_to_run_count()).c_str(),
5100 FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str());
5101 if (GTEST_FLAG(print_time)) {
5102 printf(" (%s ms total)",
5103 internal::StreamableToString(unit_test.elapsed_time()).c_str());
5104 }
5105 printf("\n");
5106 ColoredPrintf(GTestColor::kGreen, "[ PASSED ] ");
5107 printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str());
5108
5109 const int skipped_test_count = unit_test.skipped_test_count();
5110 if (skipped_test_count > 0) {
5111 ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
5112 printf("%s, listed below:\n", FormatTestCount(skipped_test_count).c_str());
5113 PrintSkippedTests(unit_test);
5114 }
5115
5116 if (!unit_test.Passed()) {
5117 PrintFailedTests(unit_test);
5118 PrintFailedTestSuites(unit_test);
5119 }
5120
5121 int num_disabled = unit_test.reportable_disabled_test_count();
5122 if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) {
5123 if (unit_test.Passed()) {
5124 printf("\n"); // Add a spacer if no FAILURE banner is displayed.
5125 }
5126 ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n",
5127 num_disabled, num_disabled == 1 ? "TEST" : "TESTS");
5128 }
5129 // Ensure that Google Test output is printed before, e.g., heapchecker output.
5130 fflush(stdout);
5131 }
5132
5133 // End PrettyUnitTestResultPrinter
5134
5135 // This class implements the TestEventListener interface.
5136 //
5137 // Class BriefUnitTestResultPrinter is copyable.
5138 class BriefUnitTestResultPrinter : public TestEventListener {
5139 public:
5140 BriefUnitTestResultPrinter() {}
5141 static void PrintTestName(const char* test_suite, const char* test) {
5142 printf("%s.%s", test_suite, test);
5143 }
5144
5145 // The following methods override what's in the TestEventListener class.
5146 void OnTestProgramStart(const UnitTest& /*unit_test*/) override {}
5147 void OnTestIterationStart(const UnitTest& /*unit_test*/,
5148 int /*iteration*/) override {}
5149 void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override {}
5150 void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {}
5151 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5152 void OnTestCaseStart(const TestCase& /*test_case*/) override {}
5153 #else
5154 void OnTestSuiteStart(const TestSuite& /*test_suite*/) override {}
5155 #endif // OnTestCaseStart
5156
5157 void OnTestStart(const TestInfo& /*test_info*/) override {}
5158
5159 void OnTestPartResult(const TestPartResult& result) override;
5160 void OnTestEnd(const TestInfo& test_info) override;
5161 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5162 void OnTestCaseEnd(const TestCase& /*test_case*/) override {}
5163 #else
5164 void OnTestSuiteEnd(const TestSuite& /*test_suite*/) override {}
5165 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5166
5167 void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override {}
5168 void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {}
5169 void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
5170 void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {}
5171 };
5172
5173 // Called after an assertion failure.
5174 void BriefUnitTestResultPrinter::OnTestPartResult(
5175 const TestPartResult& result) {
5176 switch (result.type()) {
5177 // If the test part succeeded, we don't need to do anything.
5178 case TestPartResult::kSuccess:
5179 return;
5180 default:
5181 // Print failure message from the assertion
5182 // (e.g. expected this and got that).
5183 PrintTestPartResult(result);
5184 fflush(stdout);
5185 }
5186 }
5187
5188 void BriefUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) {
5189 if (test_info.result()->Failed()) {
5190 ColoredPrintf(GTestColor::kRed, "[ FAILED ] ");
5191 PrintTestName(test_info.test_suite_name(), test_info.name());
5192 PrintFullTestCommentIfPresent(test_info);
5193
5194 if (GTEST_FLAG(print_time)) {
5195 printf(" (%s ms)\n",
5196 internal::StreamableToString(test_info.result()->elapsed_time())
5197 .c_str());
5198 } else {
5199 printf("\n");
5200 }
5201 fflush(stdout);
5202 }
5203 }
5204
5205 void BriefUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
5206 int /*iteration*/) {
5207 ColoredPrintf(GTestColor::kGreen, "[==========] ");
5208 printf("%s from %s ran.",
5209 FormatTestCount(unit_test.test_to_run_count()).c_str(),
5210 FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str());
5211 if (GTEST_FLAG(print_time)) {
5212 printf(" (%s ms total)",
5213 internal::StreamableToString(unit_test.elapsed_time()).c_str());
5214 }
5215 printf("\n");
5216 ColoredPrintf(GTestColor::kGreen, "[ PASSED ] ");
5217 printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str());
5218
5219 const int skipped_test_count = unit_test.skipped_test_count();
5220 if (skipped_test_count > 0) {
5221 ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] ");
5222 printf("%s.\n", FormatTestCount(skipped_test_count).c_str());
5223 }
5224
5225 int num_disabled = unit_test.reportable_disabled_test_count();
5226 if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) {
5227 if (unit_test.Passed()) {
5228 printf("\n"); // Add a spacer if no FAILURE banner is displayed.
5229 }
5230 ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n",
5231 num_disabled, num_disabled == 1 ? "TEST" : "TESTS");
5232 }
5233 // Ensure that Google Test output is printed before, e.g., heapchecker output.
5234 fflush(stdout);
5235 }
5236
5237 // End BriefUnitTestResultPrinter
5238
5239 // class TestEventRepeater
5240 //
5241 // This class forwards events to other event listeners.
5242 class TestEventRepeater : public TestEventListener {
5243 public:
5244 TestEventRepeater() : forwarding_enabled_(true) {}
5245 ~TestEventRepeater() override;
5246 void Append(TestEventListener *listener);
5247 TestEventListener* Release(TestEventListener* listener);
5248
5249 // Controls whether events will be forwarded to listeners_. Set to false
5250 // in death test child processes.
5251 bool forwarding_enabled() const { return forwarding_enabled_; }
5252 void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; }
5253
5254 void OnTestProgramStart(const UnitTest& unit_test) override;
5255 void OnTestIterationStart(const UnitTest& unit_test, int iteration) override;
5256 void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override;
5257 void OnEnvironmentsSetUpEnd(const UnitTest& unit_test) override;
5258 // Legacy API is deprecated but still available
5259 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5260 void OnTestCaseStart(const TestSuite& parameter) override;
5261 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5262 void OnTestSuiteStart(const TestSuite& parameter) override;
5263 void OnTestStart(const TestInfo& test_info) override;
5264 void OnTestPartResult(const TestPartResult& result) override;
5265 void OnTestEnd(const TestInfo& test_info) override;
5266 // Legacy API is deprecated but still available
5267 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5268 void OnTestCaseEnd(const TestCase& parameter) override;
5269 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5270 void OnTestSuiteEnd(const TestSuite& parameter) override;
5271 void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override;
5272 void OnEnvironmentsTearDownEnd(const UnitTest& unit_test) override;
5273 void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
5274 void OnTestProgramEnd(const UnitTest& unit_test) override;
5275
5276 private:
5277 // Controls whether events will be forwarded to listeners_. Set to false
5278 // in death test child processes.
5279 bool forwarding_enabled_;
5280 // The list of listeners that receive events.
5281 std::vector<TestEventListener*> listeners_;
5282
5283 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater);
5284 };
5285
5286 TestEventRepeater::~TestEventRepeater() {
5287 ForEach(listeners_, Delete<TestEventListener>);
5288 }
5289
5290 void TestEventRepeater::Append(TestEventListener *listener) {
5291 listeners_.push_back(listener);
5292 }
5293
5294 TestEventListener* TestEventRepeater::Release(TestEventListener *listener) {
5295 for (size_t i = 0; i < listeners_.size(); ++i) {
5296 if (listeners_[i] == listener) {
5297 listeners_.erase(listeners_.begin() + static_cast<int>(i));
5298 return listener;
5299 }
5300 }
5301
5302 return nullptr;
5303 }
5304
5305 // Since most methods are very similar, use macros to reduce boilerplate.
5306 // This defines a member that forwards the call to all listeners.
5307 #define GTEST_REPEATER_METHOD_(Name, Type) \
5308 void TestEventRepeater::Name(const Type& parameter) { \
5309 if (forwarding_enabled_) { \
5310 for (size_t i = 0; i < listeners_.size(); i++) { \
5311 listeners_[i]->Name(parameter); \
5312 } \
5313 } \
5314 }
5315 // This defines a member that forwards the call to all listeners in reverse
5316 // order.
5317 #define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \
5318 void TestEventRepeater::Name(const Type& parameter) { \
5319 if (forwarding_enabled_) { \
5320 for (size_t i = listeners_.size(); i != 0; i--) { \
5321 listeners_[i - 1]->Name(parameter); \
5322 } \
5323 } \
5324 }
5325
5326 GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest)
5327 GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest)
5328 // Legacy API is deprecated but still available
5329 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5330 GTEST_REPEATER_METHOD_(OnTestCaseStart, TestSuite)
5331 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5332 GTEST_REPEATER_METHOD_(OnTestSuiteStart, TestSuite)
5333 GTEST_REPEATER_METHOD_(OnTestStart, TestInfo)
5334 GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult)
5335 GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest)
5336 GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest)
5337 GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest)
5338 GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo)
5339 // Legacy API is deprecated but still available
5340 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5341 GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestSuite)
5342 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
5343 GTEST_REVERSE_REPEATER_METHOD_(OnTestSuiteEnd, TestSuite)
5344 GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest)
5345
5346 #undef GTEST_REPEATER_METHOD_
5347 #undef GTEST_REVERSE_REPEATER_METHOD_
5348
5349 void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test,
5350 int iteration) {
5351 if (forwarding_enabled_) {
5352 for (size_t i = 0; i < listeners_.size(); i++) {
5353 listeners_[i]->OnTestIterationStart(unit_test, iteration);
5354 }
5355 }
5356 }
5357
5358 void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test,
5359 int iteration) {
5360 if (forwarding_enabled_) {
5361 for (size_t i = listeners_.size(); i > 0; i--) {
5362 listeners_[i - 1]->OnTestIterationEnd(unit_test, iteration);
5363 }
5364 }
5365 }
5366
5367 // End TestEventRepeater
5368
5369 // This class generates an XML output file.
5370 class XmlUnitTestResultPrinter : public EmptyTestEventListener {
5371 public:
5372 explicit XmlUnitTestResultPrinter(const char* output_file);
5373
5374 void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
5375 void ListTestsMatchingFilter(const std::vector<TestSuite*>& test_suites);
5376
5377 // Prints an XML summary of all unit tests.
5378 static void PrintXmlTestsList(std::ostream* stream,
5379 const std::vector<TestSuite*>& test_suites);
5380
5381 private:
5382 // Is c a whitespace character that is normalized to a space character
5383 // when it appears in an XML attribute value?
5384 static bool IsNormalizableWhitespace(char c) {
5385 return c == 0x9 || c == 0xA || c == 0xD;
5386 }
5387
5388 // May c appear in a well-formed XML document?
5389 static bool IsValidXmlCharacter(char c) {
5390 return IsNormalizableWhitespace(c) || c >= 0x20;
5391 }
5392
5393 // Returns an XML-escaped copy of the input string str. If
5394 // is_attribute is true, the text is meant to appear as an attribute
5395 // value, and normalizable whitespace is preserved by replacing it
5396 // with character references.
5397 static std::string EscapeXml(const std::string& str, bool is_attribute);
5398
5399 // Returns the given string with all characters invalid in XML removed.
5400 static std::string RemoveInvalidXmlCharacters(const std::string& str);
5401
5402 // Convenience wrapper around EscapeXml when str is an attribute value.
5403 static std::string EscapeXmlAttribute(const std::string& str) {
5404 return EscapeXml(str, true);
5405 }
5406
5407 // Convenience wrapper around EscapeXml when str is not an attribute value.
5408 static std::string EscapeXmlText(const char* str) {
5409 return EscapeXml(str, false);
5410 }
5411
5412 // Verifies that the given attribute belongs to the given element and
5413 // streams the attribute as XML.
5414 static void OutputXmlAttribute(std::ostream* stream,
5415 const std::string& element_name,
5416 const std::string& name,
5417 const std::string& value);
5418
5419 // Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
5420 static void OutputXmlCDataSection(::std::ostream* stream, const char* data);
5421
5422 // Streams a test suite XML stanza containing the given test result.
5423 //
5424 // Requires: result.Failed()
5425 static void OutputXmlTestSuiteForTestResult(::std::ostream* stream,
5426 const TestResult& result);
5427
5428 // Streams an XML representation of a TestResult object.
5429 static void OutputXmlTestResult(::std::ostream* stream,
5430 const TestResult& result);
5431
5432 // Streams an XML representation of a TestInfo object.
5433 static void OutputXmlTestInfo(::std::ostream* stream,
5434 const char* test_suite_name,
5435 const TestInfo& test_info);
5436
5437 // Prints an XML representation of a TestSuite object
5438 static void PrintXmlTestSuite(::std::ostream* stream,
5439 const TestSuite& test_suite);
5440
5441 // Prints an XML summary of unit_test to output stream out.
5442 static void PrintXmlUnitTest(::std::ostream* stream,
5443 const UnitTest& unit_test);
5444
5445 // Produces a string representing the test properties in a result as space
5446 // delimited XML attributes based on the property key="value" pairs.
5447 // When the std::string is not empty, it includes a space at the beginning,
5448 // to delimit this attribute from prior attributes.
5449 static std::string TestPropertiesAsXmlAttributes(const TestResult& result);
5450
5451 // Streams an XML representation of the test properties of a TestResult
5452 // object.
5453 static void OutputXmlTestProperties(std::ostream* stream,
5454 const TestResult& result);
5455
5456 // The output file.
5457 const std::string output_file_;
5458
5459 GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter);
5460 };
5461
5462 // Creates a new XmlUnitTestResultPrinter.
5463 XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file)
5464 : output_file_(output_file) {
5465 if (output_file_.empty()) {
5466 GTEST_LOG_(FATAL) << "XML output file may not be null";
5467 }
5468 }
5469
5470 // Called after the unit test ends.
5471 void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
5472 int /*iteration*/) {
5473 FILE* xmlout = OpenFileForWriting(output_file_);
5474 std::stringstream stream;
5475 PrintXmlUnitTest(&stream, unit_test);
5476 fprintf(xmlout, "%s", StringStreamToString(&stream).c_str());
5477 fclose(xmlout);
5478 }
5479
5480 void XmlUnitTestResultPrinter::ListTestsMatchingFilter(
5481 const std::vector<TestSuite*>& test_suites) {
5482 FILE* xmlout = OpenFileForWriting(output_file_);
5483 std::stringstream stream;
5484 PrintXmlTestsList(&stream, test_suites);
5485 fprintf(xmlout, "%s", StringStreamToString(&stream).c_str());
5486 fclose(xmlout);
5487 }
5488
5489 // Returns an XML-escaped copy of the input string str. If is_attribute
5490 // is true, the text is meant to appear as an attribute value, and
5491 // normalizable whitespace is preserved by replacing it with character
5492 // references.
5493 //
5494 // Invalid XML characters in str, if any, are stripped from the output.
5495 // It is expected that most, if not all, of the text processed by this
5496 // module will consist of ordinary English text.
5497 // If this module is ever modified to produce version 1.1 XML output,
5498 // most invalid characters can be retained using character references.
5499 std::string XmlUnitTestResultPrinter::EscapeXml(
5500 const std::string& str, bool is_attribute) {
5501 Message m;
5502
5503 for (size_t i = 0; i < str.size(); ++i) {
5504 const char ch = str[i];
5505 switch (ch) {
5506 case '<':
5507 m << "&lt;";
5508 break;
5509 case '>':
5510 m << "&gt;";
5511 break;
5512 case '&':
5513 m << "&amp;";
5514 break;
5515 case '\'':
5516 if (is_attribute)
5517 m << "&apos;";
5518 else
5519 m << '\'';
5520 break;
5521 case '"':
5522 if (is_attribute)
5523 m << "&quot;";
5524 else
5525 m << '"';
5526 break;
5527 default:
5528 if (IsValidXmlCharacter(ch)) {
5529 if (is_attribute && IsNormalizableWhitespace(ch))
5530 m << "&#x" << String::FormatByte(static_cast<unsigned char>(ch))
5531 << ";";
5532 else
5533 m << ch;
5534 }
5535 break;
5536 }
5537 }
5538
5539 return m.GetString();
5540 }
5541
5542 // Returns the given string with all characters invalid in XML removed.
5543 // Currently invalid characters are dropped from the string. An
5544 // alternative is to replace them with certain characters such as . or ?.
5545 std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters(
5546 const std::string& str) {
5547 std::string output;
5548 output.reserve(str.size());
5549 for (std::string::const_iterator it = str.begin(); it != str.end(); ++it)
5550 if (IsValidXmlCharacter(*it))
5551 output.push_back(*it);
5552
5553 return output;
5554 }
5555
5556 // The following routines generate an XML representation of a UnitTest
5557 // object.
5558 // GOOGLETEST_CM0009 DO NOT DELETE
5559 //
5560 // This is how Google Test concepts map to the DTD:
5561 //
5562 // <testsuites name="AllTests"> <-- corresponds to a UnitTest object
5563 // <testsuite name="testcase-name"> <-- corresponds to a TestSuite object
5564 // <testcase name="test-name"> <-- corresponds to a TestInfo object
5565 // <failure message="...">...</failure>
5566 // <failure message="...">...</failure>
5567 // <failure message="...">...</failure>
5568 // <-- individual assertion failures
5569 // </testcase>
5570 // </testsuite>
5571 // </testsuites>
5572
5573 // Formats the given time in milliseconds as seconds.
5574 std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) {
5575 ::std::stringstream ss;
5576 ss << (static_cast<double>(ms) * 1e-3);
5577 return ss.str();
5578 }
5579
5580 static bool PortableLocaltime(time_t seconds, struct tm* out) {
5581 #if defined(_MSC_VER)
5582 return localtime_s(out, &seconds) == 0;
5583 #elif defined(__MINGW32__) || defined(__MINGW64__)
5584 // MINGW <time.h> provides neither localtime_r nor localtime_s, but uses
5585 // Windows' localtime(), which has a thread-local tm buffer.
5586 struct tm* tm_ptr = localtime(&seconds); // NOLINT
5587 if (tm_ptr == nullptr) return false;
5588 *out = *tm_ptr;
5589 return true;
5590 #elif defined(__STDC_LIB_EXT1__)
5591 // Uses localtime_s when available as localtime_r is only available from
5592 // C23 standard.
5593 return localtime_s(&seconds, out) != nullptr;
5594 #else
5595 return localtime_r(&seconds, out) != nullptr;
5596 #endif
5597 }
5598
5599 // Converts the given epoch time in milliseconds to a date string in the ISO
5600 // 8601 format, without the timezone information.
5601 std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) {
5602 struct tm time_struct;
5603 if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct))
5604 return "";
5605 // YYYY-MM-DDThh:mm:ss.sss
5606 return StreamableToString(time_struct.tm_year + 1900) + "-" +
5607 String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" +
5608 String::FormatIntWidth2(time_struct.tm_mday) + "T" +
5609 String::FormatIntWidth2(time_struct.tm_hour) + ":" +
5610 String::FormatIntWidth2(time_struct.tm_min) + ":" +
5611 String::FormatIntWidth2(time_struct.tm_sec) + "." +
5612 String::FormatIntWidthN(static_cast<int>(ms % 1000), 3);
5613 }
5614
5615 // Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
5616 void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream,
5617 const char* data) {
5618 const char* segment = data;
5619 *stream << "<![CDATA[";
5620 for (;;) {
5621 const char* const next_segment = strstr(segment, "]]>");
5622 if (next_segment != nullptr) {
5623 stream->write(
5624 segment, static_cast<std::streamsize>(next_segment - segment));
5625 *stream << "]]>]]&gt;<![CDATA[";
5626 segment = next_segment + strlen("]]>");
5627 } else {
5628 *stream << segment;
5629 break;
5630 }
5631 }
5632 *stream << "]]>";
5633 }
5634
5635 void XmlUnitTestResultPrinter::OutputXmlAttribute(
5636 std::ostream* stream,
5637 const std::string& element_name,
5638 const std::string& name,
5639 const std::string& value) {
5640 const std::vector<std::string>& allowed_names =
5641 GetReservedOutputAttributesForElement(element_name);
5642
5643 GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
5644 allowed_names.end())
5645 << "Attribute " << name << " is not allowed for element <" << element_name
5646 << ">.";
5647
5648 *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\"";
5649 }
5650
5651 // Streams a test suite XML stanza containing the given test result.
5652 void XmlUnitTestResultPrinter::OutputXmlTestSuiteForTestResult(
5653 ::std::ostream* stream, const TestResult& result) {
5654 // Output the boilerplate for a minimal test suite with one test.
5655 *stream << " <testsuite";
5656 OutputXmlAttribute(stream, "testsuite", "name", "NonTestSuiteFailure");
5657 OutputXmlAttribute(stream, "testsuite", "tests", "1");
5658 OutputXmlAttribute(stream, "testsuite", "failures", "1");
5659 OutputXmlAttribute(stream, "testsuite", "disabled", "0");
5660 OutputXmlAttribute(stream, "testsuite", "skipped", "0");
5661 OutputXmlAttribute(stream, "testsuite", "errors", "0");
5662 OutputXmlAttribute(stream, "testsuite", "time",
5663 FormatTimeInMillisAsSeconds(result.elapsed_time()));
5664 OutputXmlAttribute(
5665 stream, "testsuite", "timestamp",
5666 FormatEpochTimeInMillisAsIso8601(result.start_timestamp()));
5667 *stream << ">";
5668
5669 // Output the boilerplate for a minimal test case with a single test.
5670 *stream << " <testcase";
5671 OutputXmlAttribute(stream, "testcase", "name", "");
5672 OutputXmlAttribute(stream, "testcase", "status", "run");
5673 OutputXmlAttribute(stream, "testcase", "result", "completed");
5674 OutputXmlAttribute(stream, "testcase", "classname", "");
5675 OutputXmlAttribute(stream, "testcase", "time",
5676 FormatTimeInMillisAsSeconds(result.elapsed_time()));
5677 OutputXmlAttribute(
5678 stream, "testcase", "timestamp",
5679 FormatEpochTimeInMillisAsIso8601(result.start_timestamp()));
5680
5681 // Output the actual test result.
5682 OutputXmlTestResult(stream, result);
5683
5684 // Complete the test suite.
5685 *stream << " </testsuite>\n";
5686 }
5687
5688 // Prints an XML representation of a TestInfo object.
5689 void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream,
5690 const char* test_suite_name,
5691 const TestInfo& test_info) {
5692 const TestResult& result = *test_info.result();
5693 const std::string kTestsuite = "testcase";
5694
5695 if (test_info.is_in_another_shard()) {
5696 return;
5697 }
5698
5699 *stream << " <testcase";
5700 OutputXmlAttribute(stream, kTestsuite, "name", test_info.name());
5701
5702 if (test_info.value_param() != nullptr) {
5703 OutputXmlAttribute(stream, kTestsuite, "value_param",
5704 test_info.value_param());
5705 }
5706 if (test_info.type_param() != nullptr) {
5707 OutputXmlAttribute(stream, kTestsuite, "type_param",
5708 test_info.type_param());
5709 }
5710 if (GTEST_FLAG(list_tests)) {
5711 OutputXmlAttribute(stream, kTestsuite, "file", test_info.file());
5712 OutputXmlAttribute(stream, kTestsuite, "line",
5713 StreamableToString(test_info.line()));
5714 *stream << " />\n";
5715 return;
5716 }
5717
5718 OutputXmlAttribute(stream, kTestsuite, "status",
5719 test_info.should_run() ? "run" : "notrun");
5720 OutputXmlAttribute(stream, kTestsuite, "result",
5721 test_info.should_run()
5722 ? (result.Skipped() ? "skipped" : "completed")
5723 : "suppressed");
5724 OutputXmlAttribute(stream, kTestsuite, "time",
5725 FormatTimeInMillisAsSeconds(result.elapsed_time()));
5726 OutputXmlAttribute(
5727 stream, kTestsuite, "timestamp",
5728 FormatEpochTimeInMillisAsIso8601(result.start_timestamp()));
5729 OutputXmlAttribute(stream, kTestsuite, "classname", test_suite_name);
5730
5731 OutputXmlTestResult(stream, result);
5732 }
5733
5734 void XmlUnitTestResultPrinter::OutputXmlTestResult(::std::ostream* stream,
5735 const TestResult& result) {
5736 int failures = 0;
5737 int skips = 0;
5738 for (int i = 0; i < result.total_part_count(); ++i) {
5739 const TestPartResult& part = result.GetTestPartResult(i);
5740 if (part.failed()) {
5741 if (++failures == 1 && skips == 0) {
5742 *stream << ">\n";
5743 }
5744 const std::string location =
5745 internal::FormatCompilerIndependentFileLocation(part.file_name(),
5746 part.line_number());
5747 const std::string summary = location + "\n" + part.summary();
5748 *stream << " <failure message=\""
5749 << EscapeXmlAttribute(summary)
5750 << "\" type=\"\">";
5751 const std::string detail = location + "\n" + part.message();
5752 OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str());
5753 *stream << "</failure>\n";
5754 } else if (part.skipped()) {
5755 if (++skips == 1 && failures == 0) {
5756 *stream << ">\n";
5757 }
5758 const std::string location =
5759 internal::FormatCompilerIndependentFileLocation(part.file_name(),
5760 part.line_number());
5761 const std::string summary = location + "\n" + part.summary();
5762 *stream << " <skipped message=\""
5763 << EscapeXmlAttribute(summary.c_str()) << "\">";
5764 const std::string detail = location + "\n" + part.message();
5765 OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str());
5766 *stream << "</skipped>\n";
5767 }
5768 }
5769
5770 if (failures == 0 && skips == 0 && result.test_property_count() == 0) {
5771 *stream << " />\n";
5772 } else {
5773 if (failures == 0 && skips == 0) {
5774 *stream << ">\n";
5775 }
5776 OutputXmlTestProperties(stream, result);
5777 *stream << " </testcase>\n";
5778 }
5779 }
5780
5781 // Prints an XML representation of a TestSuite object
5782 void XmlUnitTestResultPrinter::PrintXmlTestSuite(std::ostream* stream,
5783 const TestSuite& test_suite) {
5784 const std::string kTestsuite = "testsuite";
5785 *stream << " <" << kTestsuite;
5786 OutputXmlAttribute(stream, kTestsuite, "name", test_suite.name());
5787 OutputXmlAttribute(stream, kTestsuite, "tests",
5788 StreamableToString(test_suite.reportable_test_count()));
5789 if (!GTEST_FLAG(list_tests)) {
5790 OutputXmlAttribute(stream, kTestsuite, "failures",
5791 StreamableToString(test_suite.failed_test_count()));
5792 OutputXmlAttribute(
5793 stream, kTestsuite, "disabled",
5794 StreamableToString(test_suite.reportable_disabled_test_count()));
5795 OutputXmlAttribute(stream, kTestsuite, "skipped",
5796 StreamableToString(test_suite.skipped_test_count()));
5797
5798 OutputXmlAttribute(stream, kTestsuite, "errors", "0");
5799
5800 OutputXmlAttribute(stream, kTestsuite, "time",
5801 FormatTimeInMillisAsSeconds(test_suite.elapsed_time()));
5802 OutputXmlAttribute(
5803 stream, kTestsuite, "timestamp",
5804 FormatEpochTimeInMillisAsIso8601(test_suite.start_timestamp()));
5805 *stream << TestPropertiesAsXmlAttributes(test_suite.ad_hoc_test_result());
5806 }
5807 *stream << ">\n";
5808 for (int i = 0; i < test_suite.total_test_count(); ++i) {
5809 if (test_suite.GetTestInfo(i)->is_reportable())
5810 OutputXmlTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i));
5811 }
5812 *stream << " </" << kTestsuite << ">\n";
5813 }
5814
5815 // Prints an XML summary of unit_test to output stream out.
5816 void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream,
5817 const UnitTest& unit_test) {
5818 const std::string kTestsuites = "testsuites";
5819
5820 *stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
5821 *stream << "<" << kTestsuites;
5822
5823 OutputXmlAttribute(stream, kTestsuites, "tests",
5824 StreamableToString(unit_test.reportable_test_count()));
5825 OutputXmlAttribute(stream, kTestsuites, "failures",
5826 StreamableToString(unit_test.failed_test_count()));
5827 OutputXmlAttribute(
5828 stream, kTestsuites, "disabled",
5829 StreamableToString(unit_test.reportable_disabled_test_count()));
5830 OutputXmlAttribute(stream, kTestsuites, "errors", "0");
5831 OutputXmlAttribute(stream, kTestsuites, "time",
5832 FormatTimeInMillisAsSeconds(unit_test.elapsed_time()));
5833 OutputXmlAttribute(
5834 stream, kTestsuites, "timestamp",
5835 FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp()));
5836
5837 if (GTEST_FLAG(shuffle)) {
5838 OutputXmlAttribute(stream, kTestsuites, "random_seed",
5839 StreamableToString(unit_test.random_seed()));
5840 }
5841 *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result());
5842
5843 OutputXmlAttribute(stream, kTestsuites, "name", "AllTests");
5844 *stream << ">\n";
5845
5846 for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
5847 if (unit_test.GetTestSuite(i)->reportable_test_count() > 0)
5848 PrintXmlTestSuite(stream, *unit_test.GetTestSuite(i));
5849 }
5850
5851 // If there was a test failure outside of one of the test suites (like in a
5852 // test environment) include that in the output.
5853 if (unit_test.ad_hoc_test_result().Failed()) {
5854 OutputXmlTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result());
5855 }
5856
5857 *stream << "</" << kTestsuites << ">\n";
5858 }
5859
5860 void XmlUnitTestResultPrinter::PrintXmlTestsList(
5861 std::ostream* stream, const std::vector<TestSuite*>& test_suites) {
5862 const std::string kTestsuites = "testsuites";
5863
5864 *stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";
5865 *stream << "<" << kTestsuites;
5866
5867 int total_tests = 0;
5868 for (auto test_suite : test_suites) {
5869 total_tests += test_suite->total_test_count();
5870 }
5871 OutputXmlAttribute(stream, kTestsuites, "tests",
5872 StreamableToString(total_tests));
5873 OutputXmlAttribute(stream, kTestsuites, "name", "AllTests");
5874 *stream << ">\n";
5875
5876 for (auto test_suite : test_suites) {
5877 PrintXmlTestSuite(stream, *test_suite);
5878 }
5879 *stream << "</" << kTestsuites << ">\n";
5880 }
5881
5882 // Produces a string representing the test properties in a result as space
5883 // delimited XML attributes based on the property key="value" pairs.
5884 std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes(
5885 const TestResult& result) {
5886 Message attributes;
5887 for (int i = 0; i < result.test_property_count(); ++i) {
5888 const TestProperty& property = result.GetTestProperty(i);
5889 attributes << " " << property.key() << "="
5890 << "\"" << EscapeXmlAttribute(property.value()) << "\"";
5891 }
5892 return attributes.GetString();
5893 }
5894
5895 void XmlUnitTestResultPrinter::OutputXmlTestProperties(
5896 std::ostream* stream, const TestResult& result) {
5897 const std::string kProperties = "properties";
5898 const std::string kProperty = "property";
5899
5900 if (result.test_property_count() <= 0) {
5901 return;
5902 }
5903
5904 *stream << "<" << kProperties << ">\n";
5905 for (int i = 0; i < result.test_property_count(); ++i) {
5906 const TestProperty& property = result.GetTestProperty(i);
5907 *stream << "<" << kProperty;
5908 *stream << " name=\"" << EscapeXmlAttribute(property.key()) << "\"";
5909 *stream << " value=\"" << EscapeXmlAttribute(property.value()) << "\"";
5910 *stream << "/>\n";
5911 }
5912 *stream << "</" << kProperties << ">\n";
5913 }
5914
5915 // End XmlUnitTestResultPrinter
5916
5917 // This class generates an JSON output file.
5918 class JsonUnitTestResultPrinter : public EmptyTestEventListener {
5919 public:
5920 explicit JsonUnitTestResultPrinter(const char* output_file);
5921
5922 void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override;
5923
5924 // Prints an JSON summary of all unit tests.
5925 static void PrintJsonTestList(::std::ostream* stream,
5926 const std::vector<TestSuite*>& test_suites);
5927
5928 private:
5929 // Returns an JSON-escaped copy of the input string str.
5930 static std::string EscapeJson(const std::string& str);
5931
5932 //// Verifies that the given attribute belongs to the given element and
5933 //// streams the attribute as JSON.
5934 static void OutputJsonKey(std::ostream* stream,
5935 const std::string& element_name,
5936 const std::string& name,
5937 const std::string& value,
5938 const std::string& indent,
5939 bool comma = true);
5940 static void OutputJsonKey(std::ostream* stream,
5941 const std::string& element_name,
5942 const std::string& name,
5943 int value,
5944 const std::string& indent,
5945 bool comma = true);
5946
5947 // Streams a test suite JSON stanza containing the given test result.
5948 //
5949 // Requires: result.Failed()
5950 static void OutputJsonTestSuiteForTestResult(::std::ostream* stream,
5951 const TestResult& result);
5952
5953 // Streams a JSON representation of a TestResult object.
5954 static void OutputJsonTestResult(::std::ostream* stream,
5955 const TestResult& result);
5956
5957 // Streams a JSON representation of a TestInfo object.
5958 static void OutputJsonTestInfo(::std::ostream* stream,
5959 const char* test_suite_name,
5960 const TestInfo& test_info);
5961
5962 // Prints a JSON representation of a TestSuite object
5963 static void PrintJsonTestSuite(::std::ostream* stream,
5964 const TestSuite& test_suite);
5965
5966 // Prints a JSON summary of unit_test to output stream out.
5967 static void PrintJsonUnitTest(::std::ostream* stream,
5968 const UnitTest& unit_test);
5969
5970 // Produces a string representing the test properties in a result as
5971 // a JSON dictionary.
5972 static std::string TestPropertiesAsJson(const TestResult& result,
5973 const std::string& indent);
5974
5975 // The output file.
5976 const std::string output_file_;
5977
5978 GTEST_DISALLOW_COPY_AND_ASSIGN_(JsonUnitTestResultPrinter);
5979 };
5980
5981 // Creates a new JsonUnitTestResultPrinter.
5982 JsonUnitTestResultPrinter::JsonUnitTestResultPrinter(const char* output_file)
5983 : output_file_(output_file) {
5984 if (output_file_.empty()) {
5985 GTEST_LOG_(FATAL) << "JSON output file may not be null";
5986 }
5987 }
5988
5989 void JsonUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
5990 int /*iteration*/) {
5991 FILE* jsonout = OpenFileForWriting(output_file_);
5992 std::stringstream stream;
5993 PrintJsonUnitTest(&stream, unit_test);
5994 fprintf(jsonout, "%s", StringStreamToString(&stream).c_str());
5995 fclose(jsonout);
5996 }
5997
5998 // Returns an JSON-escaped copy of the input string str.
5999 std::string JsonUnitTestResultPrinter::EscapeJson(const std::string& str) {
6000 Message m;
6001
6002 for (size_t i = 0; i < str.size(); ++i) {
6003 const char ch = str[i];
6004 switch (ch) {
6005 case '\\':
6006 case '"':
6007 case '/':
6008 m << '\\' << ch;
6009 break;
6010 case '\b':
6011 m << "\\b";
6012 break;
6013 case '\t':
6014 m << "\\t";
6015 break;
6016 case '\n':
6017 m << "\\n";
6018 break;
6019 case '\f':
6020 m << "\\f";
6021 break;
6022 case '\r':
6023 m << "\\r";
6024 break;
6025 default:
6026 if (ch < ' ') {
6027 m << "\\u00" << String::FormatByte(static_cast<unsigned char>(ch));
6028 } else {
6029 m << ch;
6030 }
6031 break;
6032 }
6033 }
6034
6035 return m.GetString();
6036 }
6037
6038 // The following routines generate an JSON representation of a UnitTest
6039 // object.
6040
6041 // Formats the given time in milliseconds as seconds.
6042 static std::string FormatTimeInMillisAsDuration(TimeInMillis ms) {
6043 ::std::stringstream ss;
6044 ss << (static_cast<double>(ms) * 1e-3) << "s";
6045 return ss.str();
6046 }
6047
6048 // Converts the given epoch time in milliseconds to a date string in the
6049 // RFC3339 format, without the timezone information.
6050 static std::string FormatEpochTimeInMillisAsRFC3339(TimeInMillis ms) {
6051 struct tm time_struct;
6052 if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct))
6053 return "";
6054 // YYYY-MM-DDThh:mm:ss
6055 return StreamableToString(time_struct.tm_year + 1900) + "-" +
6056 String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" +
6057 String::FormatIntWidth2(time_struct.tm_mday) + "T" +
6058 String::FormatIntWidth2(time_struct.tm_hour) + ":" +
6059 String::FormatIntWidth2(time_struct.tm_min) + ":" +
6060 String::FormatIntWidth2(time_struct.tm_sec) + "Z";
6061 }
6062
6063 static inline std::string Indent(size_t width) {
6064 return std::string(width, ' ');
6065 }
6066
6067 void JsonUnitTestResultPrinter::OutputJsonKey(
6068 std::ostream* stream,
6069 const std::string& element_name,
6070 const std::string& name,
6071 const std::string& value,
6072 const std::string& indent,
6073 bool comma) {
6074 const std::vector<std::string>& allowed_names =
6075 GetReservedOutputAttributesForElement(element_name);
6076
6077 GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
6078 allowed_names.end())
6079 << "Key \"" << name << "\" is not allowed for value \"" << element_name
6080 << "\".";
6081
6082 *stream << indent << "\"" << name << "\": \"" << EscapeJson(value) << "\"";
6083 if (comma)
6084 *stream << ",\n";
6085 }
6086
6087 void JsonUnitTestResultPrinter::OutputJsonKey(
6088 std::ostream* stream,
6089 const std::string& element_name,
6090 const std::string& name,
6091 int value,
6092 const std::string& indent,
6093 bool comma) {
6094 const std::vector<std::string>& allowed_names =
6095 GetReservedOutputAttributesForElement(element_name);
6096
6097 GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) !=
6098 allowed_names.end())
6099 << "Key \"" << name << "\" is not allowed for value \"" << element_name
6100 << "\".";
6101
6102 *stream << indent << "\"" << name << "\": " << StreamableToString(value);
6103 if (comma)
6104 *stream << ",\n";
6105 }
6106
6107 // Streams a test suite JSON stanza containing the given test result.
6108 void JsonUnitTestResultPrinter::OutputJsonTestSuiteForTestResult(
6109 ::std::ostream* stream, const TestResult& result) {
6110 // Output the boilerplate for a new test suite.
6111 *stream << Indent(4) << "{\n";
6112 OutputJsonKey(stream, "testsuite", "name", "NonTestSuiteFailure", Indent(6));
6113 OutputJsonKey(stream, "testsuite", "tests", 1, Indent(6));
6114 if (!GTEST_FLAG(list_tests)) {
6115 OutputJsonKey(stream, "testsuite", "failures", 1, Indent(6));
6116 OutputJsonKey(stream, "testsuite", "disabled", 0, Indent(6));
6117 OutputJsonKey(stream, "testsuite", "skipped", 0, Indent(6));
6118 OutputJsonKey(stream, "testsuite", "errors", 0, Indent(6));
6119 OutputJsonKey(stream, "testsuite", "time",
6120 FormatTimeInMillisAsDuration(result.elapsed_time()),
6121 Indent(6));
6122 OutputJsonKey(stream, "testsuite", "timestamp",
6123 FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()),
6124 Indent(6));
6125 }
6126 *stream << Indent(6) << "\"testsuite\": [\n";
6127
6128 // Output the boilerplate for a new test case.
6129 *stream << Indent(8) << "{\n";
6130 OutputJsonKey(stream, "testcase", "name", "", Indent(10));
6131 OutputJsonKey(stream, "testcase", "status", "RUN", Indent(10));
6132 OutputJsonKey(stream, "testcase", "result", "COMPLETED", Indent(10));
6133 OutputJsonKey(stream, "testcase", "timestamp",
6134 FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()),
6135 Indent(10));
6136 OutputJsonKey(stream, "testcase", "time",
6137 FormatTimeInMillisAsDuration(result.elapsed_time()),
6138 Indent(10));
6139 OutputJsonKey(stream, "testcase", "classname", "", Indent(10), false);
6140 *stream << TestPropertiesAsJson(result, Indent(10));
6141
6142 // Output the actual test result.
6143 OutputJsonTestResult(stream, result);
6144
6145 // Finish the test suite.
6146 *stream << "\n" << Indent(6) << "]\n" << Indent(4) << "}";
6147 }
6148
6149 // Prints a JSON representation of a TestInfo object.
6150 void JsonUnitTestResultPrinter::OutputJsonTestInfo(::std::ostream* stream,
6151 const char* test_suite_name,
6152 const TestInfo& test_info) {
6153 const TestResult& result = *test_info.result();
6154 const std::string kTestsuite = "testcase";
6155 const std::string kIndent = Indent(10);
6156
6157 *stream << Indent(8) << "{\n";
6158 OutputJsonKey(stream, kTestsuite, "name", test_info.name(), kIndent);
6159
6160 if (test_info.value_param() != nullptr) {
6161 OutputJsonKey(stream, kTestsuite, "value_param", test_info.value_param(),
6162 kIndent);
6163 }
6164 if (test_info.type_param() != nullptr) {
6165 OutputJsonKey(stream, kTestsuite, "type_param", test_info.type_param(),
6166 kIndent);
6167 }
6168 if (GTEST_FLAG(list_tests)) {
6169 OutputJsonKey(stream, kTestsuite, "file", test_info.file(), kIndent);
6170 OutputJsonKey(stream, kTestsuite, "line", test_info.line(), kIndent, false);
6171 *stream << "\n" << Indent(8) << "}";
6172 return;
6173 }
6174
6175 OutputJsonKey(stream, kTestsuite, "status",
6176 test_info.should_run() ? "RUN" : "NOTRUN", kIndent);
6177 OutputJsonKey(stream, kTestsuite, "result",
6178 test_info.should_run()
6179 ? (result.Skipped() ? "SKIPPED" : "COMPLETED")
6180 : "SUPPRESSED",
6181 kIndent);
6182 OutputJsonKey(stream, kTestsuite, "timestamp",
6183 FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()),
6184 kIndent);
6185 OutputJsonKey(stream, kTestsuite, "time",
6186 FormatTimeInMillisAsDuration(result.elapsed_time()), kIndent);
6187 OutputJsonKey(stream, kTestsuite, "classname", test_suite_name, kIndent,
6188 false);
6189 *stream << TestPropertiesAsJson(result, kIndent);
6190
6191 OutputJsonTestResult(stream, result);
6192 }
6193
6194 void JsonUnitTestResultPrinter::OutputJsonTestResult(::std::ostream* stream,
6195 const TestResult& result) {
6196 const std::string kIndent = Indent(10);
6197
6198 int failures = 0;
6199 for (int i = 0; i < result.total_part_count(); ++i) {
6200 const TestPartResult& part = result.GetTestPartResult(i);
6201 if (part.failed()) {
6202 *stream << ",\n";
6203 if (++failures == 1) {
6204 *stream << kIndent << "\"" << "failures" << "\": [\n";
6205 }
6206 const std::string location =
6207 internal::FormatCompilerIndependentFileLocation(part.file_name(),
6208 part.line_number());
6209 const std::string message = EscapeJson(location + "\n" + part.message());
6210 *stream << kIndent << " {\n"
6211 << kIndent << " \"failure\": \"" << message << "\",\n"
6212 << kIndent << " \"type\": \"\"\n"
6213 << kIndent << " }";
6214 }
6215 }
6216
6217 if (failures > 0)
6218 *stream << "\n" << kIndent << "]";
6219 *stream << "\n" << Indent(8) << "}";
6220 }
6221
6222 // Prints an JSON representation of a TestSuite object
6223 void JsonUnitTestResultPrinter::PrintJsonTestSuite(
6224 std::ostream* stream, const TestSuite& test_suite) {
6225 const std::string kTestsuite = "testsuite";
6226 const std::string kIndent = Indent(6);
6227
6228 *stream << Indent(4) << "{\n";
6229 OutputJsonKey(stream, kTestsuite, "name", test_suite.name(), kIndent);
6230 OutputJsonKey(stream, kTestsuite, "tests", test_suite.reportable_test_count(),
6231 kIndent);
6232 if (!GTEST_FLAG(list_tests)) {
6233 OutputJsonKey(stream, kTestsuite, "failures",
6234 test_suite.failed_test_count(), kIndent);
6235 OutputJsonKey(stream, kTestsuite, "disabled",
6236 test_suite.reportable_disabled_test_count(), kIndent);
6237 OutputJsonKey(stream, kTestsuite, "errors", 0, kIndent);
6238 OutputJsonKey(
6239 stream, kTestsuite, "timestamp",
6240 FormatEpochTimeInMillisAsRFC3339(test_suite.start_timestamp()),
6241 kIndent);
6242 OutputJsonKey(stream, kTestsuite, "time",
6243 FormatTimeInMillisAsDuration(test_suite.elapsed_time()),
6244 kIndent, false);
6245 *stream << TestPropertiesAsJson(test_suite.ad_hoc_test_result(), kIndent)
6246 << ",\n";
6247 }
6248
6249 *stream << kIndent << "\"" << kTestsuite << "\": [\n";
6250
6251 bool comma = false;
6252 for (int i = 0; i < test_suite.total_test_count(); ++i) {
6253 if (test_suite.GetTestInfo(i)->is_reportable()) {
6254 if (comma) {
6255 *stream << ",\n";
6256 } else {
6257 comma = true;
6258 }
6259 OutputJsonTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i));
6260 }
6261 }
6262 *stream << "\n" << kIndent << "]\n" << Indent(4) << "}";
6263 }
6264
6265 // Prints a JSON summary of unit_test to output stream out.
