Mercurial > minori
comparison dep/fmt/test/gtest/gmock/gmock.h @ 343:1faa72660932
*: transfer back to cmake from autotools
autotools just made lots of things more complicated than
they should have and many things broke (i.e. translations)
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Thu, 20 Jun 2024 05:56:06 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
342:adb79bdde329 | 343:1faa72660932 |
---|---|
1 // Copyright 2007, Google Inc. | |
2 // All rights reserved. | |
3 // | |
4 // Redistribution and use in source and binary forms, with or without | |
5 // modification, are permitted provided that the following conditions are | |
6 // met: | |
7 // | |
8 // * Redistributions of source code must retain the above copyright | |
9 // notice, this list of conditions and the following disclaimer. | |
10 // * Redistributions in binary form must reproduce the above | |
11 // copyright notice, this list of conditions and the following disclaimer | |
12 // in the documentation and/or other materials provided with the | |
13 // distribution. | |
14 // * Neither the name of Google Inc. nor the names of its | |
15 // contributors may be used to endorse or promote products derived from | |
16 // this software without specific prior written permission. | |
17 // | |
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 | |
30 | |
31 // Google Mock - a framework for writing C++ mock classes. | |
32 // | |
33 // This is the main header file a user should include. | |
34 | |
35 // GOOGLETEST_CM0002 DO NOT DELETE | |
36 | |
37 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ | |
38 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ | |
39 | |
40 // This file implements the following syntax: | |
41 // | |
42 // ON_CALL(mock_object, Method(...)) | |
43 // .With(...) ? | |
44 // .WillByDefault(...); | |
45 // | |
46 // where With() is optional and WillByDefault() must appear exactly | |
47 // once. | |
48 // | |
49 // EXPECT_CALL(mock_object, Method(...)) | |
50 // .With(...) ? | |
51 // .Times(...) ? | |
52 // .InSequence(...) * | |
53 // .WillOnce(...) * | |
54 // .WillRepeatedly(...) ? | |
55 // .RetiresOnSaturation() ? ; | |
56 // | |
57 // where all clauses are optional and WillOnce() can be repeated. | |
58 | |
59 // Copyright 2007, Google Inc. | |
60 // All rights reserved. | |
61 // | |
62 // Redistribution and use in source and binary forms, with or without | |
63 // modification, are permitted provided that the following conditions are | |
64 // met: | |
65 // | |
66 // * Redistributions of source code must retain the above copyright | |
67 // notice, this list of conditions and the following disclaimer. | |
68 // * Redistributions in binary form must reproduce the above | |
69 // copyright notice, this list of conditions and the following disclaimer | |
70 // in the documentation and/or other materials provided with the | |
71 // distribution. | |
72 // * Neither the name of Google Inc. nor the names of its | |
73 // contributors may be used to endorse or promote products derived from | |
74 // this software without specific prior written permission. | |
75 // | |
76 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
77 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
78 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
79 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
80 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
81 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
82 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
83 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
84 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
85 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
86 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
87 | |
88 | |
89 // Google Mock - a framework for writing C++ mock classes. | |
90 // | |
91 // The ACTION* family of macros can be used in a namespace scope to | |
92 // define custom actions easily. The syntax: | |
93 // | |
94 // ACTION(name) { statements; } | |
95 // | |
96 // will define an action with the given name that executes the | |
97 // statements. The value returned by the statements will be used as | |
98 // the return value of the action. Inside the statements, you can | |
99 // refer to the K-th (0-based) argument of the mock function by | |
100 // 'argK', and refer to its type by 'argK_type'. For example: | |
101 // | |
102 // ACTION(IncrementArg1) { | |
103 // arg1_type temp = arg1; | |
104 // return ++(*temp); | |
105 // } | |
106 // | |
107 // allows you to write | |
108 // | |
109 // ...WillOnce(IncrementArg1()); | |
110 // | |
111 // You can also refer to the entire argument tuple and its type by | |
112 // 'args' and 'args_type', and refer to the mock function type and its | |
113 // return type by 'function_type' and 'return_type'. | |
114 // | |
115 // Note that you don't need to specify the types of the mock function | |
116 // arguments. However rest assured that your code is still type-safe: | |
117 // you'll get a compiler error if *arg1 doesn't support the ++ | |
118 // operator, or if the type of ++(*arg1) isn't compatible with the | |
119 // mock function's return type, for example. | |
120 // | |
121 // Sometimes you'll want to parameterize the action. For that you can use | |
122 // another macro: | |
123 // | |
124 // ACTION_P(name, param_name) { statements; } | |
125 // | |
126 // For example: | |
127 // | |
128 // ACTION_P(Add, n) { return arg0 + n; } | |
129 // | |
130 // will allow you to write: | |
131 // | |
132 // ...WillOnce(Add(5)); | |
133 // | |