6266 void JsonUnitTestResultPrinter::PrintJsonUnitTest(std::ostream* stream,
6267 const UnitTest& unit_test) {
6268 const std::string kTestsuites = "testsuites";
6269 const std::string kIndent = Indent(2);
6270 *stream << "{\n";
6271
6272 OutputJsonKey(stream, kTestsuites, "tests", unit_test.reportable_test_count(),
6273 kIndent);
6274 OutputJsonKey(stream, kTestsuites, "failures", unit_test.failed_test_count(),
6275 kIndent);
6276 OutputJsonKey(stream, kTestsuites, "disabled",
6277 unit_test.reportable_disabled_test_count(), kIndent);
6278 OutputJsonKey(stream, kTestsuites, "errors", 0, kIndent);
6279 if (GTEST_FLAG(shuffle)) {
6280 OutputJsonKey(stream, kTestsuites, "random_seed", unit_test.random_seed(),
6281 kIndent);
6282 }
6283 OutputJsonKey(stream, kTestsuites, "timestamp",
6284 FormatEpochTimeInMillisAsRFC3339(unit_test.start_timestamp()),
6285 kIndent);
6286 OutputJsonKey(stream, kTestsuites, "time",
6287 FormatTimeInMillisAsDuration(unit_test.elapsed_time()), kIndent,
6288 false);
6289
6290 *stream << TestPropertiesAsJson(unit_test.ad_hoc_test_result(), kIndent)
6291 << ",\n";
6292
6293 OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent);
6294 *stream << kIndent << "\"" << kTestsuites << "\": [\n";
6295
6296 bool comma = false;
6297 for (int i = 0; i < unit_test.total_test_suite_count(); ++i) {
6298 if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) {
6299 if (comma) {
6300 *stream << ",\n";
6301 } else {
6302 comma = true;
6303 }
6304 PrintJsonTestSuite(stream, *unit_test.GetTestSuite(i));
6305 }
6306 }
6307
6308 // If there was a test failure outside of one of the test suites (like in a
6309 // test environment) include that in the output.
6310 if (unit_test.ad_hoc_test_result().Failed()) {
6311 OutputJsonTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result());
6312 }
6313
6314 *stream << "\n" << kIndent << "]\n" << "}\n";
6315 }
6316
6317 void JsonUnitTestResultPrinter::PrintJsonTestList(
6318 std::ostream* stream, const std::vector<TestSuite*>& test_suites) {
6319 const std::string kTestsuites = "testsuites";
6320 const std::string kIndent = Indent(2);
6321 *stream << "{\n";
6322 int total_tests = 0;
6323 for (auto test_suite : test_suites) {
6324 total_tests += test_suite->total_test_count();
6325 }
6326 OutputJsonKey(stream, kTestsuites, "tests", total_tests, kIndent);
6327
6328 OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent);
6329 *stream << kIndent << "\"" << kTestsuites << "\": [\n";
6330
6331 for (size_t i = 0; i < test_suites.size(); ++i) {
6332 if (i != 0) {
6333 *stream << ",\n";
6334 }
6335 PrintJsonTestSuite(stream, *test_suites[i]);
6336 }
6337
6338 *stream << "\n"
6339 << kIndent << "]\n"
6340 << "}\n";
6341 }
6342 // Produces a string representing the test properties in a result as
6343 // a JSON dictionary.
6344 std::string JsonUnitTestResultPrinter::TestPropertiesAsJson(
6345 const TestResult& result, const std::string& indent) {
6346 Message attributes;
6347 for (int i = 0; i < result.test_property_count(); ++i) {
6348 const TestProperty& property = result.GetTestProperty(i);
6349 attributes << ",\n" << indent << "\"" << property.key() << "\": "
6350 << "\"" << EscapeJson(property.value()) << "\"";
6351 }
6352 return attributes.GetString();
6353 }
6354
6355 // End JsonUnitTestResultPrinter
6356
6357 #if GTEST_CAN_STREAM_RESULTS_
6358
6359 // Checks if str contains '=', '&', '%' or '\n' characters. If yes,
6360 // replaces them by "%xx" where xx is their hexadecimal value. For
6361 // example, replaces "=" with "%3D". This algorithm is O(strlen(str))
6362 // in both time and space -- important as the input str may contain an
6363 // arbitrarily long test failure message and stack trace.
6364 std::string StreamingListener::UrlEncode(const char* str) {
6365 std::string result;
6366 result.reserve(strlen(str) + 1);
6367 for (char ch = *str; ch != '\0'; ch = *++str) {
6368 switch (ch) {
6369 case '%':
6370 case '=':
6371 case '&':
6372 case '\n':
6373 result.append("%" + String::FormatByte(static_cast<unsigned char>(ch)));
6374 break;
6375 default:
6376 result.push_back(ch);
6377 break;
6378 }
6379 }
6380 return result;
6381 }
6382
6383 void StreamingListener::SocketWriter::MakeConnection() {
6384 GTEST_CHECK_(sockfd_ == -1)
6385 << "MakeConnection() can't be called when there is already a connection.";
6386
6387 addrinfo hints;
6388 memset(&hints, 0, sizeof(hints));
6389 hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses.
6390 hints.ai_socktype = SOCK_STREAM;
6391 addrinfo* servinfo = nullptr;
6392
6393 // Use the getaddrinfo() to get a linked list of IP addresses for
6394 // the given host name.
6395 const int error_num = getaddrinfo(
6396 host_name_.c_str(), port_num_.c_str(), &hints, &servinfo);
6397 if (error_num != 0) {
6398 GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: "
6399 << gai_strerror(error_num);
6400 }
6401
6402 // Loop through all the results and connect to the first we can.
6403 for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != nullptr;
6404 cur_addr = cur_addr->ai_next) {
6405 sockfd_ = socket(
6406 cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol);
6407 if (sockfd_ != -1) {
6408 // Connect the client socket to the server socket.
6409 if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) {
6410 close(sockfd_);
6411 sockfd_ = -1;
6412 }
6413 }
6414 }
6415
6416 freeaddrinfo(servinfo); // all done with this structure
6417
6418 if (sockfd_ == -1) {
6419 GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to "
6420 << host_name_ << ":" << port_num_;
6421 }
6422 }
6423
6424 // End of class Streaming Listener
6425 #endif // GTEST_CAN_STREAM_RESULTS__
6426
6427 // class OsStackTraceGetter
6428
6429 const char* const OsStackTraceGetterInterface::kElidedFramesMarker =
6430 "... " GTEST_NAME_ " internal frames ...";
6431
6432 std::string OsStackTraceGetter::CurrentStackTrace(int max_depth, int skip_count)
6433 GTEST_LOCK_EXCLUDED_(mutex_) {
6434 #if GTEST_HAS_ABSL
6435 std::string result;
6436
6437 if (max_depth <= 0) {
6438 return result;
6439 }
6440
6441 max_depth = std::min(max_depth, kMaxStackTraceDepth);
6442
6443 std::vector<void*> raw_stack(max_depth);
6444 // Skips the frames requested by the caller, plus this function.
6445 const int raw_stack_size =
6446 absl::GetStackTrace(&raw_stack[0], max_depth, skip_count + 1);
6447
6448 void* caller_frame = nullptr;
6449 {
6450 MutexLock lock(&mutex_);
6451 caller_frame = caller_frame_;
6452 }
6453
6454 for (int i = 0; i < raw_stack_size; ++i) {
6455 if (raw_stack[i] == caller_frame &&
6456 !GTEST_FLAG(show_internal_stack_frames)) {
6457 // Add a marker to the trace and stop adding frames.
6458 absl::StrAppend(&result, kElidedFramesMarker, "\n");
6459 break;
6460 }
6461
6462 char tmp[1024];
6463 const char* symbol = "(unknown)";
6464 if (absl::Symbolize(raw_stack[i], tmp, sizeof(tmp))) {
6465 symbol = tmp;
6466 }
6467
6468 char line[1024];
6469 snprintf(line, sizeof(line), " %p: %s\n", raw_stack[i], symbol);
6470 result += line;
6471 }
6472
6473 return result;
6474
6475 #else // !GTEST_HAS_ABSL
6476 static_cast<void>(max_depth);
6477 static_cast<void>(skip_count);
6478 return "";
6479 #endif // GTEST_HAS_ABSL
6480 }
6481
6482 void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) {
6483 #if GTEST_HAS_ABSL
6484 void* caller_frame = nullptr;
6485 if (absl::GetStackTrace(&caller_frame, 1, 3) <= 0) {
6486 caller_frame = nullptr;
6487 }
6488
6489 MutexLock lock(&mutex_);
6490 caller_frame_ = caller_frame;
6491 #endif // GTEST_HAS_ABSL
6492 }
6493
6494 // A helper class that creates the premature-exit file in its
6495 // constructor and deletes the file in its destructor.
6496 class ScopedPrematureExitFile {
6497 public:
6498 explicit ScopedPrematureExitFile(const char* premature_exit_filepath)
6499 : premature_exit_filepath_(premature_exit_filepath ?
6500 premature_exit_filepath : "") {
6501 // If a path to the premature-exit file is specified...
6502 if (!premature_exit_filepath_.empty()) {
6503 // create the file with a single "0" character in it. I/O
6504 // errors are ignored as there's nothing better we can do and we
6505 // don't want to fail the test because of this.
6506 FILE* pfile = posix::FOpen(premature_exit_filepath, "w");
6507 fwrite("0", 1, 1, pfile);
6508 fclose(pfile);
6509 }
6510 }
6511
6512 ~ScopedPrematureExitFile() {
6513 #if !defined GTEST_OS_ESP8266
6514 if (!premature_exit_filepath_.empty()) {
6515 int retval = remove(premature_exit_filepath_.c_str());
6516 if (retval) {
6517 GTEST_LOG_(ERROR) << "Failed to remove premature exit filepath \""
6518 << premature_exit_filepath_ << "\" with error "
6519 << retval;
6520 }
6521 }
6522 #endif
6523 }
6524
6525 private:
6526 const std::string premature_exit_filepath_;
6527
6528 GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile);
6529 };
6530
6531 } // namespace internal
6532
6533 // class TestEventListeners
6534
6535 TestEventListeners::TestEventListeners()
6536 : repeater_(new internal::TestEventRepeater()),
6537 default_result_printer_(nullptr),
6538 default_xml_generator_(nullptr) {}
6539
6540 TestEventListeners::~TestEventListeners() { delete repeater_; }
6541
6542 // Returns the standard listener responsible for the default console
6543 // output. Can be removed from the listeners list to shut down default
6544 // console output. Note that removing this object from the listener list
6545 // with Release transfers its ownership to the user.
6546 void TestEventListeners::Append(TestEventListener* listener) {
6547 repeater_->Append(listener);
6548 }
6549
6550 // Removes the given event listener from the list and returns it. It then
6551 // becomes the caller's responsibility to delete the listener. Returns
6552 // NULL if the listener is not found in the list.
6553 TestEventListener* TestEventListeners::Release(TestEventListener* listener) {
6554 if (listener == default_result_printer_)
6555 default_result_printer_ = nullptr;
6556 else if (listener == default_xml_generator_)
6557 default_xml_generator_ = nullptr;
6558 return repeater_->Release(listener);
6559 }
6560
6561 // Returns repeater that broadcasts the TestEventListener events to all
6562 // subscribers.
6563 TestEventListener* TestEventListeners::repeater() { return repeater_; }
6564
6565 // Sets the default_result_printer attribute to the provided listener.
6566 // The listener is also added to the listener list and previous
6567 // default_result_printer is removed from it and deleted. The listener can
6568 // also be NULL in which case it will not be added to the list. Does
6569 // nothing if the previous and the current listener objects are the same.
6570 void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) {
6571 if (default_result_printer_ != listener) {
6572 // It is an error to pass this method a listener that is already in the
6573 // list.
6574 delete Release(default_result_printer_);
6575 default_result_printer_ = listener;
6576 if (listener != nullptr) Append(listener);
6577 }
6578 }
6579
6580 // Sets the default_xml_generator attribute to the provided listener. The
6581 // listener is also added to the listener list and previous
6582 // default_xml_generator is removed from it and deleted. The listener can
6583 // also be NULL in which case it will not be added to the list. Does
6584 // nothing if the previous and the current listener objects are the same.
6585 void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) {
6586 if (default_xml_generator_ != listener) {
6587 // It is an error to pass this method a listener that is already in the
6588 // list.
6589 delete Release(default_xml_generator_);
6590 default_xml_generator_ = listener;
6591 if (listener != nullptr) Append(listener);
6592 }
6593 }
6594
6595 // Controls whether events will be forwarded by the repeater to the
6596 // listeners in the list.
6597 bool TestEventListeners::EventForwardingEnabled() const {
6598 return repeater_->forwarding_enabled();
6599 }
6600
6601 void TestEventListeners::SuppressEventForwarding() {
6602 repeater_->set_forwarding_enabled(false);
6603 }
6604
6605 // class UnitTest
6606
6607 // Gets the singleton UnitTest object. The first time this method is
6608 // called, a UnitTest object is constructed and returned. Consecutive
6609 // calls will return the same object.
6610 //
6611 // We don't protect this under mutex_ as a user is not supposed to
6612 // call this before main() starts, from which point on the return
6613 // value will never change.
6614 UnitTest* UnitTest::GetInstance() {
6615 // CodeGear C++Builder insists on a public destructor for the
6616 // default implementation. Use this implementation to keep good OO
6617 // design with private destructor.
6618
6619 #if defined(__BORLANDC__)
6620 static UnitTest* const instance = new UnitTest;
6621 return instance;
6622 #else
6623 static UnitTest instance;
6624 return &instance;
6625 #endif // defined(__BORLANDC__)
6626 }
6627
6628 // Gets the number of successful test suites.
6629 int UnitTest::successful_test_suite_count() const {
6630 return impl()->successful_test_suite_count();
6631 }
6632
6633 // Gets the number of failed test suites.
6634 int UnitTest::failed_test_suite_count() const {
6635 return impl()->failed_test_suite_count();
6636 }
6637
6638 // Gets the number of all test suites.
6639 int UnitTest::total_test_suite_count() const {
6640 return impl()->total_test_suite_count();
6641 }
6642
6643 // Gets the number of all test suites that contain at least one test
6644 // that should run.
6645 int UnitTest::test_suite_to_run_count() const {
6646 return impl()->test_suite_to_run_count();
6647 }
6648
6649 // Legacy API is deprecated but still available
6650 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
6651 int UnitTest::successful_test_case_count() const {
6652 return impl()->successful_test_suite_count();
6653 }
6654 int UnitTest::failed_test_case_count() const {
6655 return impl()->failed_test_suite_count();
6656 }
6657 int UnitTest::total_test_case_count() const {
6658 return impl()->total_test_suite_count();
6659 }
6660 int UnitTest::test_case_to_run_count() const {
6661 return impl()->test_suite_to_run_count();
6662 }
6663 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
6664
6665 // Gets the number of successful tests.
6666 int UnitTest::successful_test_count() const {
6667 return impl()->successful_test_count();
6668 }
6669
6670 // Gets the number of skipped tests.
6671 int UnitTest::skipped_test_count() const {
6672 return impl()->skipped_test_count();
6673 }
6674
6675 // Gets the number of failed tests.
6676 int UnitTest::failed_test_count() const { return impl()->failed_test_count(); }
6677
6678 // Gets the number of disabled tests that will be reported in the XML report.
6679 int UnitTest::reportable_disabled_test_count() const {
6680 return impl()->reportable_disabled_test_count();
6681 }
6682
6683 // Gets the number of disabled tests.
6684 int UnitTest::disabled_test_count() const {
6685 return impl()->disabled_test_count();
6686 }
6687
6688 // Gets the number of tests to be printed in the XML report.
6689 int UnitTest::reportable_test_count() const {
6690 return impl()->reportable_test_count();
6691 }
6692
6693 // Gets the number of all tests.
6694 int UnitTest::total_test_count() const { return impl()->total_test_count(); }
6695
6696 // Gets the number of tests that should run.
6697 int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); }
6698
6699 // Gets the time of the test program start, in ms from the start of the
6700 // UNIX epoch.
6701 internal::TimeInMillis UnitTest::start_timestamp() const {
6702 return impl()->start_timestamp();
6703 }
6704
6705 // Gets the elapsed time, in milliseconds.
6706 internal::TimeInMillis UnitTest::elapsed_time() const {
6707 return impl()->elapsed_time();
6708 }
6709
6710 // Returns true if and only if the unit test passed (i.e. all test suites
6711 // passed).
6712 bool UnitTest::Passed() const { return impl()->Passed(); }
6713
6714 // Returns true if and only if the unit test failed (i.e. some test suite
6715 // failed or something outside of all tests failed).
6716 bool UnitTest::Failed() const { return impl()->Failed(); }
6717
6718 // Gets the i-th test suite among all the test suites. i can range from 0 to
6719 // total_test_suite_count() - 1. If i is not in that range, returns NULL.
6720 const TestSuite* UnitTest::GetTestSuite(int i) const {
6721 return impl()->GetTestSuite(i);
6722 }
6723
6724 // Legacy API is deprecated but still available
6725 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
6726 const TestCase* UnitTest::GetTestCase(int i) const {
6727 return impl()->GetTestCase(i);
6728 }
6729 #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_
6730
6731 // Returns the TestResult containing information on test failures and
6732 // properties logged outside of individual test suites.
6733 const TestResult& UnitTest::ad_hoc_test_result() const {
6734 return *impl()->ad_hoc_test_result();
6735 }
6736
6737 // Gets the i-th test suite among all the test suites. i can range from 0 to
6738 // total_test_suite_count() - 1. If i is not in that range, returns NULL.
6739 TestSuite* UnitTest::GetMutableTestSuite(int i) {
6740 return impl()->GetMutableSuiteCase(i);
6741 }
6742
6743 // Returns the list of event listeners that can be used to track events
6744 // inside Google Test.
6745 TestEventListeners& UnitTest::listeners() {
6746 return *impl()->listeners();
6747 }
6748
6749 // Registers and returns a global test environment. When a test
6750 // program is run, all global test environments will be set-up in the
6751 // order they were registered. After all tests in the program have
6752 // finished, all global test environments will be torn-down in the
6753 // *reverse* order they were registered.
6754 //
6755 // The UnitTest object takes ownership of the given environment.
6756 //
6757 // We don't protect this under mutex_, as we only support calling it
6758 // from the main thread.
6759 Environment* UnitTest::AddEnvironment(Environment* env) {
6760 if (env == nullptr) {
6761 return nullptr;
6762 }
6763
6764 impl_->environments().push_back(env);
6765 return env;
6766 }
6767
6768 // Adds a TestPartResult to the current TestResult object. All Google Test
6769 // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call
6770 // this to report their results. The user code should use the
6771 // assertion macros instead of calling this directly.
6772 void UnitTest::AddTestPartResult(
6773 TestPartResult::Type result_type,
6774 const char* file_name,
6775 int line_number,
6776 const std::string& message,
6777 const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) {
6778 Message msg;
6779 msg << message;
6780
6781 internal::MutexLock lock(&mutex_);
6782 if (impl_->gtest_trace_stack().size() > 0) {
6783 msg << "\n" << GTEST_NAME_ << " trace:";
6784
6785 for (size_t i = impl_->gtest_trace_stack().size(); i > 0; --i) {
6786 const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1];
6787 msg << "\n" << internal::FormatFileLocation(trace.file, trace.line)
6788 << " " << trace.message;
6789 }
6790 }
6791
6792 if (os_stack_trace.c_str() != nullptr && !os_stack_trace.empty()) {
6793 msg << internal::kStackTraceMarker << os_stack_trace;
6794 }
6795
6796 const TestPartResult result = TestPartResult(
6797 result_type, file_name, line_number, msg.GetString().c_str());
6798 impl_->GetTestPartResultReporterForCurrentThread()->
6799 ReportTestPartResult(result);
6800
6801 if (result_type != TestPartResult::kSuccess &&
6802 result_type != TestPartResult::kSkip) {
6803 // gtest_break_on_failure takes precedence over
6804 // gtest_throw_on_failure. This allows a user to set the latter
6805 // in the code (perhaps in order to use Google Test assertions
6806 // with another testing framework) and specify the former on the
6807 // command line for debugging.
6808 if (GTEST_FLAG(break_on_failure)) {
6809 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
6810 // Using DebugBreak on Windows allows gtest to still break into a debugger
6811 // when a failure happens and both the --gtest_break_on_failure and
6812 // the --gtest_catch_exceptions flags are specified.
6813 DebugBreak();
6814 #elif (!defined(__native_client__)) && \
6815 ((defined(__clang__) || defined(__GNUC__)) && \
6816 (defined(__x86_64__) || defined(__i386__)))
6817 // with clang/gcc we can achieve the same effect on x86 by invoking int3
6818 asm("int3");
6819 #else
6820 // Dereference nullptr through a volatile pointer to prevent the compiler
6821 // from removing. We use this rather than abort() or __builtin_trap() for
6822 // portability: some debuggers don't correctly trap abort().
6823 *static_cast<volatile int*>(nullptr) = 1;
6824 #endif // GTEST_OS_WINDOWS
6825 } else if (GTEST_FLAG(throw_on_failure)) {
6826 #if GTEST_HAS_EXCEPTIONS
6827 throw internal::GoogleTestFailureException(result);
6828 #else
6829 // We cannot call abort() as it generates a pop-up in debug mode
6830 // that cannot be suppressed in VC 7.1 or below.
6831 exit(1);
6832 #endif
6833 }
6834 }
6835 }
6836
6837 // Adds a TestProperty to the current TestResult object when invoked from
6838 // inside a test, to current TestSuite's ad_hoc_test_result_ when invoked
6839 // from SetUpTestSuite or TearDownTestSuite, or to the global property set
6840 // when invoked elsewhere. If the result already contains a property with
6841 // the same key, the value will be updated.
6842 void UnitTest::RecordProperty(const std::string& key,
6843 const std::string& value) {
6844 impl_->RecordProperty(TestProperty(key, value));
6845 }
6846
6847 // Runs all tests in this UnitTest object and prints the result.
6848 // Returns 0 if successful, or 1 otherwise.
6849 //
6850 // We don't protect this under mutex_, as we only support calling it
6851 // from the main thread.
6852 int UnitTest::Run() {
6853 const bool in_death_test_child_process =
6854 internal::GTEST_FLAG(internal_run_death_test).length() > 0;
6855
6856 // Google Test implements this protocol for catching that a test
6857 // program exits before returning control to Google Test:
6858 //
6859 // 1. Upon start, Google Test creates a file whose absolute path
6860 // is specified by the environment variable
6861 // TEST_PREMATURE_EXIT_FILE.
6862 // 2. When Google Test has finished its work, it deletes the file.
6863 //
6864 // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before
6865 // running a Google-Test-based test program and check the existence
6866 // of the file at the end of the test execution to see if it has
6867 // exited prematurely.
6868
6869 // If we are in the child process of a death test, don't
6870 // create/delete the premature exit file, as doing so is unnecessary
6871 // and will confuse the parent process. Otherwise, create/delete
6872 // the file upon entering/leaving this function. If the program
6873 // somehow exits before this function has a chance to return, the
6874 // premature-exit file will be left undeleted, causing a test runner
6875 // that understands the premature-exit-file protocol to report the
6876 // test as having failed.
6877 const internal::ScopedPrematureExitFile premature_exit_file(
6878 in_death_test_child_process
6879 ? nullptr
6880 : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE"));
6881
6882 // Captures the value of GTEST_FLAG(catch_exceptions). This value will be
6883 // used for the duration of the program.
6884 impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions));
6885
6886 #if GTEST_OS_WINDOWS
6887 // Either the user wants Google Test to catch exceptions thrown by the
6888 // tests or this is executing in the context of death test child
6889 // process. In either case the user does not want to see pop-up dialogs
6890 // about crashes - they are expected.
6891 if (impl()->catch_exceptions() || in_death_test_child_process) {
6892 # if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT
6893 // SetErrorMode doesn't exist on CE.
6894 SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT |
6895 SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX);
6896 # endif // !GTEST_OS_WINDOWS_MOBILE
6897
6898 # if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE
6899 // Death test children can be terminated with _abort(). On Windows,
6900 // _abort() can show a dialog with a warning message. This forces the
6901 // abort message to go to stderr instead.
6902 _set_error_mode(_OUT_TO_STDERR);
6903 # endif
6904
6905 # if defined(_MSC_VER) && !GTEST_OS_WINDOWS_MOBILE
6906 // In the debug version, Visual Studio pops up a separate dialog
6907 // offering a choice to debug the aborted program. We need to suppress
6908 // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement
6909 // executed. Google Test will notify the user of any unexpected
6910 // failure via stderr.
6911 if (!GTEST_FLAG(break_on_failure))
6912 _set_abort_behavior(
6913 0x0, // Clear the following flags:
6914 _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump.
6915
6916 // In debug mode, the Windows CRT can crash with an assertion over invalid
6917 // input (e.g. passing an invalid file descriptor). The default handling
6918 // for these assertions is to pop up a dialog and wait for user input.
6919 // Instead ask the CRT to dump such assertions to stderr non-interactively.
6920 if (!IsDebuggerPresent()) {
6921 (void)_CrtSetReportMode(_CRT_ASSERT,
6922 _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG);
6923 (void)_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);
6924 }
6925 # endif
6926 }
6927 #endif // GTEST_OS_WINDOWS
6928
6929 return internal::HandleExceptionsInMethodIfSupported(
6930 impl(),
6931 &internal::UnitTestImpl::RunAllTests,
6932 "auxiliary test code (environments or event listeners)") ? 0 : 1;
6933 }
6934
6935 // Returns the working directory when the first TEST() or TEST_F() was
6936 // executed.
6937 const char* UnitTest::original_working_dir() const {
6938 return impl_->original_working_dir_.c_str();
6939 }
6940
6941 // Returns the TestSuite object for the test that's currently running,
6942 // or NULL if no test is running.
6943 const TestSuite* UnitTest::current_test_suite() const
6944 GTEST_LOCK_EXCLUDED_(mutex_) {
6945 internal::MutexLock lock(&mutex_);
6946 return impl_->current_test_suite();
6947 }
6948
6949 // Legacy API is still available but deprecated
6950 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
6951 const TestCase* UnitTest::current_test_case() const
6952 GTEST_LOCK_EXCLUDED_(mutex_) {
6953 internal::MutexLock lock(&mutex_);
6954 return impl_->current_test_suite();
6955 }
6956 #endif
6957
6958 // Returns the TestInfo object for the test that's currently running,
6959 // or NULL if no test is running.
6960 const TestInfo* UnitTest::current_test_info() const
6961 GTEST_LOCK_EXCLUDED_(mutex_) {
6962 internal::MutexLock lock(&mutex_);
6963 return impl_->current_test_info();
6964 }
6965
6966 // Returns the random seed used at the start of the current test run.
6967 int UnitTest::random_seed() const { return impl_->random_seed(); }
6968
6969 // Returns ParameterizedTestSuiteRegistry object used to keep track of
6970 // value-parameterized tests and instantiate and register them.
6971 internal::ParameterizedTestSuiteRegistry&
6972 UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) {
6973 return impl_->parameterized_test_registry();
6974 }
6975
6976 // Creates an empty UnitTest.
6977 UnitTest::UnitTest() {
6978 impl_ = new internal::UnitTestImpl(this);
6979 }
6980
6981 // Destructor of UnitTest.
6982 UnitTest::~UnitTest() {
6983 delete impl_;
6984 }
6985
6986 // Pushes a trace defined by SCOPED_TRACE() on to the per-thread
6987 // Google Test trace stack.
6988 void UnitTest::PushGTestTrace(const internal::TraceInfo& trace)
6989 GTEST_LOCK_EXCLUDED_(mutex_) {
6990 internal::MutexLock lock(&mutex_);
6991 impl_->gtest_trace_stack().push_back(trace);
6992 }
6993
6994 // Pops a trace from the per-thread Google Test trace stack.
6995 void UnitTest::PopGTestTrace()
6996 GTEST_LOCK_EXCLUDED_(mutex_) {
6997 internal::MutexLock lock(&mutex_);
6998 impl_->gtest_trace_stack().pop_back();
6999 }
7000
7001 namespace internal {
7002
7003 UnitTestImpl::UnitTestImpl(UnitTest* parent)
7004 : parent_(parent),
7005 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */)
7006 default_global_test_part_result_reporter_(this),
7007 default_per_thread_test_part_result_reporter_(this),
7008 GTEST_DISABLE_MSC_WARNINGS_POP_() global_test_part_result_repoter_(
7009 &default_global_test_part_result_reporter_),
7010 per_thread_test_part_result_reporter_(
7011 &default_per_thread_test_part_result_reporter_),
7012 parameterized_test_registry_(),
7013 parameterized_tests_registered_(false),
7014 last_death_test_suite_(-1),
7015 current_test_suite_(nullptr),
7016 current_test_info_(nullptr),
7017 ad_hoc_test_result_(),
7018 os_stack_trace_getter_(nullptr),
7019 post_flag_parse_init_performed_(false),
7020 random_seed_(0), // Will be overridden by the flag before first use.
7021 random_(0), // Will be reseeded before first use.
7022 start_timestamp_(0),
7023 elapsed_time_(0),
7024 #if GTEST_HAS_DEATH_TEST
7025 death_test_factory_(new DefaultDeathTestFactory),
7026 #endif
7027 // Will be overridden by the flag before first use.
7028 catch_exceptions_(false) {
7029 listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter);
7030 }
7031
7032 UnitTestImpl::~UnitTestImpl() {
7033 // Deletes every TestSuite.
7034 ForEach(test_suites_, internal::Delete<TestSuite>);
7035
7036 // Deletes every Environment.
7037 ForEach(environments_, internal::Delete<Environment>);
7038
7039 delete os_stack_trace_getter_;
7040 }
7041
7042 // Adds a TestProperty to the current TestResult object when invoked in a
7043 // context of a test, to current test suite's ad_hoc_test_result when invoke
7044 // from SetUpTestSuite/TearDownTestSuite, or to the global property set
7045 // otherwise. If the result already contains a property with the same key,
7046 // the value will be updated.
7047 void UnitTestImpl::RecordProperty(const TestProperty& test_property) {
7048 std::string xml_element;
7049 TestResult* test_result; // TestResult appropriate for property recording.
7050
7051 if (current_test_info_ != nullptr) {
7052 xml_element = "testcase";
7053 test_result = &(current_test_info_->result_);
7054 } else if (current_test_suite_ != nullptr) {
7055 xml_element = "testsuite";
7056 test_result = &(current_test_suite_->ad_hoc_test_result_);
7057 } else {
7058 xml_element = "testsuites";
7059 test_result = &ad_hoc_test_result_;
7060 }
7061 test_result->RecordProperty(xml_element, test_property);
7062 }
7063
7064 #if GTEST_HAS_DEATH_TEST
7065 // Disables event forwarding if the control is currently in a death test
7066 // subprocess. Must not be called before InitGoogleTest.
7067 void UnitTestImpl::SuppressTestEventsIfInSubprocess() {
7068 if (internal_run_death_test_flag_.get() != nullptr)
7069 listeners()->SuppressEventForwarding();
7070 }
7071 #endif // GTEST_HAS_DEATH_TEST
7072
7073 // Initializes event listeners performing XML output as specified by
7074 // UnitTestOptions. Must not be called before InitGoogleTest.
7075 void UnitTestImpl::ConfigureXmlOutput() {
7076 const std::string& output_format = UnitTestOptions::GetOutputFormat();
7077 if (output_format == "xml") {
7078 listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter(
7079 UnitTestOptions::GetAbsolutePathToOutputFile().c_str()));
7080 } else if (output_format == "json") {
7081 listeners()->SetDefaultXmlGenerator(new JsonUnitTestResultPrinter(
7082 UnitTestOptions::GetAbsolutePathToOutputFile().c_str()));
7083 } else if (output_format != "") {
7084 GTEST_LOG_(WARNING) << "WARNING: unrecognized output format \""
7085 << output_format << "\" ignored.";
7086 }
7087 }
7088
7089 #if GTEST_CAN_STREAM_RESULTS_
7090 // Initializes event listeners for streaming test results in string form.
7091 // Must not be called before InitGoogleTest.
7092 void UnitTestImpl::ConfigureStreamingOutput() {
7093 const std::string& target = GTEST_FLAG(stream_result_to);
7094 if (!target.empty()) {
7095 const size_t pos = target.find(':');
7096 if (pos != std::string::npos) {
7097 listeners()->Append(new StreamingListener(target.substr(0, pos),
7098 target.substr(pos+1)));
7099 } else {
7100 GTEST_LOG_(WARNING) << "unrecognized streaming target \"" << target
7101 << "\" ignored.";
7102 }
7103 }
7104 }
7105 #endif // GTEST_CAN_STREAM_RESULTS_
7106
7107 // Performs initialization dependent upon flag values obtained in
7108 // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to
7109 // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest
7110 // this function is also called from RunAllTests. Since this function can be
7111 // called more than once, it has to be idempotent.
7112 void UnitTestImpl::PostFlagParsingInit() {
7113 // Ensures that this function does not execute more than once.
7114 if (!post_flag_parse_init_performed_) {
7115 post_flag_parse_init_performed_ = true;
7116
7117 #if defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_)
7118 // Register to send notifications about key process state changes.
7119 listeners()->Append(new GTEST_CUSTOM_TEST_EVENT_LISTENER_());
7120 #endif // defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_)
7121
7122 #if GTEST_HAS_DEATH_TEST
7123 InitDeathTestSubprocessControlInfo();
7124 SuppressTestEventsIfInSubprocess();
7125 #endif // GTEST_HAS_DEATH_TEST
7126
7127 // Registers parameterized tests. This makes parameterized tests
7128 // available to the UnitTest reflection API without running
7129 // RUN_ALL_TESTS.
7130 RegisterParameterizedTests();
7131
7132 // Configures listeners for XML output. This makes it possible for users
7133 // to shut down the default XML output before invoking RUN_ALL_TESTS.
7134 ConfigureXmlOutput();
7135
7136 if (GTEST_FLAG(brief)) {
7137 listeners()->SetDefaultResultPrinter(new BriefUnitTestResultPrinter);
7138 }
7139
7140 #if GTEST_CAN_STREAM_RESULTS_
7141 // Configures listeners for streaming test results to the specified server.
7142 ConfigureStreamingOutput();
7143 #endif // GTEST_CAN_STREAM_RESULTS_
7144
7145 #if GTEST_HAS_ABSL
7146 if (GTEST_FLAG(install_failure_signal_handler)) {
7147 absl::FailureSignalHandlerOptions options;
7148 absl::InstallFailureSignalHandler(options);
7149 }
7150 #endif // GTEST_HAS_ABSL
7151 }
7152 }
7153
7154 // A predicate that checks the name of a TestSuite against a known
7155 // value.
7156 //
7157 // This is used for implementation of the UnitTest class only. We put
7158 // it in the anonymous namespace to prevent polluting the outer
7159 // namespace.
7160 //
7161 // TestSuiteNameIs is copyable.
7162 class TestSuiteNameIs {
7163 public:
7164 // Constructor.
7165 explicit TestSuiteNameIs(const std::string& name) : name_(name) {}
7166
7167 // Returns true if and only if the name of test_suite matches name_.
7168 bool operator()(const TestSuite* test_suite) const {
7169 return test_suite != nullptr &&
7170 strcmp(test_suite->name(), name_.c_str()) == 0;
7171 }
7172
7173 private:
7174 std::string name_;
7175 };
7176
7177 // Finds and returns a TestSuite with the given name. If one doesn't
7178 // exist, creates one and returns it. It's the CALLER'S
7179 // RESPONSIBILITY to ensure that this function is only called WHEN THE
7180 // TESTS ARE NOT SHUFFLED.
7181 //
7182 // Arguments:
7183 //
7184 // test_suite_name: name of the test suite
7185 // type_param: the name of the test suite's type parameter, or NULL if
7186 // this is not a typed or a type-parameterized test suite.
7187 // set_up_tc: pointer to the function that sets up the test suite
7188 // tear_down_tc: pointer to the function that tears down the test suite
7189 TestSuite* UnitTestImpl::GetTestSuite(
7190 const char* test_suite_name, const char* type_param,
7191 internal::SetUpTestSuiteFunc set_up_tc,
7192 internal::TearDownTestSuiteFunc tear_down_tc) {
7193 // Can we find a TestSuite with the given name?
7194 const auto test_suite =
7195 std::find_if(test_suites_.rbegin(), test_suites_.rend(),
7196 TestSuiteNameIs(test_suite_name));
7197
7198 if (test_suite != test_suites_.rend()) return *test_suite;
7199
7200 // No. Let's create one.
7201 auto* const new_test_suite =
7202 new TestSuite(test_suite_name, type_param, set_up_tc, tear_down_tc);
7203
7204 // Is this a death test suite?
7205 if (internal::UnitTestOptions::MatchesFilter(test_suite_name,
7206 kDeathTestSuiteFilter)) {
7207 // Yes. Inserts the test suite after the last death test suite
7208 // defined so far. This only works when the test suites haven't
7209 // been shuffled. Otherwise we may end up running a death test
7210 // after a non-death test.
7211 ++last_death_test_suite_;
7212 test_suites_.insert(test_suites_.begin() + last_death_test_suite_,
7213 new_test_suite);
7214 } else {
7215 // No. Appends to the end of the list.
7216 test_suites_.push_back(new_test_suite);
7217 }
7218
7219 test_suite_indices_.push_back(static_cast<int>(test_suite_indices_.size()));
7220 return new_test_suite;
7221 }
7222
7223 // Helpers for setting up / tearing down the given environment. They
7224 // are for use in the ForEach() function.
7225 static void SetUpEnvironment(Environment* env) { env->SetUp(); }
7226 static void TearDownEnvironment(Environment* env) { env->TearDown(); }
7227
7228 // Runs all tests in this UnitTest object, prints the result, and
7229 // returns true if all tests are successful. If any exception is
7230 // thrown during a test, the test is considered to be failed, but the
7231 // rest of the tests will still be run.
7232 //
7233 // When parameterized tests are enabled, it expands and registers
7234 // parameterized tests first in RegisterParameterizedTests().
7235 // All other functions called from RunAllTests() may safely assume that
7236 // parameterized tests are ready to be counted and run.
7237 bool UnitTestImpl::RunAllTests() {
7238 // True if and only if Google Test is initialized before RUN_ALL_TESTS() is
7239 // called.
7240 const bool gtest_is_initialized_before_run_all_tests = GTestIsInitialized();
7241
7242 // Do not run any test if the --help flag was specified.
7243 if (g_help_flag)
7244 return true;
7245
7246 // Repeats the call to the post-flag parsing initialization in case the
7247 // user didn't call InitGoogleTest.
7248 PostFlagParsingInit();
7249
7250 // Even if sharding is not on, test runners may want to use the
7251 // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding
7252 // protocol.
7253 internal::WriteToShardStatusFileIfNeeded();
7254
7255 // True if and only if we are in a subprocess for running a thread-safe-style
7256 // death test.
7257 bool in_subprocess_for_death_test = false;
7258
7259 #if GTEST_HAS_DEATH_TEST
7260 in_subprocess_for_death_test =
7261 (internal_run_death_test_flag_.get() != nullptr);
7262 # if defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_)
7263 if (in_subprocess_for_death_test) {
7264 GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_();
7265 }
7266 # endif // defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_)
7267 #endif // GTEST_HAS_DEATH_TEST
7268
7269 const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex,
7270 in_subprocess_for_death_test);
7271
7272 // Compares the full test names with the filter to decide which
7273 // tests to run.
7274 const bool has_tests_to_run = FilterTests(should_shard
7275 ? HONOR_SHARDING_PROTOCOL
7276 : IGNORE_SHARDING_PROTOCOL) > 0;
7277
7278 // Lists the tests and exits if the --gtest_list_tests flag was specified.
7279 if (GTEST_FLAG(list_tests)) {
7280 // This must be called *after* FilterTests() has been called.
7281 ListTestsMatchingFilter();
7282 return true;
7283 }
7284
7285 random_seed_ = GTEST_FLAG(shuffle) ?
7286 GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0;
7287
7288 // True if and only if at least one test has failed.
7289 bool failed = false;
7290
7291 TestEventListener* repeater = listeners()->repeater();
7292
7293 start_timestamp_ = GetTimeInMillis();
7294 repeater->OnTestProgramStart(*parent_);
7295
7296 // How many times to repeat the tests? We don't want to repeat them
7297 // when we are inside the subprocess of a death test.
7298 const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat);
7299 // Repeats forever if the repeat count is negative.
7300 const bool gtest_repeat_forever = repeat < 0;
7301 for (int i = 0; gtest_repeat_forever || i != repeat; i++) {
7302 // We want to preserve failures generated by ad-hoc test
7303 // assertions executed before RUN_ALL_TESTS().
7304 ClearNonAdHocTestResult();
7305
7306 Timer timer;
7307
7308 // Shuffles test suites and tests if requested.
7309 if (has_tests_to_run && GTEST_FLAG(shuffle)) {
7310 random()->Reseed(static_cast<uint32_t>(random_seed_));
7311 // This should be done before calling OnTestIterationStart(),
7312 // such that a test event listener can see the actual test order
7313 // in the event.
7314 ShuffleTests();
7315 }
7316
7317 // Tells the unit test event listeners that the tests are about to start.
7318 repeater->OnTestIterationStart(*parent_, i);
7319
7320 // Runs each test suite if there is at least one test to run.
7321 if (has_tests_to_run) {
7322 // Sets up all environments beforehand.
7323 repeater->OnEnvironmentsSetUpStart(*parent_);
7324 ForEach(environments_, SetUpEnvironment);
7325 repeater->OnEnvironmentsSetUpEnd(*parent_);
7326
7327 // Runs the tests only if there was no fatal failure or skip triggered
7328 // during global set-up.
7329 if (Test::IsSkipped()) {
7330 // Emit diagnostics when global set-up calls skip, as it will not be
7331 // emitted by default.
7332 TestResult& test_result =
7333 *internal::GetUnitTestImpl()->current_test_result();
7334 for (int j = 0; j < test_result.total_part_count(); ++j) {
7335 const TestPartResult& test_part_result =
7336 test_result.GetTestPartResult(j);
7337 if (test_part_result.type() == TestPartResult::kSkip) {
7338 const std::string& result = test_part_result.message();
7339 printf("%s\n", result.c_str());
7340 }
7341 }
7342 fflush(stdout);
7343 } else if (!Test::HasFatalFailure()) {
7344 for (int test_index = 0; test_index < total_test_suite_count();
7345 test_index++) {
7346 GetMutableSuiteCase(test_index)->Run();
7347 if (GTEST_FLAG(fail_fast) &&
7348 GetMutableSuiteCase(test_index)->Failed()) {
7349 for (int j = test_index + 1; j < total_test_suite_count(); j++) {
7350 GetMutableSuiteCase(j)->Skip();
7351 }
7352 break;
7353 }
7354 }
7355 } else if (Test::HasFatalFailure()) {
7356 // If there was a fatal failure during the global setup then we know we
7357 // aren't going to run any tests. Explicitly mark all of the tests as
7358 // skipped to make this obvious in the output.
7359 for (int test_index = 0; test_index < total_test_suite_count();
7360 test_index++) {
7361 GetMutableSuiteCase(test_index)->Skip();
7362 }
7363 }
7364
7365 // Tears down all environments in reverse order afterwards.
7366 repeater->OnEnvironmentsTearDownStart(*parent_);
7367 std::for_each(environments_.rbegin(), environments_.rend(),
7368 TearDownEnvironment);
7369 repeater->OnEnvironmentsTearDownEnd(*parent_);
7370 }
7371
7372 elapsed_time_ = timer.Elapsed();
7373
7374 // Tells the unit test event listener that the tests have just finished.
7375 repeater->OnTestIterationEnd(*parent_, i);
7376
7377 // Gets the result and clears it.
7378 if (!Passed()) {
7379 failed = true;
7380 }
7381
7382 // Restores the original test order after the iteration. This
7383 // allows the user to quickly repro a failure that happens in the
7384 // N-th iteration without repeating the first (N - 1) iterations.
7385 // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in
7386 // case the user somehow changes the value of the flag somewhere
7387 // (it's always safe to unshuffle the tests).
7388 UnshuffleTests();
7389
7390 if (GTEST_FLAG(shuffle)) {
7391 // Picks a new random seed for each iteration.
7392 random_seed_ = GetNextRandomSeed(random_seed_);
7393 }
7394 }
7395
7396 repeater->OnTestProgramEnd(*parent_);
7397
7398 if (!gtest_is_initialized_before_run_all_tests) {
7399 ColoredPrintf(
7400 GTestColor::kRed,
7401 "\nIMPORTANT NOTICE - DO NOT IGNORE:\n"
7402 "This test program did NOT call " GTEST_INIT_GOOGLE_TEST_NAME_
7403 "() before calling RUN_ALL_TESTS(). This is INVALID. Soon " GTEST_NAME_
7404 " will start to enforce the valid usage. "
7405 "Please fix it ASAP, or IT WILL START TO FAIL.\n"); // NOLINT
7406 #if GTEST_FOR_GOOGLE_
7407 ColoredPrintf(GTestColor::kRed,
7408 "For more details, see http://wiki/Main/ValidGUnitMain.\n");
7409 #endif // GTEST_FOR_GOOGLE_
7410 }
7411
7412 return !failed;
7413 }
7414
7415 // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file
7416 // if the variable is present. If a file already exists at this location, this
7417 // function will write over it. If the variable is present, but the file cannot
7418 // be created, prints an error and exits.
7419 void WriteToShardStatusFileIfNeeded() {
7420 const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile);
7421 if (test_shard_file != nullptr) {
7422 FILE* const file = posix::FOpen(test_shard_file, "w");
7423 if (file == nullptr) {
7424 ColoredPrintf(GTestColor::kRed,
7425 "Could not write to the test shard status file \"%s\" "
7426 "specified by the %s environment variable.\n",
7427 test_shard_file, kTestShardStatusFile);
7428 fflush(stdout);
7429 exit(EXIT_FAILURE);
7430 }
7431 fclose(file);
7432 }
7433 }
7434
7435 // Checks whether sharding is enabled by examining the relevant
7436 // environment variable values. If the variables are present,
7437 // but inconsistent (i.e., shard_index >= total_shards), prints
7438 // an error and exits. If in_subprocess_for_death_test, sharding is
7439 // disabled because it must only be applied to the original test
7440 // process. Otherwise, we could filter out death tests we intended to execute.
7441 bool ShouldShard(const char* total_shards_env,
7442 const char* shard_index_env,
7443 bool in_subprocess_for_death_test) {
7444 if (in_subprocess_for_death_test) {
7445 return false;
7446 }
7447
7448 const int32_t total_shards = Int32FromEnvOrDie(total_shards_env, -1);
7449 const int32_t shard_index = Int32FromEnvOrDie(shard_index_env, -1);
7450
7451 if (total_shards == -1 && shard_index == -1) {
7452 return false;
7453 } else if (total_shards == -1 && shard_index != -1) {
7454 const Message msg = Message()
7455 << "Invalid environment variables: you have "
7456 << kTestShardIndex << " = " << shard_index
7457 << ", but have left " << kTestTotalShards << " unset.\n";
7458 ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str());
7459 fflush(stdout);
7460 exit(EXIT_FAILURE);
7461 } else if (total_shards != -1 && shard_index == -1) {
7462 const Message msg = Message()
7463 << "Invalid environment variables: you have "
7464 << kTestTotalShards << " = " << total_shards
7465 << ", but have left " << kTestShardIndex << " unset.\n";
7466 ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str());
7467 fflush(stdout);
7468 exit(EXIT_FAILURE);
7469 } else if (shard_index < 0 || shard_index >= total_shards) {
7470 const Message msg = Message()
7471 << "Invalid environment variables: we require 0 <= "
7472 << kTestShardIndex << " < " << kTestTotalShards
7473 << ", but you have " << kTestShardIndex << "=" << shard_index
7474 << ", " << kTestTotalShards << "=" << total_shards << ".\n";
7475 ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str());
7476 fflush(stdout);
7477 exit(EXIT_FAILURE);
7478 }
7479
7480 return total_shards > 1;
7481 }
7482
7483 // Parses the environment variable var as an Int32. If it is unset,
7484 // returns default_val. If it is not an Int32, prints an error
7485 // and aborts.
7486 int32_t Int32FromEnvOrDie(const char* var, int32_t default_val) {
7487 const char* str_val = posix::GetEnv(var);
7488 if (str_val == nullptr) {
7489 return default_val;
7490 }
7491
7492 int32_t result;
7493 if (!ParseInt32(Message() << "The value of environment variable " << var,
7494 str_val, &result)) {
7495 exit(EXIT_FAILURE);
7496 }
7497 return result;
7498 }
7499
7500 // Given the total number of shards, the shard index, and the test id,
7501 // returns true if and only if the test should be run on this shard. The test id
7502 // is some arbitrary but unique non-negative integer assigned to each test
7503 // method. Assumes that 0 <= shard_index < total_shards.
7504 bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) {
7505 return (test_id % total_shards) == shard_index;
7506 }
7507
7508 // Compares the name of each test with the user-specified filter to
7509 // decide whether the test should be run, then records the result in
7510 // each TestSuite and TestInfo object.
7511 // If shard_tests == true, further filters tests based on sharding
7512 // variables in the environment - see
7513 // https://github.com/google/googletest/blob/master/googletest/docs/advanced.md
7514 // . Returns the number of tests that should run.
7515 int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) {
7516 const int32_t total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ?
7517 Int32FromEnvOrDie(kTestTotalShards, -1) : -1;
7518 const int32_t shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ?
7519 Int32FromEnvOrDie(kTestShardIndex, -1) : -1;
7520
7521 // num_runnable_tests are the number of tests that will
7522 // run across all shards (i.e., match filter and are not disabled).
7523 // num_selected_tests are the number of tests to be run on
7524 // this shard.
7525 int num_runnable_tests = 0;
7526 int num_selected_tests = 0;
7527 for (auto* test_suite : test_suites_) {
7528 const std::string& test_suite_name = test_suite->name();
7529 test_suite->set_should_run(false);
7530
7531 for (size_t j = 0; j < test_suite->test_info_list().size(); j++) {
7532 TestInfo* const test_info = test_suite->test_info_list()[j];
7533 const std::string test_name(test_info->name());
7534 // A test is disabled if test suite name or test name matches
7535 // kDisableTestFilter.
7536 const bool is_disabled = internal::UnitTestOptions::MatchesFilter(
7537 test_suite_name, kDisableTestFilter) ||
7538 internal::UnitTestOptions::MatchesFilter(
7539 test_name, kDisableTestFilter);
7540 test_info->is_disabled_ = is_disabled;
7541
7542 const bool matches_filter = internal::UnitTestOptions::FilterMatchesTest(
7543 test_suite_name, test_name);
7544 test_info->matches_filter_ = matches_filter;
7545
7546 const bool is_runnable =
7547 (GTEST_FLAG(also_run_disabled_tests) || !is_disabled) &&
7548 matches_filter;
7549
7550 const bool is_in_another_shard =
7551 shard_tests != IGNORE_SHARDING_PROTOCOL &&
7552 !ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests);
7553 test_info->is_in_another_shard_ = is_in_another_shard;
7554 const bool is_selected = is_runnable && !is_in_another_shard;
7555
7556 num_runnable_tests += is_runnable;
7557 num_selected_tests += is_selected;
7558
7559 test_info->should_run_ = is_selected;
7560 test_suite->set_should_run(test_suite->should_run() || is_selected);
7561 }
7562 }
7563 return num_selected_tests;
7564 }
7565
7566 // Prints the given C-string on a single line by replacing all '\n'
7567 // characters with string "\\n". If the output takes more than
7568 // max_length characters, only prints the first max_length characters
7569 // and "...".
7570 static void PrintOnOneLine(const char* str, int max_length) {
7571 if (str != nullptr) {
7572 for (int i = 0; *str != '\0'; ++str) {
7573 if (i >= max_length) {
7574 printf("...");
7575 break;
7576 }
7577 if (*str == '\n') {
7578 printf("\\n");
7579 i += 2;
7580 } else {
7581 printf("%c", *str);
7582 ++i;
7583 }
7584 }
7585 }
7586 }
7587
7588 // Prints the names of the tests matching the user-specified filter flag.
7589 void UnitTestImpl::ListTestsMatchingFilter() {
7590 // Print at most this many characters for each type/value parameter.
7591 const int kMaxParamLength = 250;
7592
7593 for (auto* test_suite : test_suites_) {
7594 bool printed_test_suite_name = false;
7595
7596 for (size_t j = 0; j < test_suite->test_info_list().size(); j++) {
7597 const TestInfo* const test_info = test_suite->test_info_list()[j];
7598 if (test_info->matches_filter_) {
7599 if (!printed_test_suite_name) {
7600 printed_test_suite_name = true;
7601 printf("%s.", test_suite->name());
7602 if (test_suite->type_param() != nullptr) {
7603 printf(" # %s = ", kTypeParamLabel);
7604 // We print the type parameter on a single line to make
7605 // the output easy to parse by a program.
7606 PrintOnOneLine(test_suite->type_param(), kMaxParamLength);
7607 }
7608 printf("\n");
7609 }
7610 printf(" %s", test_info->name());
7611 if (test_info->value_param() != nullptr) {
7612 printf(" # %s = ", kValueParamLabel);
7613 // We print the value parameter on a single line to make the
7614 // output easy to parse by a program.
7615 PrintOnOneLine(test_info->value_param(), kMaxParamLength);
7616 }
7617 printf("\n");
7618 }
7619 }
7620 }
7621 fflush(stdout);
7622 const std::string& output_format = UnitTestOptions::GetOutputFormat();
7623 if (output_format == "xml" || output_format == "json") {
7624 FILE* fileout = OpenFileForWriting(
7625 UnitTestOptions::GetAbsolutePathToOutputFile().c_str());
7626 std::stringstream stream;
7627 if (output_format == "xml") {
7628 XmlUnitTestResultPrinter(
7629 UnitTestOptions::GetAbsolutePathToOutputFile().c_str())
7630 .PrintXmlTestsList(&stream, test_suites_);
7631 } else if (output_format == "json") {
7632 JsonUnitTestResultPrinter(
7633 UnitTestOptions::GetAbsolutePathToOutputFile().c_str())
7634 .PrintJsonTestList(&stream, test_suites_);
7635 }
7636 fprintf(fileout, "%s", StringStreamToString(&stream).c_str());
7637 fclose(fileout);
7638 }
7639 }
7640
7641 // Sets the OS stack trace getter.
7642 //
7643 // Does nothing if the input and the current OS stack trace getter are
7644 // the same; otherwise, deletes the old getter and makes the input the
7645 // current getter.
7646 void UnitTestImpl::set_os_stack_trace_getter(
7647 OsStackTraceGetterInterface* getter) {
7648 if (os_stack_trace_getter_ != getter) {
7649 delete os_stack_trace_getter_;
7650 os_stack_trace_getter_ = getter;
7651 }
7652 }
7653
7654 // Returns the current OS stack trace getter if it is not NULL;
7655 // otherwise, creates an OsStackTraceGetter, makes it the current
7656 // getter, and returns it.
7657 OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() {
7658 if (os_stack_trace_getter_ == nullptr) {
7659 #ifdef GTEST_OS_STACK_TRACE_GETTER_
7660 os_stack_trace_getter_ = new GTEST_OS_STACK_TRACE_GETTER_;
7661 #else
7662 os_stack_trace_getter_ = new OsStackTraceGetter;
7663 #endif // GTEST_OS_STACK_TRACE_GETTER_
7664 }
7665
7666 return os_stack_trace_getter_;
7667 }
7668
7669 // Returns the most specific TestResult currently running.
7670 TestResult* UnitTestImpl::current_test_result() {
7671 if (current_test_info_ != nullptr) {
7672 return &current_test_info_->result_;
7673 }
7674 if (current_test_suite_ != nullptr) {
7675 return &current_test_suite_->ad_hoc_test_result_;
7676 }
7677 return &ad_hoc_test_result_;
7678 }
7679
7680 // Shuffles all test suites, and the tests within each test suite,
7681 // making sure that death tests are still run first.
7682 void UnitTestImpl::ShuffleTests() {
7683 // Shuffles the death test suites.
7684 ShuffleRange(random(), 0, last_death_test_suite_ + 1, &test_suite_indices_);
7685
7686 // Shuffles the non-death test suites.
7687 ShuffleRange(random(), last_death_test_suite_ + 1,
7688 static_cast<int>(test_suites_.size()), &test_suite_indices_);
7689
7690 // Shuffles the tests inside each test suite.
7691 for (auto& test_suite : test_suites_) {
7692 test_suite->ShuffleTests(random());
7693 }
7694 }
7695
7696 // Restores the test suites and tests to their order before the first shuffle.
7697 void UnitTestImpl::UnshuffleTests() {
7698 for (size_t i = 0; i < test_suites_.size(); i++) {
7699 // Unshuffles the tests in each test suite.
7700 test_suites_[i]->UnshuffleTests();
7701 // Resets the index of each test suite.
7702 test_suite_indices_[i] = static_cast<int>(i);
7703 }
7704 }
7705
7706 // Returns the current OS stack trace as an std::string.
7707 //
7708 // The maximum number of stack frames to be included is specified by
7709 // the gtest_stack_trace_depth flag. The skip_count parameter
7710 // specifies the number of top frames to be skipped, which doesn't
7711 // count against the number of frames to be included.
7712 //
7713 // For example, if Foo() calls Bar(), which in turn calls
7714 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
7715 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
7716 std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/,
7717 int skip_count) {
7718 // We pass skip_count + 1 to skip this wrapper function in addition
7719 // to what the user really wants to skip.
7720 return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1);
7721 }
7722
7723 // Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to
7724 // suppress unreachable code warnings.
7725 namespace {
7726 class ClassUniqueToAlwaysTrue {};
7727 }
7728
7729 bool IsTrue(bool condition) { return condition; }
7730
7731 bool AlwaysTrue() {
7732 #if GTEST_HAS_EXCEPTIONS
7733 // This condition is always false so AlwaysTrue() never actually throws,
7734 // but it makes the compiler think that it may throw.
7735 if (IsTrue(false))
7736 throw ClassUniqueToAlwaysTrue();
7737 #endif // GTEST_HAS_EXCEPTIONS
7738 return true;
7739 }
7740
7741 // If *pstr starts with the given prefix, modifies *pstr to be right
7742 // past the prefix and returns true; otherwise leaves *pstr unchanged
7743 // and returns false. None of pstr, *pstr, and prefix can be NULL.
7744 bool SkipPrefix(const char* prefix, const char** pstr) {
7745 const size_t prefix_len = strlen(prefix);
7746 if (strncmp(*pstr, prefix, prefix_len) == 0) {
7747 *pstr += prefix_len;
7748 return true;
7749 }
7750 return false;
7751 }
7752
7753 // Parses a string as a command line flag. The string should have
7754 // the format "--flag=value". When def_optional is true, the "=value"
7755 // part can be omitted.
7756 //
7757 // Returns the value of the flag, or NULL if the parsing failed.
7758 static const char* ParseFlagValue(const char* str, const char* flag,
7759 bool def_optional) {
7760 // str and flag must not be NULL.
7761 if (str == nullptr || flag == nullptr) return nullptr;
7762
7763 // The flag must start with "--" followed by GTEST_FLAG_PREFIX_.
7764 const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag;
7765 const size_t flag_len = flag_str.length();
7766 if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr;
7767
7768 // Skips the flag name.
7769 const char* flag_end = str + flag_len;
7770
7771 // When def_optional is true, it's OK to not have a "=value" part.
7772 if (def_optional && (flag_end[0] == '\0')) {
7773 return flag_end;
7774 }
7775
7776 // If def_optional is true and there are more characters after the
7777 // flag name, or if def_optional is false, there must be a '=' after
7778 // the flag name.
7779 if (flag_end[0] != '=') return nullptr;
7780
7781 // Returns the string after "=".
7782 return flag_end + 1;
7783 }
7784
7785 // Parses a string for a bool flag, in the form of either
7786 // "--flag=value" or "--flag".
7787 //
7788 // In the former case, the value is taken as true as long as it does
7789 // not start with '0', 'f', or 'F'.
7790 //
7791 // In the latter case, the value is taken as true.
7792 //
7793 // On success, stores the value of the flag in *value, and returns
7794 // true. On failure, returns false without changing *value.
7795 static bool ParseBoolFlag(const char* str, const char* flag, bool* value) {
7796 // Gets the value of the flag as a string.
7797 const char* const value_str = ParseFlagValue(str, flag, true);
7798
7799 // Aborts if the parsing failed.
7800 if (value_str == nullptr) return false;
7801
7802 // Converts the string value to a bool.
7803 *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F');
7804 return true;
7805 }
7806
7807 // Parses a string for an int32_t flag, in the form of "--flag=value".
7808 //
7809 // On success, stores the value of the flag in *value, and returns
7810 // true. On failure, returns false without changing *value.
7811 bool ParseInt32Flag(const char* str, const char* flag, int32_t* value) {
7812 // Gets the value of the flag as a string.
7813 const char* const value_str = ParseFlagValue(str, flag, false);
7814
7815 // Aborts if the parsing failed.
7816 if (value_str == nullptr) return false;
7817
7818 // Sets *value to the value of the flag.
7819 return ParseInt32(Message() << "The value of flag --" << flag,
7820 value_str, value);
7821 }
7822
7823 // Parses a string for a string flag, in the form of "--flag=value".
7824 //
7825 // On success, stores the value of the flag in *value, and returns
7826 // true. On failure, returns false without changing *value.
7827 template <typename String>
7828 static bool ParseStringFlag(const char* str, const char* flag, String* value) {
7829 // Gets the value of the flag as a string.
7830 const char* const value_str = ParseFlagValue(str, flag, false);
7831
7832 // Aborts if the parsing failed.
7833 if (value_str == nullptr) return false;
7834
7835 // Sets *value to the value of the flag.
7836 *value = value_str;
7837 return true;
7838 }
7839
7840 // Determines whether a string has a prefix that Google Test uses for its
7841 // flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_.
7842 // If Google Test detects that a command line flag has its prefix but is not
7843 // recognized, it will print its help message. Flags starting with
7844 // GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test
7845 // internal flags and do not trigger the help message.
7846 static bool HasGoogleTestFlagPrefix(const char* str) {
7847 return (SkipPrefix("--", &str) ||
7848 SkipPrefix("-", &str) ||
7849 SkipPrefix("/", &str)) &&
7850 !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) &&
7851 (SkipPrefix(GTEST_FLAG_PREFIX_, &str) ||
7852 SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str));
7853 }
7854
7855 // Prints a string containing code-encoded text. The following escape
7856 // sequences can be used in the string to control the text color:
7857 //
7858 // @@ prints a single '@' character.
7859 // @R changes the color to red.
7860 // @G changes the color to green.
7861 // @Y changes the color to yellow.
7862 // @D changes to the default terminal text color.
7863 //
7864 static void PrintColorEncoded(const char* str) {
7865 GTestColor color = GTestColor::kDefault; // The current color.
7866
7867 // Conceptually, we split the string into segments divided by escape
7868 // sequences. Then we print one segment at a time. At the end of
7869 // each iteration, the str pointer advances to the beginning of the
7870 // next segment.
7871 for (;;) {
7872 const char* p = strchr(str, '@');
7873 if (p == nullptr) {
7874 ColoredPrintf(color, "%s", str);
7875 return;
7876 }
7877
7878 ColoredPrintf(color, "%s", std::string(str, p).c_str());
7879
7880 const char ch = p[1];
7881 str = p + 2;
7882 if (ch == '@') {
7883 ColoredPrintf(color, "@");
7884 } else if (ch == 'D') {
7885 color = GTestColor::kDefault;
7886 } else if (ch == 'R') {
7887 color = GTestColor::kRed;
7888 } else if (ch == 'G') {
7889 color = GTestColor::kGreen;
7890 } else if (ch == 'Y') {
7891 color = GTestColor::kYellow;
7892 } else {
7893 --str;
7894 }
7895 }
7896 }
7897
7898 static const char kColorEncodedHelpMessage[] =
7899 "This program contains tests written using " GTEST_NAME_
7900 ". You can use the\n"
7901 "following command line flags to control its behavior:\n"
7902 "\n"
7903 "Test Selection:\n"
7904 " @G--" GTEST_FLAG_PREFIX_
7905 "list_tests@D\n"
7906 " List the names of all tests instead of running them. The name of\n"
7907 " TEST(Foo, Bar) is \"Foo.Bar\".\n"
7908 " @G--" GTEST_FLAG_PREFIX_
7909 "filter=@YPOSITIVE_PATTERNS"
7910 "[@G-@YNEGATIVE_PATTERNS]@D\n"
7911 " Run only the tests whose name matches one of the positive patterns "
7912 "but\n"
7913 " none of the negative patterns. '?' matches any single character; "
7914 "'*'\n"
7915 " matches any substring; ':' separates two patterns.\n"
7916 " @G--" GTEST_FLAG_PREFIX_
7917 "also_run_disabled_tests@D\n"
7918 " Run all disabled tests too.\n"
7919 "\n"
7920 "Test Execution:\n"
7921 " @G--" GTEST_FLAG_PREFIX_
7922 "repeat=@Y[COUNT]@D\n"
7923 " Run the tests repeatedly; use a negative count to repeat forever.\n"
7924 " @G--" GTEST_FLAG_PREFIX_
7925 "shuffle@D\n"
7926 " Randomize tests' orders on every iteration.\n"
7927 " @G--" GTEST_FLAG_PREFIX_
7928 "random_seed=@Y[NUMBER]@D\n"
7929 " Random number seed to use for shuffling test orders (between 1 and\n"
7930 " 99999, or 0 to use a seed based on the current time).\n"
7931 "\n"
7932 "Test Output:\n"
7933 " @G--" GTEST_FLAG_PREFIX_
7934 "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n"
7935 " Enable/disable colored output. The default is @Gauto@D.\n"
7936 " @G--" GTEST_FLAG_PREFIX_
7937 "brief=1@D\n"
7938 " Only print test failures.\n"
7939 " @G--" GTEST_FLAG_PREFIX_
7940 "print_time=0@D\n"
7941 " Don't print the elapsed time of each test.\n"
7942 " @G--" GTEST_FLAG_PREFIX_
7943 "output=@Y(@Gjson@Y|@Gxml@Y)[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_
7944 "@Y|@G:@YFILE_PATH]@D\n"
7945 " Generate a JSON or XML report in the given directory or with the "
7946 "given\n"
7947 " file name. @YFILE_PATH@D defaults to @Gtest_detail.xml@D.\n"
7948 # if GTEST_CAN_STREAM_RESULTS_
7949 " @G--" GTEST_FLAG_PREFIX_
7950 "stream_result_to=@YHOST@G:@YPORT@D\n"
7951 " Stream test results to the given server.\n"
7952 # endif // GTEST_CAN_STREAM_RESULTS_
7953 "\n"
7954 "Assertion Behavior:\n"
7955 # if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
7956 " @G--" GTEST_FLAG_PREFIX_
7957 "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n"
7958 " Set the default death test style.\n"
7959 # endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
7960 " @G--" GTEST_FLAG_PREFIX_
7961 "break_on_failure@D\n"
7962 " Turn assertion failures into debugger break-points.\n"
7963 " @G--" GTEST_FLAG_PREFIX_
7964 "throw_on_failure@D\n"
7965 " Turn assertion failures into C++ exceptions for use by an external\n"
7966 " test framework.\n"
7967 " @G--" GTEST_FLAG_PREFIX_
7968 "catch_exceptions=0@D\n"
7969 " Do not report exceptions as test failures. Instead, allow them\n"
7970 " to crash the program or throw a pop-up (on Windows).\n"
7971 "\n"
7972 "Except for @G--" GTEST_FLAG_PREFIX_
7973 "list_tests@D, you can alternatively set "
7974 "the corresponding\n"
7975 "environment variable of a flag (all letters in upper-case). For example, "
7976 "to\n"
7977 "disable colored text output, you can either specify "
7978 "@G--" GTEST_FLAG_PREFIX_
7979 "color=no@D or set\n"
7980 "the @G" GTEST_FLAG_PREFIX_UPPER_
7981 "COLOR@D environment variable to @Gno@D.\n"
7982 "\n"
7983 "For more information, please read the " GTEST_NAME_
7984 " documentation at\n"
7985 "@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_
7986 "\n"
7987 "(not one in your own code or tests), please report it to\n"
7988 "@G<" GTEST_DEV_EMAIL_ ">@D.\n";
7989
7990 static bool ParseGoogleTestFlag(const char* const arg) {
7991 return ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag,
7992 &GTEST_FLAG(also_run_disabled_tests)) ||
7993 ParseBoolFlag(arg, kBreakOnFailureFlag,
7994 &GTEST_FLAG(break_on_failure)) ||
7995 ParseBoolFlag(arg, kCatchExceptionsFlag,
7996 &GTEST_FLAG(catch_exceptions)) ||
7997 ParseStringFlag(arg, kColorFlag, &GTEST_FLAG(color)) ||
7998 ParseStringFlag(arg, kDeathTestStyleFlag,
7999 &GTEST_FLAG(death_test_style)) ||
8000 ParseBoolFlag(arg, kDeathTestUseFork,
8001 &GTEST_FLAG(death_test_use_fork)) ||
8002 ParseBoolFlag(arg, kFailFast, &GTEST_FLAG(fail_fast)) ||
8003 ParseStringFlag(arg, kFilterFlag, &GTEST_FLAG(filter)) ||
8004 ParseStringFlag(arg, kInternalRunDeathTestFlag,
8005 &GTEST_FLAG(internal_run_death_test)) ||
8006 ParseBoolFlag(arg, kListTestsFlag, &GTEST_FLAG(list_tests)) ||
8007 ParseStringFlag(arg, kOutputFlag, &GTEST_FLAG(output)) ||
8008 ParseBoolFlag(arg, kBriefFlag, &GTEST_FLAG(brief)) ||
8009 ParseBoolFlag(arg, kPrintTimeFlag, &GTEST_FLAG(print_time)) ||
8010 ParseBoolFlag(arg, kPrintUTF8Flag, &GTEST_FLAG(print_utf8)) ||
8011 ParseInt32Flag(arg, kRandomSeedFlag, &GTEST_FLAG(random_seed)) ||
8012 ParseInt32Flag(arg, kRepeatFlag, &GTEST_FLAG(repeat)) ||
8013 ParseBoolFlag(arg, kShuffleFlag, &GTEST_FLAG(shuffle)) ||
8014 ParseInt32Flag(arg, kStackTraceDepthFlag,
8015 &GTEST_FLAG(stack_trace_depth)) ||
8016 ParseStringFlag(arg, kStreamResultToFlag,
8017 &GTEST_FLAG(stream_result_to)) ||
8018 ParseBoolFlag(arg, kThrowOnFailureFlag, &GTEST_FLAG(throw_on_failure));
8019 }
8020
8021 #if GTEST_USE_OWN_FLAGFILE_FLAG_
8022 static void LoadFlagsFromFile(const std::string& path) {
8023 FILE* flagfile = posix::FOpen(path.c_str(), "r");
8024 if (!flagfile) {
8025 GTEST_LOG_(FATAL) << "Unable to open file \"" << GTEST_FLAG(flagfile)
8026 << "\"";
8027 }
8028 std::string contents(ReadEntireFile(flagfile));
8029 posix::FClose(flagfile);
8030 std::vector<std::string> lines;
8031 SplitString(contents, '\n', &lines);
8032 for (size_t i = 0; i < lines.size(); ++i) {
8033 if (lines[i].empty())
8034 continue;
8035 if (!ParseGoogleTestFlag(lines[i].c_str()))
8036 g_help_flag = true;
8037 }
8038 }
8039 #endif // GTEST_USE_OWN_FLAGFILE_FLAG_
8040
8041 // Parses the command line for Google Test flags, without initializing
8042 // other parts of Google Test. The type parameter CharType can be
8043 // instantiated to either char or wchar_t.
8044 template <typename CharType>
8045 void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) {
8046 for (int i = 1; i < *argc; i++) {
8047 const std::string arg_string = StreamableToString(argv[i]);
8048 const char* const arg = arg_string.c_str();
8049
8050 using internal::ParseBoolFlag;
8051 using internal::ParseInt32Flag;
8052 using internal::ParseStringFlag;
8053
8054 bool remove_flag = false;
8055 if (ParseGoogleTestFlag(arg)) {
8056 remove_flag = true;
8057 #if GTEST_USE_OWN_FLAGFILE_FLAG_
8058 } else if (ParseStringFlag(arg, kFlagfileFlag, &GTEST_FLAG(flagfile))) {
8059 LoadFlagsFromFile(GTEST_FLAG(flagfile));
8060 remove_flag = true;
8061 #endif // GTEST_USE_OWN_FLAGFILE_FLAG_
8062 } else if (arg_string == "--help" || arg_string == "-h" ||
8063 arg_string == "-?" || arg_string == "/?" ||
8064 HasGoogleTestFlagPrefix(arg)) {
8065 // Both help flag and unrecognized Google Test flags (excluding
8066 // internal ones) trigger help display.
8067 g_help_flag = true;
8068 }
8069
8070 if (remove_flag) {
8071 // Shift the remainder of the argv list left by one. Note
8072 // that argv has (*argc + 1) elements, the last one always being
8073 // NULL. The following loop moves the trailing NULL element as
8074 // well.
8075 for (int j = i; j != *argc; j++) {
8076 argv[j] = argv[j + 1];
8077 }
8078
8079 // Decrements the argument count.
8080 (*argc)--;
8081
8082 // We also need to decrement the iterator as we just removed
8083 // an element.
8084 i--;
8085 }
8086 }
8087
8088 if (g_help_flag) {
8089 // We print the help here instead of in RUN_ALL_TESTS(), as the
8090 // latter may not be called at all if the user is using Google
8091 // Test with another testing framework.
8092 PrintColorEncoded(kColorEncodedHelpMessage);
8093 }
8094 }
8095
8096 // Parses the command line for Google Test flags, without initializing
8097 // other parts of Google Test.
8098 void ParseGoogleTestFlagsOnly(int* argc, char** argv) {
8099 ParseGoogleTestFlagsOnlyImpl(argc, argv);
8100
8101 // Fix the value of *_NSGetArgc() on macOS, but if and only if
8102 // *_NSGetArgv() == argv
8103 // Only applicable to char** version of argv
8104 #if GTEST_OS_MAC
8105 #ifndef GTEST_OS_IOS
8106 if (*_NSGetArgv() == argv) {
8107 *_NSGetArgc() = *argc;
8108 }
8109 #endif
8110 #endif
8111 }
8112 void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) {
8113 ParseGoogleTestFlagsOnlyImpl(argc, argv);
8114 }
8115
8116 // The internal implementation of InitGoogleTest().
8117 //
8118 // The type parameter CharType can be instantiated to either char or
8119 // wchar_t.
8120 template <typename CharType>
8121 void InitGoogleTestImpl(int* argc, CharType** argv) {
8122 // We don't want to run the initialization code twice.
8123 if (GTestIsInitialized()) return;
8124
8125 if (*argc <= 0) return;
8126
8127 g_argvs.clear();
8128 for (int i = 0; i != *argc; i++) {
8129 g_argvs.push_back(StreamableToString(argv[i]));
8130 }
8131
8132 #if GTEST_HAS_ABSL
8133 absl::InitializeSymbolizer(g_argvs[0].c_str());
8134 #endif // GTEST_HAS_ABSL
8135
8136 ParseGoogleTestFlagsOnly(argc, argv);
8137 GetUnitTestImpl()->PostFlagParsingInit();
8138 }
8139
8140 } // namespace internal
8141
8142 // Initializes Google Test. This must be called before calling
8143 // RUN_ALL_TESTS(). In particular, it parses a command line for the
8144 // flags that Google Test recognizes. Whenever a Google Test flag is
8145 // seen, it is removed from argv, and *argc is decremented.
8146 //
8147 // No value is returned. Instead, the Google Test flag variables are
8148 // updated.
8149 //
8150 // Calling the function for the second time has no user-visible effect.
8151 void InitGoogleTest(int* argc, char** argv) {
8152 #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8153 GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv);
8154 #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8155 internal::InitGoogleTestImpl(argc, argv);
8156 #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8157 }
8158
8159 // This overloaded version can be used in Windows programs compiled in
8160 // UNICODE mode.
8161 void InitGoogleTest(int* argc, wchar_t** argv) {
8162 #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8163 GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv);
8164 #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8165 internal::InitGoogleTestImpl(argc, argv);
8166 #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8167 }
8168
8169 // This overloaded version can be used on Arduino/embedded platforms where
8170 // there is no argc/argv.
8171 void InitGoogleTest() {
8172 // Since Arduino doesn't have a command line, fake out the argc/argv arguments
8173 int argc = 1;
8174 const auto arg0 = "dummy";
8175 char* argv0 = const_cast<char*>(arg0);
8176 char** argv = &argv0;
8177
8178 #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8179 GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(&argc, argv);
8180 #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8181 internal::InitGoogleTestImpl(&argc, argv);
8182 #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_)
8183 }
8184
8185 std::string TempDir() {
8186 #if defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_)
8187 return GTEST_CUSTOM_TEMPDIR_FUNCTION_();
8188 #elif GTEST_OS_WINDOWS_MOBILE
8189 return "\\temp\\";
8190 #elif GTEST_OS_WINDOWS
8191 const char* temp_dir = internal::posix::GetEnv("TEMP");
8192 if (temp_dir == nullptr || temp_dir[0] == '\0') {
8193 return "\\temp\\";
8194 } else if (temp_dir[strlen(temp_dir) - 1] == '\\') {
8195 return temp_dir;
8196 } else {
8197 return std::string(temp_dir) + "\\";
8198 }
8199 #elif GTEST_OS_LINUX_ANDROID
8200 const char* temp_dir = internal::posix::GetEnv("TEST_TMPDIR");
8201 if (temp_dir == nullptr || temp_dir[0] == '\0') {
8202 return "/data/local/tmp/";
8203 } else {
8204 return temp_dir;
8205 }
8206 #elif GTEST_OS_LINUX
8207 const char* temp_dir = internal::posix::GetEnv("TEST_TMPDIR");
8208 if (temp_dir == nullptr || temp_dir[0] == '\0') {
8209 return "/tmp/";
8210 } else {
8211 return temp_dir;
8212 }
8213 #else
8214 return "/tmp/";
8215 #endif // GTEST_OS_WINDOWS_MOBILE
8216 }
8217
8218 // Class ScopedTrace
8219
8220 // Pushes the given source file location and message onto a per-thread
8221 // trace stack maintained by Google Test.
8222 void ScopedTrace::PushTrace(const char* file, int line, std::string message) {
8223 internal::TraceInfo trace;
8224 trace.file = file;
8225 trace.line = line;
8226 trace.message.swap(message);
8227
8228 UnitTest::GetInstance()->PushGTestTrace(trace);
8229 }
8230
8231 // Pops the info pushed by the c'tor.
8232 ScopedTrace::~ScopedTrace()
8233 GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) {
8234 UnitTest::GetInstance()->PopGTestTrace();
8235 }
8236
8237 } // namespace testing
8238 // Copyright 2005, Google Inc.
8239 // All rights reserved.
8240 //
8241 // Redistribution and use in source and binary forms, with or without
8242 // modification, are permitted provided that the following conditions are
8243 // met:
8244 //
8245 // * Redistributions of source code must retain the above copyright
8246 // notice, this list of conditions and the following disclaimer.
8247 // * Redistributions in binary form must reproduce the above
8248 // copyright notice, this list of conditions and the following disclaimer
8249 // in the documentation and/or other materials provided with the
8250 // distribution.
8251 // * Neither the name of Google Inc. nor the names of its
8252 // contributors may be used to endorse or promote products derived from
8253 // this software without specific prior written permission.
8254 //
8255 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
8256 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
8257 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
8258 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
8259 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
8260 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
8261 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
8262 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
8263 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
8264 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
8265 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
8266
8267 //
8268 // This file implements death tests.
8269
8270
8271 #include <functional>
8272 #include <utility>
8273
8274
8275 #if GTEST_HAS_DEATH_TEST
8276
8277 # if GTEST_OS_MAC
8278 # include <crt_externs.h>
8279 # endif // GTEST_OS_MAC
8280
8281 # include <errno.h>
8282 # include <fcntl.h>
8283 # include <limits.h>
8284
8285 # if GTEST_OS_LINUX
8286 # include <signal.h>
8287 # endif // GTEST_OS_LINUX
8288
8289 # include <stdarg.h>
8290
8291 # if GTEST_OS_WINDOWS
8292 # include <windows.h>
8293 # else
8294 # include <sys/mman.h>
8295 # include <sys/wait.h>
8296 # endif // GTEST_OS_WINDOWS
8297
8298 # if GTEST_OS_QNX
8299 # include <spawn.h>
8300 # endif // GTEST_OS_QNX
8301
8302 # if GTEST_OS_FUCHSIA
8303 # include <lib/fdio/fd.h>
8304 # include <lib/fdio/io.h>
8305 # include <lib/fdio/spawn.h>
8306 # include <lib/zx/channel.h>
8307 # include <lib/zx/port.h>
8308 # include <lib/zx/process.h>
8309 # include <lib/zx/socket.h>
8310 # include <zircon/processargs.h>
8311 # include <zircon/syscalls.h>
8312 # include <zircon/syscalls/policy.h>
8313 # include <zircon/syscalls/port.h>
8314 # endif // GTEST_OS_FUCHSIA
8315
8316 #endif // GTEST_HAS_DEATH_TEST
8317
8318
8319 namespace testing {
8320
8321 // Constants.
8322
8323 // The default death test style.
8324 //
8325 // This is defined in internal/gtest-port.h as "fast", but can be overridden by
8326 // a definition in internal/custom/gtest-port.h. The recommended value, which is
8327 // used internally at Google, is "threadsafe".
8328 static const char kDefaultDeathTestStyle[] = GTEST_DEFAULT_DEATH_TEST_STYLE;
8329
8330 GTEST_DEFINE_string_(
8331 death_test_style,
8332 internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle),
8333 "Indicates how to run a death test in a forked child process: "
8334 "\"threadsafe\" (child process re-executes the test binary "
8335 "from the beginning, running only the specific death test) or "
8336 "\"fast\" (child process runs the death test immediately "
8337 "after forking).");
8338
8339 GTEST_DEFINE_bool_(
8340 death_test_use_fork,
8341 internal::BoolFromGTestEnv("death_test_use_fork", false),
8342 "Instructs to use fork()/_exit() instead of clone() in death tests. "
8343 "Ignored and always uses fork() on POSIX systems where clone() is not "
8344 "implemented. Useful when running under valgrind or similar tools if "
8345 "those do not support clone(). Valgrind 3.3.1 will just fail if "
8346 "it sees an unsupported combination of clone() flags. "
8347 "It is not recommended to use this flag w/o valgrind though it will "
8348 "work in 99% of the cases. Once valgrind is fixed, this flag will "
8349 "most likely be removed.");
8350
8351 namespace internal {
8352 GTEST_DEFINE_string_(
8353 internal_run_death_test, "",
8354 "Indicates the file, line number, temporal index of "
8355 "the single death test to run, and a file descriptor to "
8356 "which a success code may be sent, all separated by "
8357 "the '|' characters. This flag is specified if and only if the "
8358 "current process is a sub-process launched for running a thread-safe "
8359 "death test. FOR INTERNAL USE ONLY.");
8360 } // namespace internal
8361
8362 #if GTEST_HAS_DEATH_TEST
8363
8364 namespace internal {
8365
8366 // Valid only for fast death tests. Indicates the code is running in the
8367 // child process of a fast style death test.
8368 # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
8369 static bool g_in_fast_death_test_child = false;
8370 # endif
8371
8372 // Returns a Boolean value indicating whether the caller is currently
8373 // executing in the context of the death test child process. Tools such as
8374 // Valgrind heap checkers may need this to modify their behavior in death
8375 // tests. IMPORTANT: This is an internal utility. Using it may break the
8376 // implementation of death tests. User code MUST NOT use it.
8377 bool InDeathTestChild() {
8378 # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
8379
8380 // On Windows and Fuchsia, death tests are thread-safe regardless of the value
8381 // of the death_test_style flag.
8382 return !GTEST_FLAG(internal_run_death_test).empty();
8383
8384 # else
8385
8386 if (GTEST_FLAG(death_test_style) == "threadsafe")
8387 return !GTEST_FLAG(internal_run_death_test).empty();
8388 else
8389 return g_in_fast_death_test_child;
8390 #endif
8391 }
8392
8393 } // namespace internal
8394
8395 // ExitedWithCode constructor.
8396 ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) {
8397 }
8398
8399 // ExitedWithCode function-call operator.
8400 bool ExitedWithCode::operator()(int exit_status) const {
8401 # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
8402
8403 return exit_status == exit_code_;
8404
8405 # else
8406
8407 return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_;
8408
8409 # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
8410 }
8411
8412 # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
8413 // KilledBySignal constructor.
8414 KilledBySignal::KilledBySignal(int signum) : signum_(signum) {
8415 }
8416
8417 // KilledBySignal function-call operator.
8418 bool KilledBySignal::operator()(int exit_status) const {
8419 # if defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_)
8420 {
8421 bool result;
8422 if (GTEST_KILLED_BY_SIGNAL_OVERRIDE_(signum_, exit_status, &result)) {
8423 return result;
8424 }
8425 }
8426 # endif // defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_)
8427 return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_;
8428 }
8429 # endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
8430
8431 namespace internal {
8432
8433 // Utilities needed for death tests.
8434
8435 // Generates a textual description of a given exit code, in the format
8436 // specified by wait(2).
8437 static std::string ExitSummary(int exit_code) {
8438 Message m;
8439
8440 # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
8441
8442 m << "Exited with exit status " << exit_code;
8443
8444 # else
8445
8446 if (WIFEXITED(exit_code)) {
8447 m << "Exited with exit status " << WEXITSTATUS(exit_code);
8448 } else if (WIFSIGNALED(exit_code)) {
8449 m << "Terminated by signal " << WTERMSIG(exit_code);
8450 }
8451 # ifdef WCOREDUMP
8452 if (WCOREDUMP(exit_code)) {
8453 m << " (core dumped)";
8454 }
8455 # endif
8456 # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA
8457
8458 return m.GetString();
8459 }
8460
8461 // Returns true if exit_status describes a process that was terminated
8462 // by a signal, or exited normally with a nonzero exit code.
8463 bool ExitedUnsuccessfully(int exit_status) {
8464 return !ExitedWithCode(0)(exit_status);
8465 }
8466
8467 # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
8468 // Generates a textual failure message when a death test finds more than
8469 // one thread running, or cannot determine the number of threads, prior
8470 // to executing the given statement. It is the responsibility of the
8471 // caller not to pass a thread_count of 1.
8472 static std::string DeathTestThreadWarning(size_t thread_count) {
8473 Message msg;
8474 msg << "Death tests use fork(), which is unsafe particularly"
8475 << " in a threaded context. For this test, " << GTEST_NAME_ << " ";
8476 if (thread_count == 0) {
8477 msg << "couldn't detect the number of threads.";
8478 } else {
8479 msg << "detected " << thread_count << " threads.";
8480 }
8481 msg << " See "
8482 "https://github.com/google/googletest/blob/master/docs/"
8483 "advanced.md#death-tests-and-threads"
8484 << " for more explanation and suggested solutions, especially if"
8485 << " this is the last message you see before your test times out.";
8486 return msg.GetString();
8487 }
8488 # endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA
8489
8490 // Flag characters for reporting a death test that did not die.
8491 static const char kDeathTestLived = 'L';
8492 static const char kDeathTestReturned = 'R';
8493 static const char kDeathTestThrew = 'T';
8494 static const char kDeathTestInternalError = 'I';
8495
8496 #if GTEST_OS_FUCHSIA
8497
8498 // File descriptor used for the pipe in the child process.
8499 static const int kFuchsiaReadPipeFd = 3;
8500
8501 #endif
8502
8503 // An enumeration describing all of the possible ways that a death test can
8504 // conclude. DIED means that the process died while executing the test
8505 // code; LIVED means that process lived beyond the end of the test code;
8506 // RETURNED means that the test statement attempted to execute a return
8507 // statement, which is not allowed; THREW means that the test statement
8508 // returned control by throwing an exception. IN_PROGRESS means the test
8509 // has not yet concluded.
8510 enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW };
8511
8512 // Routine for aborting the program which is safe to call from an
8513 // exec-style death test child process, in which case the error
8514 // message is propagated back to the parent process. Otherwise, the
8515 // message is simply printed to stderr. In either case, the program
8516 // then exits with status 1.
8517 static void DeathTestAbort(const std::string& message) {
8518 // On a POSIX system, this function may be called from a threadsafe-style
8519 // death test child process, which operates on a very small stack. Use
8520 // the heap for any additional non-minuscule memory requirements.
8521 const InternalRunDeathTestFlag* const flag =
8522 GetUnitTestImpl()->internal_run_death_test_flag();
8523 if (flag != nullptr) {
8524 FILE* parent = posix::FDOpen(flag->write_fd(), "w");
8525 fputc(kDeathTestInternalError, parent);
8526 fprintf(parent, "%s", message.c_str());
8527 fflush(parent);
8528 _exit(1);
8529 } else {
8530 fprintf(stderr, "%s", message.c_str());
8531 fflush(stderr);
8532 posix::Abort();
8533 }
8534 }
8535
8536 // A replacement for CHECK that calls DeathTestAbort if the assertion
8537 // fails.
8538 # define GTEST_DEATH_TEST_CHECK_(expression) \
8539 do { \
8540 if (!::testing::internal::IsTrue(expression)) { \
8541 DeathTestAbort( \
8542 ::std::string("CHECK failed: File ") + __FILE__ + ", line " \
8543 + ::testing::internal::StreamableToString(__LINE__) + ": " \
8544 + #expression); \
8545 } \
8546 } while (::testing::internal::AlwaysFalse())
8547
8548 // This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for
8549 // evaluating any system call that fulfills two conditions: it must return
8550 // -1 on failure, and set errno to EINTR when it is interrupted and
8551 // should be tried again. The macro expands to a loop that repeatedly
8552 // evaluates the expression as long as it evaluates to -1 and sets
8553 // errno to EINTR. If the expression evaluates to -1 but errno is
8554 // something other than EINTR, DeathTestAbort is called.
8555 # define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \
8556 do { \
8557 int gtest_retval; \
8558 do { \
8559 gtest_retval = (expression); \
8560 } while (gtest_retval == -1 && errno == EINTR); \
8561 if (gtest_retval == -1) { \
8562 DeathTestAbort( \
8563 ::std::string("CHECK failed: File ") + __FILE__ + ", line " \
8564 + ::testing::internal::StreamableToString(__LINE__) + ": " \
8565 + #expression + " != -1"); \
8566 } \
8567 } while (::testing::internal::AlwaysFalse())
8568
8569 // Returns the message describing the last system error in errno.
8570 std::string GetLastErrnoDescription() {
8571 return errno == 0 ? "" : posix::StrError(errno);
8572 }
8573
8574 // This is called from a death test parent process to read a failure
8575 // message from the death test child process and log it with the FATAL
8576 // severity. On Windows, the message is read from a pipe handle. On other
8577 // platforms, it is read from a file descriptor.
8578 static void FailFromInternalError(int fd) {
8579 Message error;
8580 char buffer[256];
8581 int num_read;
8582
8583 do {
8584 while ((num_read = posix::Read(fd, buffer, 255)) > 0) {
8585 buffer[num_read] = '\0';
8586 error << buffer;
8587 }
8588 } while (num_read == -1 && errno == EINTR);
8589
8590 if (num_read == 0) {
8591 GTEST_LOG_(FATAL) << error.GetString();
8592 } else {
8593 const int last_error = errno;
8594 GTEST_LOG_(FATAL) << "Error while reading death test internal: "
8595 << GetLastErrnoDescription() << " [" << last_error << "]";
8596 }
8597 }
8598
8599 // Death test constructor. Increments the running death test count
8600 // for the current test.
8601 DeathTest::DeathTest() {
8602 TestInfo* const info = GetUnitTestImpl()->current_test_info();
8603 if (info == nullptr) {
8604 DeathTestAbort("Cannot run a death test outside of a TEST or "
8605 "TEST_F construct");
8606 }
8607 }
8608
8609 // Creates and returns a death test by dispatching to the current
8610 // death test factory.
8611 bool DeathTest::Create(const char* statement,
8612 Matcher<const std::string&> matcher, const char* file,
8613 int line, DeathTest** test) {
8614 return GetUnitTestImpl()->death_test_factory()->Create(
8615 statement, std::move(matcher), file, line, test);
8616 }
8617
8618 const char* DeathTest::LastMessage() {
8619 return last_death_test_message_.c_str();
8620 }
8621
8622 void DeathTest::set_last_death_test_message(const std::string& message) {
8623 last_death_test_message_ = message;
8624 }
8625
8626 std::string DeathTest::last_death_test_message_;
8627
8628 // Provides cross platform implementation for some death functionality.
8629 class DeathTestImpl : public DeathTest {
8630 protected:
8631 DeathTestImpl(const char* a_statement, Matcher<const std::string&> matcher)
8632 : statement_(a_statement),
8633 matcher_(std::move(matcher)),
8634 spawned_(false),
8635 status_(-1),
8636 outcome_(IN_PROGRESS),
8637 read_fd_(-1),
8638 write_fd_(-1) {}
8639
8640 // read_fd_ is expected to be closed and cleared by a derived class.
8641 ~DeathTestImpl() override { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); }
8642
8643 void Abort(AbortReason reason) override;
8644 bool Passed(bool status_ok) override;
8645
8646 const char* statement() const { return statement_; }
8647 bool spawned() const { return spawned_; }
8648 void set_spawned(bool is_spawned) { spawned_ = is_spawned; }
8649 int status() const { return status_; }
8650 void set_status(int a_status) { status_ = a_status; }
8651 DeathTestOutcome outcome() const { return outcome_; }
8652 void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; }
8653 int read_fd() const { return read_fd_; }
8654 void set_read_fd(int fd) { read_fd_ = fd; }
8655 int write_fd() const { return write_fd_; }
8656 void set_write_fd(int fd) { write_fd_ = fd; }
8657
8658 // Called in the parent process only. Reads the result code of the death
8659 // test child process via a pipe, interprets it to set the outcome_
8660 // member, and closes read_fd_. Outputs diagnostics and terminates in
8661 // case of unexpected codes.
8662 void ReadAndInterpretStatusByte();
8663
8664 // Returns stderr output from the child process.
8665 virtual std::string GetErrorLogs();
8666
8667 private:
8668 // The textual content of the code this object is testing. This class
8669 // doesn't own this string and should not attempt to delete it.
8670 const char* const statement_;
8671 // A matcher that's expected to match the stderr output by the child process.
8672 Matcher<const std::string&> matcher_;
8673 // True if the death test child process has been successfully spawned.
8674 bool spawned_;
8675 // The exit status of the child process.
8676 int status_;
8677 // How the death test concluded.
8678 DeathTestOutcome outcome_;
8679 // Descriptor to the read end of the pipe to the child process. It is
8680 // always -1 in the child process. The child keeps its write end of the
8681 // pipe in write_fd_.
8682 int read_fd_;
8683 // Descriptor to the child's write end of the pipe to the parent process.
8684 // It is always -1 in the parent process. The parent keeps its end of the
8685 // pipe in read_fd_.
8686 int write_fd_;
8687 };
8688
8689 // Called in the parent process only. Reads the result code of the death
8690 // test child process via a pipe, interprets it to set the outcome_
8691 // member, and closes read_fd_. Outputs diagnostics and terminates in
8692 // case of unexpected codes.
8693 void DeathTestImpl::ReadAndInterpretStatusByte() {
8694 char flag;
8695 int bytes_read;
8696
8697 // The read() here blocks until data is available (signifying the
8698 // failure of the death test) or until the pipe is closed (signifying
8699 // its success), so it's okay to call this in the parent before
8700 // the child process has exited.
8701 do {
8702 bytes_read = posix::Read(read_fd(), &flag, 1);
8703 } while (bytes_read == -1 && errno == EINTR);
8704
8705 if (bytes_read == 0) {
8706 set_outcome(DIED);
8707 } else if (bytes_read == 1) {
8708 switch (flag) {
8709 case kDeathTestReturned:
8710 set_outcome(RETURNED);
8711 break;
8712 case kDeathTestThrew:
8713 set_outcome(THREW);
8714 break;
8715 case kDeathTestLived:
8716 set_outcome(LIVED);
8717 break;
8718 case kDeathTestInternalError:
8719 FailFromInternalError(read_fd()); // Does not return.
8720 break;
8721 default:
8722 GTEST_LOG_(FATAL) << "Death test child process reported "
8723 << "unexpected status byte ("
8724 << static_cast<unsigned int>(flag) << ")";
8725 }
8726 } else {
8727 GTEST_LOG_(FATAL) << "Read from death test child process failed: "
8728 << GetLastErrnoDescription();
8729 }
8730 GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd()));
8731 set_read_fd(-1);
8732 }
8733
8734 std::string DeathTestImpl::GetErrorLogs() {
8735 return GetCapturedStderr();
8736 }
8737
8738 // Signals that the death test code which should have exited, didn't.
8739 // Should be called only in a death test child process.
8740 // Writes a status byte to the child's status file descriptor, then
8741 // calls _exit(1).
8742 void DeathTestImpl::Abort(AbortReason reason) {
8743 // The parent process considers the death test to be a failure if
8744 // it finds any data in our pipe. So, here we write a single flag byte
8745 // to the pipe, then exit.
8746 const char status_ch =
8747 reason == TEST_DID_NOT_DIE ? kDeathTestLived :
8748 reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned;
8749
8750 GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1));
8751 // We are leaking the descriptor here because on some platforms (i.e.,
8752 // when built as Windows DLL), destructors of global objects will still
8753 // run after calling _exit(). On such systems, write_fd_ will be
8754 // indirectly closed from the destructor of UnitTestImpl, causing double
8755 // close if it is also closed here. On debug configurations, double close
8756 // may assert. As there are no in-process buffers to flush here, we are
8757 // relying on the OS to close the descriptor after the process terminates
8758 // when the destructors are not run.
8759 _exit(1); // Exits w/o any normal exit hooks (we were supposed to crash)
8760 }
8761
8762 // Returns an indented copy of stderr output for a death test.
8763 // This makes distinguishing death test output lines from regular log lines
8764 // much easier.
8765 static ::std::string FormatDeathTestOutput(const ::std::string& output) {
8766 ::std::string ret;
8767 for (size_t at = 0; ; ) {
8768 const size_t line_end = output.find('\n', at);
8769 ret += "[ DEATH ] ";
8770 if (line_end == ::std::string::npos) {
8771 ret += output.substr(at);
8772 break;
8773 }
8774 ret += output.substr(at, line_end + 1 - at);
8775 at = line_end + 1;
8776 }
8777 return ret;
8778 }
8779
8780 // Assesses the success or failure of a death test, using both private
8781 // members which have previously been set, and one argument:
8782 //
8783 // Private data members:
8784 // outcome: An enumeration describing how the death test
8785 // concluded: DIED, LIVED, THREW, or RETURNED. The death test
8786 // fails in the latter three cases.
8787 // status: The exit status of the child process. On *nix, it is in the
8788 // in the format specified by wait(2). On Windows, this is the
8789 // value supplied to the ExitProcess() API or a numeric code
8790 // of the exception that terminated the program.
8791 // matcher_: A matcher that's expected to match the stderr output by the child
8792 // process.
8793 //
8794 // Argument:
8795 // status_ok: true if exit_status is acceptable in the context of
8796 // this particular death test, which fails if it is false
8797 //
8798 // Returns true if and only if all of the above conditions are met. Otherwise,
8799 // the first failing condition, in the order given above, is the one that is
8800 // reported. Also sets the last death test message string.
8801 bool DeathTestImpl::Passed(bool status_ok) {
8802 if (!spawned())
8803 return false;
8804
8805 const std::string error_message = GetErrorLogs();
8806
8807 bool success = false;
8808 Message buffer;
8809
8810 buffer << "Death test: " << statement() << "\n";
8811 switch (outcome()) {
8812 case LIVED:
8813 buffer << " Result: failed to die.\n"
8814 << " Error msg:\n" << FormatDeathTestOutput(error_message);
8815 break;
8816 case THREW:
8817 buffer << " Result: threw an exception.\n"
8818 << " Error msg:\n" << FormatDeathTestOutput(error_message);
8819 break;
8820 case RETURNED:
8821 buffer << " Result: illegal return in test statement.\n"
8822 << " Error msg:\n" << FormatDeathTestOutput(error_message);
8823 break;
8824 case DIED:
8825 if (status_ok) {
8826 if (matcher_.Matches(error_message)) {
8827 success = true;
8828 } else {
8829 std::ostringstream stream;
8830 matcher_.DescribeTo(&stream);
8831 buffer << " Result: died but not with expected error.\n"
8832 << " Expected: " << stream.str() << "\n"
8833 << "Actual msg:\n"
8834 << FormatDeathTestOutput(error_message);
8835 }
8836 } else {
8837 buffer << " Result: died but not with expected exit code:\n"
8838 << " " << ExitSummary(status()) << "\n"
8839 << "Actual msg:\n" << FormatDeathTestOutput(error_message);
8840 }
8841 break;
8842 case IN_PROGRESS:
8843 default:
8844 GTEST_LOG_(FATAL)
8845 << "DeathTest::Passed somehow called before conclusion of test";
8846 }
8847
8848 DeathTest::set_last_death_test_message(buffer.GetString());
8849 return success;
8850 }
8851
8852 # if GTEST_OS_WINDOWS
8853 // WindowsDeathTest implements death tests on Windows. Due to the
8854 // specifics of starting new processes on Windows, death tests there are
8855 // always threadsafe, and Google Test considers the
8856 // --gtest_death_test_style=fast setting to be equivalent to
8857 // --gtest_death_test_style=threadsafe there.
8858 //
8859 // A few implementation notes: Like the Linux version, the Windows
8860 // implementation uses pipes for child-to-parent communication. But due to
8861 // the specifics of pipes on Windows, some extra steps are required:
8862 //
8863 // 1. The parent creates a communication pipe and stores handles to both
8864 // ends of it.
8865 // 2. The parent starts the child and provides it with the information
8866 // necessary to acquire the handle to the write end of the pipe.
8867 // 3. The child acquires the write end of the pipe and signals the parent
8868 // using a Windows event.
8869 // 4. Now the parent can release the write end of the pipe on its side. If
8870 // this is done before step 3, the object's reference count goes down to
8871 // 0 and it is destroyed, preventing the child from acquiring it. The
8872 // parent now has to release it, or read operations on the read end of
8873 // the pipe will not return when the child terminates.
8874 // 5. The parent reads child's output through the pipe (outcome code and
8875 // any possible error messages) from the pipe, and its stderr and then
8876 // determines whether to fail the test.
8877 //
8878 // Note: to distinguish Win32 API calls from the local method and function
8879 // calls, the former are explicitly resolved in the global namespace.
8880 //
8881 class WindowsDeathTest : public DeathTestImpl {
8882 public:
8883 WindowsDeathTest(const char* a_statement, Matcher<const std::string&> matcher,
8884 const char* file, int line)
8885 : DeathTestImpl(a_statement, std::move(matcher)),
8886 file_(file),
8887 line_(line) {}
8888
8889 // All of these virtual functions are inherited from DeathTest.
8890 virtual int Wait();
8891 virtual TestRole AssumeRole();
8892
8893 private:
8894 // The name of the file in which the death test is located.
8895 const char* const file_;
8896 // The line number on which the death test is located.
8897 const int line_;
8898 // Handle to the write end of the pipe to the child process.
8899 AutoHandle write_handle_;
8900 // Child process handle.
8901 AutoHandle child_handle_;
8902 // Event the child process uses to signal the parent that it has
8903 // acquired the handle to the write end of the pipe. After seeing this
8904 // event the parent can release its own handles to make sure its
8905 // ReadFile() calls return when the child terminates.
8906 AutoHandle event_handle_;
8907 };
8908
8909 // Waits for the child in a death test to exit, returning its exit
8910 // status, or 0 if no child process exists. As a side effect, sets the
8911 // outcome data member.
8912 int WindowsDeathTest::Wait() {
8913 if (!spawned())
8914 return 0;
8915
8916 // Wait until the child either signals that it has acquired the write end
8917 // of the pipe or it dies.
8918 const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() };
8919 switch (::WaitForMultipleObjects(2,
8920 wait_handles,
8921 FALSE, // Waits for any of the handles.
8922 INFINITE)) {
8923 case WAIT_OBJECT_0:
8924 case WAIT_OBJECT_0 + 1:
8925 break;
8926 default:
8927 GTEST_DEATH_TEST_CHECK_(false); // Should not get here.
8928 }
8929
8930 // The child has acquired the write end of the pipe or exited.
8931 // We release the handle on our side and continue.
8932 write_handle_.Reset();
8933 event_handle_.Reset();
8934
8935 ReadAndInterpretStatusByte();
8936
8937 // Waits for the child process to exit if it haven't already. This
8938 // returns immediately if the child has already exited, regardless of
8939 // whether previous calls to WaitForMultipleObjects synchronized on this
8940 // handle or not.
8941 GTEST_DEATH_TEST_CHECK_(
8942 WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(),
8943 INFINITE));
8944 DWORD status_code;
8945 GTEST_DEATH_TEST_CHECK_(
8946 ::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE);
8947 child_handle_.Reset();
8948 set_status(static_cast<int>(status_code));
8949 return status();
8950 }
8951
8952 // The AssumeRole process for a Windows death test. It creates a child
8953 // process with the same executable as the current process to run the
8954 // death test. The child process is given the --gtest_filter and
8955 // --gtest_internal_run_death_test flags such that it knows to run the
8956 // current death test only.
8957 DeathTest::TestRole WindowsDeathTest::AssumeRole() {
8958 const UnitTestImpl* const impl = GetUnitTestImpl();
8959 const InternalRunDeathTestFlag* const flag =
8960 impl->internal_run_death_test_flag();
8961 const TestInfo* const info = impl->current_test_info();
8962 const int death_test_index = info->result()->death_test_count();
8963
8964 if (flag != nullptr) {
8965 // ParseInternalRunDeathTestFlag() has performed all the necessary
8966 // processing.
8967 set_write_fd(flag->write_fd());
8968 return EXECUTE_TEST;
8969 }
8970
8971 // WindowsDeathTest uses an anonymous pipe to communicate results of
8972 // a death test.
8973 SECURITY_ATTRIBUTES handles_are_inheritable = {sizeof(SECURITY_ATTRIBUTES),
8974 nullptr, TRUE};
8975 HANDLE read_handle, write_handle;
8976 GTEST_DEATH_TEST_CHECK_(
8977 ::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable,
8978 0) // Default buffer size.
8979 != FALSE);
8980 set_read_fd(::_open_osfhandle(reinterpret_cast<intptr_t>(read_handle),
8981 O_RDONLY));
8982 write_handle_.Reset(write_handle);
8983 event_handle_.Reset(::CreateEvent(
8984 &handles_are_inheritable,
8985 TRUE, // The event will automatically reset to non-signaled state.
8986 FALSE, // The initial state is non-signalled.
8987 nullptr)); // The even is unnamed.
8988 GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != nullptr);
8989 const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
8990 kFilterFlag + "=" + info->test_suite_name() +
8991 "." + info->name();
8992 const std::string internal_flag =
8993 std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag +
8994 "=" + file_ + "|" + StreamableToString(line_) + "|" +
8995 StreamableToString(death_test_index) + "|" +
8996 StreamableToString(static_cast<unsigned int>(::GetCurrentProcessId())) +
8997 // size_t has the same width as pointers on both 32-bit and 64-bit
8998 // Windows platforms.
8999 // See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx.
9000 "|" + StreamableToString(reinterpret_cast<size_t>(write_handle)) +
9001 "|" + StreamableToString(reinterpret_cast<size_t>(event_handle_.Get()));
9002
9003 char executable_path[_MAX_PATH + 1]; // NOLINT
9004 GTEST_DEATH_TEST_CHECK_(_MAX_PATH + 1 != ::GetModuleFileNameA(nullptr,
9005 executable_path,
9006 _MAX_PATH));
9007
9008 std::string command_line =
9009 std::string(::GetCommandLineA()) + " " + filter_flag + " \"" +
9010 internal_flag + "\"";
9011
9012 DeathTest::set_last_death_test_message("");
9013
9014 CaptureStderr();
9015 // Flush the log buffers since the log streams are shared with the child.
9016 FlushInfoLog();
9017
9018 // The child process will share the standard handles with the parent.
9019 STARTUPINFOA startup_info;
9020 memset(&startup_info, 0, sizeof(STARTUPINFO));
9021 startup_info.dwFlags = STARTF_USESTDHANDLES;
9022 startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE);
9023 startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE);
9024 startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE);
9025
9026 PROCESS_INFORMATION process_info;
9027 GTEST_DEATH_TEST_CHECK_(
9028 ::CreateProcessA(
9029 executable_path, const_cast<char*>(command_line.c_str()),
9030 nullptr, // Retuned process handle is not inheritable.
9031 nullptr, // Retuned thread handle is not inheritable.
9032 TRUE, // Child inherits all inheritable handles (for write_handle_).
9033 0x0, // Default creation flags.
9034 nullptr, // Inherit the parent's environment.
9035 UnitTest::GetInstance()->original_working_dir(), &startup_info,
9036 &process_info) != FALSE);
9037 child_handle_.Reset(process_info.hProcess);
9038 ::CloseHandle(process_info.hThread);
9039 set_spawned(true);
9040 return OVERSEE_TEST;
9041 }
9042
9043 # elif GTEST_OS_FUCHSIA
9044
9045 class FuchsiaDeathTest : public DeathTestImpl {
9046 public:
9047 FuchsiaDeathTest(const char* a_statement, Matcher<const std::string&> matcher,
9048 const char* file, int line)
9049 : DeathTestImpl(a_statement, std::move(matcher)),
9050 file_(file),
9051 line_(line) {}
9052
9053 // All of these virtual functions are inherited from DeathTest.
9054 int Wait() override;
9055 TestRole AssumeRole() override;
9056 std::string GetErrorLogs() override;
9057
9058 private:
9059 // The name of the file in which the death test is located.
9060 const char* const file_;
9061 // The line number on which the death test is located.
9062 const int line_;
9063 // The stderr data captured by the child process.
9064 std::string captured_stderr_;
9065
9066 zx::process child_process_;
9067 zx::channel exception_channel_;
9068 zx::socket stderr_socket_;
9069 };
9070
9071 // Utility class for accumulating command-line arguments.
9072 class Arguments {
9073 public:
9074 Arguments() { args_.push_back(nullptr); }
9075
9076 ~Arguments() {
9077 for (std::vector<char*>::iterator i = args_.begin(); i != args_.end();
9078 ++i) {
9079 free(*i);
9080 }
9081 }
9082 void AddArgument(const char* argument) {
9083 args_.insert(args_.end() - 1, posix::StrDup(argument));
9084 }
9085
9086 template <typename Str>
9087 void AddArguments(const ::std::vector<Str>& arguments) {
9088 for (typename ::std::vector<Str>::const_iterator i = arguments.begin();
9089 i != arguments.end();
9090 ++i) {
9091 args_.insert(args_.end() - 1, posix::StrDup(i->c_str()));
9092 }
9093 }
9094 char* const* Argv() {
9095 return &args_[0];
9096 }
9097
9098 int size() {
9099 return static_cast<int>(args_.size()) - 1;
9100 }
9101
9102 private:
9103 std::vector<char*> args_;
9104 };
9105
9106 // Waits for the child in a death test to exit, returning its exit
9107 // status, or 0 if no child process exists. As a side effect, sets the
9108 // outcome data member.
9109 int FuchsiaDeathTest::Wait() {
9110 const int kProcessKey = 0;
9111 const int kSocketKey = 1;
9112 const int kExceptionKey = 2;
9113
9114 if (!spawned())
9115 return 0;
9116
9117 // Create a port to wait for socket/task/exception events.
9118 zx_status_t status_zx;
9119 zx::port port;
9120 status_zx = zx::port::create(0, &port);
9121 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9122
9123 // Register to wait for the child process to terminate.
9124 status_zx = child_process_.wait_async(
9125 port, kProcessKey, ZX_PROCESS_TERMINATED, 0);
9126 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9127
9128 // Register to wait for the socket to be readable or closed.
9129 status_zx = stderr_socket_.wait_async(
9130 port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, 0);
9131 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9132
9133 // Register to wait for an exception.
9134 status_zx = exception_channel_.wait_async(
9135 port, kExceptionKey, ZX_CHANNEL_READABLE, 0);
9136 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9137
9138 bool process_terminated = false;
9139 bool socket_closed = false;
9140 do {
9141 zx_port_packet_t packet = {};
9142 status_zx = port.wait(zx::time::infinite(), &packet);
9143 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9144
9145 if (packet.key == kExceptionKey) {
9146 // Process encountered an exception. Kill it directly rather than
9147 // letting other handlers process the event. We will get a kProcessKey
9148 // event when the process actually terminates.
9149 status_zx = child_process_.kill();
9150 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9151 } else if (packet.key == kProcessKey) {
9152 // Process terminated.
9153 GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type));
9154 GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_PROCESS_TERMINATED);
9155 process_terminated = true;
9156 } else if (packet.key == kSocketKey) {
9157 GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type));
9158 if (packet.signal.observed & ZX_SOCKET_READABLE) {
9159 // Read data from the socket.
9160 constexpr size_t kBufferSize = 1024;
9161 do {
9162 size_t old_length = captured_stderr_.length();
9163 size_t bytes_read = 0;
9164 captured_stderr_.resize(old_length + kBufferSize);
9165 status_zx = stderr_socket_.read(
9166 0, &captured_stderr_.front() + old_length, kBufferSize,
9167 &bytes_read);
9168 captured_stderr_.resize(old_length + bytes_read);
9169 } while (status_zx == ZX_OK);
9170 if (status_zx == ZX_ERR_PEER_CLOSED) {
9171 socket_closed = true;
9172 } else {
9173 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_ERR_SHOULD_WAIT);
9174 status_zx = stderr_socket_.wait_async(
9175 port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, 0);
9176 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9177 }
9178 } else {
9179 GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_SOCKET_PEER_CLOSED);
9180 socket_closed = true;
9181 }
9182 }
9183 } while (!process_terminated && !socket_closed);
9184
9185 ReadAndInterpretStatusByte();
9186
9187 zx_info_process_v2_t buffer;
9188 status_zx = child_process_.get_info(
9189 ZX_INFO_PROCESS_V2, &buffer, sizeof(buffer), nullptr, nullptr);
9190 GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK);
9191
9192 GTEST_DEATH_TEST_CHECK_(buffer.flags & ZX_INFO_PROCESS_FLAG_EXITED);
9193 set_status(static_cast<int>(buffer.return_code));
9194 return status();
9195 }
9196
9197 // The AssumeRole process for a Fuchsia death test. It creates a child
9198 // process with the same executable as the current process to run the
9199 // death test. The child process is given the --gtest_filter and
9200 // --gtest_internal_run_death_test flags such that it knows to run the
9201 // current death test only.
9202 DeathTest::TestRole FuchsiaDeathTest::AssumeRole() {
9203 const UnitTestImpl* const impl = GetUnitTestImpl();
9204 const InternalRunDeathTestFlag* const flag =
9205 impl->internal_run_death_test_flag();
9206 const TestInfo* const info = impl->current_test_info();
9207 const int death_test_index = info->result()->death_test_count();
9208
9209 if (flag != nullptr) {
9210 // ParseInternalRunDeathTestFlag() has performed all the necessary
9211 // processing.
9212 set_write_fd(kFuchsiaReadPipeFd);
9213 return EXECUTE_TEST;
9214 }
9215
9216 // Flush the log buffers since the log streams are shared with the child.
9217 FlushInfoLog();
9218
9219 // Build the child process command line.
9220 const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
9221 kFilterFlag + "=" + info->test_suite_name() +
9222 "." + info->name();
9223 const std::string internal_flag =
9224 std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "="
9225 + file_ + "|"
9226 + StreamableToString(line_) + "|"
9227 + StreamableToString(death_test_index);
9228 Arguments args;
9229 args.AddArguments(GetInjectableArgvs());
9230 args.AddArgument(filter_flag.c_str());
9231 args.AddArgument(internal_flag.c_str());
9232
9233 // Build the pipe for communication with the child.
9234 zx_status_t status;
9235 zx_handle_t child_pipe_handle;
9236 int child_pipe_fd;
9237 status = fdio_pipe_half(&child_pipe_fd, &child_pipe_handle);
9238 GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
9239 set_read_fd(child_pipe_fd);
9240
9241 // Set the pipe handle for the child.
9242 fdio_spawn_action_t spawn_actions[2] = {};
9243 fdio_spawn_action_t* add_handle_action = &spawn_actions[0];
9244 add_handle_action->action = FDIO_SPAWN_ACTION_ADD_HANDLE;
9245 add_handle_action->h.id = PA_HND(PA_FD, kFuchsiaReadPipeFd);
9246 add_handle_action->h.handle = child_pipe_handle;
9247
9248 // Create a socket pair will be used to receive the child process' stderr.
9249 zx::socket stderr_producer_socket;
9250 status =
9251 zx::socket::create(0, &stderr_producer_socket, &stderr_socket_);
9252 GTEST_DEATH_TEST_CHECK_(status >= 0);
9253 int stderr_producer_fd = -1;
9254 status =
9255 fdio_fd_create(stderr_producer_socket.release(), &stderr_producer_fd);
9256 GTEST_DEATH_TEST_CHECK_(status >= 0);
9257
9258 // Make the stderr socket nonblocking.
9259 GTEST_DEATH_TEST_CHECK_(fcntl(stderr_producer_fd, F_SETFL, 0) == 0);
9260
9261 fdio_spawn_action_t* add_stderr_action = &spawn_actions[1];
9262 add_stderr_action->action = FDIO_SPAWN_ACTION_CLONE_FD;
9263 add_stderr_action->fd.local_fd = stderr_producer_fd;
9264 add_stderr_action->fd.target_fd = STDERR_FILENO;
9265
9266 // Create a child job.
9267 zx_handle_t child_job = ZX_HANDLE_INVALID;
9268 status = zx_job_create(zx_job_default(), 0, & child_job);
9269 GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
9270 zx_policy_basic_t policy;
9271 policy.condition = ZX_POL_NEW_ANY;
9272 policy.policy = ZX_POL_ACTION_ALLOW;
9273 status = zx_job_set_policy(
9274 child_job, ZX_JOB_POL_RELATIVE, ZX_JOB_POL_BASIC, &policy, 1);
9275 GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
9276
9277 // Create an exception channel attached to the |child_job|, to allow
9278 // us to suppress the system default exception handler from firing.
9279 status =
9280 zx_task_create_exception_channel(
9281 child_job, 0, exception_channel_.reset_and_get_address());
9282 GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
9283
9284 // Spawn the child process.
9285 status = fdio_spawn_etc(
9286 child_job, FDIO_SPAWN_CLONE_ALL, args.Argv()[0], args.Argv(), nullptr,
9287 2, spawn_actions, child_process_.reset_and_get_address(), nullptr);
9288 GTEST_DEATH_TEST_CHECK_(status == ZX_OK);
9289
9290 set_spawned(true);
9291 return OVERSEE_TEST;
9292 }
9293
9294 std::string FuchsiaDeathTest::GetErrorLogs() {
9295 return captured_stderr_;
9296 }
9297
9298 #else // We are neither on Windows, nor on Fuchsia.
9299
9300 // ForkingDeathTest provides implementations for most of the abstract
9301 // methods of the DeathTest interface. Only the AssumeRole method is
9302 // left undefined.
9303 class ForkingDeathTest : public DeathTestImpl {
9304 public:
9305 ForkingDeathTest(const char* statement, Matcher<const std::string&> matcher);
9306
9307 // All of these virtual functions are inherited from DeathTest.
9308 int Wait() override;
9309
9310 protected:
9311 void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; }
9312
9313 private:
9314 // PID of child process during death test; 0 in the child process itself.
9315 pid_t child_pid_;
9316 };
9317
9318 // Constructs a ForkingDeathTest.
9319 ForkingDeathTest::ForkingDeathTest(const char* a_statement,
9320 Matcher<const std::string&> matcher)
9321 : DeathTestImpl(a_statement, std::move(matcher)), child_pid_(-1) {}
9322
9323 // Waits for the child in a death test to exit, returning its exit
9324 // status, or 0 if no child process exists. As a side effect, sets the
9325 // outcome data member.
9326 int ForkingDeathTest::Wait() {
9327 if (!spawned())
9328 return 0;
9329
9330 ReadAndInterpretStatusByte();
9331
9332 int status_value;
9333 GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0));
9334 set_status(status_value);
9335 return status_value;
9336 }
9337
9338 // A concrete death test class that forks, then immediately runs the test
9339 // in the child process.
9340 class NoExecDeathTest : public ForkingDeathTest {
9341 public:
9342 NoExecDeathTest(const char* a_statement, Matcher<const std::string&> matcher)
9343 : ForkingDeathTest(a_statement, std::move(matcher)) {}
9344 TestRole AssumeRole() override;
9345 };
9346
9347 // The AssumeRole process for a fork-and-run death test. It implements a
9348 // straightforward fork, with a simple pipe to transmit the status byte.
9349 DeathTest::TestRole NoExecDeathTest::AssumeRole() {
9350 const size_t thread_count = GetThreadCount();
9351 if (thread_count != 1) {
9352 GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count);
9353 }
9354
9355 int pipe_fd[2];
9356 GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
9357
9358 DeathTest::set_last_death_test_message("");
9359 CaptureStderr();
9360 // When we fork the process below, the log file buffers are copied, but the
9361 // file descriptors are shared. We flush all log files here so that closing
9362 // the file descriptors in the child process doesn't throw off the
9363 // synchronization between descriptors and buffers in the parent process.
9364 // This is as close to the fork as possible to avoid a race condition in case
9365 // there are multiple threads running before the death test, and another
9366 // thread writes to the log file.
9367 FlushInfoLog();
9368
9369 const pid_t child_pid = fork();
9370 GTEST_DEATH_TEST_CHECK_(child_pid != -1);
9371 set_child_pid(child_pid);
9372 if (child_pid == 0) {
9373 GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0]));
9374 set_write_fd(pipe_fd[1]);
9375 // Redirects all logging to stderr in the child process to prevent
9376 // concurrent writes to the log files. We capture stderr in the parent
9377 // process and append the child process' output to a log.
9378 LogToStderr();
9379 // Event forwarding to the listeners of event listener API mush be shut
9380 // down in death test subprocesses.
9381 GetUnitTestImpl()->listeners()->SuppressEventForwarding();
9382 g_in_fast_death_test_child = true;
9383 return EXECUTE_TEST;
9384 } else {
9385 GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
9386 set_read_fd(pipe_fd[0]);
9387 set_spawned(true);
9388 return OVERSEE_TEST;
9389 }
9390 }
9391
9392 // A concrete death test class that forks and re-executes the main
9393 // program from the beginning, with command-line flags set that cause
9394 // only this specific death test to be run.
9395 class ExecDeathTest : public ForkingDeathTest {
9396 public:
9397 ExecDeathTest(const char* a_statement, Matcher<const std::string&> matcher,
9398 const char* file, int line)
9399 : ForkingDeathTest(a_statement, std::move(matcher)),
9400 file_(file),
9401 line_(line) {}
9402 TestRole AssumeRole() override;
9403
9404 private:
9405 static ::std::vector<std::string> GetArgvsForDeathTestChildProcess() {
9406 ::std::vector<std::string> args = GetInjectableArgvs();
9407 # if defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_)
9408 ::std::vector<std::string> extra_args =
9409 GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_();
9410 args.insert(args.end(), extra_args.begin(), extra_args.end());
9411 # endif // defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_)
9412 return args;
9413 }
9414 // The name of the file in which the death test is located.
9415 const char* const file_;
9416 // The line number on which the death test is located.
9417 const int line_;
9418 };
9419
9420 // Utility class for accumulating command-line arguments.
9421 class Arguments {
9422 public:
9423 Arguments() { args_.push_back(nullptr); }
9424
9425 ~Arguments() {
9426 for (std::vector<char*>::iterator i = args_.begin(); i != args_.end();
9427 ++i) {
9428 free(*i);
9429 }
9430 }
9431 void AddArgument(const char* argument) {
9432 args_.insert(args_.end() - 1, posix::StrDup(argument));
9433 }
9434
9435 template <typename Str>
9436 void AddArguments(const ::std::vector<Str>& arguments) {
9437 for (typename ::std::vector<Str>::const_iterator i = arguments.begin();
9438 i != arguments.end();
9439 ++i) {
9440 args_.insert(args_.end() - 1, posix::StrDup(i->c_str()));
9441 }
9442 }
9443 char* const* Argv() {
9444 return &args_[0];
9445 }
9446
9447 private:
9448 std::vector<char*> args_;
9449 };
9450
9451 // A struct that encompasses the arguments to the child process of a
9452 // threadsafe-style death test process.
9453 struct ExecDeathTestArgs {
9454 char* const* argv; // Command-line arguments for the child's call to exec
9455 int close_fd; // File descriptor to close; the read end of a pipe
9456 };
9457
9458 # if GTEST_OS_QNX
9459 extern "C" char** environ;
9460 # else // GTEST_OS_QNX
9461 // The main function for a threadsafe-style death test child process.
9462 // This function is called in a clone()-ed process and thus must avoid
9463 // any potentially unsafe operations like malloc or libc functions.
9464 static int ExecDeathTestChildMain(void* child_arg) {
9465 ExecDeathTestArgs* const args = static_cast<ExecDeathTestArgs*>(child_arg);
9466 GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd));
9467
9468 // We need to execute the test program in the same environment where
9469 // it was originally invoked. Therefore we change to the original
9470 // working directory first.
9471 const char* const original_dir =
9472 UnitTest::GetInstance()->original_working_dir();
9473 // We can safely call chdir() as it's a direct system call.
9474 if (chdir(original_dir) != 0) {
9475 DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " +
9476 GetLastErrnoDescription());
9477 return EXIT_FAILURE;
9478 }
9479
9480 // We can safely call execv() as it's almost a direct system call. We
9481 // cannot use execvp() as it's a libc function and thus potentially
9482 // unsafe. Since execv() doesn't search the PATH, the user must
9483 // invoke the test program via a valid path that contains at least
9484 // one path separator.
9485 execv(args->argv[0], args->argv);
9486 DeathTestAbort(std::string("execv(") + args->argv[0] + ", ...) in " +
9487 original_dir + " failed: " +
9488 GetLastErrnoDescription());
9489 return EXIT_FAILURE;
9490 }
9491 # endif // GTEST_OS_QNX
9492
9493 # if GTEST_HAS_CLONE
9494 // Two utility routines that together determine the direction the stack
9495 // grows.
9496 // This could be accomplished more elegantly by a single recursive
9497 // function, but we want to guard against the unlikely possibility of
9498 // a smart compiler optimizing the recursion away.
9499 //
9500 // GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining
9501 // StackLowerThanAddress into StackGrowsDown, which then doesn't give
9502 // correct answer.
9503 static void StackLowerThanAddress(const void* ptr,
9504 bool* result) GTEST_NO_INLINE_;
9505 // Make sure sanitizers do not tamper with the stack here.
9506 // Ideally, we want to use `__builtin_frame_address` instead of a local variable
9507 // address with sanitizer disabled, but it does not work when the
9508 // compiler optimizes the stack frame out, which happens on PowerPC targets.
9509 // HWAddressSanitizer add a random tag to the MSB of the local variable address,
9510 // making comparison result unpredictable.
9511 GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
9512 GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
9513 static void StackLowerThanAddress(const void* ptr, bool* result) {
9514 int dummy = 0;
9515 *result = std::less<const void*>()(&dummy, ptr);
9516 }
9517
9518 // Make sure AddressSanitizer does not tamper with the stack here.
9519 GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
9520 GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
9521 static bool StackGrowsDown() {
9522 int dummy = 0;
9523 bool result;
9524 StackLowerThanAddress(&dummy, &result);
9525 return result;
9526 }
9527 # endif // GTEST_HAS_CLONE
9528
9529 // Spawns a child process with the same executable as the current process in
9530 // a thread-safe manner and instructs it to run the death test. The
9531 // implementation uses fork(2) + exec. On systems where clone(2) is
9532 // available, it is used instead, being slightly more thread-safe. On QNX,
9533 // fork supports only single-threaded environments, so this function uses
9534 // spawn(2) there instead. The function dies with an error message if
9535 // anything goes wrong.
9536 static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) {
9537 ExecDeathTestArgs args = { argv, close_fd };
9538 pid_t child_pid = -1;
9539
9540 # if GTEST_OS_QNX
9541 // Obtains the current directory and sets it to be closed in the child
9542 // process.
9543 const int cwd_fd = open(".", O_RDONLY);
9544 GTEST_DEATH_TEST_CHECK_(cwd_fd != -1);
9545 GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC));
9546 // We need to execute the test program in the same environment where
9547 // it was originally invoked. Therefore we change to the original
9548 // working directory first.
9549 const char* const original_dir =
9550 UnitTest::GetInstance()->original_working_dir();
9551 // We can safely call chdir() as it's a direct system call.
9552 if (chdir(original_dir) != 0) {
9553 DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " +
9554 GetLastErrnoDescription());
9555 return EXIT_FAILURE;
9556 }
9557
9558 int fd_flags;
9559 // Set close_fd to be closed after spawn.
9560 GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD));
9561 GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD,
9562 fd_flags | FD_CLOEXEC));
9563 struct inheritance inherit = {0};
9564 // spawn is a system call.
9565 child_pid = spawn(args.argv[0], 0, nullptr, &inherit, args.argv, environ);
9566 // Restores the current working directory.
9567 GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1);
9568 GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd));
9569
9570 # else // GTEST_OS_QNX
9571 # if GTEST_OS_LINUX
9572 // When a SIGPROF signal is received while fork() or clone() are executing,
9573 // the process may hang. To avoid this, we ignore SIGPROF here and re-enable
9574 // it after the call to fork()/clone() is complete.
9575 struct sigaction saved_sigprof_action;
9576 struct sigaction ignore_sigprof_action;
9577 memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action));
9578 sigemptyset(&ignore_sigprof_action.sa_mask);
9579 ignore_sigprof_action.sa_handler = SIG_IGN;
9580 GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction(
9581 SIGPROF, &ignore_sigprof_action, &saved_sigprof_action));
9582 # endif // GTEST_OS_LINUX
9583
9584 # if GTEST_HAS_CLONE
9585 const bool use_fork = GTEST_FLAG(death_test_use_fork);
9586
9587 if (!use_fork) {
9588 static const bool stack_grows_down = StackGrowsDown();
9589 const auto stack_size = static_cast<size_t>(getpagesize() * 2);
9590 // MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead.
9591 void* const stack = mmap(nullptr, stack_size, PROT_READ | PROT_WRITE,
9592 MAP_ANON | MAP_PRIVATE, -1, 0);
9593 GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED);
9594
9595 // Maximum stack alignment in bytes: For a downward-growing stack, this
9596 // amount is subtracted from size of the stack space to get an address
9597 // that is within the stack space and is aligned on all systems we care
9598 // about. As far as I know there is no ABI with stack alignment greater
9599 // than 64. We assume stack and stack_size already have alignment of
9600 // kMaxStackAlignment.
9601 const size_t kMaxStackAlignment = 64;
9602 void* const stack_top =
9603 static_cast<char*>(stack) +
9604 (stack_grows_down ? stack_size - kMaxStackAlignment : 0);
9605 GTEST_DEATH_TEST_CHECK_(
9606 static_cast<size_t>(stack_size) > kMaxStackAlignment &&
9607 reinterpret_cast<uintptr_t>(stack_top) % kMaxStackAlignment == 0);
9608
9609 child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args);
9610
9611 GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1);
9612 }
9613 # else
9614 const bool use_fork = true;
9615 # endif // GTEST_HAS_CLONE
9616
9617 if (use_fork && (child_pid = fork()) == 0) {
9618 ExecDeathTestChildMain(&args);
9619 _exit(0);
9620 }
9621 # endif // GTEST_OS_QNX
9622 # if GTEST_OS_LINUX
9623 GTEST_DEATH_TEST_CHECK_SYSCALL_(
9624 sigaction(SIGPROF, &saved_sigprof_action, nullptr));
9625 # endif // GTEST_OS_LINUX
9626
9627 GTEST_DEATH_TEST_CHECK_(child_pid != -1);
9628 return child_pid;
9629 }
9630
9631 // The AssumeRole process for a fork-and-exec death test. It re-executes the
9632 // main program from the beginning, setting the --gtest_filter
9633 // and --gtest_internal_run_death_test flags to cause only the current
9634 // death test to be re-run.
9635 DeathTest::TestRole ExecDeathTest::AssumeRole() {
9636 const UnitTestImpl* const impl = GetUnitTestImpl();
9637 const InternalRunDeathTestFlag* const flag =
9638 impl->internal_run_death_test_flag();
9639 const TestInfo* const info = impl->current_test_info();
9640 const int death_test_index = info->result()->death_test_count();
9641
9642 if (flag != nullptr) {
9643 set_write_fd(flag->write_fd());
9644 return EXECUTE_TEST;
9645 }
9646
9647 int pipe_fd[2];
9648 GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1);
9649 // Clear the close-on-exec flag on the write end of the pipe, lest
9650 // it be closed when the child process does an exec:
9651 GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1);
9652
9653 const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ +
9654 kFilterFlag + "=" + info->test_suite_name() +
9655 "." + info->name();
9656 const std::string internal_flag =
9657 std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "="
9658 + file_ + "|" + StreamableToString(line_) + "|"
9659 + StreamableToString(death_test_index) + "|"
9660 + StreamableToString(pipe_fd[1]);
9661 Arguments args;
9662 args.AddArguments(GetArgvsForDeathTestChildProcess());
9663 args.AddArgument(filter_flag.c_str());
9664 args.AddArgument(internal_flag.c_str());
9665
9666 DeathTest::set_last_death_test_message("");
9667
9668 CaptureStderr();
9669 // See the comment in NoExecDeathTest::AssumeRole for why the next line
9670 // is necessary.
9671 FlushInfoLog();
9672
9673 const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]);
9674 GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1]));
9675 set_child_pid(child_pid);
9676 set_read_fd(pipe_fd[0]);
9677 set_spawned(true);
9678 return OVERSEE_TEST;
9679 }
9680
9681 # endif // !GTEST_OS_WINDOWS
9682
9683 // Creates a concrete DeathTest-derived class that depends on the
9684 // --gtest_death_test_style flag, and sets the pointer pointed to
9685 // by the "test" argument to its address. If the test should be
9686 // skipped, sets that pointer to NULL. Returns true, unless the
9687 // flag is set to an invalid value.
9688 bool DefaultDeathTestFactory::Create(const char* statement,
9689 Matcher<const std::string&> matcher,
9690 const char* file, int line,
9691 DeathTest** test) {
9692 UnitTestImpl* const impl = GetUnitTestImpl();
9693 const InternalRunDeathTestFlag* const flag =
9694 impl->internal_run_death_test_flag();
9695 const int death_test_index = impl->current_test_info()
9696 ->increment_death_test_count();
9697
9698 if (flag != nullptr) {
9699 if (death_test_index > flag->index()) {
9700 DeathTest::set_last_death_test_message(
9701 "Death test count (" + StreamableToString(death_test_index)
9702 + ") somehow exceeded expected maximum ("
9703 + StreamableToString(flag->index()) + ")");
9704 return false;
9705 }
9706
9707 if (!(flag->file() == file && flag->line() == line &&
9708 flag->index() == death_test_index)) {
9709 *test = nullptr;
9710 return true;
9711 }
9712 }
9713
9714 # if GTEST_OS_WINDOWS
9715
9716 if (GTEST_FLAG(death_test_style) == "threadsafe" ||
9717 GTEST_FLAG(death_test_style) == "fast") {
9718 *test = new WindowsDeathTest(statement, std::move(matcher), file, line);
9719 }
9720
9721 # elif GTEST_OS_FUCHSIA
9722
9723 if (GTEST_FLAG(death_test_style) == "threadsafe" ||
9724 GTEST_FLAG(death_test_style) == "fast") {
9725 *test = new FuchsiaDeathTest(statement, std::move(matcher), file, line);
9726 }
9727
9728 # else
9729
9730 if (GTEST_FLAG(death_test_style) == "threadsafe") {
9731 *test = new ExecDeathTest(statement, std::move(matcher), file, line);
9732 } else if (GTEST_FLAG(death_test_style) == "fast") {
9733 *test = new NoExecDeathTest(statement, std::move(matcher));
9734 }
9735
9736 # endif // GTEST_OS_WINDOWS
9737
9738 else { // NOLINT - this is more readable than unbalanced brackets inside #if.
9739 DeathTest::set_last_death_test_message(
9740 "Unknown death test style \"" + GTEST_FLAG(death_test_style)
9741 + "\" encountered");
9742 return false;
9743 }
9744
9745 return true;
9746 }
9747
9748 # if GTEST_OS_WINDOWS
9749 // Recreates the pipe and event handles from the provided parameters,
9750 // signals the event, and returns a file descriptor wrapped around the pipe
9751 // handle. This function is called in the child process only.
9752 static int GetStatusFileDescriptor(unsigned int parent_process_id,
9753 size_t write_handle_as_size_t,
9754 size_t event_handle_as_size_t) {
9755 AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE,
9756 FALSE, // Non-inheritable.
9757 parent_process_id));
9758 if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) {
9759 DeathTestAbort("Unable to open parent process " +
9760 StreamableToString(parent_process_id));
9761 }
9762
9763 GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t));
9764
9765 const HANDLE write_handle =
9766 reinterpret_cast<HANDLE>(write_handle_as_size_t);
9767 HANDLE dup_write_handle;
9768
9769 // The newly initialized handle is accessible only in the parent
9770 // process. To obtain one accessible within the child, we need to use
9771 // DuplicateHandle.
9772 if (!::DuplicateHandle(parent_process_handle.Get(), write_handle,
9773 ::GetCurrentProcess(), &dup_write_handle,
9774 0x0, // Requested privileges ignored since
9775 // DUPLICATE_SAME_ACCESS is used.
9776 FALSE, // Request non-inheritable handler.
9777 DUPLICATE_SAME_ACCESS)) {
9778 DeathTestAbort("Unable to duplicate the pipe handle " +
9779 StreamableToString(write_handle_as_size_t) +
9780 " from the parent process " +
9781 StreamableToString(parent_process_id));
9782 }
9783
9784 const HANDLE event_handle = reinterpret_cast<HANDLE>(event_handle_as_size_t);
9785 HANDLE dup_event_handle;
9786
9787 if (!::DuplicateHandle(parent_process_handle.Get(), event_handle,
9788 ::GetCurrentProcess(), &dup_event_handle,
9789 0x0,
9790 FALSE,
9791 DUPLICATE_SAME_ACCESS)) {
9792 DeathTestAbort("Unable to duplicate the event handle " +
9793 StreamableToString(event_handle_as_size_t) +
9794 " from the parent process " +
9795 StreamableToString(parent_process_id));
9796 }
9797
9798 const int write_fd =
9799 ::_open_osfhandle(reinterpret_cast<intptr_t>(dup_write_handle), O_APPEND);
9800 if (write_fd == -1) {
9801 DeathTestAbort("Unable to convert pipe handle " +
9802 StreamableToString(write_handle_as_size_t) +
9803 " to a file descriptor");
9804 }
9805
9806 // Signals the parent that the write end of the pipe has been acquired
9807 // so the parent can release its own write end.
9808 ::SetEvent(dup_event_handle);
9809
9810 return write_fd;
9811 }
9812 # endif // GTEST_OS_WINDOWS
9813
9814 // Returns a newly created InternalRunDeathTestFlag object with fields
9815 // initialized from the GTEST_FLAG(internal_run_death_test) flag if
9816 // the flag is specified; otherwise returns NULL.
9817 InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() {
9818 if (GTEST_FLAG(internal_run_death_test) == "") return nullptr;
9819
9820 // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we
9821 // can use it here.
9822 int line = -1;
9823 int index = -1;
9824 ::std::vector< ::std::string> fields;
9825 SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields);
9826 int write_fd = -1;
9827
9828 # if GTEST_OS_WINDOWS
9829
9830 unsigned int parent_process_id = 0;
9831 size_t write_handle_as_size_t = 0;
9832 size_t event_handle_as_size_t = 0;
9833
9834 if (fields.size() != 6
9835 || !ParseNaturalNumber(fields[1], &line)
9836 || !ParseNaturalNumber(fields[2], &index)
9837 || !ParseNaturalNumber(fields[3], &parent_process_id)
9838 || !ParseNaturalNumber(fields[4], &write_handle_as_size_t)
9839 || !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) {
9840 DeathTestAbort("Bad --gtest_internal_run_death_test flag: " +
9841 GTEST_FLAG(internal_run_death_test));
9842 }
9843 write_fd = GetStatusFileDescriptor(parent_process_id,
9844 write_handle_as_size_t,
9845 event_handle_as_size_t);
9846
9847 # elif GTEST_OS_FUCHSIA
9848
9849 if (fields.size() != 3
9850 || !ParseNaturalNumber(fields[1], &line)
9851 || !ParseNaturalNumber(fields[2], &index)) {
9852 DeathTestAbort("Bad --gtest_internal_run_death_test flag: "
9853 + GTEST_FLAG(internal_run_death_test));
9854 }
9855
9856 # else
9857
9858 if (fields.size() != 4
9859 || !ParseNaturalNumber(fields[1], &line)
9860 || !ParseNaturalNumber(fields[2], &index)
9861 || !ParseNaturalNumber(fields[3], &write_fd)) {
9862 DeathTestAbort("Bad --gtest_internal_run_death_test flag: "
9863 + GTEST_FLAG(internal_run_death_test));
9864 }
9865
9866 # endif // GTEST_OS_WINDOWS
9867
9868 return new InternalRunDeathTestFlag(fields[0], line, index, write_fd);
9869 }
9870
9871 } // namespace internal
9872
9873 #endif // GTEST_HAS_DEATH_TEST
9874
9875 } // namespace testing
9876 // Copyright 2008, Google Inc.
9877 // All rights reserved.
9878 //
9879 // Redistribution and use in source and binary forms, with or without
9880 // modification, are permitted provided that the following conditions are
9881 // met:
9882 //
9883 // * Redistributions of source code must retain the above copyright
9884 // notice, this list of conditions and the following disclaimer.
9885 // * Redistributions in binary form must reproduce the above
9886 // copyright notice, this list of conditions and the following disclaimer
9887 // in the documentation and/or other materials provided with the
9888 // distribution.
9889 // * Neither the name of Google Inc. nor the names of its
9890 // contributors may be used to endorse or promote products derived from
9891 // this software without specific prior written permission.
9892 //
9893 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
9894 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
9895 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
9896 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
9897 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
9898 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
9899 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
9900 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
9901 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
9902 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
9903 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
9904
9905
9906 #include <stdlib.h>
9907
9908 #if GTEST_OS_WINDOWS_MOBILE
9909 # include <windows.h>
9910 #elif GTEST_OS_WINDOWS
9911 # include <direct.h>
9912 # include <io.h>
9913 #else
9914 # include <limits.h>
9915 # include <climits> // Some Linux distributions define PATH_MAX here.
9916 #endif // GTEST_OS_WINDOWS_MOBILE
9917
9918
9919 #if GTEST_OS_WINDOWS
9920 # define GTEST_PATH_MAX_ _MAX_PATH
9921 #elif defined(PATH_MAX)
9922 # define GTEST_PATH_MAX_ PATH_MAX
9923 #elif defined(_XOPEN_PATH_MAX)
9924 # define GTEST_PATH_MAX_ _XOPEN_PATH_MAX
9925 #else
9926 # define GTEST_PATH_MAX_ _POSIX_PATH_MAX
9927 #endif // GTEST_OS_WINDOWS
9928
9929 namespace testing {
9930 namespace internal {
9931
9932 #if GTEST_OS_WINDOWS
9933 // On Windows, '\\' is the standard path separator, but many tools and the
9934 // Windows API also accept '/' as an alternate path separator. Unless otherwise
9935 // noted, a file path can contain either kind of path separators, or a mixture
9936 // of them.
9937 const char kPathSeparator = '\\';
9938 const char kAlternatePathSeparator = '/';
9939 const char kAlternatePathSeparatorString[] = "/";
9940 # if GTEST_OS_WINDOWS_MOBILE
9941 // Windows CE doesn't have a current directory. You should not use
9942 // the current directory in tests on Windows CE, but this at least
9943 // provides a reasonable fallback.
9944 const char kCurrentDirectoryString[] = "\\";
9945 // Windows CE doesn't define INVALID_FILE_ATTRIBUTES
9946 const DWORD kInvalidFileAttributes = 0xffffffff;
9947 # else
9948 const char kCurrentDirectoryString[] = ".\\";
9949 # endif // GTEST_OS_WINDOWS_MOBILE
9950 #else
9951 const char kPathSeparator = '/';
9952 const char kCurrentDirectoryString[] = "./";
9953 #endif // GTEST_OS_WINDOWS
9954
9955 // Returns whether the given character is a valid path separator.
9956 static bool IsPathSeparator(char c) {
9957 #if GTEST_HAS_ALT_PATH_SEP_
9958 return (c == kPathSeparator) || (c == kAlternatePathSeparator);
9959 #else
9960 return c == kPathSeparator;
9961 #endif
9962 }
9963
9964 // Returns the current working directory, or "" if unsuccessful.
9965 FilePath FilePath::GetCurrentDir() {
9966 #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || \
9967 GTEST_OS_WINDOWS_RT || GTEST_OS_ESP8266 || GTEST_OS_ESP32 || \
9968 GTEST_OS_XTENSA
9969 // These platforms do not have a current directory, so we just return
9970 // something reasonable.
9971 return FilePath(kCurrentDirectoryString);
9972 #elif GTEST_OS_WINDOWS
9973 char cwd[GTEST_PATH_MAX_ + 1] = { '\0' };
9974 return FilePath(_getcwd(cwd, sizeof(cwd)) == nullptr ? "" : cwd);
9975 #else
9976 char cwd[GTEST_PATH_MAX_ + 1] = { '\0' };
9977 char* result = getcwd(cwd, sizeof(cwd));
9978 # if GTEST_OS_NACL
9979 // getcwd will likely fail in NaCl due to the sandbox, so return something
9980 // reasonable. The user may have provided a shim implementation for getcwd,
9981 // however, so fallback only when failure is detected.
9982 return FilePath(result == nullptr ? kCurrentDirectoryString : cwd);
9983 # endif // GTEST_OS_NACL
9984 return FilePath(result == nullptr ? "" : cwd);
9985 #endif // GTEST_OS_WINDOWS_MOBILE
9986 }
9987
9988 // Returns a copy of the FilePath with the case-insensitive extension removed.
9989 // Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns
9990 // FilePath("dir/file"). If a case-insensitive extension is not
9991 // found, returns a copy of the original FilePath.
9992 FilePath FilePath::RemoveExtension(const char* extension) const {
9993 const std::string dot_extension = std::string(".") + extension;
9994 if (String::EndsWithCaseInsensitive(pathname_, dot_extension)) {
9995 return FilePath(pathname_.substr(
9996 0, pathname_.length() - dot_extension.length()));
9997 }
9998 return *this;
9999 }
10000
10001 // Returns a pointer to the last occurrence of a valid path separator in
10002 // the FilePath. On Windows, for example, both '/' and '\' are valid path
10003 // separators. Returns NULL if no path separator was found.
10004 const char* FilePath::FindLastPathSeparator() const {
10005 const char* const last_sep = strrchr(c_str(), kPathSeparator);
10006 #if GTEST_HAS_ALT_PATH_SEP_
10007 const char* const last_alt_sep = strrchr(c_str(), kAlternatePathSeparator);
10008 // Comparing two pointers of which only one is NULL is undefined.
10009 if (last_alt_sep != nullptr &&
10010 (last_sep == nullptr || last_alt_sep > last_sep)) {
10011 return last_alt_sep;
10012 }
10013 #endif
10014 return last_sep;
10015 }
10016
10017 // Returns a copy of the FilePath with the directory part removed.
10018 // Example: FilePath("path/to/file").RemoveDirectoryName() returns
10019 // FilePath("file"). If there is no directory part ("just_a_file"), it returns
10020 // the FilePath unmodified. If there is no file part ("just_a_dir/") it
10021 // returns an empty FilePath ("").
10022 // On Windows platform, '\' is the path separator, otherwise it is '/'.
10023 FilePath FilePath::RemoveDirectoryName() const {
10024 const char* const last_sep = FindLastPathSeparator();
10025 return last_sep ? FilePath(last_sep + 1) : *this;
10026 }
10027
10028 // RemoveFileName returns the directory path with the filename removed.
10029 // Example: FilePath("path/to/file").RemoveFileName() returns "path/to/".
10030 // If the FilePath is "a_file" or "/a_file", RemoveFileName returns
10031 // FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does
10032 // not have a file, like "just/a/dir/", it returns the FilePath unmodified.
10033 // On Windows platform, '\' is the path separator, otherwise it is '/'.
10034 FilePath FilePath::RemoveFileName() const {
10035 const char* const last_sep = FindLastPathSeparator();
10036 std::string dir;
10037 if (last_sep) {
10038 dir = std::string(c_str(), static_cast<size_t>(last_sep + 1 - c_str()));
10039 } else {
10040 dir = kCurrentDirectoryString;
10041 }
10042 return FilePath(dir);
10043 }
10044
10045 // Helper functions for naming files in a directory for xml output.
10046
10047 // Given directory = "dir", base_name = "test", number = 0,
10048 // extension = "xml", returns "dir/test.xml". If number is greater
10049 // than zero (e.g., 12), returns "dir/test_12.xml".
10050 // On Windows platform, uses \ as the separator rather than /.
10051 FilePath FilePath::MakeFileName(const FilePath& directory,
10052 const FilePath& base_name,
10053 int number,
10054 const char* extension) {
10055 std::string file;
10056 if (number == 0) {
10057 file = base_name.string() + "." + extension;
10058 } else {
10059 file = base_name.string() + "_" + StreamableToString(number)
10060 + "." + extension;
10061 }
10062 return ConcatPaths(directory, FilePath(file));
10063 }
10064
10065 // Given directory = "dir", relative_path = "test.xml", returns "dir/test.xml".
10066 // On Windows, uses \ as the separator rather than /.
10067 FilePath FilePath::ConcatPaths(const FilePath& directory,
10068 const FilePath& relative_path) {
10069 if (directory.IsEmpty())
10070 return relative_path;
10071 const FilePath dir(directory.RemoveTrailingPathSeparator());
10072 return FilePath(dir.string() + kPathSeparator + relative_path.string());
10073 }
10074
10075 // Returns true if pathname describes something findable in the file-system,
10076 // either a file, directory, or whatever.
10077 bool FilePath::FileOrDirectoryExists() const {
10078 #if GTEST_OS_WINDOWS_MOBILE
10079 LPCWSTR unicode = String::AnsiToUtf16(pathname_.c_str());
10080 const DWORD attributes = GetFileAttributes(unicode);
10081 delete [] unicode;
10082 return attributes != kInvalidFileAttributes;
10083 #else
10084 posix::StatStruct file_stat;
10085 return posix::Stat(pathname_.c_str(), &file_stat) == 0;
10086 #endif // GTEST_OS_WINDOWS_MOBILE
10087 }
10088
10089 // Returns true if pathname describes a directory in the file-system
10090 // that exists.
10091 bool FilePath::DirectoryExists() const {
10092 bool result = false;
10093 #if GTEST_OS_WINDOWS
10094 // Don't strip off trailing separator if path is a root directory on
10095 // Windows (like "C:\\").
10096 const FilePath& path(IsRootDirectory() ? *this :
10097 RemoveTrailingPathSeparator());
10098 #else
10099 const FilePath& path(*this);
10100 #endif
10101
10102 #if GTEST_OS_WINDOWS_MOBILE
10103 LPCWSTR unicode = String::AnsiToUtf16(path.c_str());
10104 const DWORD attributes = GetFileAttributes(unicode);
10105 delete [] unicode;
10106 if ((attributes != kInvalidFileAttributes) &&
10107 (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
10108 result = true;
10109 }
10110 #else
10111 posix::StatStruct file_stat;
10112 result = posix::Stat(path.c_str(), &file_stat) == 0 &&
10113 posix::IsDir(file_stat);
10114 #endif // GTEST_OS_WINDOWS_MOBILE
10115
10116 return result;
10117 }
10118
10119 // Returns true if pathname describes a root directory. (Windows has one
10120 // root directory per disk drive.)
10121 bool FilePath::IsRootDirectory() const {
10122 #if GTEST_OS_WINDOWS
10123 return pathname_.length() == 3 && IsAbsolutePath();
10124 #else
10125 return pathname_.length() == 1 && IsPathSeparator(pathname_.c_str()[0]);
10126 #endif
10127 }
10128
10129 // Returns true if pathname describes an absolute path.
10130 bool FilePath::IsAbsolutePath() const {
10131 const char* const name = pathname_.c_str();
10132 #if GTEST_OS_WINDOWS
10133 return pathname_.length() >= 3 &&
10134 ((name[0] >= 'a' && name[0] <= 'z') ||
10135 (name[0] >= 'A' && name[0] <= 'Z')) &&
10136 name[1] == ':' &&
10137 IsPathSeparator(name[2]);
10138 #else
10139 return IsPathSeparator(name[0]);
10140 #endif
10141 }
10142
10143 // Returns a pathname for a file that does not currently exist. The pathname
10144 // will be directory/base_name.extension or
10145 // directory/base_name_<number>.extension if directory/base_name.extension
10146 // already exists. The number will be incremented until a pathname is found
10147 // that does not already exist.
10148 // Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'.
10149 // There could be a race condition if two or more processes are calling this
10150 // function at the same time -- they could both pick the same filename.
10151 FilePath FilePath::GenerateUniqueFileName(const FilePath& directory,
10152 const FilePath& base_name,
10153 const char* extension) {
10154 FilePath full_pathname;
10155 int number = 0;
10156 do {
10157 full_pathname.Set(MakeFileName(directory, base_name, number++, extension));
10158 } while (full_pathname.FileOrDirectoryExists());
10159 return full_pathname;
10160 }
10161
10162 // Returns true if FilePath ends with a path separator, which indicates that
10163 // it is intended to represent a directory. Returns false otherwise.
10164 // This does NOT check that a directory (or file) actually exists.
10165 bool FilePath::IsDirectory() const {
10166 return !pathname_.empty() &&
10167 IsPathSeparator(pathname_.c_str()[pathname_.length() - 1]);
10168 }
10169
10170 // Create directories so that path exists. Returns true if successful or if
10171 // the directories already exist; returns false if unable to create directories
10172 // for any reason.
10173 bool FilePath::CreateDirectoriesRecursively() const {
10174 if (!this->IsDirectory()) {
10175 return false;
10176 }
10177
10178 if (pathname_.length() == 0 || this->DirectoryExists()) {
10179 return true;
10180 }
10181
10182 const FilePath parent(this->RemoveTrailingPathSeparator().RemoveFileName());
10183 return parent.CreateDirectoriesRecursively() && this->CreateFolder();
10184 }
10185
10186 // Create the directory so that path exists. Returns true if successful or
10187 // if the directory already exists; returns false if unable to create the
10188 // directory for any reason, including if the parent directory does not
10189 // exist. Not named "CreateDirectory" because that's a macro on Windows.
10190 bool FilePath::CreateFolder() const {
10191 #if GTEST_OS_WINDOWS_MOBILE
10192 FilePath removed_sep(this->RemoveTrailingPathSeparator());
10193 LPCWSTR unicode = String::AnsiToUtf16(removed_sep.c_str());
10194 int result = CreateDirectory(unicode, nullptr) ? 0 : -1;
10195 delete [] unicode;
10196 #elif GTEST_OS_WINDOWS
10197 int result = _mkdir(pathname_.c_str());
10198 #elif GTEST_OS_ESP8266 || GTEST_OS_XTENSA
10199 // do nothing
10200 int result = 0;
10201 #else
10202 int result = mkdir(pathname_.c_str(), 0777);
10203 #endif // GTEST_OS_WINDOWS_MOBILE
10204
10205 if (result == -1) {
10206 return this->DirectoryExists(); // An error is OK if the directory exists.
10207 }
10208 return true; // No error.
10209 }
10210
10211 // If input name has a trailing separator character, remove it and return the
10212 // name, otherwise return the name string unmodified.
10213 // On Windows platform, uses \ as the separator, other platforms use /.
10214 FilePath FilePath::RemoveTrailingPathSeparator() const {
10215 return IsDirectory()
10216 ? FilePath(pathname_.substr(0, pathname_.length() - 1))
10217 : *this;
10218 }
10219
10220 // Removes any redundant separators that might be in the pathname.
10221 // For example, "bar///foo" becomes "bar/foo". Does not eliminate other
10222 // redundancies that might be in a pathname involving "." or "..".
10223 void FilePath::Normalize() {
10224 auto out = pathname_.begin();
10225
10226 for (const char character : pathname_) {
10227 if (!IsPathSeparator(character)) {
10228 *(out++) = character;
10229 } else if (out == pathname_.begin() || *std::prev(out) != kPathSeparator) {
10230 *(out++) = kPathSeparator;
10231 } else {
10232 continue;
10233 }
10234 }
10235
10236 pathname_.erase(out, pathname_.end());
10237 }
10238
10239 } // namespace internal
10240 } // namespace testing
10241 // Copyright 2007, Google Inc.
10242 // All rights reserved.
10243 //
10244 // Redistribution and use in source and binary forms, with or without
10245 // modification, are permitted provided that the following conditions are
10246 // met:
10247 //
10248 // * Redistributions of source code must retain the above copyright
10249 // notice, this list of conditions and the following disclaimer.
10250 // * Redistributions in binary form must reproduce the above
10251 // copyright notice, this list of conditions and the following disclaimer
10252 // in the documentation and/or other materials provided with the
10253 // distribution.
10254 // * Neither the name of Google Inc. nor the names of its
10255 // contributors may be used to endorse or promote products derived from
10256 // this software without specific prior written permission.
10257 //
10258 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
10259 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
10260 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
10261 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
10262 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
10263 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
10264 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
10265 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
10266 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
10267 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
10268 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
10269
10270 // The Google C++ Testing and Mocking Framework (Google Test)
10271 //
10272 // This file implements just enough of the matcher interface to allow
10273 // EXPECT_DEATH and friends to accept a matcher argument.
10274
10275
10276 #include <string>
10277
10278 namespace testing {
10279
10280 // Constructs a matcher that matches a const std::string& whose value is
10281 // equal to s.
10282 Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
10283
10284 // Constructs a matcher that matches a const std::string& whose value is
10285 // equal to s.
10286 Matcher<const std::string&>::Matcher(const char* s) {
10287 *this = Eq(std::string(s));
10288 }
10289
10290 // Constructs a matcher that matches a std::string whose value is equal to
10291 // s.
10292 Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
10293
10294 // Constructs a matcher that matches a std::string whose value is equal to
10295 // s.
10296 Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
10297
10298 #if GTEST_INTERNAL_HAS_STRING_VIEW
10299 // Constructs a matcher that matches a const StringView& whose value is
10300 // equal to s.
10301 Matcher<const internal::StringView&>::Matcher(const std::string& s) {
10302 *this = Eq(s);
10303 }
10304
10305 // Constructs a matcher that matches a const StringView& whose value is
10306 // equal to s.
10307 Matcher<const internal::StringView&>::Matcher(const char* s) {
10308 *this = Eq(std::string(s));
10309 }
10310
10311 // Constructs a matcher that matches a const StringView& whose value is
10312 // equal to s.
10313 Matcher<const internal::StringView&>::Matcher(internal::StringView s) {
10314 *this = Eq(std::string(s));
10315 }
10316
10317 // Constructs a matcher that matches a StringView whose value is equal to
10318 // s.
10319 Matcher<internal::StringView>::Matcher(const std::string& s) { *this = Eq(s); }
10320
10321 // Constructs a matcher that matches a StringView whose value is equal to
10322 // s.
10323 Matcher<internal::StringView>::Matcher(const char* s) {
10324 *this = Eq(std::string(s));
10325 }
10326
10327 // Constructs a matcher that matches a StringView whose value is equal to
10328 // s.
10329 Matcher<internal::StringView>::Matcher(internal::StringView s) {
10330 *this = Eq(std::string(s));
10331 }
10332 #endif // GTEST_INTERNAL_HAS_STRING_VIEW
10333
10334 } // namespace testing
10335 // Copyright 2008, Google Inc.
10336 // All rights reserved.
10337 //
10338 // Redistribution and use in source and binary forms, with or without
10339 // modification, are permitted provided that the following conditions are
10340 // met:
10341 //
10342 // * Redistributions of source code must retain the above copyright
10343 // notice, this list of conditions and the following disclaimer.
10344 // * Redistributions in binary form must reproduce the above
10345 // copyright notice, this list of conditions and the following disclaimer
10346 // in the documentation and/or other materials provided with the
10347 // distribution.
10348 // * Neither the name of Google Inc. nor the names of its
10349 // contributors may be used to endorse or promote products derived from
10350 // this software without specific prior written permission.
10351 //
10352 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
10353 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
10354 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
10355 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
10356 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
10357 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
10358 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
10359 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
10360 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
10361 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
10362 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
10363
10364
10365
10366 #include <limits.h>
10367 #include <stdio.h>
10368 #include <stdlib.h>
10369 #include <string.h>
10370 #include <cstdint>
10371 #include <fstream>
10372 #include <memory>
10373
10374 #if GTEST_OS_WINDOWS
10375 # include <windows.h>
10376 # include <io.h>
10377 # include <sys/stat.h>
10378 # include <map> // Used in ThreadLocal.
10379 # ifdef _MSC_VER
10380 # include <crtdbg.h>
10381 # endif // _MSC_VER
10382 #else
10383 # include <unistd.h>
10384 #endif // GTEST_OS_WINDOWS
10385
10386 #if GTEST_OS_MAC
10387 # include <mach/mach_init.h>
10388 # include <mach/task.h>
10389 # include <mach/vm_map.h>
10390 #endif // GTEST_OS_MAC
10391
10392 #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
10393 GTEST_OS_NETBSD || GTEST_OS_OPENBSD
10394 # include <sys/sysctl.h>
10395 # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
10396 # include <sys/user.h>
10397 # endif
10398 #endif
10399
10400 #if GTEST_OS_QNX
10401 # include <devctl.h>
10402 # include <fcntl.h>
10403 # include <sys/procfs.h>
10404 #endif // GTEST_OS_QNX
10405
10406 #if GTEST_OS_AIX
10407 # include <procinfo.h>
10408 # include <sys/types.h>
10409 #endif // GTEST_OS_AIX
10410
10411 #if GTEST_OS_FUCHSIA
10412 # include <zircon/process.h>
10413 # include <zircon/syscalls.h>
10414 #endif // GTEST_OS_FUCHSIA
10415
10416
10417 namespace testing {
10418 namespace internal {
10419
10420 #if defined(_MSC_VER) || defined(__BORLANDC__)
10421 // MSVC and C++Builder do not provide a definition of STDERR_FILENO.
10422 const int kStdOutFileno = 1;
10423 const int kStdErrFileno = 2;
10424 #else
10425 const int kStdOutFileno = STDOUT_FILENO;
10426 const int kStdErrFileno = STDERR_FILENO;
10427 #endif // _MSC_VER
10428
10429 #if GTEST_OS_LINUX
10430
10431 namespace {
10432 template <typename T>
10433 T ReadProcFileField(const std::string& filename, int field) {
10434 std::string dummy;
10435 std::ifstream file(filename.c_str());
10436 while (field-- > 0) {
10437 file >> dummy;
10438 }
10439 T output = 0;
10440 file >> output;
10441 return output;
10442 }
10443 } // namespace
10444
10445 // Returns the number of active threads, or 0 when there is an error.
10446 size_t GetThreadCount() {
10447 const std::string filename =
10448 (Message() << "/proc/" << getpid() << "/stat").GetString();
10449 return ReadProcFileField<size_t>(filename, 19);
10450 }
10451
10452 #elif GTEST_OS_MAC
10453
10454 size_t GetThreadCount() {
10455 const task_t task = mach_task_self();
10456 mach_msg_type_number_t thread_count;
10457 thread_act_array_t thread_list;
10458 const kern_return_t status = task_threads(task, &thread_list, &thread_count);
10459 if (status == KERN_SUCCESS) {
10460 // task_threads allocates resources in thread_list and we need to free them
10461 // to avoid leaks.
10462 vm_deallocate(task,
10463 reinterpret_cast<vm_address_t>(thread_list),
10464 sizeof(thread_t) * thread_count);
10465 return static_cast<size_t>(thread_count);
10466 } else {
10467 return 0;
10468 }
10469 }
10470
10471 #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \
10472 GTEST_OS_NETBSD
10473
10474 #if GTEST_OS_NETBSD
10475 #undef KERN_PROC
10476 #define KERN_PROC KERN_PROC2
10477 #define kinfo_proc kinfo_proc2
10478 #endif
10479
10480 #if GTEST_OS_DRAGONFLY
10481 #define KP_NLWP(kp) (kp.kp_nthreads)
10482 #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD
10483 #define KP_NLWP(kp) (kp.ki_numthreads)
10484 #elif GTEST_OS_NETBSD
10485 #define KP_NLWP(kp) (kp.p_nlwps)
10486 #endif
10487
10488 // Returns the number of threads running in the process, or 0 to indicate that
10489 // we cannot detect it.
10490 size_t GetThreadCount() {
10491 int mib[] = {
10492 CTL_KERN,
10493 KERN_PROC,
10494 KERN_PROC_PID,
10495 getpid(),
10496 #if GTEST_OS_NETBSD
10497 sizeof(struct kinfo_proc),
10498 1,
10499 #endif
10500 };
10501 u_int miblen = sizeof(mib) / sizeof(mib[0]);
10502 struct kinfo_proc info;
10503 size_t size = sizeof(info);
10504 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
10505 return 0;
10506 }
10507 return static_cast<size_t>(KP_NLWP(info));
10508 }
10509 #elif GTEST_OS_OPENBSD
10510
10511 // Returns the number of threads running in the process, or 0 to indicate that
10512 // we cannot detect it.
10513 size_t GetThreadCount() {
10514 int mib[] = {
10515 CTL_KERN,
10516 KERN_PROC,
10517 KERN_PROC_PID | KERN_PROC_SHOW_THREADS,
10518 getpid(),
10519 sizeof(struct kinfo_proc),
10520 0,
10521 };
10522 u_int miblen = sizeof(mib) / sizeof(mib[0]);
10523
10524 // get number of structs
10525 size_t size;
10526 if (sysctl(mib, miblen, NULL, &size, NULL, 0)) {
10527 return 0;
10528 }
10529
10530 mib[5] = static_cast<int>(size / static_cast<size_t>(mib[4]));
10531
10532 // populate array of structs
10533 struct kinfo_proc info[mib[5]];
10534 if (sysctl(mib, miblen, &info, &size, NULL, 0)) {
10535 return 0;
10536 }
10537
10538 // exclude empty members
10539 size_t nthreads = 0;
10540 for (size_t i = 0; i < size / static_cast<size_t>(mib[4]); i++) {
10541 if (info[i].p_tid != -1)
10542 nthreads++;
10543 }
10544 return nthreads;
10545 }
10546
10547 #elif GTEST_OS_QNX
10548
10549 // Returns the number of threads running in the process, or 0 to indicate that
10550 // we cannot detect it.
10551 size_t GetThreadCount() {
10552 const int fd = open("/proc/self/as", O_RDONLY);
10553 if (fd < 0) {
10554 return 0;
10555 }
10556 procfs_info process_info;
10557 const int status =
10558 devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr);
10559 close(fd);
10560 if (status == EOK) {
10561 return static_cast<size_t>(process_info.num_threads);
10562 } else {
10563 return 0;
10564 }
10565 }
10566
10567 #elif GTEST_OS_AIX
10568
10569 size_t GetThreadCount() {
10570 struct procentry64 entry;
10571 pid_t pid = getpid();
10572 int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1);
10573 if (status == 1) {
10574 return entry.pi_thcount;
10575 } else {
10576 return 0;
10577 }
10578 }
10579
10580 #elif GTEST_OS_FUCHSIA
10581
10582 size_t GetThreadCount() {
10583 int dummy_buffer;
10584 size_t avail;
10585 zx_status_t status = zx_object_get_info(
10586 zx_process_self(),
10587 ZX_INFO_PROCESS_THREADS,
10588 &dummy_buffer,
10589 0,
10590 nullptr,
10591 &avail);
10592 if (status == ZX_OK) {
10593 return avail;
10594 } else {
10595 return 0;
10596 }
10597 }
10598
10599 #else
10600
10601 size_t GetThreadCount() {
10602 // There's no portable way to detect the number of threads, so we just
10603 // return 0 to indicate that we cannot detect it.
10604 return 0;
10605 }
10606
10607 #endif // GTEST_OS_LINUX
10608
10609 #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
10610
10611 void SleepMilliseconds(int n) {
10612 ::Sleep(static_cast<DWORD>(n));
10613 }
10614
10615 AutoHandle::AutoHandle()
10616 : handle_(INVALID_HANDLE_VALUE) {}
10617
10618 AutoHandle::AutoHandle(Handle handle)
10619 : handle_(handle) {}
10620
10621 AutoHandle::~AutoHandle() {
10622 Reset();
10623 }
10624
10625 AutoHandle::Handle AutoHandle::Get() const {
10626 return handle_;
10627 }
10628
10629 void AutoHandle::Reset() {
10630 Reset(INVALID_HANDLE_VALUE);
10631 }
10632
10633 void AutoHandle::Reset(HANDLE handle) {
10634 // Resetting with the same handle we already own is invalid.
10635 if (handle_ != handle) {
10636 if (IsCloseable()) {
10637 ::CloseHandle(handle_);
10638 }
10639 handle_ = handle;
10640 } else {
10641 GTEST_CHECK_(!IsCloseable())
10642 << "Resetting a valid handle to itself is likely a programmer error "
10643 "and thus not allowed.";
10644 }
10645 }
10646
10647 bool AutoHandle::IsCloseable() const {
10648 // Different Windows APIs may use either of these values to represent an
10649 // invalid handle.
10650 return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE;
10651 }
10652
10653 Notification::Notification()
10654 : event_(::CreateEvent(nullptr, // Default security attributes.
10655 TRUE, // Do not reset automatically.
10656 FALSE, // Initially unset.
10657 nullptr)) { // Anonymous event.
10658 GTEST_CHECK_(event_.Get() != nullptr);
10659 }
10660
10661 void Notification::Notify() {
10662 GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
10663 }
10664
10665 void Notification::WaitForNotification() {
10666 GTEST_CHECK_(
10667 ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
10668 }
10669
10670 Mutex::Mutex()
10671 : owner_thread_id_(0),
10672 type_(kDynamic),
10673 critical_section_init_phase_(0),
10674 critical_section_(new CRITICAL_SECTION) {
10675 ::InitializeCriticalSection(critical_section_);
10676 }
10677
10678 Mutex::~Mutex() {
10679 // Static mutexes are leaked intentionally. It is not thread-safe to try
10680 // to clean them up.
10681 if (type_ == kDynamic) {
10682 ::DeleteCriticalSection(critical_section_);
10683 delete critical_section_;
10684 critical_section_ = nullptr;
10685 }
10686 }
10687
10688 void Mutex::Lock() {
10689 ThreadSafeLazyInit();
10690 ::EnterCriticalSection(critical_section_);
10691 owner_thread_id_ = ::GetCurrentThreadId();
10692 }
10693
10694 void Mutex::Unlock() {
10695 ThreadSafeLazyInit();
10696 // We don't protect writing to owner_thread_id_ here, as it's the
10697 // caller's responsibility to ensure that the current thread holds the
10698 // mutex when this is called.
10699 owner_thread_id_ = 0;
10700 ::LeaveCriticalSection(critical_section_);
10701 }
10702
10703 // Does nothing if the current thread holds the mutex. Otherwise, crashes
10704 // with high probability.
10705 void Mutex::AssertHeld() {
10706 ThreadSafeLazyInit();
10707 GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
10708 << "The current thread is not holding the mutex @" << this;
10709 }
10710
10711 namespace {
10712
10713 #ifdef _MSC_VER
10714 // Use the RAII idiom to flag mem allocs that are intentionally never
10715 // deallocated. The motivation is to silence the false positive mem leaks
10716 // that are reported by the debug version of MS's CRT which can only detect
10717 // if an alloc is missing a matching deallocation.
10718 // Example:
10719 // MemoryIsNotDeallocated memory_is_not_deallocated;
10720 // critical_section_ = new CRITICAL_SECTION;
10721 //
10722 class MemoryIsNotDeallocated
10723 {
10724 public:
10725 MemoryIsNotDeallocated() : old_crtdbg_flag_(0) {
10726 old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
10727 // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT
10728 // doesn't report mem leak if there's no matching deallocation.
10729 _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF);
10730 }
10731
10732 ~MemoryIsNotDeallocated() {
10733 // Restore the original _CRTDBG_ALLOC_MEM_DF flag
10734 _CrtSetDbgFlag(old_crtdbg_flag_);
10735 }
10736
10737 private:
10738 int old_crtdbg_flag_;
10739
10740 GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated);
10741 };
10742 #endif // _MSC_VER
10743
10744 } // namespace
10745
10746 // Initializes owner_thread_id_ and critical_section_ in static mutexes.
10747 void Mutex::ThreadSafeLazyInit() {
10748 // Dynamic mutexes are initialized in the constructor.
10749 if (type_ == kStatic) {
10750 switch (
10751 ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
10752 case 0:
10753 // If critical_section_init_phase_ was 0 before the exchange, we
10754 // are the first to test it and need to perform the initialization.
10755 owner_thread_id_ = 0;
10756 {
10757 // Use RAII to flag that following mem alloc is never deallocated.
10758 #ifdef _MSC_VER
10759 MemoryIsNotDeallocated memory_is_not_deallocated;
10760 #endif // _MSC_VER
10761 critical_section_ = new CRITICAL_SECTION;
10762 }
10763 ::InitializeCriticalSection(critical_section_);
10764 // Updates the critical_section_init_phase_ to 2 to signal
10765 // initialization complete.
10766 GTEST_CHECK_(::InterlockedCompareExchange(
10767 &critical_section_init_phase_, 2L, 1L) ==
10768 1L);
10769 break;
10770 case 1:
10771 // Somebody else is already initializing the mutex; spin until they
10772 // are done.
10773 while (::InterlockedCompareExchange(&critical_section_init_phase_,
10774 2L,
10775 2L) != 2L) {
10776 // Possibly yields the rest of the thread's time slice to other
10777 // threads.
10778 ::Sleep(0);
10779 }
10780 break;
10781
10782 case 2:
10783 break; // The mutex is already initialized and ready for use.
10784
10785 default:
10786 GTEST_CHECK_(false)
10787 << "Unexpected value of critical_section_init_phase_ "
10788 << "while initializing a static mutex.";
10789 }
10790 }
10791 }
10792
10793 namespace {
10794
10795 class ThreadWithParamSupport : public ThreadWithParamBase {
10796 public:
10797 static HANDLE CreateThread(Runnable* runnable,
10798 Notification* thread_can_start) {
10799 ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
10800 DWORD thread_id;
10801 HANDLE thread_handle = ::CreateThread(
10802 nullptr, // Default security.
10803 0, // Default stack size.
10804 &ThreadWithParamSupport::ThreadMain,
10805 param, // Parameter to ThreadMainStatic
10806 0x0, // Default creation flags.
10807 &thread_id); // Need a valid pointer for the call to work under Win98.
10808 GTEST_CHECK_(thread_handle != nullptr)
10809 << "CreateThread failed with error " << ::GetLastError() << ".";
10810 if (thread_handle == nullptr) {
10811 delete param;
10812 }
10813 return thread_handle;
10814 }
10815
10816 private:
10817 struct ThreadMainParam {
10818 ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
10819 : runnable_(runnable),
10820 thread_can_start_(thread_can_start) {
10821 }
10822 std::unique_ptr<Runnable> runnable_;
10823 // Does not own.
10824 Notification* thread_can_start_;
10825 };
10826
10827 static DWORD WINAPI ThreadMain(void* ptr) {
10828 // Transfers ownership.
10829 std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
10830 if (param->thread_can_start_ != nullptr)
10831 param->thread_can_start_->WaitForNotification();
10832 param->runnable_->Run();
10833 return 0;
10834 }
10835
10836 // Prohibit instantiation.
10837 ThreadWithParamSupport();
10838
10839 GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
10840 };
10841
10842 } // namespace
10843
10844 ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
10845 Notification* thread_can_start)
10846 : thread_(ThreadWithParamSupport::CreateThread(runnable,
10847 thread_can_start)) {
10848 }
10849
10850 ThreadWithParamBase::~ThreadWithParamBase() {
10851 Join();
10852 }
10853
10854 void ThreadWithParamBase::Join() {
10855 GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
10856 << "Failed to join the thread with error " << ::GetLastError() << ".";
10857 }
10858
10859 // Maps a thread to a set of ThreadIdToThreadLocals that have values
10860 // instantiated on that thread and notifies them when the thread exits. A
10861 // ThreadLocal instance is expected to persist until all threads it has
10862 // values on have terminated.
10863 class ThreadLocalRegistryImpl {
10864 public:
10865 // Registers thread_local_instance as having value on the current thread.
10866 // Returns a value that can be used to identify the thread from other threads.
10867 static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
10868 const ThreadLocalBase* thread_local_instance) {
10869 #ifdef _MSC_VER
10870 MemoryIsNotDeallocated memory_is_not_deallocated;
10871 #endif // _MSC_VER
10872 DWORD current_thread = ::GetCurrentThreadId();
10873 MutexLock lock(&mutex_);
10874 ThreadIdToThreadLocals* const thread_to_thread_locals =
10875 GetThreadLocalsMapLocked();
10876 ThreadIdToThreadLocals::iterator thread_local_pos =
10877 thread_to_thread_locals->find(current_thread);
10878 if (thread_local_pos == thread_to_thread_locals->end()) {
10879 thread_local_pos = thread_to_thread_locals->insert(
10880 std::make_pair(current_thread, ThreadLocalValues())).first;
10881 StartWatcherThreadFor(current_thread);
10882 }
10883 ThreadLocalValues& thread_local_values = thread_local_pos->second;
10884 ThreadLocalValues::iterator value_pos =
10885 thread_local_values.find(thread_local_instance);
10886 if (value_pos == thread_local_values.end()) {
10887 value_pos =
10888 thread_local_values
10889 .insert(std::make_pair(
10890 thread_local_instance,
10891 std::shared_ptr<ThreadLocalValueHolderBase>(
10892 thread_local_instance->NewValueForCurrentThread())))
10893 .first;
10894 }
10895 return value_pos->second.get();
10896 }
10897
10898 static void OnThreadLocalDestroyed(
10899 const ThreadLocalBase* thread_local_instance) {
10900 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
10901 // Clean up the ThreadLocalValues data structure while holding the lock, but
10902 // defer the destruction of the ThreadLocalValueHolderBases.
10903 {
10904 MutexLock lock(&mutex_);
10905 ThreadIdToThreadLocals* const thread_to_thread_locals =
10906 GetThreadLocalsMapLocked();
10907 for (ThreadIdToThreadLocals::iterator it =
10908 thread_to_thread_locals->begin();
10909 it != thread_to_thread_locals->end();
10910 ++it) {
10911 ThreadLocalValues& thread_local_values = it->second;
10912 ThreadLocalValues::iterator value_pos =
10913 thread_local_values.find(thread_local_instance);
10914 if (value_pos != thread_local_values.end()) {
10915 value_holders.push_back(value_pos->second);
10916 thread_local_values.erase(value_pos);
10917 // This 'if' can only be successful at most once, so theoretically we
10918 // could break out of the loop here, but we don't bother doing so.
10919 }
10920 }
10921 }
10922 // Outside the lock, let the destructor for 'value_holders' deallocate the
10923 // ThreadLocalValueHolderBases.
10924 }
10925
10926 static void OnThreadExit(DWORD thread_id) {
10927 GTEST_CHECK_(thread_id != 0) << ::GetLastError();
10928 std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders;
10929 // Clean up the ThreadIdToThreadLocals data structure while holding the
10930 // lock, but defer the destruction of the ThreadLocalValueHolderBases.
10931 {
10932 MutexLock lock(&mutex_);
10933 ThreadIdToThreadLocals* const thread_to_thread_locals =
10934 GetThreadLocalsMapLocked();
10935 ThreadIdToThreadLocals::iterator thread_local_pos =
10936 thread_to_thread_locals->find(thread_id);
10937 if (thread_local_pos != thread_to_thread_locals->end()) {
10938 ThreadLocalValues& thread_local_values = thread_local_pos->second;
10939 for (ThreadLocalValues::iterator value_pos =
10940 thread_local_values.begin();
10941 value_pos != thread_local_values.end();
10942 ++value_pos) {
10943 value_holders.push_back(value_pos->second);
10944 }
10945 thread_to_thread_locals->erase(thread_local_pos);
10946 }
10947 }
10948 // Outside the lock, let the destructor for 'value_holders' deallocate the
10949 // ThreadLocalValueHolderBases.
10950 }
10951
10952 private:
10953 // In a particular thread, maps a ThreadLocal object to its value.
10954 typedef std::map<const ThreadLocalBase*,
10955 std::shared_ptr<ThreadLocalValueHolderBase> >
10956 ThreadLocalValues;
10957 // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
10958 // thread's ID.
10959 typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
10960
10961 // Holds the thread id and thread handle that we pass from
10962 // StartWatcherThreadFor to WatcherThreadFunc.
10963 typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
10964
10965 static void StartWatcherThreadFor(DWORD thread_id) {
10966 // The returned handle will be kept in thread_map and closed by
10967 // watcher_thread in WatcherThreadFunc.
10968 HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
10969 FALSE,
10970 thread_id);
10971 GTEST_CHECK_(thread != nullptr);
10972 // We need to pass a valid thread ID pointer into CreateThread for it
10973 // to work correctly under Win98.
10974 DWORD watcher_thread_id;
10975 HANDLE watcher_thread = ::CreateThread(
10976 nullptr, // Default security.
10977 0, // Default stack size
10978 &ThreadLocalRegistryImpl::WatcherThreadFunc,
10979 reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
10980 CREATE_SUSPENDED, &watcher_thread_id);
10981 GTEST_CHECK_(watcher_thread != nullptr);
10982 // Give the watcher thread the same priority as ours to avoid being
10983 // blocked by it.
10984 ::SetThreadPriority(watcher_thread,
10985 ::GetThreadPriority(::GetCurrentThread()));
10986 ::ResumeThread(watcher_thread);
10987 ::CloseHandle(watcher_thread);
10988 }
10989
10990 // Monitors exit from a given thread and notifies those
10991 // ThreadIdToThreadLocals about thread termination.
10992 static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
10993 const ThreadIdAndHandle* tah =
10994 reinterpret_cast<const ThreadIdAndHandle*>(param);
10995 GTEST_CHECK_(
10996 ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
10997 OnThreadExit(tah->first);
10998 ::CloseHandle(tah->second);
10999 delete tah;
11000 return 0;
11001 }
11002
11003 // Returns map of thread local instances.
11004 static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
11005 mutex_.AssertHeld();
11006 #ifdef _MSC_VER
11007 MemoryIsNotDeallocated memory_is_not_deallocated;
11008 #endif // _MSC_VER
11009 static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals();
11010 return map;
11011 }
11012
11013 // Protects access to GetThreadLocalsMapLocked() and its return value.
11014 static Mutex mutex_;
11015 // Protects access to GetThreadMapLocked() and its return value.
11016 static Mutex thread_map_mutex_;
11017 };
11018
11019 Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
11020 Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
11021
11022 ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
11023 const ThreadLocalBase* thread_local_instance) {
11024 return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
11025 thread_local_instance);
11026 }
11027
11028 void ThreadLocalRegistry::OnThreadLocalDestroyed(
11029 const ThreadLocalBase* thread_local_instance) {
11030 ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
11031 }
11032
11033 #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
11034
11035 #if GTEST_USES_POSIX_RE
11036
11037 // Implements RE. Currently only needed for death tests.
11038
11039 RE::~RE() {
11040 if (is_valid_) {
11041 // regfree'ing an invalid regex might crash because the content
11042 // of the regex is undefined. Since the regex's are essentially
11043 // the same, one cannot be valid (or invalid) without the other
11044 // being so too.
11045 regfree(&partial_regex_);
11046 regfree(&full_regex_);
11047 }
11048 free(const_cast<char*>(pattern_));
11049 }
11050
11051 // Returns true if and only if regular expression re matches the entire str.
11052 bool RE::FullMatch(const char* str, const RE& re) {
11053 if (!re.is_valid_) return false;
11054
11055 regmatch_t match;
11056 return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
11057 }
11058
11059 // Returns true if and only if regular expression re matches a substring of
11060 // str (including str itself).
11061 bool RE::PartialMatch(const char* str, const RE& re) {
11062 if (!re.is_valid_) return false;
11063
11064 regmatch_t match;
11065 return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
11066 }
11067
11068 // Initializes an RE from its string representation.
11069 void RE::Init(const char* regex) {
11070 pattern_ = posix::StrDup(regex);
11071
11072 // Reserves enough bytes to hold the regular expression used for a
11073 // full match.
11074 const size_t full_regex_len = strlen(regex) + 10;
11075 char* const full_pattern = new char[full_regex_len];
11076
11077 snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
11078 is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
11079 // We want to call regcomp(&partial_regex_, ...) even if the
11080 // previous expression returns false. Otherwise partial_regex_ may
11081 // not be properly initialized can may cause trouble when it's
11082 // freed.
11083 //
11084 // Some implementation of POSIX regex (e.g. on at least some
11085 // versions of Cygwin) doesn't accept the empty string as a valid
11086 // regex. We change it to an equivalent form "()" to be safe.
11087 if (is_valid_) {
11088 const char* const partial_regex = (*regex == '\0') ? "()" : regex;
11089 is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
11090 }
11091 EXPECT_TRUE(is_valid_)
11092 << "Regular expression \"" << regex
11093 << "\" is not a valid POSIX Extended regular expression.";
11094
11095 delete[] full_pattern;
11096 }
11097
11098 #elif GTEST_USES_SIMPLE_RE
11099
11100 // Returns true if and only if ch appears anywhere in str (excluding the
11101 // terminating '\0' character).
11102 bool IsInSet(char ch, const char* str) {
11103 return ch != '\0' && strchr(str, ch) != nullptr;
11104 }
11105
11106 // Returns true if and only if ch belongs to the given classification.
11107 // Unlike similar functions in <ctype.h>, these aren't affected by the
11108 // current locale.
11109 bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
11110 bool IsAsciiPunct(char ch) {
11111 return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
11112 }
11113 bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
11114 bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
11115 bool IsAsciiWordChar(char ch) {
11116 return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
11117 ('0' <= ch && ch <= '9') || ch == '_';
11118 }
11119
11120 // Returns true if and only if "\\c" is a supported escape sequence.
11121 bool IsValidEscape(char c) {
11122 return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
11123 }
11124
11125 // Returns true if and only if the given atom (specified by escaped and
11126 // pattern) matches ch. The result is undefined if the atom is invalid.
11127 bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
11128 if (escaped) { // "\\p" where p is pattern_char.
11129 switch (pattern_char) {
11130 case 'd': return IsAsciiDigit(ch);
11131 case 'D': return !IsAsciiDigit(ch);
11132 case 'f': return ch == '\f';
11133 case 'n': return ch == '\n';
11134 case 'r': return ch == '\r';
11135 case 's': return IsAsciiWhiteSpace(ch);
11136 case 'S': return !IsAsciiWhiteSpace(ch);
11137 case 't': return ch == '\t';
11138 case 'v': return ch == '\v';
11139 case 'w': return IsAsciiWordChar(ch);
11140 case 'W': return !IsAsciiWordChar(ch);
11141 }
11142 return IsAsciiPunct(pattern_char) && pattern_char == ch;
11143 }
11144
11145 return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
11146 }
11147
11148 // Helper function used by ValidateRegex() to format error messages.
11149 static std::string FormatRegexSyntaxError(const char* regex, int index) {
11150 return (Message() << "Syntax error at index " << index
11151 << " in simple regular expression \"" << regex << "\": ").GetString();
11152 }
11153
11154 // Generates non-fatal failures and returns false if regex is invalid;
11155 // otherwise returns true.
11156 bool ValidateRegex(const char* regex) {
11157 if (regex == nullptr) {
11158 ADD_FAILURE() << "NULL is not a valid simple regular expression.";
11159 return false;
11160 }
11161
11162 bool is_valid = true;
11163
11164 // True if and only if ?, *, or + can follow the previous atom.
11165 bool prev_repeatable = false;
11166 for (int i = 0; regex[i]; i++) {
11167 if (regex[i] == '\\') { // An escape sequence
11168 i++;
11169 if (regex[i] == '\0') {
11170 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
11171 << "'\\' cannot appear at the end.";
11172 return false;
11173 }
11174
11175 if (!IsValidEscape(regex[i])) {
11176 ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
11177 << "invalid escape sequence \"\\" << regex[i] << "\".";
11178 is_valid = false;
11179 }
11180 prev_repeatable = true;
11181 } else { // Not an escape sequence.
11182 const char ch = regex[i];
11183
11184 if (ch == '^' && i > 0) {
11185 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
11186 << "'^' can only appear at the beginning.";
11187 is_valid = false;
11188 } else if (ch == '$' && regex[i + 1] != '\0') {
11189 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
11190 << "'$' can only appear at the end.";
11191 is_valid = false;
11192 } else if (IsInSet(ch, "()[]{}|")) {
11193 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
11194 << "'" << ch << "' is unsupported.";
11195 is_valid = false;
11196 } else if (IsRepeat(ch) && !prev_repeatable) {
11197 ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
11198 << "'" << ch << "' can only follow a repeatable token.";
11199 is_valid = false;
11200 }
11201
11202 prev_repeatable = !IsInSet(ch, "^$?*+");
11203 }
11204 }
11205
11206 return is_valid;
11207 }
11208
11209 // Matches a repeated regex atom followed by a valid simple regular
11210 // expression. The regex atom is defined as c if escaped is false,
11211 // or \c otherwise. repeat is the repetition meta character (?, *,
11212 // or +). The behavior is undefined if str contains too many
11213 // characters to be indexable by size_t, in which case the test will
11214 // probably time out anyway. We are fine with this limitation as
11215 // std::string has it too.
11216 bool MatchRepetitionAndRegexAtHead(
11217 bool escaped, char c, char repeat, const char* regex,
11218 const char* str) {
11219 const size_t min_count = (repeat == '+') ? 1 : 0;
11220 const size_t max_count = (repeat == '?') ? 1 :
11221 static_cast<size_t>(-1) - 1;
11222 // We cannot call numeric_limits::max() as it conflicts with the
11223 // max() macro on Windows.
11224
11225 for (size_t i = 0; i <= max_count; ++i) {
11226 // We know that the atom matches each of the first i characters in str.
11227 if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
11228 // We have enough matches at the head, and the tail matches too.
11229 // Since we only care about *whether* the pattern matches str
11230 // (as opposed to *how* it matches), there is no need to find a
11231 // greedy match.
11232 return true;
11233 }
11234 if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
11235 return false;
11236 }
11237 return false;
11238 }
11239
11240 // Returns true if and only if regex matches a prefix of str. regex must
11241 // be a valid simple regular expression and not start with "^", or the
11242 // result is undefined.
11243 bool MatchRegexAtHead(const char* regex, const char* str) {
11244 if (*regex == '\0') // An empty regex matches a prefix of anything.
11245 return true;
11246
11247 // "$" only matches the end of a string. Note that regex being
11248 // valid guarantees that there's nothing after "$" in it.
11249 if (*regex == '$')
11250 return *str == '\0';
11251
11252 // Is the first thing in regex an escape sequence?
11253 const bool escaped = *regex == '\\';
11254 if (escaped)
11255 ++regex;
11256 if (IsRepeat(regex[1])) {
11257 // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
11258 // here's an indirect recursion. It terminates as the regex gets
11259 // shorter in each recursion.
11260 return MatchRepetitionAndRegexAtHead(
11261 escaped, regex[0], regex[1], regex + 2, str);
11262 } else {
11263 // regex isn't empty, isn't "$", and doesn't start with a
11264 // repetition. We match the first atom of regex with the first
11265 // character of str and recurse.
11266 return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
11267 MatchRegexAtHead(regex + 1, str + 1);
11268 }
11269 }
11270
11271 // Returns true if and only if regex matches any substring of str. regex must
11272 // be a valid simple regular expression, or the result is undefined.
11273 //
11274 // The algorithm is recursive, but the recursion depth doesn't exceed
11275 // the regex length, so we won't need to worry about running out of
11276 // stack space normally. In rare cases the time complexity can be
11277 // exponential with respect to the regex length + the string length,
11278 // but usually it's must faster (often close to linear).
11279 bool MatchRegexAnywhere(const char* regex, const char* str) {
11280 if (regex == nullptr || str == nullptr) return false;
11281
11282 if (*regex == '^')
11283 return MatchRegexAtHead(regex + 1, str);
11284
11285 // A successful match can be anywhere in str.
11286 do {
11287 if (MatchRegexAtHead(regex, str))
11288 return true;
11289 } while (*str++ != '\0');
11290 return false;
11291 }
11292
11293 // Implements the RE class.
11294
11295 RE::~RE() {
11296 free(const_cast<char*>(pattern_));
11297 free(const_cast<char*>(full_pattern_));
11298 }
11299
11300 // Returns true if and only if regular expression re matches the entire str.
11301 bool RE::FullMatch(const char* str, const RE& re) {
11302 return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
11303 }
11304
11305 // Returns true if and only if regular expression re matches a substring of
11306 // str (including str itself).
11307 bool RE::PartialMatch(const char* str, const RE& re) {
11308 return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
11309 }
11310
11311 // Initializes an RE from its string representation.
11312 void RE::Init(const char* regex) {
11313 pattern_ = full_pattern_ = nullptr;
11314 if (regex != nullptr) {
11315 pattern_ = posix::StrDup(regex);
11316 }
11317
11318 is_valid_ = ValidateRegex(regex);
11319 if (!is_valid_) {
11320 // No need to calculate the full pattern when the regex is invalid.
11321 return;
11322 }
11323
11324 const size_t len = strlen(regex);
11325 // Reserves enough bytes to hold the regular expression used for a
11326 // full match: we need space to prepend a '^', append a '$', and
11327 // terminate the string with '\0'.
11328 char* buffer = static_cast<char*>(malloc(len + 3));
11329 full_pattern_ = buffer;
11330
11331 if (*regex != '^')
11332 *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'.
11333
11334 // We don't use snprintf or strncpy, as they trigger a warning when
11335 // compiled with VC++ 8.0.
11336 memcpy(buffer, regex, len);
11337 buffer += len;
11338
11339 if (len == 0 || regex[len - 1] != '$')
11340 *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'.
11341
11342 *buffer = '\0';
11343 }
11344
11345 #endif // GTEST_USES_POSIX_RE
11346
11347 const char kUnknownFile[] = "unknown file";
11348
11349 // Formats a source file path and a line number as they would appear
11350 // in an error message from the compiler used to compile this code.
11351 GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
11352 const std::string file_name(file == nullptr ? kUnknownFile : file);
11353
11354 if (line < 0) {
11355 return file_name + ":";
11356 }
11357 #ifdef _MSC_VER
11358 return file_name + "(" + StreamableToString(line) + "):";
11359 #else
11360 return file_name + ":" + StreamableToString(line) + ":";
11361 #endif // _MSC_VER
11362 }
11363
11364 // Formats a file location for compiler-independent XML output.
11365 // Although this function is not platform dependent, we put it next to
11366 // FormatFileLocation in order to contrast the two functions.
11367 // Note that FormatCompilerIndependentFileLocation() does NOT append colon
11368 // to the file location it produces, unlike FormatFileLocation().
11369 GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
11370 const char* file, int line) {
11371 const std::string file_name(file == nullptr ? kUnknownFile : file);
11372
11373 if (line < 0)
11374 return file_name;
11375 else
11376 return file_name + ":" + StreamableToString(line);
11377 }
11378
11379 GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
11380 : severity_(severity) {
11381 const char* const marker =
11382 severity == GTEST_INFO ? "[ INFO ]" :
11383 severity == GTEST_WARNING ? "[WARNING]" :
11384 severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]";
11385 GetStream() << ::std::endl << marker << " "
11386 << FormatFileLocation(file, line).c_str() << ": ";
11387 }
11388
11389 // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
11390 GTestLog::~GTestLog() {
11391 GetStream() << ::std::endl;
11392 if (severity_ == GTEST_FATAL) {
11393 fflush(stderr);
11394 posix::Abort();
11395 }
11396 }
11397
11398 // Disable Microsoft deprecation warnings for POSIX functions called from
11399 // this class (creat, dup, dup2, and close)
11400 GTEST_DISABLE_MSC_DEPRECATED_PUSH_()
11401
11402 #if GTEST_HAS_STREAM_REDIRECTION
11403
11404 // Object that captures an output stream (stdout/stderr).
11405 class CapturedStream {
11406 public:
11407 // The ctor redirects the stream to a temporary file.
11408 explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
11409 # if GTEST_OS_WINDOWS
11410 char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT
11411 char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT
11412
11413 ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
11414 const UINT success = ::GetTempFileNameA(temp_dir_path,
11415 "gtest_redir",
11416 0, // Generate unique file name.
11417 temp_file_path);
11418 GTEST_CHECK_(success != 0)
11419 << "Unable to create a temporary file in " << temp_dir_path;
11420 const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
11421 GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
11422 << temp_file_path;
11423 filename_ = temp_file_path;
11424 # else
11425 // There's no guarantee that a test has write access to the current
11426 // directory, so we create the temporary file in the /tmp directory
11427 // instead. We use /tmp on most systems, and /sdcard on Android.
11428 // That's because Android doesn't have /tmp.
11429 # if GTEST_OS_LINUX_ANDROID
11430 // Note: Android applications are expected to call the framework's
11431 // Context.getExternalStorageDirectory() method through JNI to get
11432 // the location of the world-writable SD Card directory. However,
11433 // this requires a Context handle, which cannot be retrieved
11434 // globally from native code. Doing so also precludes running the
11435 // code as part of a regular standalone executable, which doesn't
11436 // run in a Dalvik process (e.g. when running it through 'adb shell').
11437 //
11438 // The location /data/local/tmp is directly accessible from native code.
11439 // '/sdcard' and other variants cannot be relied on, as they are not
11440 // guaranteed to be mounted, or may have a delay in mounting.
11441 char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX";
11442 # else
11443 char name_template[] = "/tmp/captured_stream.XXXXXX";
11444 # endif // GTEST_OS_LINUX_ANDROID
11445 const int captured_fd = mkstemp(name_template);
11446 if (captured_fd == -1) {
11447 GTEST_LOG_(WARNING)
11448 << "Failed to create tmp file " << name_template
11449 << " for test; does the test have access to the /tmp directory?";
11450 }
11451 filename_ = name_template;
11452 # endif // GTEST_OS_WINDOWS
11453 fflush(nullptr);
11454 dup2(captured_fd, fd_);
11455 close(captured_fd);
11456 }
11457
11458 ~CapturedStream() {
11459 remove(filename_.c_str());
11460 }
11461
11462 std::string GetCapturedString() {
11463 if (uncaptured_fd_ != -1) {
11464 // Restores the original stream.
11465 fflush(nullptr);
11466 dup2(uncaptured_fd_, fd_);
11467 close(uncaptured_fd_);
11468 uncaptured_fd_ = -1;
11469 }
11470
11471 FILE* const file = posix::FOpen(filename_.c_str(), "r");
11472 if (file == nullptr) {
11473 GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_
11474 << " for capturing stream.";
11475 }
11476 const std::string content = ReadEntireFile(file);
11477 posix::FClose(file);
11478 return content;
11479 }
11480
11481 private:
11482 const int fd_; // A stream to capture.
11483 int uncaptured_fd_;
11484 // Name of the temporary file holding the stderr output.
11485 ::std::string filename_;
11486
11487 GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
11488 };
11489
11490 GTEST_DISABLE_MSC_DEPRECATED_POP_()
11491
11492 static CapturedStream* g_captured_stderr = nullptr;
11493 static CapturedStream* g_captured_stdout = nullptr;
11494
11495 // Starts capturing an output stream (stdout/stderr).
11496 static void CaptureStream(int fd, const char* stream_name,
11497 CapturedStream** stream) {
11498 if (*stream != nullptr) {
11499 GTEST_LOG_(FATAL) << "Only one " << stream_name
11500 << " capturer can exist at a time.";
11501 }
11502 *stream = new CapturedStream(fd);
11503 }
11504
11505 // Stops capturing the output stream and returns the captured string.
11506 static std::string GetCapturedStream(CapturedStream** captured_stream) {
11507 const std::string content = (*captured_stream)->GetCapturedString();
11508
11509 delete *captured_stream;
11510 *captured_stream = nullptr;
11511
11512 return content;
11513 }
11514
11515 // Starts capturing stdout.
11516 void CaptureStdout() {
11517 CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
11518 }
11519
11520 // Starts capturing stderr.
11521 void CaptureStderr() {
11522 CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
11523 }
11524
11525 // Stops capturing stdout and returns the captured string.
11526 std::string GetCapturedStdout() {
11527 return GetCapturedStream(&g_captured_stdout);
11528 }
11529
11530 // Stops capturing stderr and returns the captured string.
11531 std::string GetCapturedStderr() {
11532 return GetCapturedStream(&g_captured_stderr);
11533 }
11534
11535 #endif // GTEST_HAS_STREAM_REDIRECTION
11536
11537
11538
11539
11540
11541 size_t GetFileSize(FILE* file) {
11542 fseek(file, 0, SEEK_END);
11543 return static_cast<size_t>(ftell(file));
11544 }
11545
11546 std::string ReadEntireFile(FILE* file) {
11547 const size_t file_size = GetFileSize(file);
11548 char* const buffer = new char[file_size];
11549
11550 size_t bytes_last_read = 0; // # of bytes read in the last fread()
11551 size_t bytes_read = 0; // # of bytes read so far
11552
11553 fseek(file, 0, SEEK_SET);
11554
11555 // Keeps reading the file until we cannot read further or the
11556 // pre-determined file size is reached.
11557 do {
11558 bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
11559 bytes_read += bytes_last_read;
11560 } while (bytes_last_read > 0 && bytes_read < file_size);
11561
11562 const std::string content(buffer, bytes_read);
11563 delete[] buffer;
11564
11565 return content;
11566 }
11567
11568 #if GTEST_HAS_DEATH_TEST
11569 static const std::vector<std::string>* g_injected_test_argvs =
11570 nullptr; // Owned.
11571
11572 std::vector<std::string> GetInjectableArgvs() {
11573 if (g_injected_test_argvs != nullptr) {
11574 return *g_injected_test_argvs;
11575 }
11576 return GetArgvs();
11577 }
11578
11579 void SetInjectableArgvs(const std::vector<std::string>* new_argvs) {
11580 if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs;
11581 g_injected_test_argvs = new_argvs;
11582 }
11583
11584 void SetInjectableArgvs(const std::vector<std::string>& new_argvs) {
11585 SetInjectableArgvs(
11586 new std::vector<std::string>(new_argvs.begin(), new_argvs.end()));
11587 }
11588
11589 void ClearInjectableArgvs() {
11590 delete g_injected_test_argvs;
11591 g_injected_test_argvs = nullptr;
11592 }
11593 #endif // GTEST_HAS_DEATH_TEST
11594
11595 #if GTEST_OS_WINDOWS_MOBILE
11596 namespace posix {
11597 void Abort() {
11598 DebugBreak();
11599 TerminateProcess(GetCurrentProcess(), 1);
11600 }
11601 } // namespace posix
11602 #endif // GTEST_OS_WINDOWS_MOBILE
11603
11604 // Returns the name of the environment variable corresponding to the
11605 // given flag. For example, FlagToEnvVar("foo") will return
11606 // "GTEST_FOO" in the open-source version.
11607 static std::string FlagToEnvVar(const char* flag) {
11608 const std::string full_flag =
11609 (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
11610
11611 Message env_var;
11612 for (size_t i = 0; i != full_flag.length(); i++) {
11613 env_var << ToUpper(full_flag.c_str()[i]);
11614 }
11615
11616 return env_var.GetString();
11617 }
11618
11619 // Parses 'str' for a 32-bit signed integer. If successful, writes
11620 // the result to *value and returns true; otherwise leaves *value
11621 // unchanged and returns false.
11622 bool ParseInt32(const Message& src_text, const char* str, int32_t* value) {
11623 // Parses the environment variable as a decimal integer.
11624 char* end = nullptr;
11625 const long long_value = strtol(str, &end, 10); // NOLINT
11626
11627 // Has strtol() consumed all characters in the string?
11628 if (*end != '\0') {
11629 // No - an invalid character was encountered.
11630 Message msg;
11631 msg << "WARNING: " << src_text
11632 << " is expected to be a 32-bit integer, but actually"
11633 << " has value \"" << str << "\".\n";
11634 printf("%s", msg.GetString().c_str());
11635 fflush(stdout);
11636 return false;
11637 }
11638
11639 // Is the parsed value in the range of an int32_t?
11640 const auto result = static_cast<int32_t>(long_value);
11641 if (long_value == LONG_MAX || long_value == LONG_MIN ||
11642 // The parsed value overflows as a long. (strtol() returns
11643 // LONG_MAX or LONG_MIN when the input overflows.)
11644 result != long_value
11645 // The parsed value overflows as an int32_t.
11646 ) {
11647 Message msg;
11648 msg << "WARNING: " << src_text
11649 << " is expected to be a 32-bit integer, but actually"
11650 << " has value " << str << ", which overflows.\n";
11651 printf("%s", msg.GetString().c_str());
11652 fflush(stdout);
11653 return false;
11654 }
11655
11656 *value = result;
11657 return true;
11658 }
11659
11660 // Reads and returns the Boolean environment variable corresponding to
11661 // the given flag; if it's not set, returns default_value.
11662 //
11663 // The value is considered true if and only if it's not "0".
11664 bool BoolFromGTestEnv(const char* flag, bool default_value) {
11665 #if defined(GTEST_GET_BOOL_FROM_ENV_)
11666 return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
11667 #else
11668 const std::string env_var = FlagToEnvVar(flag);
11669 const char* const string_value = posix::GetEnv(env_var.c_str());
11670 return string_value == nullptr ? default_value
11671 : strcmp(string_value, "0") != 0;
11672 #endif // defined(GTEST_GET_BOOL_FROM_ENV_)
11673 }
11674
11675 // Reads and returns a 32-bit integer stored in the environment
11676 // variable corresponding to the given flag; if it isn't set or
11677 // doesn't represent a valid 32-bit integer, returns default_value.
11678 int32_t Int32FromGTestEnv(const char* flag, int32_t default_value) {
11679 #if defined(GTEST_GET_INT32_FROM_ENV_)
11680 return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
11681 #else
11682 const std::string env_var = FlagToEnvVar(flag);
11683 const char* const string_value = posix::GetEnv(env_var.c_str());
11684 if (string_value == nullptr) {
11685 // The environment variable is not set.
11686 return default_value;
11687 }
11688
11689 int32_t result = default_value;
11690 if (!ParseInt32(Message() << "Environment variable " << env_var,
11691 string_value, &result)) {
11692 printf("The default value %s is used.\n",
11693 (Message() << default_value).GetString().c_str());
11694 fflush(stdout);
11695 return default_value;
11696 }
11697
11698 return result;
11699 #endif // defined(GTEST_GET_INT32_FROM_ENV_)
11700 }
11701
11702 // As a special case for the 'output' flag, if GTEST_OUTPUT is not
11703 // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
11704 // system. The value of XML_OUTPUT_FILE is a filename without the
11705 // "xml:" prefix of GTEST_OUTPUT.
11706 // Note that this is meant to be called at the call site so it does
11707 // not check that the flag is 'output'
11708 // In essence this checks an env variable called XML_OUTPUT_FILE
11709 // and if it is set we prepend "xml:" to its value, if it not set we return ""
11710 std::string OutputFlagAlsoCheckEnvVar(){
11711 std::string default_value_for_output_flag = "";
11712 const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE");
11713 if (nullptr != xml_output_file_env) {
11714 default_value_for_output_flag = std::string("xml:") + xml_output_file_env;
11715 }
11716 return default_value_for_output_flag;
11717 }
11718
11719 // Reads and returns the string environment variable corresponding to
11720 // the given flag; if it's not set, returns default_value.
11721 const char* StringFromGTestEnv(const char* flag, const char* default_value) {
11722 #if defined(GTEST_GET_STRING_FROM_ENV_)
11723 return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
11724 #else
11725 const std::string env_var = FlagToEnvVar(flag);
11726 const char* const value = posix::GetEnv(env_var.c_str());
11727 return value == nullptr ? default_value : value;
11728 #endif // defined(GTEST_GET_STRING_FROM_ENV_)
11729 }
11730
11731 } // namespace internal
11732 } // namespace testing
11733 // Copyright 2007, Google Inc.
11734 // All rights reserved.
11735 //
11736 // Redistribution and use in source and binary forms, with or without
11737 // modification, are permitted provided that the following conditions are
11738 // met:
11739 //
11740 // * Redistributions of source code must retain the above copyright
11741 // notice, this list of conditions and the following disclaimer.
11742 // * Redistributions in binary form must reproduce the above
11743 // copyright notice, this list of conditions and the following disclaimer
11744 // in the documentation and/or other materials provided with the
11745 // distribution.
11746 // * Neither the name of Google Inc. nor the names of its
11747 // contributors may be used to endorse or promote products derived from
11748 // this software without specific prior written permission.
11749 //
11750 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11751 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11752 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11753 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11754 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11755 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11756 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11757 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11758 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11759 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11760 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11761
11762
11763 // Google Test - The Google C++ Testing and Mocking Framework
11764 //
11765 // This file implements a universal value printer that can print a
11766 // value of any type T:
11767 //
11768 // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
11769 //
11770 // It uses the << operator when possible, and prints the bytes in the
11771 // object otherwise. A user can override its behavior for a class
11772 // type Foo by defining either operator<<(::std::ostream&, const Foo&)
11773 // or void PrintTo(const Foo&, ::std::ostream*) in the namespace that
11774 // defines Foo.
11775
11776
11777 #include <stdio.h>
11778
11779 #include <cctype>
11780 #include <cstdint>
11781 #include <cwchar>
11782 #include <ostream> // NOLINT
11783 #include <string>
11784 #include <type_traits>
11785
11786
11787 namespace testing {
11788
11789 namespace {
11790
11791 using ::std::ostream;
11792
11793 // Prints a segment of bytes in the given object.
11794 GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_
11795 GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
11796 GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
11797 GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_
11798 void PrintByteSegmentInObjectTo(const unsigned char* obj_bytes, size_t start,
11799 size_t count, ostream* os) {
11800 char text[5] = "";
11801 for (size_t i = 0; i != count; i++) {
11802 const size_t j = start + i;
11803 if (i != 0) {
11804 // Organizes the bytes into groups of 2 for easy parsing by
11805 // human.
11806 if ((j % 2) == 0)
11807 *os << ' ';
11808 else
11809 *os << '-';
11810 }
11811 GTEST_SNPRINTF_(text, sizeof(text), "%02X", obj_bytes[j]);
11812 *os << text;
11813 }
11814 }
11815
11816 // Prints the bytes in the given value to the given ostream.
11817 void PrintBytesInObjectToImpl(const unsigned char* obj_bytes, size_t count,
11818 ostream* os) {
11819 // Tells the user how big the object is.
11820 *os << count << "-byte object <";
11821
11822 const size_t kThreshold = 132;
11823 const size_t kChunkSize = 64;
11824 // If the object size is bigger than kThreshold, we'll have to omit
11825 // some details by printing only the first and the last kChunkSize
11826 // bytes.
11827 if (count < kThreshold) {
11828 PrintByteSegmentInObjectTo(obj_bytes, 0, count, os);
11829 } else {
11830 PrintByteSegmentInObjectTo(obj_bytes, 0, kChunkSize, os);
11831 *os << " ... ";
11832 // Rounds up to 2-byte boundary.
11833 const size_t resume_pos = (count - kChunkSize + 1)/2*2;
11834 PrintByteSegmentInObjectTo(obj_bytes, resume_pos, count - resume_pos, os);
11835 }
11836 *os << ">";
11837 }
11838
11839 // Helpers for widening a character to char32_t. Since the standard does not
11840 // specify if char / wchar_t is signed or unsigned, it is important to first
11841 // convert it to the unsigned type of the same width before widening it to
11842 // char32_t.
11843 template <typename CharType>
11844 char32_t ToChar32(CharType in) {
11845 return static_cast<char32_t>(
11846 static_cast<typename std::make_unsigned<CharType>::type>(in));
11847 }
11848
11849 } // namespace
11850
11851 namespace internal {
11852
11853 // Delegates to PrintBytesInObjectToImpl() to print the bytes in the
11854 // given object. The delegation simplifies the implementation, which
11855 // uses the << operator and thus is easier done outside of the
11856 // ::testing::internal namespace, which contains a << operator that
11857 // sometimes conflicts with the one in STL.
11858 void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count,
11859 ostream* os) {
11860 PrintBytesInObjectToImpl(obj_bytes, count, os);
11861 }
11862
11863 // Depending on the value of a char (or wchar_t), we print it in one
11864 // of three formats:
11865 // - as is if it's a printable ASCII (e.g. 'a', '2', ' '),
11866 // - as a hexadecimal escape sequence (e.g. '\x7F'), or
11867 // - as a special escape sequence (e.g. '\r', '\n').
11868 enum CharFormat {
11869 kAsIs,
11870 kHexEscape,
11871 kSpecialEscape
11872 };
11873
11874 // Returns true if c is a printable ASCII character. We test the
11875 // value of c directly instead of calling isprint(), which is buggy on
11876 // Windows Mobile.
11877 inline bool IsPrintableAscii(char32_t c) { return 0x20 <= c && c <= 0x7E; }
11878
11879 // Prints c (of type char, char8_t, char16_t, char32_t, or wchar_t) as a
11880 // character literal without the quotes, escaping it when necessary; returns how
11881 // c was formatted.
11882 template <typename Char>
11883 static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) {
11884 const char32_t u_c = ToChar32(c);
11885 switch (u_c) {
11886 case L'\0':
11887 *os << "\\0";
11888 break;
11889 case L'\'':
11890 *os << "\\'";
11891 break;
11892 case L'\\':
11893 *os << "\\\\";
11894 break;
11895 case L'\a':
11896 *os << "\\a";
11897 break;
11898 case L'\b':
11899 *os << "\\b";
11900 break;
11901 case L'\f':
11902 *os << "\\f";
11903 break;
11904 case L'\n':
11905 *os << "\\n";
11906 break;
11907 case L'\r':
11908 *os << "\\r";
11909 break;
11910 case L'\t':
11911 *os << "\\t";
11912 break;
11913 case L'\v':
11914 *os << "\\v";
11915 break;
11916 default:
11917 if (IsPrintableAscii(u_c)) {
11918 *os << static_cast<char>(c);
11919 return kAsIs;
11920 } else {
11921 ostream::fmtflags flags = os->flags();
11922 *os << "\\x" << std::hex << std::uppercase << static_cast<int>(u_c);
11923 os->flags(flags);
11924 return kHexEscape;
11925 }
11926 }
11927 return kSpecialEscape;
11928 }
11929
11930 // Prints a char32_t c as if it's part of a string literal, escaping it when
11931 // necessary; returns how c was formatted.
11932 static CharFormat PrintAsStringLiteralTo(char32_t c, ostream* os) {
11933 switch (c) {
11934 case L'\'':
11935 *os << "'";
11936 return kAsIs;
11937 case L'"':
11938 *os << "\\\"";
11939 return kSpecialEscape;
11940 default:
11941 return PrintAsCharLiteralTo(c, os);
11942 }
11943 }
11944
11945 static const char* GetCharWidthPrefix(char) {
11946 return "";
11947 }
11948
11949 static const char* GetCharWidthPrefix(signed char) {
11950 return "";
11951 }
11952
11953 static const char* GetCharWidthPrefix(unsigned char) {
11954 return "";
11955 }
11956
11957 #ifdef __cpp_char8_t
11958 static const char* GetCharWidthPrefix(char8_t) {
11959 return "u8";
11960 }
11961 #endif
11962
11963 static const char* GetCharWidthPrefix(char16_t) {
11964 return "u";
11965 }
11966
11967 static const char* GetCharWidthPrefix(char32_t) {
11968 return "U";
11969 }
11970
11971 static const char* GetCharWidthPrefix(wchar_t) {
11972 return "L";
11973 }
11974
11975 // Prints a char c as if it's part of a string literal, escaping it when
11976 // necessary; returns how c was formatted.
11977 static CharFormat PrintAsStringLiteralTo(char c, ostream* os) {
11978 return PrintAsStringLiteralTo(ToChar32(c), os);
11979 }
11980
11981 #ifdef __cpp_char8_t
11982 static CharFormat PrintAsStringLiteralTo(char8_t c, ostream* os) {
11983 return PrintAsStringLiteralTo(ToChar32(c), os);
11984 }
11985 #endif
11986
11987 static CharFormat PrintAsStringLiteralTo(char16_t c, ostream* os) {
11988 return PrintAsStringLiteralTo(ToChar32(c), os);
11989 }
11990
11991 static CharFormat PrintAsStringLiteralTo(wchar_t c, ostream* os) {
11992 return PrintAsStringLiteralTo(ToChar32(c), os);
11993 }
11994
11995 // Prints a character c (of type char, char8_t, char16_t, char32_t, or wchar_t)
11996 // and its code. '\0' is printed as "'\\0'", other unprintable characters are
11997 // also properly escaped using the standard C++ escape sequence.
11998 template <typename Char>
11999 void PrintCharAndCodeTo(Char c, ostream* os) {
12000 // First, print c as a literal in the most readable form we can find.
12001 *os << GetCharWidthPrefix(c) << "'";
12002 const CharFormat format = PrintAsCharLiteralTo(c, os);
12003 *os << "'";
12004
12005 // To aid user debugging, we also print c's code in decimal, unless
12006 // it's 0 (in which case c was printed as '\\0', making the code
12007 // obvious).
12008 if (c == 0)
12009 return;
12010 *os << " (" << static_cast<int>(c);
12011
12012 // For more convenience, we print c's code again in hexadecimal,
12013 // unless c was already printed in the form '\x##' or the code is in
12014 // [1, 9].
12015 if (format == kHexEscape || (1 <= c && c <= 9)) {
12016 // Do nothing.
12017 } else {
12018 *os << ", 0x" << String::FormatHexInt(static_cast<int>(c));
12019 }
12020 *os << ")";
12021 }
12022
12023 void PrintTo(unsigned char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); }
12024 void PrintTo(signed char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); }
12025
12026 // Prints a wchar_t as a symbol if it is printable or as its internal
12027 // code otherwise and also as its code. L'\0' is printed as "L'\\0'".
12028 void PrintTo(wchar_t wc, ostream* os) { PrintCharAndCodeTo(wc, os); }
12029
12030 // TODO(dcheng): Consider making this delegate to PrintCharAndCodeTo() as well.
12031 void PrintTo(char32_t c, ::std::ostream* os) {
12032 *os << std::hex << "U+" << std::uppercase << std::setfill('0') << std::setw(4)
12033 << static_cast<uint32_t>(c);
12034 }
12035
12036 // Prints the given array of characters to the ostream. CharType must be either
12037 // char, char8_t, char16_t, char32_t, or wchar_t.
12038 // The array starts at begin, the length is len, it may include '\0' characters
12039 // and may not be NUL-terminated.
12040 template <typename CharType>
12041 GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_
12042 GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
12043 GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
12044 GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_
12045 static CharFormat PrintCharsAsStringTo(
12046 const CharType* begin, size_t len, ostream* os) {
12047 const char* const quote_prefix = GetCharWidthPrefix(*begin);
12048 *os << quote_prefix << "\"";
12049 bool is_previous_hex = false;
12050 CharFormat print_format = kAsIs;
12051 for (size_t index = 0; index < len; ++index) {
12052 const CharType cur = begin[index];
12053 if (is_previous_hex && IsXDigit(cur)) {
12054 // Previous character is of '\x..' form and this character can be
12055 // interpreted as another hexadecimal digit in its number. Break string to
12056 // disambiguate.
12057 *os << "\" " << quote_prefix << "\"";
12058 }
12059 is_previous_hex = PrintAsStringLiteralTo(cur, os) == kHexEscape;
12060 // Remember if any characters required hex escaping.
12061 if (is_previous_hex) {
12062 print_format = kHexEscape;
12063 }
12064 }
12065 *os << "\"";
12066 return print_format;
12067 }
12068
12069 // Prints a (const) char/wchar_t array of 'len' elements, starting at address
12070 // 'begin'. CharType must be either char or wchar_t.
12071 template <typename CharType>
12072 GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_
12073 GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_
12074 GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_
12075 GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_
12076 static void UniversalPrintCharArray(
12077 const CharType* begin, size_t len, ostream* os) {
12078 // The code
12079 // const char kFoo[] = "foo";
12080 // generates an array of 4, not 3, elements, with the last one being '\0'.
12081 //
12082 // Therefore when printing a char array, we don't print the last element if
12083 // it's '\0', such that the output matches the string literal as it's
12084 // written in the source code.
12085 if (len > 0 && begin[len - 1] == '\0') {
12086 PrintCharsAsStringTo(begin, len - 1, os);
12087 return;
12088 }
12089
12090 // If, however, the last element in the array is not '\0', e.g.
12091 // const char kFoo[] = { 'f', 'o', 'o' };
12092 // we must print the entire array. We also print a message to indicate
12093 // that the array is not NUL-terminated.
12094 PrintCharsAsStringTo(begin, len, os);
12095 *os << " (no terminating NUL)";
12096 }
12097
12098 // Prints a (const) char array of 'len' elements, starting at address 'begin'.
12099 void UniversalPrintArray(const char* begin, size_t len, ostream* os) {
12100 UniversalPrintCharArray(begin, len, os);
12101 }
12102
12103 #ifdef __cpp_char8_t
12104 // Prints a (const) char8_t array of 'len' elements, starting at address
12105 // 'begin'.
12106 void UniversalPrintArray(const char8_t* begin, size_t len, ostream* os) {
12107 UniversalPrintCharArray(begin, len, os);
12108 }
12109 #endif
12110
12111 // Prints a (const) char16_t array of 'len' elements, starting at address
12112 // 'begin'.
12113 void UniversalPrintArray(const char16_t* begin, size_t len, ostream* os) {
12114 UniversalPrintCharArray(begin, len, os);
12115 }
12116
12117 // Prints a (const) char32_t array of 'len' elements, starting at address
12118 // 'begin'.
12119 void UniversalPrintArray(const char32_t* begin, size_t len, ostream* os) {
12120 UniversalPrintCharArray(begin, len, os);
12121 }
12122
12123 // Prints a (const) wchar_t array of 'len' elements, starting at address
12124 // 'begin'.
12125 void UniversalPrintArray(const wchar_t* begin, size_t len, ostream* os) {
12126 UniversalPrintCharArray(begin, len, os);
12127 }
12128
12129 namespace {
12130
12131 // Prints a null-terminated C-style string to the ostream.
12132 template <typename Char>
12133 void PrintCStringTo(const Char* s, ostream* os) {
12134 if (s == nullptr) {
12135 *os << "NULL";
12136 } else {
12137 *os << ImplicitCast_<const void*>(s) << " pointing to ";
12138 PrintCharsAsStringTo(s, std::char_traits<Char>::length(s), os);
12139 }
12140 }
12141
12142 } // anonymous namespace
12143
12144 void PrintTo(const char* s, ostream* os) { PrintCStringTo(s, os); }
12145
12146 #ifdef __cpp_char8_t
12147 void PrintTo(const char8_t* s, ostream* os) { PrintCStringTo(s, os); }
12148 #endif
12149
12150 void PrintTo(const char16_t* s, ostream* os) { PrintCStringTo(s, os); }
12151
12152 void PrintTo(const char32_t* s, ostream* os) { PrintCStringTo(s, os); }
12153
12154 // MSVC compiler can be configured to define whar_t as a typedef
12155 // of unsigned short. Defining an overload for const wchar_t* in that case
12156 // would cause pointers to unsigned shorts be printed as wide strings,
12157 // possibly accessing more memory than intended and causing invalid
12158 // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
12159 // wchar_t is implemented as a native type.
12160 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
12161 // Prints the given wide C string to the ostream.
12162 void PrintTo(const wchar_t* s, ostream* os) { PrintCStringTo(s, os); }
12163 #endif // wchar_t is native
12164
12165 namespace {
12166
12167 bool ContainsUnprintableControlCodes(const char* str, size_t length) {
12168 const unsigned char *s = reinterpret_cast<const unsigned char *>(str);
12169
12170 for (size_t i = 0; i < length; i++) {
12171 unsigned char ch = *s++;
12172 if (std::iscntrl(ch)) {
12173 switch (ch) {
12174 case '\t':
12175 case '\n':
12176 case '\r':
12177 break;
12178 default:
12179 return true;
12180 }
12181 }
12182 }
12183 return false;
12184 }
12185
12186 bool IsUTF8TrailByte(unsigned char t) { return 0x80 <= t && t<= 0xbf; }
12187
12188 bool IsValidUTF8(const char* str, size_t length) {
12189 const unsigned char *s = reinterpret_cast<const unsigned char *>(str);
12190
12191 for (size_t i = 0; i < length;) {
12192 unsigned char lead = s[i++];
12193
12194 if (lead <= 0x7f) {
12195 continue; // single-byte character (ASCII) 0..7F
12196 }
12197 if (lead < 0xc2) {
12198 return false; // trail byte or non-shortest form
12199 } else if (lead <= 0xdf && (i + 1) <= length && IsUTF8TrailByte(s[i])) {
12200 ++i; // 2-byte character
12201 } else if (0xe0 <= lead && lead <= 0xef && (i + 2) <= length &&
12202 IsUTF8TrailByte(s[i]) &&
12203 IsUTF8TrailByte(s[i + 1]) &&
12204 // check for non-shortest form and surrogate
12205 (lead != 0xe0 || s[i] >= 0xa0) &&
12206 (lead != 0xed || s[i] < 0xa0)) {
12207 i += 2; // 3-byte character
12208 } else if (0xf0 <= lead && lead <= 0xf4 && (i + 3) <= length &&
12209 IsUTF8TrailByte(s[i]) &&
12210 IsUTF8TrailByte(s[i + 1]) &&
12211 IsUTF8TrailByte(s[i + 2]) &&
12212 // check for non-shortest form
12213 (lead != 0xf0 || s[i] >= 0x90) &&
12214 (lead != 0xf4 || s[i] < 0x90)) {
12215 i += 3; // 4-byte character
12216 } else {
12217 return false;
12218 }
12219 }
12220 return true;
12221 }
12222
12223 void ConditionalPrintAsText(const char* str, size_t length, ostream* os) {
12224 if (!ContainsUnprintableControlCodes(str, length) &&
12225 IsValidUTF8(str, length)) {
12226 *os << "\n As Text: \"" << str << "\"";
12227 }
12228 }
12229
12230 } // anonymous namespace
12231
12232 void PrintStringTo(const ::std::string& s, ostream* os) {
12233 if (PrintCharsAsStringTo(s.data(), s.size(), os) == kHexEscape) {
12234 if (GTEST_FLAG(print_utf8)) {
12235 ConditionalPrintAsText(s.data(), s.size(), os);
12236 }
12237 }
12238 }
12239
12240 #ifdef __cpp_char8_t
12241 void PrintU8StringTo(const ::std::u8string& s, ostream* os) {
12242 PrintCharsAsStringTo(s.data(), s.size(), os);
12243 }
12244 #endif
12245
12246 void PrintU16StringTo(const ::std::u16string& s, ostream* os) {
12247 PrintCharsAsStringTo(s.data(), s.size(), os);
12248 }
12249
12250 void PrintU32StringTo(const ::std::u32string& s, ostream* os) {
12251 PrintCharsAsStringTo(s.data(), s.size(), os);
12252 }
12253
12254 #if GTEST_HAS_STD_WSTRING
12255 void PrintWideStringTo(const ::std::wstring& s, ostream* os) {
12256 PrintCharsAsStringTo(s.data(), s.size(), os);
12257 }
12258 #endif // GTEST_HAS_STD_WSTRING
12259
12260 } // namespace internal
12261
12262 } // namespace testing
12263 // Copyright 2008, Google Inc.
12264 // All rights reserved.
12265 //
12266 // Redistribution and use in source and binary forms, with or without
12267 // modification, are permitted provided that the following conditions are
12268 // met:
12269 //
12270 // * Redistributions of source code must retain the above copyright
12271 // notice, this list of conditions and the following disclaimer.
12272 // * Redistributions in binary form must reproduce the above
12273 // copyright notice, this list of conditions and the following disclaimer
12274 // in the documentation and/or other materials provided with the
12275 // distribution.
12276 // * Neither the name of Google Inc. nor the names of its
12277 // contributors may be used to endorse or promote products derived from
12278 // this software without specific prior written permission.
12279 //
12280 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
12281 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
12282 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
12283 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
12284 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
12285 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
12286 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
12287 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
12288 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
12289 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
12290 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
12291
12292 //
12293 // The Google C++ Testing and Mocking Framework (Google Test)
12294
12295
12296
12297 namespace testing {
12298
12299 using internal::GetUnitTestImpl;
12300
12301 // Gets the summary of the failure message by omitting the stack trace
12302 // in it.
12303 std::string TestPartResult::ExtractSummary(const char* message) {
12304 const char* const stack_trace = strstr(message, internal::kStackTraceMarker);
12305 return stack_trace == nullptr ? message : std::string(message, stack_trace);
12306 }
12307
12308 // Prints a TestPartResult object.
12309 std::ostream& operator<<(std::ostream& os, const TestPartResult& result) {
12310 return os << internal::FormatFileLocation(result.file_name(),
12311 result.line_number())
12312 << " "
12313 << (result.type() == TestPartResult::kSuccess
12314 ? "Success"
12315 : result.type() == TestPartResult::kSkip
12316 ? "Skipped"
12317 : result.type() == TestPartResult::kFatalFailure
12318 ? "Fatal failure"
12319 : "Non-fatal failure")
12320 << ":\n"
12321 << result.message() << std::endl;
12322 }
12323
12324 // Appends a TestPartResult to the array.
12325 void TestPartResultArray::Append(const TestPartResult& result) {
12326 array_.push_back(result);
12327 }
12328
12329 // Returns the TestPartResult at the given index (0-based).
12330 const TestPartResult& TestPartResultArray::GetTestPartResult(int index) const {
12331 if (index < 0 || index >= size()) {
12332 printf("\nInvalid index (%d) into TestPartResultArray.\n", index);
12333 internal::posix::Abort();
12334 }
12335
12336 return array_[static_cast<size_t>(index)];
12337 }
12338
12339 // Returns the number of TestPartResult objects in the array.
12340 int TestPartResultArray::size() const {
12341 return static_cast<int>(array_.size());
12342 }
12343
12344 namespace internal {
12345
12346 HasNewFatalFailureHelper::HasNewFatalFailureHelper()
12347 : has_new_fatal_failure_(false),
12348 original_reporter_(GetUnitTestImpl()->
12349 GetTestPartResultReporterForCurrentThread()) {
12350 GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(this);
12351 }
12352
12353 HasNewFatalFailureHelper::~HasNewFatalFailureHelper() {
12354 GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(
12355 original_reporter_);
12356 }
12357
12358 void HasNewFatalFailureHelper::ReportTestPartResult(
12359 const TestPartResult& result) {
12360 if (result.fatally_failed())
12361 has_new_fatal_failure_ = true;
12362 original_reporter_->ReportTestPartResult(result);
12363 }
12364
12365 } // namespace internal
12366
12367 } // namespace testing
12368 // Copyright 2008 Google Inc.
12369 // All Rights Reserved.
12370 //
12371 // Redistribution and use in source and binary forms, with or without
12372 // modification, are permitted provided that the following conditions are
12373 // met:
12374 //
12375 // * Redistributions of source code must retain the above copyright
12376 // notice, this list of conditions and the following disclaimer.
12377 // * Redistributions in binary form must reproduce the above
12378 // copyright notice, this list of conditions and the following disclaimer
12379 // in the documentation and/or other materials provided with the
12380 // distribution.
12381 // * Neither the name of Google Inc. nor the names of its
12382 // contributors may be used to endorse or promote products derived from
12383 // this software without specific prior written permission.
12384 //
12385 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
12386 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
12387 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
12388 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
12389 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
12390 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
12391 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
12392 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
12393 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
12394 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
12395 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
12396
12397
12398
12399
12400 namespace testing {
12401 namespace internal {
12402
12403 // Skips to the first non-space char in str. Returns an empty string if str
12404 // contains only whitespace characters.
12405 static const char* SkipSpaces(const char* str) {
12406 while (IsSpace(*str))
12407 str++;
12408 return str;
12409 }
12410
12411 static std::vector<std::string> SplitIntoTestNames(const char* src) {
12412 std::vector<std::string> name_vec;
12413 src = SkipSpaces(src);
12414 for (; src != nullptr; src = SkipComma(src)) {
12415 name_vec.push_back(StripTrailingSpaces(GetPrefixUntilComma(src)));
12416 }
12417 return name_vec;
12418 }
12419
12420 // Verifies that registered_tests match the test names in
12421 // registered_tests_; returns registered_tests if successful, or
12422 // aborts the program otherwise.
12423 const char* TypedTestSuitePState::VerifyRegisteredTestNames(
12424 const char* test_suite_name, const char* file, int line,
12425 const char* registered_tests) {
12426 RegisterTypeParameterizedTestSuite(test_suite_name, CodeLocation(file, line));
12427
12428 typedef RegisteredTestsMap::const_iterator RegisteredTestIter;
12429 registered_ = true;
12430
12431 std::vector<std::string> name_vec = SplitIntoTestNames(registered_tests);
12432
12433 Message errors;
12434
12435 std::set<std::string> tests;
12436 for (std::vector<std::string>::const_iterator name_it = name_vec.begin();
12437 name_it != name_vec.end(); ++name_it) {
12438 const std::string& name = *name_it;
12439 if (tests.count(name) != 0) {
12440 errors << "Test " << name << " is listed more than once.\n";
12441 continue;
12442 }
12443
12444 if (registered_tests_.count(name) != 0) {
12445 tests.insert(name);
12446 } else {
12447 errors << "No test named " << name
12448 << " can be found in this test suite.\n";
12449 }
12450 }
12451
12452 for (RegisteredTestIter it = registered_tests_.begin();
12453 it != registered_tests_.end();
12454 ++it) {
12455 if (tests.count(it->first) == 0) {
12456 errors << "You forgot to list test " << it->first << ".\n";
12457 }
12458 }
12459
12460 const std::string& errors_str = errors.GetString();
12461 if (errors_str != "") {
12462 fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(),
12463 errors_str.c_str());
12464 fflush(stderr);
12465 posix::Abort();
12466 }
12467
12468 return registered_tests;
12469 }
12470
12471 } // namespace internal
12472 } // namespace testing
12473 // Copyright 2008, Google Inc.
12474 // All rights reserved.
12475 //
12476 // Redistribution and use in source and binary forms, with or without
12477 // modification, are permitted provided that the following conditions are
12478 // met:
12479 //
12480 // * Redistributions of source code must retain the above copyright
12481 // notice, this list of conditions and the following disclaimer.
12482 // * Redistributions in binary form must reproduce the above
12483 // copyright notice, this list of conditions and the following disclaimer
12484 // in the documentation and/or other materials provided with the
12485 // distribution.
12486 // * Neither the name of Google Inc. nor the names of its
12487 // contributors may be used to endorse or promote products derived from
12488 // this software without specific prior written permission.
12489 //
12490 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
12491 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
12492 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
12493 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
12494 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
12495 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
12496 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
12497 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
12498 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
12499 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
12500 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
12501
12502 //
12503 // Google C++ Mocking Framework (Google Mock)
12504 //
12505 // This file #includes all Google Mock implementation .cc files. The
12506 // purpose is to allow a user to build Google Mock by compiling this
12507 // file alone.
12508
12509 // This line ensures that gmock.h can be compiled on its own, even
12510 // when it's fused.
12511 #include "gmock/gmock.h"
12512
12513 // The following lines pull in the real gmock *.cc files.
12514 // Copyright 2007, Google Inc.
12515 // All rights reserved.
12516 //
12517 // Redistribution and use in source and binary forms, with or without
12518 // modification, are permitted provided that the following conditions are
12519 // met:
12520 //
12521 // * Redistributions of source code must retain the above copyright
12522 // notice, this list of conditions and the following disclaimer.
12523 // * Redistributions in binary form must reproduce the above
12524 // copyright notice, this list of conditions and the following disclaimer
12525 // in the documentation and/or other materials provided with the
12526 // distribution.
12527 // * Neither the name of Google Inc. nor the names of its
12528 // contributors may be used to endorse or promote products derived from
12529 // this software without specific prior written permission.
12530 //
12531 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
12532 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
12533 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
12534 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
12535 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
12536 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
12537 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
12538 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
12539 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
12540 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
12541 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
12542
12543
12544 // Google Mock - a framework for writing C++ mock classes.
12545 //
12546 // This file implements cardinalities.
12547
12548
12549 #include <limits.h>
12550 #include <ostream> // NOLINT
12551 #include <sstream>
12552 #include <string>
12553
12554 namespace testing {
12555
12556 namespace {
12557
12558 // Implements the Between(m, n) cardinality.
12559 class BetweenCardinalityImpl : public CardinalityInterface {
12560 public:
12561 BetweenCardinalityImpl(int min, int max)
12562 : min_(min >= 0 ? min : 0),
12563 max_(max >= min_ ? max : min_) {
12564 std::stringstream ss;
12565 if (min < 0) {
12566 ss << "The invocation lower bound must be >= 0, "
12567 << "but is actually " << min << ".";
12568 internal::Expect(false, __FILE__, __LINE__, ss.str());
12569 } else if (max < 0) {
12570 ss << "The invocation upper bound must be >= 0, "
12571 << "but is actually " << max << ".";
12572 internal::Expect(false, __FILE__, __LINE__, ss.str());
12573 } else if (min > max) {
12574 ss << "The invocation upper bound (" << max
12575 << ") must be >= the invocation lower bound (" << min
12576 << ").";
12577 internal::Expect(false, __FILE__, __LINE__, ss.str());
12578 }
12579 }
12580
12581 // Conservative estimate on the lower/upper bound of the number of
12582 // calls allowed.
12583 int ConservativeLowerBound() const override { return min_; }
12584 int ConservativeUpperBound() const override { return max_; }
12585
12586 bool IsSatisfiedByCallCount(int call_count) const override {
12587 return min_ <= call_count && call_count <= max_;
12588 }
12589
12590 bool IsSaturatedByCallCount(int call_count) const override {
12591 return call_count >= max_;
12592 }
12593
12594 void DescribeTo(::std::ostream* os) const override;
12595
12596 private:
12597 const int min_;
12598 const int max_;
12599
12600 GTEST_DISALLOW_COPY_AND_ASSIGN_(BetweenCardinalityImpl);
12601 };
12602
12603 // Formats "n times" in a human-friendly way.
12604 inline std::string FormatTimes(int n) {
12605 if (n == 1) {
12606 return "once";
12607 } else if (n == 2) {
12608 return "twice";
12609 } else {
12610 std::stringstream ss;
12611 ss << n << " times";
12612 return ss.str();
12613 }
12614 }
12615
12616 // Describes the Between(m, n) cardinality in human-friendly text.
12617 void BetweenCardinalityImpl::DescribeTo(::std::ostream* os) const {
12618 if (min_ == 0) {
12619 if (max_ == 0) {
12620 *os << "never called";
12621 } else if (max_ == INT_MAX) {
12622 *os << "called any number of times";
12623 } else {
12624 *os << "called at most " << FormatTimes(max_);
12625 }
12626 } else if (min_ == max_) {
12627 *os << "called " << FormatTimes(min_);
12628 } else if (max_ == INT_MAX) {
12629 *os << "called at least " << FormatTimes(min_);
12630 } else {
12631 // 0 < min_ < max_ < INT_MAX
12632 *os << "called between " << min_ << " and " << max_ << " times";
12633 }
12634 }
12635
12636 } // Unnamed namespace
12637
12638 // Describes the given call count to an ostream.
12639 void Cardinality::DescribeActualCallCountTo(int actual_call_count,
12640 ::std::ostream* os) {
12641 if (actual_call_count > 0) {
12642 *os << "called " << FormatTimes(actual_call_count);
12643 } else {
12644 *os << "never called";
12645 }
12646 }
12647
12648 // Creates a cardinality that allows at least n calls.
12649 GTEST_API_ Cardinality AtLeast(int n) { return Between(n, INT_MAX); }
12650
12651 // Creates a cardinality that allows at most n calls.
12652 GTEST_API_ Cardinality AtMost(int n) { return Between(0, n); }
12653
12654 // Creates a cardinality that allows any number of calls.
12655 GTEST_API_ Cardinality AnyNumber() { return AtLeast(0); }
12656
12657 // Creates a cardinality that allows between min and max calls.
12658 GTEST_API_ Cardinality Between(int min, int max) {
12659 return Cardinality(new BetweenCardinalityImpl(min, max));
12660 }
12661
12662 // Creates a cardinality that allows exactly n calls.
12663 GTEST_API_ Cardinality Exactly(int n) { return Between(n, n); }
12664
12665 } // namespace testing
12666 // Copyright 2007, Google Inc.
12667 // All rights reserved.
12668 //
12669 // Redistribution and use in source and binary forms, with or without
12670 // modification, are permitted provided that the following conditions are
12671 // met:
12672 //
12673 // * Redistributions of source code must retain the above copyright
12674 // notice, this list of conditions and the following disclaimer.
12675 // * Redistributions in binary form must reproduce the above
12676 // copyright notice, this list of conditions and the following disclaimer
12677 // in the documentation and/or other materials provided with the
12678 // distribution.
12679 // * Neither the name of Google Inc. nor the names of its
12680 // contributors may be used to endorse or promote products derived from
12681 // this software without specific prior written permission.
12682 //
12683 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
12684 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
12685 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
12686 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
12687 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
12688 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
12689 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
12690 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
12691 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
12692 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
12693 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
12694
12695
12696 // Google Mock - a framework for writing C++ mock classes.
12697 //
12698 // This file defines some utilities useful for implementing Google
12699 // Mock. They are subject to change without notice, so please DO NOT
12700 // USE THEM IN USER CODE.
12701
12702
12703 #include <ctype.h>
12704 #include <ostream> // NOLINT
12705 #include <string>
12706
12707 namespace testing {
12708 namespace internal {
12709
12710 // Joins a vector of strings as if they are fields of a tuple; returns
12711 // the joined string.
12712 GTEST_API_ std::string JoinAsTuple(const Strings& fields) {
12713 switch (fields.size()) {
12714 case 0:
12715 return "";
12716 case 1:
12717 return fields[0];
12718 default:
12719 std::string result = "(" + fields[0];
12720 for (size_t i = 1; i < fields.size(); i++) {
12721 result += ", ";
12722 result += fields[i];
12723 }
12724 result += ")";
12725 return result;
12726 }
12727 }
12728
12729 // Converts an identifier name to a space-separated list of lower-case
12730 // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
12731 // treated as one word. For example, both "FooBar123" and
12732 // "foo_bar_123" are converted to "foo bar 123".
12733 GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name) {
12734 std::string result;
12735 char prev_char = '\0';
12736 for (const char* p = id_name; *p != '\0'; prev_char = *(p++)) {
12737 // We don't care about the current locale as the input is
12738 // guaranteed to be a valid C++ identifier name.
12739 const bool starts_new_word = IsUpper(*p) ||
12740 (!IsAlpha(prev_char) && IsLower(*p)) ||
12741 (!IsDigit(prev_char) && IsDigit(*p));
12742
12743 if (IsAlNum(*p)) {
12744 if (starts_new_word && result != "")
12745 result += ' ';
12746 result += ToLower(*p);
12747 }
12748 }
12749 return result;
12750 }
12751
12752 // This class reports Google Mock failures as Google Test failures. A
12753 // user can define another class in a similar fashion if they intend to
12754 // use Google Mock with a testing framework other than Google Test.
12755 class GoogleTestFailureReporter : public FailureReporterInterface {
12756 public:
12757 void ReportFailure(FailureType type, const char* file, int line,
12758 const std::string& message) override {
12759 AssertHelper(type == kFatal ?
12760 TestPartResult::kFatalFailure :
12761 TestPartResult::kNonFatalFailure,
12762 file,
12763 line,
12764 message.c_str()) = Message();
12765 if (type == kFatal) {
12766 posix::Abort();
12767 }
12768 }
12769 };
12770
12771 // Returns the global failure reporter. Will create a
12772 // GoogleTestFailureReporter and return it the first time called.
12773 GTEST_API_ FailureReporterInterface* GetFailureReporter() {
12774 // Points to the global failure reporter used by Google Mock. gcc
12775 // guarantees that the following use of failure_reporter is
12776 // thread-safe. We may need to add additional synchronization to
12777 // protect failure_reporter if we port Google Mock to other
12778 // compilers.
12779 static FailureReporterInterface* const failure_reporter =
12780 new GoogleTestFailureReporter();
12781 return failure_reporter;
12782 }
12783
12784 // Protects global resources (stdout in particular) used by Log().
12785 static GTEST_DEFINE_STATIC_MUTEX_(g_log_mutex);
12786
12787 // Returns true if and only if a log with the given severity is visible
12788 // according to the --gmock_verbose flag.
12789 GTEST_API_ bool LogIsVisible(LogSeverity severity) {
12790 if (GMOCK_FLAG(verbose) == kInfoVerbosity) {
12791 // Always show the log if --gmock_verbose=info.
12792 return true;
12793 } else if (GMOCK_FLAG(verbose) == kErrorVerbosity) {
12794 // Always hide it if --gmock_verbose=error.
12795 return false;
12796 } else {
12797 // If --gmock_verbose is neither "info" nor "error", we treat it
12798 // as "warning" (its default value).
12799 return severity == kWarning;
12800 }
12801 }
12802
12803 // Prints the given message to stdout if and only if 'severity' >= the level
12804 // specified by the --gmock_verbose flag. If stack_frames_to_skip >=
12805 // 0, also prints the stack trace excluding the top
12806 // stack_frames_to_skip frames. In opt mode, any positive
12807 // stack_frames_to_skip is treated as 0, since we don't know which
12808 // function calls will be inlined by the compiler and need to be
12809 // conservative.
12810 GTEST_API_ void Log(LogSeverity severity, const std::string& message,
12811 int stack_frames_to_skip) {
12812 if (!LogIsVisible(severity))
12813 return;
12814
12815 // Ensures that logs from different threads don't interleave.
12816 MutexLock l(&g_log_mutex);
12817
12818 if (severity == kWarning) {
12819 // Prints a GMOCK WARNING marker to make the warnings easily searchable.
12820 std::cout << "\nGMOCK WARNING:";
12821 }
12822 // Pre-pends a new-line to message if it doesn't start with one.
12823 if (message.empty() || message[0] != '\n') {
12824 std::cout << "\n";
12825 }
12826 std::cout << message;
12827 if (stack_frames_to_skip >= 0) {
12828 #ifdef NDEBUG
12829 // In opt mode, we have to be conservative and skip no stack frame.
12830 const int actual_to_skip = 0;
12831 #else
12832 // In dbg mode, we can do what the caller tell us to do (plus one
12833 // for skipping this function's stack frame).
12834 const int actual_to_skip = stack_frames_to_skip + 1;
12835 #endif // NDEBUG
12836
12837 // Appends a new-line to message if it doesn't end with one.
12838 if (!message.empty() && *message.rbegin() != '\n') {
12839 std::cout << "\n";
12840 }
12841 std::cout << "Stack trace:\n"
12842 << ::testing::internal::GetCurrentOsStackTraceExceptTop(
12843 ::testing::UnitTest::GetInstance(), actual_to_skip);
12844 }
12845 std::cout << ::std::flush;
12846 }
12847
12848 GTEST_API_ WithoutMatchers GetWithoutMatchers() { return WithoutMatchers(); }
12849
12850 GTEST_API_ void IllegalDoDefault(const char* file, int line) {
12851 internal::Assert(
12852 false, file, line,
12853 "You are using DoDefault() inside a composite action like "
12854 "DoAll() or WithArgs(). This is not supported for technical "
12855 "reasons. Please instead spell out the default action, or "
12856 "assign the default action to an Action variable and use "
12857 "the variable in various places.");
12858 }
12859
12860 } // namespace internal
12861 } // namespace testing
12862 // Copyright 2007, Google Inc.
12863 // All rights reserved.
12864 //
12865 // Redistribution and use in source and binary forms, with or without
12866 // modification, are permitted provided that the following conditions are
12867 // met:
12868 //
12869 // * Redistributions of source code must retain the above copyright
12870 // notice, this list of conditions and the following disclaimer.
12871 // * Redistributions in binary form must reproduce the above
12872 // copyright notice, this list of conditions and the following disclaimer
12873 // in the documentation and/or other materials provided with the
12874 // distribution.
12875 // * Neither the name of Google Inc. nor the names of its
12876 // contributors may be used to endorse or promote products derived from
12877 // this software without specific prior written permission.
12878 //
12879 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
12880 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
12881 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
12882 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
12883 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
12884 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
12885 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
12886 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
12887 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
12888 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
12889 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
12890
12891
12892 // Google Mock - a framework for writing C++ mock classes.
12893 //
12894 // This file implements Matcher<const string&>, Matcher<string>, and
12895 // utilities for defining matchers.
12896
12897
12898 #include <string.h>
12899 #include <iostream>
12900 #include <sstream>
12901 #include <string>
12902
12903 namespace testing {
12904 namespace internal {
12905
12906 // Returns the description for a matcher defined using the MATCHER*()
12907 // macro where the user-supplied description string is "", if
12908 // 'negation' is false; otherwise returns the description of the
12909 // negation of the matcher. 'param_values' contains a list of strings
12910 // that are the print-out of the matcher's parameters.
12911 GTEST_API_ std::string FormatMatcherDescription(bool negation,
12912 const char* matcher_name,
12913 const Strings& param_values) {
12914 std::string result = ConvertIdentifierNameToWords(matcher_name);
12915 if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
12916 return negation ? "not (" + result + ")" : result;
12917 }
12918
12919 // FindMaxBipartiteMatching and its helper class.
12920 //
12921 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
12922 // bipartite matching. Flow is considered to be from left to right.
12923 // There is an implicit source node that is connected to all of the left
12924 // nodes, and an implicit sink node that is connected to all of the
12925 // right nodes. All edges have unit capacity.
12926 //
12927 // Neither the flow graph nor the residual flow graph are represented
12928 // explicitly. Instead, they are implied by the information in 'graph' and
12929 // a vector<int> called 'left_' whose elements are initialized to the
12930 // value kUnused. This represents the initial state of the algorithm,
12931 // where the flow graph is empty, and the residual flow graph has the
12932 // following edges:
12933 // - An edge from source to each left_ node
12934 // - An edge from each right_ node to sink
12935 // - An edge from each left_ node to each right_ node, if the
12936 // corresponding edge exists in 'graph'.
12937 //
12938 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
12939 // nodes l and r. This induces the following changes:
12940 // - The edges (source, l), (l, r), and (r, sink) are added to the
12941 // flow graph.
12942 // - The same three edges are removed from the residual flow graph.
12943 // - The reverse edges (l, source), (r, l), and (sink, r) are added
12944 // to the residual flow graph, which is a directional graph
12945 // representing unused flow capacity.
12946 //
12947 // When the method augments a flow (moving left_[l] from some r1 to some
12948 // other r2), this can be thought of as "undoing" the above steps with
12949 // respect to r1 and "redoing" them with respect to r2.
12950 //
12951 // It bears repeating that the flow graph and residual flow graph are
12952 // never represented explicitly, but can be derived by looking at the
12953 // information in 'graph' and in left_.
12954 //
12955 // As an optimization, there is a second vector<int> called right_ which
12956 // does not provide any new information. Instead, it enables more
12957 // efficient queries about edges entering or leaving the right-side nodes
12958 // of the flow or residual flow graphs. The following invariants are
12959 // maintained:
12960 //
12961 // left[l] == kUnused or right[left[l]] == l
12962 // right[r] == kUnused or left[right[r]] == r
12963 //
12964 // . [ source ] .
12965 // . ||| .
12966 // . ||| .
12967 // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ .
12968 // . || | | .
12969 // . |\---> left[1]=-1 \--> right[1]=0 ---\| .
12970 // . | || .
12971 // . \----> left[2]=2 ------> right[2]=2 --\|| .
12972 // . ||| .
12973 // . elements matchers vvv .
12974 // . [ sink ] .
12975 //
12976 // See Also:
12977 // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
12978 // "Introduction to Algorithms (Second ed.)", pp. 651-664.
12979 // [2] "Ford-Fulkerson algorithm", Wikipedia,
12980 // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
12981 class MaxBipartiteMatchState {
12982 public:
12983 explicit MaxBipartiteMatchState(const MatchMatrix& graph)
12984 : graph_(&graph),
12985 left_(graph_->LhsSize(), kUnused),
12986 right_(graph_->RhsSize(), kUnused) {}
12987
12988 // Returns the edges of a maximal match, each in the form {left, right}.
12989 ElementMatcherPairs Compute() {
12990 // 'seen' is used for path finding { 0: unseen, 1: seen }.
12991 ::std::vector<char> seen;
12992 // Searches the residual flow graph for a path from each left node to
12993 // the sink in the residual flow graph, and if one is found, add flow
12994 // to the graph. It's okay to search through the left nodes once. The
12995 // edge from the implicit source node to each previously-visited left
12996 // node will have flow if that left node has any path to the sink
12997 // whatsoever. Subsequent augmentations can only add flow to the
12998 // network, and cannot take away that previous flow unit from the source.
12999 // Since the source-to-left edge can only carry one flow unit (or,
13000 // each element can be matched to only one matcher), there is no need
13001 // to visit the left nodes more than once looking for augmented paths.
13002 // The flow is known to be possible or impossible by looking at the
13003 // node once.
13004 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
13005 // Reset the path-marking vector and try to find a path from
13006 // source to sink starting at the left_[ilhs] node.
13007 GTEST_CHECK_(left_[ilhs] == kUnused)
13008 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
13009 // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
13010 seen.assign(graph_->RhsSize(), 0);
13011 TryAugment(ilhs, &seen);
13012 }
13013 ElementMatcherPairs result;
13014 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
13015 size_t irhs = left_[ilhs];
13016 if (irhs == kUnused) continue;
13017 result.push_back(ElementMatcherPair(ilhs, irhs));
13018 }
13019 return result;
13020 }
13021
13022 private:
13023 static const size_t kUnused = static_cast<size_t>(-1);
13024
13025 // Perform a depth-first search from left node ilhs to the sink. If a
13026 // path is found, flow is added to the network by linking the left and
13027 // right vector elements corresponding each segment of the path.
13028 // Returns true if a path to sink was found, which means that a unit of
13029 // flow was added to the network. The 'seen' vector elements correspond
13030 // to right nodes and are marked to eliminate cycles from the search.
13031 //
13032 // Left nodes will only be explored at most once because they
13033 // are accessible from at most one right node in the residual flow
13034 // graph.
13035 //
13036 // Note that left_[ilhs] is the only element of left_ that TryAugment will
13037 // potentially transition from kUnused to another value. Any other
13038 // left_ element holding kUnused before TryAugment will be holding it
13039 // when TryAugment returns.
13040 //
13041 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
13042 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
13043 if ((*seen)[irhs]) continue;
13044 if (!graph_->HasEdge(ilhs, irhs)) continue;
13045 // There's an available edge from ilhs to irhs.
13046 (*seen)[irhs] = 1;
13047 // Next a search is performed to determine whether
13048 // this edge is a dead end or leads to the sink.
13049 //
13050 // right_[irhs] == kUnused means that there is residual flow from
13051 // right node irhs to the sink, so we can use that to finish this
13052 // flow path and return success.
13053 //
13054 // Otherwise there is residual flow to some ilhs. We push flow
13055 // along that path and call ourselves recursively to see if this
13056 // ultimately leads to sink.
13057 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
13058 // Add flow from left_[ilhs] to right_[irhs].
13059 left_[ilhs] = irhs;
13060 right_[irhs] = ilhs;
13061 return true;
13062 }
13063 }
13064 return false;
13065 }
13066
13067 const MatchMatrix* graph_; // not owned
13068 // Each element of the left_ vector represents a left hand side node
13069 // (i.e. an element) and each element of right_ is a right hand side
13070 // node (i.e. a matcher). The values in the left_ vector indicate
13071 // outflow from that node to a node on the right_ side. The values
13072 // in the right_ indicate inflow, and specify which left_ node is
13073 // feeding that right_ node, if any. For example, left_[3] == 1 means
13074 // there's a flow from element #3 to matcher #1. Such a flow would also
13075 // be redundantly represented in the right_ vector as right_[1] == 3.
13076 // Elements of left_ and right_ are either kUnused or mutually
13077 // referent. Mutually referent means that left_[right_[i]] = i and
13078 // right_[left_[i]] = i.
13079 ::std::vector<size_t> left_;
13080 ::std::vector<size_t> right_;
13081 };
13082
13083 const size_t MaxBipartiteMatchState::kUnused;
13084
13085 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
13086 return MaxBipartiteMatchState(g).Compute();
13087 }
13088
13089 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
13090 ::std::ostream* stream) {
13091 typedef ElementMatcherPairs::const_iterator Iter;
13092 ::std::ostream& os = *stream;
13093 os << "{";
13094 const char* sep = "";
13095 for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
13096 os << sep << "\n ("
13097 << "element #" << it->first << ", "
13098 << "matcher #" << it->second << ")";
13099 sep = ",";
13100 }
13101 os << "\n}";
13102 }
13103
13104 bool MatchMatrix::NextGraph() {
13105 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
13106 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
13107 char& b = matched_[SpaceIndex(ilhs, irhs)];
13108 if (!b) {
13109 b = 1;
13110 return true;
13111 }
13112 b = 0;
13113 }
13114 }
13115 return false;
13116 }
13117
13118 void MatchMatrix::Randomize() {
13119 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
13120 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
13121 char& b = matched_[SpaceIndex(ilhs, irhs)];
13122 b = static_cast<char>(rand() & 1); // NOLINT
13123 }
13124 }
13125 }
13126
13127 std::string MatchMatrix::DebugString() const {
13128 ::std::stringstream ss;
13129 const char* sep = "";
13130 for (size_t i = 0; i < LhsSize(); ++i) {
13131 ss << sep;
13132 for (size_t j = 0; j < RhsSize(); ++j) {
13133 ss << HasEdge(i, j);
13134 }
13135 sep = ";";
13136 }
13137 return ss.str();
13138 }
13139
13140 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
13141 ::std::ostream* os) const {
13142 switch (match_flags()) {
13143 case UnorderedMatcherRequire::ExactMatch:
13144 if (matcher_describers_.empty()) {
13145 *os << "is empty";
13146 return;
13147 }
13148 if (matcher_describers_.size() == 1) {
13149 *os << "has " << Elements(1) << " and that element ";
13150 matcher_describers_[0]->DescribeTo(os);
13151 return;
13152 }
13153 *os << "has " << Elements(matcher_describers_.size())
13154 << " and there exists some permutation of elements such that:\n";
13155 break;
13156 case UnorderedMatcherRequire::Superset:
13157 *os << "a surjection from elements to requirements exists such that:\n";
13158 break;
13159 case UnorderedMatcherRequire::Subset:
13160 *os << "an injection from elements to requirements exists such that:\n";
13161 break;
13162 }
13163
13164 const char* sep = "";
13165 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
13166 *os << sep;
13167 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
13168 *os << " - element #" << i << " ";
13169 } else {
13170 *os << " - an element ";
13171 }
13172 matcher_describers_[i]->DescribeTo(os);
13173 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
13174 sep = ", and\n";
13175 } else {
13176 sep = "\n";
13177 }
13178 }
13179 }
13180
13181 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
13182 ::std::ostream* os) const {
13183 switch (match_flags()) {
13184 case UnorderedMatcherRequire::ExactMatch:
13185 if (matcher_describers_.empty()) {
13186 *os << "isn't empty";
13187 return;
13188 }
13189 if (matcher_describers_.size() == 1) {
13190 *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
13191 << " that ";
13192 matcher_describers_[0]->DescribeNegationTo(os);
13193 return;
13194 }
13195 *os << "doesn't have " << Elements(matcher_describers_.size())
13196 << ", or there exists no permutation of elements such that:\n";
13197 break;
13198 case UnorderedMatcherRequire::Superset:
13199 *os << "no surjection from elements to requirements exists such that:\n";
13200 break;
13201 case UnorderedMatcherRequire::Subset:
13202 *os << "no injection from elements to requirements exists such that:\n";
13203 break;
13204 }
13205 const char* sep = "";
13206 for (size_t i = 0; i != matcher_describers_.size(); ++i) {
13207 *os << sep;
13208 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
13209 *os << " - element #" << i << " ";
13210 } else {
13211 *os << " - an element ";
13212 }
13213 matcher_describers_[i]->DescribeTo(os);
13214 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
13215 sep = ", and\n";
13216 } else {
13217 sep = "\n";
13218 }
13219 }
13220 }
13221
13222 // Checks that all matchers match at least one element, and that all
13223 // elements match at least one matcher. This enables faster matching
13224 // and better error reporting.
13225 // Returns false, writing an explanation to 'listener', if and only
13226 // if the success criteria are not met.
13227 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
13228 const ::std::vector<std::string>& element_printouts,
13229 const MatchMatrix& matrix, MatchResultListener* listener) const {
13230 bool result = true;
13231 ::std::vector<char> element_matched(matrix.LhsSize(), 0);
13232 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
13233
13234 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
13235 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
13236 char matched = matrix.HasEdge(ilhs, irhs);
13237 element_matched[ilhs] |= matched;
13238 matcher_matched[irhs] |= matched;
13239 }
13240 }
13241
13242 if (match_flags() & UnorderedMatcherRequire::Superset) {
13243 const char* sep =
13244 "where the following matchers don't match any elements:\n";
13245 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
13246 if (matcher_matched[mi]) continue;
13247 result = false;
13248 if (listener->IsInterested()) {
13249 *listener << sep << "matcher #" << mi << ": ";
13250 matcher_describers_[mi]->DescribeTo(listener->stream());
13251 sep = ",\n";
13252 }
13253 }
13254 }
13255
13256 if (match_flags() & UnorderedMatcherRequire::Subset) {
13257 const char* sep =
13258 "where the following elements don't match any matchers:\n";
13259 const char* outer_sep = "";
13260 if (!result) {
13261 outer_sep = "\nand ";
13262 }
13263 for (size_t ei = 0; ei < element_matched.size(); ++ei) {
13264 if (element_matched[ei]) continue;
13265 result = false;
13266 if (listener->IsInterested()) {
13267 *listener << outer_sep << sep << "element #" << ei << ": "
13268 << element_printouts[ei];
13269 sep = ",\n";
13270 outer_sep = "";
13271 }
13272 }
13273 }
13274 return result;
13275 }
13276
13277 bool UnorderedElementsAreMatcherImplBase::FindPairing(
13278 const MatchMatrix& matrix, MatchResultListener* listener) const {
13279 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
13280
13281 size_t max_flow = matches.size();
13282 if ((match_flags() & UnorderedMatcherRequire::Superset) &&
13283 max_flow < matrix.RhsSize()) {
13284 if (listener->IsInterested()) {
13285 *listener << "where no permutation of the elements can satisfy all "
13286 "matchers, and the closest match is "
13287 << max_flow << " of " << matrix.RhsSize()
13288 << " matchers with the pairings:\n";
13289 LogElementMatcherPairVec(matches, listener->stream());
13290 }
13291 return false;
13292 }
13293 if ((match_flags() & UnorderedMatcherRequire::Subset) &&
13294 max_flow < matrix.LhsSize()) {
13295 if (listener->IsInterested()) {
13296 *listener
13297 << "where not all elements can be matched, and the closest match is "
13298 << max_flow << " of " << matrix.RhsSize()
13299 << " matchers with the pairings:\n";
13300 LogElementMatcherPairVec(matches, listener->stream());
13301 }
13302 return false;
13303 }
13304
13305 if (matches.size() > 1) {
13306 if (listener->IsInterested()) {
13307 const char* sep = "where:\n";
13308 for (size_t mi = 0; mi < matches.size(); ++mi) {
13309 *listener << sep << " - element #" << matches[mi].first
13310 << " is matched by matcher #" << matches[mi].second;
13311 sep = ",\n";
13312 }
13313 }
13314 }
13315 return true;
13316 }
13317
13318 } // namespace internal
13319 } // namespace testing
13320 // Copyright 2007, Google Inc.
13321 // All rights reserved.
13322 //
13323 // Redistribution and use in source and binary forms, with or without
13324 // modification, are permitted provided that the following conditions are
13325 // met:
13326 //
13327 // * Redistributions of source code must retain the above copyright
13328 // notice, this list of conditions and the following disclaimer.
13329 // * Redistributions in binary form must reproduce the above
13330 // copyright notice, this list of conditions and the following disclaimer
13331 // in the documentation and/or other materials provided with the
13332 // distribution.
13333 // * Neither the name of Google Inc. nor the names of its
13334 // contributors may be used to endorse or promote products derived from
13335 // this software without specific prior written permission.
13336 //
13337 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
13338 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
13339 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
13340 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
13341 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
13342 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
13343 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
13344 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
13345 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
13346 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
13347 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
13348
13349
13350 // Google Mock - a framework for writing C++ mock classes.
13351 //
13352 // This file implements the spec builder syntax (ON_CALL and
13353 // EXPECT_CALL).
13354
13355
13356 #include <stdlib.h>
13357
13358 #include <iostream> // NOLINT
13359 #include <map>
13360 #include <memory>
13361 #include <set>
13362 #include <string>
13363 #include <vector>
13364
13365
13366 #if GTEST_OS_CYGWIN || GTEST_OS_LINUX || GTEST_OS_MAC
13367 # include <unistd.h> // NOLINT
13368 #endif
13369
13370 // Silence C4800 (C4800: 'int *const ': forcing value
13371 // to bool 'true' or 'false') for MSVC 15
13372 #ifdef _MSC_VER
13373 #if _MSC_VER == 1900
13374 # pragma warning(push)
13375 # pragma warning(disable:4800)
13376 #endif
13377 #endif
13378
13379 namespace testing {
13380 namespace internal {
13381
13382 // Protects the mock object registry (in class Mock), all function
13383 // mockers, and all expectations.
13384 GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_gmock_mutex);
13385
13386 // Logs a message including file and line number information.
13387 GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
13388 const char* file, int line,
13389 const std::string& message) {
13390 ::std::ostringstream s;
13391 s << internal::FormatFileLocation(file, line) << " " << message
13392 << ::std::endl;
13393 Log(severity, s.str(), 0);
13394 }
13395
13396 // Constructs an ExpectationBase object.
13397 ExpectationBase::ExpectationBase(const char* a_file, int a_line,
13398 const std::string& a_source_text)
13399 : file_(a_file),
13400 line_(a_line),
13401 source_text_(a_source_text),
13402 cardinality_specified_(false),
13403 cardinality_(Exactly(1)),
13404 call_count_(0),
13405 retired_(false),
13406 extra_matcher_specified_(false),
13407 repeated_action_specified_(false),
13408 retires_on_saturation_(false),
13409 last_clause_(kNone),
13410 action_count_checked_(false) {}
13411
13412 // Destructs an ExpectationBase object.
13413 ExpectationBase::~ExpectationBase() {}
13414
13415 // Explicitly specifies the cardinality of this expectation. Used by
13416 // the subclasses to implement the .Times() clause.
13417 void ExpectationBase::SpecifyCardinality(const Cardinality& a_cardinality) {
13418 cardinality_specified_ = true;
13419 cardinality_ = a_cardinality;
13420 }
13421
13422 // Retires all pre-requisites of this expectation.
13423 void ExpectationBase::RetireAllPreRequisites()
13424 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
13425 if (is_retired()) {
13426 // We can take this short-cut as we never retire an expectation
13427 // until we have retired all its pre-requisites.
13428 return;
13429 }
13430
13431 ::std::vector<ExpectationBase*> expectations(1, this);
13432 while (!expectations.empty()) {
13433 ExpectationBase* exp = expectations.back();
13434 expectations.pop_back();
13435
13436 for (ExpectationSet::const_iterator it =
13437 exp->immediate_prerequisites_.begin();
13438 it != exp->immediate_prerequisites_.end(); ++it) {
13439 ExpectationBase* next = it->expectation_base().get();
13440 if (!next->is_retired()) {
13441 next->Retire();
13442 expectations.push_back(next);
13443 }
13444 }
13445 }
13446 }
13447
13448 // Returns true if and only if all pre-requisites of this expectation
13449 // have been satisfied.
13450 bool ExpectationBase::AllPrerequisitesAreSatisfied() const
13451 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
13452 g_gmock_mutex.AssertHeld();
13453 ::std::vector<const ExpectationBase*> expectations(1, this);
13454 while (!expectations.empty()) {
13455 const ExpectationBase* exp = expectations.back();
13456 expectations.pop_back();
13457
13458 for (ExpectationSet::const_iterator it =
13459 exp->immediate_prerequisites_.begin();
13460 it != exp->immediate_prerequisites_.end(); ++it) {
13461 const ExpectationBase* next = it->expectation_base().get();
13462 if (!next->IsSatisfied()) return false;
13463 expectations.push_back(next);
13464 }
13465 }
13466 return true;
13467 }
13468
13469 // Adds unsatisfied pre-requisites of this expectation to 'result'.
13470 void ExpectationBase::FindUnsatisfiedPrerequisites(ExpectationSet* result) const
13471 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
13472 g_gmock_mutex.AssertHeld();
13473 ::std::vector<const ExpectationBase*> expectations(1, this);
13474 while (!expectations.empty()) {
13475 const ExpectationBase* exp = expectations.back();
13476 expectations.pop_back();
13477
13478 for (ExpectationSet::const_iterator it =
13479 exp->immediate_prerequisites_.begin();
13480 it != exp->immediate_prerequisites_.end(); ++it) {
13481 const ExpectationBase* next = it->expectation_base().get();
13482
13483 if (next->IsSatisfied()) {
13484 // If *it is satisfied and has a call count of 0, some of its
13485 // pre-requisites may not be satisfied yet.
13486 if (next->call_count_ == 0) {
13487 expectations.push_back(next);
13488 }
13489 } else {
13490 // Now that we know next is unsatisfied, we are not so interested
13491 // in whether its pre-requisites are satisfied. Therefore we
13492 // don't iterate into it here.
13493 *result += *it;
13494 }
13495 }
13496 }
13497 }
13498
13499 // Describes how many times a function call matching this
13500 // expectation has occurred.
13501 void ExpectationBase::DescribeCallCountTo(::std::ostream* os) const
13502 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
13503 g_gmock_mutex.AssertHeld();
13504
13505 // Describes how many times the function is expected to be called.
13506 *os << " Expected: to be ";
13507 cardinality().DescribeTo(os);
13508 *os << "\n Actual: ";
13509 Cardinality::DescribeActualCallCountTo(call_count(), os);
13510
13511 // Describes the state of the expectation (e.g. is it satisfied?
13512 // is it active?).
13513 *os << " - " << (IsOverSaturated() ? "over-saturated" :
13514 IsSaturated() ? "saturated" :
13515 IsSatisfied() ? "satisfied" : "unsatisfied")
13516 << " and "
13517 << (is_retired() ? "retired" : "active");
13518 }
13519
13520 // Checks the action count (i.e. the number of WillOnce() and
13521 // WillRepeatedly() clauses) against the cardinality if this hasn't
13522 // been done before. Prints a warning if there are too many or too
13523 // few actions.
13524 void ExpectationBase::CheckActionCountIfNotDone() const
13525 GTEST_LOCK_EXCLUDED_(mutex_) {
13526 bool should_check = false;
13527 {
13528 MutexLock l(&mutex_);
13529 if (!action_count_checked_) {
13530 action_count_checked_ = true;
13531 should_check = true;
13532 }
13533 }
13534
13535 if (should_check) {
13536 if (!cardinality_specified_) {
13537 // The cardinality was inferred - no need to check the action
13538 // count against it.
13539 return;
13540 }
13541
13542 // The cardinality was explicitly specified.
13543 const int action_count = static_cast<int>(untyped_actions_.size());
13544 const int upper_bound = cardinality().ConservativeUpperBound();
13545 const int lower_bound = cardinality().ConservativeLowerBound();
13546 bool too_many; // True if there are too many actions, or false
13547 // if there are too few.
13548 if (action_count > upper_bound ||
13549 (action_count == upper_bound && repeated_action_specified_)) {
13550 too_many = true;
13551 } else if (0 < action_count && action_count < lower_bound &&
13552 !repeated_action_specified_) {
13553 too_many = false;
13554 } else {
13555 return;
13556 }
13557
13558 ::std::stringstream ss;
13559 DescribeLocationTo(&ss);
13560 ss << "Too " << (too_many ? "many" : "few")
13561 << " actions specified in " << source_text() << "...\n"
13562 << "Expected to be ";
13563 cardinality().DescribeTo(&ss);
13564 ss << ", but has " << (too_many ? "" : "only ")
13565 << action_count << " WillOnce()"
13566 << (action_count == 1 ? "" : "s");
13567 if (repeated_action_specified_) {
13568 ss << " and a WillRepeatedly()";
13569 }
13570 ss << ".";
13571 Log(kWarning, ss.str(), -1); // -1 means "don't print stack trace".
13572 }
13573 }
13574
13575 // Implements the .Times() clause.
13576 void ExpectationBase::UntypedTimes(const Cardinality& a_cardinality) {
13577 if (last_clause_ == kTimes) {
13578 ExpectSpecProperty(false,
13579 ".Times() cannot appear "
13580 "more than once in an EXPECT_CALL().");
13581 } else {
13582 ExpectSpecProperty(last_clause_ < kTimes,
13583 ".Times() cannot appear after "
13584 ".InSequence(), .WillOnce(), .WillRepeatedly(), "
13585 "or .RetiresOnSaturation().");
13586 }
13587 last_clause_ = kTimes;
13588
13589 SpecifyCardinality(a_cardinality);
13590 }
13591
13592 // Points to the implicit sequence introduced by a living InSequence
13593 // object (if any) in the current thread or NULL.
13594 GTEST_API_ ThreadLocal<Sequence*> g_gmock_implicit_sequence;
13595
13596 // Reports an uninteresting call (whose description is in msg) in the
13597 // manner specified by 'reaction'.
13598 void ReportUninterestingCall(CallReaction reaction, const std::string& msg) {
13599 // Include a stack trace only if --gmock_verbose=info is specified.
13600 const int stack_frames_to_skip =
13601 GMOCK_FLAG(verbose) == kInfoVerbosity ? 3 : -1;
13602 switch (reaction) {
13603 case kAllow:
13604 Log(kInfo, msg, stack_frames_to_skip);
13605 break;
13606 case kWarn:
13607 Log(kWarning,
13608 msg +
13609 "\nNOTE: You can safely ignore the above warning unless this "
13610 "call should not happen. Do not suppress it by blindly adding "
13611 "an EXPECT_CALL() if you don't mean to enforce the call. "
13612 "See "
13613 "https://github.com/google/googletest/blob/master/docs/"
13614 "gmock_cook_book.md#"
13615 "knowing-when-to-expect for details.\n",
13616 stack_frames_to_skip);
13617 break;
13618 default: // FAIL
13619 Expect(false, nullptr, -1, msg);
13620 }
13621 }
13622
13623 UntypedFunctionMockerBase::UntypedFunctionMockerBase()
13624 : mock_obj_(nullptr), name_("") {}
13625
13626 UntypedFunctionMockerBase::~UntypedFunctionMockerBase() {}
13627
13628 // Sets the mock object this mock method belongs to, and registers
13629 // this information in the global mock registry. Will be called
13630 // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
13631 // method.
13632 void UntypedFunctionMockerBase::RegisterOwner(const void* mock_obj)
13633 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
13634 {
13635 MutexLock l(&g_gmock_mutex);
13636 mock_obj_ = mock_obj;
13637 }
13638 Mock::Register(mock_obj, this);
13639 }
13640
13641 // Sets the mock object this mock method belongs to, and sets the name
13642 // of the mock function. Will be called upon each invocation of this
13643 // mock function.
13644 void UntypedFunctionMockerBase::SetOwnerAndName(const void* mock_obj,
13645 const char* name)
13646 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
13647 // We protect name_ under g_gmock_mutex in case this mock function
13648 // is called from two threads concurrently.
13649 MutexLock l(&g_gmock_mutex);
13650 mock_obj_ = mock_obj;
13651 name_ = name;
13652 }
13653
13654 // Returns the name of the function being mocked. Must be called
13655 // after RegisterOwner() or SetOwnerAndName() has been called.
13656 const void* UntypedFunctionMockerBase::MockObject() const
13657 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
13658 const void* mock_obj;
13659 {
13660 // We protect mock_obj_ under g_gmock_mutex in case this mock
13661 // function is called from two threads concurrently.
13662 MutexLock l(&g_gmock_mutex);
13663 Assert(mock_obj_ != nullptr, __FILE__, __LINE__,
13664 "MockObject() must not be called before RegisterOwner() or "
13665 "SetOwnerAndName() has been called.");
13666 mock_obj = mock_obj_;
13667 }
13668 return mock_obj;
13669 }
13670
13671 // Returns the name of this mock method. Must be called after
13672 // SetOwnerAndName() has been called.
13673 const char* UntypedFunctionMockerBase::Name() const
13674 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
13675 const char* name;
13676 {
13677 // We protect name_ under g_gmock_mutex in case this mock
13678 // function is called from two threads concurrently.
13679 MutexLock l(&g_gmock_mutex);
13680 Assert(name_ != nullptr, __FILE__, __LINE__,
13681 "Name() must not be called before SetOwnerAndName() has "
13682 "been called.");
13683 name = name_;
13684 }
13685 return name;
13686 }
13687
13688 // Calculates the result of invoking this mock function with the given
13689 // arguments, prints it, and returns it. The caller is responsible
13690 // for deleting the result.
13691 UntypedActionResultHolderBase* UntypedFunctionMockerBase::UntypedInvokeWith(
13692 void* const untyped_args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
13693 // See the definition of untyped_expectations_ for why access to it
13694 // is unprotected here.
13695 if (untyped_expectations_.size() == 0) {
13696 // No expectation is set on this mock method - we have an
13697 // uninteresting call.
13698
13699 // We must get Google Mock's reaction on uninteresting calls
13700 // made on this mock object BEFORE performing the action,
13701 // because the action may DELETE the mock object and make the
13702 // following expression meaningless.
13703 const CallReaction reaction =
13704 Mock::GetReactionOnUninterestingCalls(MockObject());
13705
13706 // True if and only if we need to print this call's arguments and return
13707 // value. This definition must be kept in sync with
13708 // the behavior of ReportUninterestingCall().
13709 const bool need_to_report_uninteresting_call =
13710 // If the user allows this uninteresting call, we print it
13711 // only when they want informational messages.
13712 reaction == kAllow ? LogIsVisible(kInfo) :
13713 // If the user wants this to be a warning, we print
13714 // it only when they want to see warnings.
13715 reaction == kWarn
13716 ? LogIsVisible(kWarning)
13717 :
13718 // Otherwise, the user wants this to be an error, and we
13719 // should always print detailed information in the error.
13720 true;
13721
13722 if (!need_to_report_uninteresting_call) {
13723 // Perform the action without printing the call information.
13724 return this->UntypedPerformDefaultAction(
13725 untyped_args, "Function call: " + std::string(Name()));
13726 }
13727
13728 // Warns about the uninteresting call.
13729 ::std::stringstream ss;
13730 this->UntypedDescribeUninterestingCall(untyped_args, &ss);
13731
13732 // Calculates the function result.
13733 UntypedActionResultHolderBase* const result =
13734 this->UntypedPerformDefaultAction(untyped_args, ss.str());
13735
13736 // Prints the function result.
13737 if (result != nullptr) result->PrintAsActionResult(&ss);
13738
13739 ReportUninterestingCall(reaction, ss.str());
13740 return result;
13741 }
13742
13743 bool is_excessive = false;
13744 ::std::stringstream ss;
13745 ::std::stringstream why;
13746 ::std::stringstream loc;
13747 const void* untyped_action = nullptr;
13748
13749 // The UntypedFindMatchingExpectation() function acquires and
13750 // releases g_gmock_mutex.
13751
13752 const ExpectationBase* const untyped_expectation =
13753 this->UntypedFindMatchingExpectation(untyped_args, &untyped_action,
13754 &is_excessive, &ss, &why);
13755 const bool found = untyped_expectation != nullptr;
13756
13757 // True if and only if we need to print the call's arguments
13758 // and return value.
13759 // This definition must be kept in sync with the uses of Expect()
13760 // and Log() in this function.
13761 const bool need_to_report_call =
13762 !found || is_excessive || LogIsVisible(kInfo);
13763 if (!need_to_report_call) {
13764 // Perform the action without printing the call information.
13765 return untyped_action == nullptr
13766 ? this->UntypedPerformDefaultAction(untyped_args, "")
13767 : this->UntypedPerformAction(untyped_action, untyped_args);
13768 }
13769
13770 ss << " Function call: " << Name();
13771 this->UntypedPrintArgs(untyped_args, &ss);
13772
13773 // In case the action deletes a piece of the expectation, we
13774 // generate the message beforehand.
13775 if (found && !is_excessive) {
13776 untyped_expectation->DescribeLocationTo(&loc);
13777 }
13778
13779 UntypedActionResultHolderBase* result = nullptr;
13780
13781 auto perform_action = [&, this] {
13782 return untyped_action == nullptr
13783 ? this->UntypedPerformDefaultAction(untyped_args, ss.str())
13784 : this->UntypedPerformAction(untyped_action, untyped_args);
13785 };
13786 auto handle_failures = [&] {
13787 ss << "\n" << why.str();
13788
13789 if (!found) {
13790 // No expectation matches this call - reports a failure.
13791 Expect(false, nullptr, -1, ss.str());
13792 } else if (is_excessive) {
13793 // We had an upper-bound violation and the failure message is in ss.
13794 Expect(false, untyped_expectation->file(), untyped_expectation->line(),
13795 ss.str());
13796 } else {
13797 // We had an expected call and the matching expectation is
13798 // described in ss.
13799 Log(kInfo, loc.str() + ss.str(), 2);
13800 }
13801 };
13802 #if GTEST_HAS_EXCEPTIONS
13803 try {
13804 result = perform_action();
13805 } catch (...) {
13806 handle_failures();
13807 throw;
13808 }
13809 #else
13810 result = perform_action();
13811 #endif
13812
13813 if (result != nullptr) result->PrintAsActionResult(&ss);
13814 handle_failures();
13815 return result;
13816 }
13817
13818 // Returns an Expectation object that references and co-owns exp,
13819 // which must be an expectation on this mock function.
13820 Expectation UntypedFunctionMockerBase::GetHandleOf(ExpectationBase* exp) {
13821 // See the definition of untyped_expectations_ for why access to it
13822 // is unprotected here.
13823 for (UntypedExpectations::const_iterator it =
13824 untyped_expectations_.begin();
13825 it != untyped_expectations_.end(); ++it) {
13826 if (it->get() == exp) {
13827 return Expectation(*it);
13828 }
13829 }
13830
13831 Assert(false, __FILE__, __LINE__, "Cannot find expectation.");
13832 return Expectation();
13833 // The above statement is just to make the code compile, and will
13834 // never be executed.
13835 }
13836
13837 // Verifies that all expectations on this mock function have been
13838 // satisfied. Reports one or more Google Test non-fatal failures
13839 // and returns false if not.
13840 bool UntypedFunctionMockerBase::VerifyAndClearExpectationsLocked()
13841 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
13842 g_gmock_mutex.AssertHeld();
13843 bool expectations_met = true;
13844 for (UntypedExpectations::const_iterator it =
13845 untyped_expectations_.begin();
13846 it != untyped_expectations_.end(); ++it) {
13847 ExpectationBase* const untyped_expectation = it->get();
13848 if (untyped_expectation->IsOverSaturated()) {
13849 // There was an upper-bound violation. Since the error was
13850 // already reported when it occurred, there is no need to do
13851 // anything here.
13852 expectations_met = false;
13853 } else if (!untyped_expectation->IsSatisfied()) {
13854 expectations_met = false;
13855 ::std::stringstream ss;
13856 ss << "Actual function call count doesn't match "
13857 << untyped_expectation->source_text() << "...\n";
13858 // No need to show the source file location of the expectation
13859 // in the description, as the Expect() call that follows already
13860 // takes care of it.
13861 untyped_expectation->MaybeDescribeExtraMatcherTo(&ss);
13862 untyped_expectation->DescribeCallCountTo(&ss);
13863 Expect(false, untyped_expectation->file(),
13864 untyped_expectation->line(), ss.str());
13865 }
13866 }
13867
13868 // Deleting our expectations may trigger other mock objects to be deleted, for
13869 // example if an action contains a reference counted smart pointer to that
13870 // mock object, and that is the last reference. So if we delete our
13871 // expectations within the context of the global mutex we may deadlock when
13872 // this method is called again. Instead, make a copy of the set of
13873 // expectations to delete, clear our set within the mutex, and then clear the
13874 // copied set outside of it.
13875 UntypedExpectations expectations_to_delete;
13876 untyped_expectations_.swap(expectations_to_delete);
13877
13878 g_gmock_mutex.Unlock();
13879 expectations_to_delete.clear();
13880 g_gmock_mutex.Lock();
13881
13882 return expectations_met;
13883 }
13884
13885 CallReaction intToCallReaction(int mock_behavior) {
13886 if (mock_behavior >= kAllow && mock_behavior <= kFail) {
13887 return static_cast<internal::CallReaction>(mock_behavior);
13888 }
13889 return kWarn;
13890 }
13891
13892 } // namespace internal
13893
13894 // Class Mock.
13895
13896 namespace {
13897
13898 typedef std::set<internal::UntypedFunctionMockerBase*> FunctionMockers;
13899
13900 // The current state of a mock object. Such information is needed for
13901 // detecting leaked mock objects and explicitly verifying a mock's
13902 // expectations.
13903 struct MockObjectState {
13904 MockObjectState()
13905 : first_used_file(nullptr), first_used_line(-1), leakable(false) {}
13906
13907 // Where in the source file an ON_CALL or EXPECT_CALL is first
13908 // invoked on this mock object.
13909 const char* first_used_file;
13910 int first_used_line;
13911 ::std::string first_used_test_suite;
13912 ::std::string first_used_test;
13913 bool leakable; // true if and only if it's OK to leak the object.
13914 FunctionMockers function_mockers; // All registered methods of the object.
13915 };
13916
13917 // A global registry holding the state of all mock objects that are
13918 // alive. A mock object is added to this registry the first time
13919 // Mock::AllowLeak(), ON_CALL(), or EXPECT_CALL() is called on it. It
13920 // is removed from the registry in the mock object's destructor.
13921 class MockObjectRegistry {
13922 public:
13923 // Maps a mock object (identified by its address) to its state.
13924 typedef std::map<const void*, MockObjectState> StateMap;
13925
13926 // This destructor will be called when a program exits, after all
13927 // tests in it have been run. By then, there should be no mock
13928 // object alive. Therefore we report any living object as test
13929 // failure, unless the user explicitly asked us to ignore it.
13930 ~MockObjectRegistry() {
13931 if (!GMOCK_FLAG(catch_leaked_mocks))
13932 return;
13933
13934 int leaked_count = 0;
13935 for (StateMap::const_iterator it = states_.begin(); it != states_.end();
13936 ++it) {
13937 if (it->second.leakable) // The user said it's fine to leak this object.
13938 continue;
13939
13940 // FIXME: Print the type of the leaked object.
13941 // This can help the user identify the leaked object.
13942 std::cout << "\n";
13943 const MockObjectState& state = it->second;
13944 std::cout << internal::FormatFileLocation(state.first_used_file,
13945 state.first_used_line);
13946 std::cout << " ERROR: this mock object";
13947 if (state.first_used_test != "") {
13948 std::cout << " (used in test " << state.first_used_test_suite << "."
13949 << state.first_used_test << ")";
13950 }
13951 std::cout << " should be deleted but never is. Its address is @"
13952 << it->first << ".";
13953 leaked_count++;
13954 }
13955 if (leaked_count > 0) {
13956 std::cout << "\nERROR: " << leaked_count << " leaked mock "
13957 << (leaked_count == 1 ? "object" : "objects")
13958 << " found at program exit. Expectations on a mock object are "
13959 "verified when the object is destructed. Leaking a mock "
13960 "means that its expectations aren't verified, which is "
13961 "usually a test bug. If you really intend to leak a mock, "
13962 "you can suppress this error using "
13963 "testing::Mock::AllowLeak(mock_object), or you may use a "
13964 "fake or stub instead of a mock.\n";
13965 std::cout.flush();
13966 ::std::cerr.flush();
13967 // RUN_ALL_TESTS() has already returned when this destructor is
13968 // called. Therefore we cannot use the normal Google Test
13969 // failure reporting mechanism.
13970 _exit(1); // We cannot call exit() as it is not reentrant and
13971 // may already have been called.
13972 }
13973 }
13974
13975 StateMap& states() { return states_; }
13976
13977 private:
13978 StateMap states_;
13979 };
13980
13981 // Protected by g_gmock_mutex.
13982 MockObjectRegistry g_mock_object_registry;
13983
13984 // Maps a mock object to the reaction Google Mock should have when an
13985 // uninteresting method is called. Protected by g_gmock_mutex.
13986 std::map<const void*, internal::CallReaction> g_uninteresting_call_reaction;
13987
13988 // Sets the reaction Google Mock should have when an uninteresting
13989 // method of the given mock object is called.
13990 void SetReactionOnUninterestingCalls(const void* mock_obj,
13991 internal::CallReaction reaction)
13992 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
13993 internal::MutexLock l(&internal::g_gmock_mutex);
13994 g_uninteresting_call_reaction[mock_obj] = reaction;
13995 }
13996
13997 } // namespace
13998
13999 // Tells Google Mock to allow uninteresting calls on the given mock
14000 // object.
14001 void Mock::AllowUninterestingCalls(const void* mock_obj)
14002 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14003 SetReactionOnUninterestingCalls(mock_obj, internal::kAllow);
14004 }
14005
14006 // Tells Google Mock to warn the user about uninteresting calls on the
14007 // given mock object.
14008 void Mock::WarnUninterestingCalls(const void* mock_obj)
14009 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14010 SetReactionOnUninterestingCalls(mock_obj, internal::kWarn);
14011 }
14012
14013 // Tells Google Mock to fail uninteresting calls on the given mock
14014 // object.
14015 void Mock::FailUninterestingCalls(const void* mock_obj)
14016 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14017 SetReactionOnUninterestingCalls(mock_obj, internal::kFail);
14018 }
14019
14020 // Tells Google Mock the given mock object is being destroyed and its
14021 // entry in the call-reaction table should be removed.
14022 void Mock::UnregisterCallReaction(const void* mock_obj)
14023 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14024 internal::MutexLock l(&internal::g_gmock_mutex);
14025 g_uninteresting_call_reaction.erase(mock_obj);
14026 }
14027
14028 // Returns the reaction Google Mock will have on uninteresting calls
14029 // made on the given mock object.
14030 internal::CallReaction Mock::GetReactionOnUninterestingCalls(
14031 const void* mock_obj)
14032 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14033 internal::MutexLock l(&internal::g_gmock_mutex);
14034 return (g_uninteresting_call_reaction.count(mock_obj) == 0) ?
14035 internal::intToCallReaction(GMOCK_FLAG(default_mock_behavior)) :
14036 g_uninteresting_call_reaction[mock_obj];
14037 }
14038
14039 // Tells Google Mock to ignore mock_obj when checking for leaked mock
14040 // objects.
14041 void Mock::AllowLeak(const void* mock_obj)
14042 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14043 internal::MutexLock l(&internal::g_gmock_mutex);
14044 g_mock_object_registry.states()[mock_obj].leakable = true;
14045 }
14046
14047 // Verifies and clears all expectations on the given mock object. If
14048 // the expectations aren't satisfied, generates one or more Google
14049 // Test non-fatal failures and returns false.
14050 bool Mock::VerifyAndClearExpectations(void* mock_obj)
14051 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14052 internal::MutexLock l(&internal::g_gmock_mutex);
14053 return VerifyAndClearExpectationsLocked(mock_obj);
14054 }
14055
14056 // Verifies all expectations on the given mock object and clears its
14057 // default actions and expectations. Returns true if and only if the
14058 // verification was successful.
14059 bool Mock::VerifyAndClear(void* mock_obj)
14060 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14061 internal::MutexLock l(&internal::g_gmock_mutex);
14062 ClearDefaultActionsLocked(mock_obj);
14063 return VerifyAndClearExpectationsLocked(mock_obj);
14064 }
14065
14066 // Verifies and clears all expectations on the given mock object. If
14067 // the expectations aren't satisfied, generates one or more Google
14068 // Test non-fatal failures and returns false.
14069 bool Mock::VerifyAndClearExpectationsLocked(void* mock_obj)
14070 GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) {
14071 internal::g_gmock_mutex.AssertHeld();
14072 if (g_mock_object_registry.states().count(mock_obj) == 0) {
14073 // No EXPECT_CALL() was set on the given mock object.
14074 return true;
14075 }
14076
14077 // Verifies and clears the expectations on each mock method in the
14078 // given mock object.
14079 bool expectations_met = true;
14080 FunctionMockers& mockers =
14081 g_mock_object_registry.states()[mock_obj].function_mockers;
14082 for (FunctionMockers::const_iterator it = mockers.begin();
14083 it != mockers.end(); ++it) {
14084 if (!(*it)->VerifyAndClearExpectationsLocked()) {
14085 expectations_met = false;
14086 }
14087 }
14088
14089 // We don't clear the content of mockers, as they may still be
14090 // needed by ClearDefaultActionsLocked().
14091 return expectations_met;
14092 }
14093
14094 bool Mock::IsNaggy(void* mock_obj)
14095 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14096 return Mock::GetReactionOnUninterestingCalls(mock_obj) == internal::kWarn;
14097 }
14098 bool Mock::IsNice(void* mock_obj)
14099 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14100 return Mock::GetReactionOnUninterestingCalls(mock_obj) == internal::kAllow;
14101 }
14102 bool Mock::IsStrict(void* mock_obj)
14103 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14104 return Mock::GetReactionOnUninterestingCalls(mock_obj) == internal::kFail;
14105 }
14106
14107 // Registers a mock object and a mock method it owns.
14108 void Mock::Register(const void* mock_obj,
14109 internal::UntypedFunctionMockerBase* mocker)
14110 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14111 internal::MutexLock l(&internal::g_gmock_mutex);
14112 g_mock_object_registry.states()[mock_obj].function_mockers.insert(mocker);
14113 }
14114
14115 // Tells Google Mock where in the source code mock_obj is used in an
14116 // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this
14117 // information helps the user identify which object it is.
14118 void Mock::RegisterUseByOnCallOrExpectCall(const void* mock_obj,
14119 const char* file, int line)
14120 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) {
14121 internal::MutexLock l(&internal::g_gmock_mutex);
14122 MockObjectState& state = g_mock_object_registry.states()[mock_obj];
14123 if (state.first_used_file == nullptr) {
14124 state.first_used_file = file;
14125 state.first_used_line = line;
14126 const TestInfo* const test_info =
14127 UnitTest::GetInstance()->current_test_info();
14128 if (test_info != nullptr) {
14129 state.first_used_test_suite = test_info->test_suite_name();
14130 state.first_used_test = test_info->name();
14131 }
14132 }
14133 }
14134
14135 // Unregisters a mock method; removes the owning mock object from the
14136 // registry when the last mock method associated with it has been
14137 // unregistered. This is called only in the destructor of
14138 // FunctionMockerBase.
14139 void Mock::UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
14140 GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) {
14141 internal::g_gmock_mutex.AssertHeld();
14142 for (MockObjectRegistry::StateMap::iterator it =
14143 g_mock_object_registry.states().begin();
14144 it != g_mock_object_registry.states().end(); ++it) {
14145 FunctionMockers& mockers = it->second.function_mockers;
14146 if (mockers.erase(mocker) > 0) {
14147 // mocker was in mockers and has been just removed.
14148 if (mockers.empty()) {
14149 g_mock_object_registry.states().erase(it);
14150 }
14151 return;
14152 }
14153 }
14154 }
14155
14156 // Clears all ON_CALL()s set on the given mock object.
14157 void Mock::ClearDefaultActionsLocked(void* mock_obj)
14158 GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) {
14159 internal::g_gmock_mutex.AssertHeld();
14160
14161 if (g_mock_object_registry.states().count(mock_obj) == 0) {
14162 // No ON_CALL() was set on the given mock object.
14163 return;
14164 }
14165
14166 // Clears the default actions for each mock method in the given mock
14167 // object.
14168 FunctionMockers& mockers =
14169 g_mock_object_registry.states()[mock_obj].function_mockers;
14170 for (FunctionMockers::const_iterator it = mockers.begin();
14171 it != mockers.end(); ++it) {
14172 (*it)->ClearDefaultActionsLocked();
14173 }
14174
14175 // We don't clear the content of mockers, as they may still be
14176 // needed by VerifyAndClearExpectationsLocked().
14177 }
14178
14179 Expectation::Expectation() {}
14180
14181 Expectation::Expectation(
14182 const std::shared_ptr<internal::ExpectationBase>& an_expectation_base)
14183 : expectation_base_(an_expectation_base) {}
14184
14185 Expectation::~Expectation() {}
14186
14187 // Adds an expectation to a sequence.
14188 void Sequence::AddExpectation(const Expectation& expectation) const {
14189 if (*last_expectation_ != expectation) {
14190 if (last_expectation_->expectation_base() != nullptr) {
14191 expectation.expectation_base()->immediate_prerequisites_
14192 += *last_expectation_;
14193 }
14194 *last_expectation_ = expectation;
14195 }
14196 }
14197
14198 // Creates the implicit sequence if there isn't one.
14199 InSequence::InSequence() {
14200 if (internal::g_gmock_implicit_sequence.get() == nullptr) {
14201 internal::g_gmock_implicit_sequence.set(new Sequence);
14202 sequence_created_ = true;
14203 } else {
14204 sequence_created_ = false;
14205 }
14206 }
14207
14208 // Deletes the implicit sequence if it was created by the constructor
14209 // of this object.
14210 InSequence::~InSequence() {
14211 if (sequence_created_) {
14212 delete internal::g_gmock_implicit_sequence.get();
14213 internal::g_gmock_implicit_sequence.set(nullptr);
14214 }
14215 }
14216
14217 } // namespace testing
14218
14219 #ifdef _MSC_VER
14220 #if _MSC_VER == 1900
14221 # pragma warning(pop)
14222 #endif
14223 #endif
14224 // Copyright 2008, Google Inc.
14225 // All rights reserved.
14226 //
14227 // Redistribution and use in source and binary forms, with or without
14228 // modification, are permitted provided that the following conditions are
14229 // met:
14230 //
14231 // * Redistributions of source code must retain the above copyright
14232 // notice, this list of conditions and the following disclaimer.
14233 // * Redistributions in binary form must reproduce the above
14234 // copyright notice, this list of conditions and the following disclaimer
14235 // in the documentation and/or other materials provided with the
14236 // distribution.
14237 // * Neither the name of Google Inc. nor the names of its
14238 // contributors may be used to endorse or promote products derived from
14239 // this software without specific prior written permission.
14240 //
14241 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
14242 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
14243 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
14244 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
14245 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
14246 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
14247 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
14248 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
14249 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
14250 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
14251 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
14252
14253
14254
14255 namespace testing {
14256
14257 GMOCK_DEFINE_bool_(catch_leaked_mocks, true,
14258 "true if and only if Google Mock should report leaked "
14259 "mock objects as failures.");
14260
14261 GMOCK_DEFINE_string_(verbose, internal::kWarningVerbosity,
14262 "Controls how verbose Google Mock's output is."
14263 " Valid values:\n"
14264 " info - prints all messages.\n"
14265 " warning - prints warnings and errors.\n"
14266 " error - prints errors only.");
14267
14268 GMOCK_DEFINE_int32_(default_mock_behavior, 1,
14269 "Controls the default behavior of mocks."
14270 " Valid values:\n"
14271 " 0 - by default, mocks act as NiceMocks.\n"
14272 " 1 - by default, mocks act as NaggyMocks.\n"
14273 " 2 - by default, mocks act as StrictMocks.");
14274
14275 namespace internal {
14276
14277 // Parses a string as a command line flag. The string should have the
14278 // format "--gmock_flag=value". When def_optional is true, the
14279 // "=value" part can be omitted.
14280 //
14281 // Returns the value of the flag, or NULL if the parsing failed.
14282 static const char* ParseGoogleMockFlagValue(const char* str,
14283 const char* flag,
14284 bool def_optional) {
14285 // str and flag must not be NULL.
14286 if (str == nullptr || flag == nullptr) return nullptr;
14287
14288 // The flag must start with "--gmock_".
14289 const std::string flag_str = std::string("--gmock_") + flag;
14290 const size_t flag_len = flag_str.length();
14291 if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr;
14292
14293 // Skips the flag name.
14294 const char* flag_end = str + flag_len;
14295
14296 // When def_optional is true, it's OK to not have a "=value" part.
14297 if (def_optional && (flag_end[0] == '\0')) {
14298 return flag_end;
14299 }
14300
14301 // If def_optional is true and there are more characters after the
14302 // flag name, or if def_optional is false, there must be a '=' after
14303 // the flag name.
14304 if (flag_end[0] != '=') return nullptr;
14305
14306 // Returns the string after "=".
14307 return flag_end + 1;
14308 }
14309
14310 // Parses a string for a Google Mock bool flag, in the form of
14311 // "--gmock_flag=value".
14312 //
14313 // On success, stores the value of the flag in *value, and returns
14314 // true. On failure, returns false without changing *value.
14315 static bool ParseGoogleMockBoolFlag(const char* str, const char* flag,
14316 bool* value) {
14317 // Gets the value of the flag as a string.
14318 const char* const value_str = ParseGoogleMockFlagValue(str, flag, true);
14319
14320 // Aborts if the parsing failed.
14321 if (value_str == nullptr) return false;
14322
14323 // Converts the string value to a bool.
14324 *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F');
14325 return true;
14326 }
14327
14328 // Parses a string for a Google Mock string flag, in the form of
14329 // "--gmock_flag=value".
14330 //
14331 // On success, stores the value of the flag in *value, and returns
14332 // true. On failure, returns false without changing *value.
14333 template <typename String>
14334 static bool ParseGoogleMockStringFlag(const char* str, const char* flag,
14335 String* value) {
14336 // Gets the value of the flag as a string.
14337 const char* const value_str = ParseGoogleMockFlagValue(str, flag, false);
14338
14339 // Aborts if the parsing failed.
14340 if (value_str == nullptr) return false;
14341
14342 // Sets *value to the value of the flag.
14343 *value = value_str;
14344 return true;
14345 }
14346
14347 static bool ParseGoogleMockIntFlag(const char* str, const char* flag,
14348 int32_t* value) {
14349 // Gets the value of the flag as a string.
14350 const char* const value_str = ParseGoogleMockFlagValue(str, flag, true);
14351
14352 // Aborts if the parsing failed.
14353 if (value_str == nullptr) return false;
14354
14355 // Sets *value to the value of the flag.
14356 return ParseInt32(Message() << "The value of flag --" << flag,
14357 value_str, value);
14358 }
14359
14360 // The internal implementation of InitGoogleMock().
14361 //
14362 // The type parameter CharType can be instantiated to either char or
14363 // wchar_t.
14364 template <typename CharType>
14365 void InitGoogleMockImpl(int* argc, CharType** argv) {
14366 // Makes sure Google Test is initialized. InitGoogleTest() is
14367 // idempotent, so it's fine if the user has already called it.
14368 InitGoogleTest(argc, argv);
14369 if (*argc <= 0) return;
14370
14371 for (int i = 1; i != *argc; i++) {
14372 const std::string arg_string = StreamableToString(argv[i]);
14373 const char* const arg = arg_string.c_str();
14374
14375 // Do we see a Google Mock flag?
14376 if (ParseGoogleMockBoolFlag(arg, "catch_leaked_mocks",
14377 &GMOCK_FLAG(catch_leaked_mocks)) ||
14378 ParseGoogleMockStringFlag(arg, "verbose", &GMOCK_FLAG(verbose)) ||
14379 ParseGoogleMockIntFlag(arg, "default_mock_behavior",
14380 &GMOCK_FLAG(default_mock_behavior))) {
14381 // Yes. Shift the remainder of the argv list left by one. Note
14382 // that argv has (*argc + 1) elements, the last one always being
14383 // NULL. The following loop moves the trailing NULL element as
14384 // well.
14385 for (int j = i; j != *argc; j++) {
14386 argv[j] = argv[j + 1];
14387 }
14388
14389 // Decrements the argument count.
14390 (*argc)--;
14391
14392 // We also need to decrement the iterator as we just removed
14393 // an element.
14394 i--;
14395 }
14396 }
14397 }
14398
14399 } // namespace internal
14400
14401 // Initializes Google Mock. This must be called before running the
14402 // tests. In particular, it parses a command line for the flags that
14403 // Google Mock recognizes. Whenever a Google Mock flag is seen, it is
14404 // removed from argv, and *argc is decremented.
14405 //
14406 // No value is returned. Instead, the Google Mock flag variables are
14407 // updated.
14408 //
14409 // Since Google Test is needed for Google Mock to work, this function
14410 // also initializes Google Test and parses its flags, if that hasn't
14411 // been done.
14412 GTEST_API_ void InitGoogleMock(int* argc, char** argv) {
14413 internal::InitGoogleMockImpl(argc, argv);
14414 }
14415
14416 // This overloaded version can be used in Windows programs compiled in
14417 // UNICODE mode.
14418 GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv) {
14419 internal::InitGoogleMockImpl(argc, argv);
14420 }
14421
14422 // This overloaded version can be used on Arduino/embedded platforms where
14423 // there is no argc/argv.
14424 GTEST_API_ void InitGoogleMock() {
14425 // Since Arduino doesn't have a command line, fake out the argc/argv arguments
14426 int argc = 1;
14427 const auto arg0 = "dummy";
14428 char* argv0 = const_cast<char*>(arg0);
14429 char** argv = &argv0;
14430
14431 internal::InitGoogleMockImpl(&argc, argv);
14432 }
14433
14434 } // namespace testing