134 // Note that you don't need to provide the type of the parameter | |
135 // either. If you need to reference the type of a parameter named | |
136 // 'foo', you can write 'foo_type'. For example, in the body of | |
137 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type | |
138 // of 'n'. | |
139 // | |
140 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support | |
141 // multi-parameter actions. | |
142 // | |
143 // For the purpose of typing, you can view | |
144 // | |
145 // ACTION_Pk(Foo, p1, ..., pk) { ... } | |
146 // | |
147 // as shorthand for | |
148 // | |
149 // template <typename p1_type, ..., typename pk_type> | |
150 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } | |
151 // | |
152 // In particular, you can provide the template type arguments | |
153 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); | |
154 // although usually you can rely on the compiler to infer the types | |
155 // for you automatically. You can assign the result of expression | |
156 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., | |
157 // pk_type>. This can be useful when composing actions. | |
158 // | |
159 // You can also overload actions with different numbers of parameters: | |
160 // | |
161 // ACTION_P(Plus, a) { ... } | |
162 // ACTION_P2(Plus, a, b) { ... } | |
163 // | |
164 // While it's tempting to always use the ACTION* macros when defining | |
165 // a new action, you should also consider implementing ActionInterface | |
166 // or using MakePolymorphicAction() instead, especially if you need to | |
167 // use the action a lot. While these approaches require more work, | |
168 // they give you more control on the types of the mock function | |
169 // arguments and the action parameters, which in general leads to | |
170 // better compiler error messages that pay off in the long run. They | |
171 // also allow overloading actions based on parameter types (as opposed | |
172 // to just based on the number of parameters). | |
173 // | |
174 // CAVEAT: | |
175 // | |
176 // ACTION*() can only be used in a namespace scope as templates cannot be | |
177 // declared inside of a local class. | |
178 // Users can, however, define any local functors (e.g. a lambda) that | |
179 // can be used as actions. | |
180 // | |
181 // MORE INFORMATION: | |
182 // | |
183 // To learn more about using these macros, please search for 'ACTION' on | |
184 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md | |
185 | |
186 // GOOGLETEST_CM0002 DO NOT DELETE | |
187 | |
188 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | |
189 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | |
190 | |
191 #ifndef _WIN32_WCE | |
192 # include <errno.h> | |
193 #endif | |
194 | |
195 #include <algorithm> | |
196 #include <functional> | |
197 #include <memory> | |
198 #include <string> | |
199 #include <tuple> | |
200 #include <type_traits> | |
201 #include <utility> | |
202 | |
203 // Copyright 2007, Google Inc. | |
204 // All rights reserved. | |
205 // | |
206 // Redistribution and use in source and binary forms, with or without | |
207 // modification, are permitted provided that the following conditions are | |
208 // met: | |
209 // | |
210 // * Redistributions of source code must retain the above copyright | |
211 // notice, this list of conditions and the following disclaimer. | |
212 // * Redistributions in binary form must reproduce the above | |
213 // copyright notice, this list of conditions and the following disclaimer | |
214 // in the documentation and/or other materials provided with the | |
215 // distribution. | |
216 // * Neither the name of Google Inc. nor the names of its | |
217 // contributors may be used to endorse or promote products derived from | |
218 // this software without specific prior written permission. | |
219 // | |
220 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
221 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
222 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
223 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
224 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
225 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
226 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
227 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
228 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
229 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
230 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
231 | |
232 | |
233 // Google Mock - a framework for writing C++ mock classes. | |
234 // | |
235 // This file defines some utilities useful for implementing Google | |
236 // Mock. They are subject to change without notice, so please DO NOT | |
237 // USE THEM IN USER CODE. | |
238 | |
239 // GOOGLETEST_CM0002 DO NOT DELETE | |
240 | |
241 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ | |
242 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ | |
243 | |
244 #include <stdio.h> | |
245 #include <ostream> // NOLINT | |
246 #include <string> | |
247 #include <type_traits> | |
248 // Copyright 2008, Google Inc. | |
249 // All rights reserved. | |
250 // | |
251 // Redistribution and use in source and binary forms, with or without | |
252 // modification, are permitted provided that the following conditions are | |
253 // met: | |
254 // | |
255 // * Redistributions of source code must retain the above copyright | |
256 // notice, this list of conditions and the following disclaimer. | |
257 // * Redistributions in binary form must reproduce the above | |
258 // copyright notice, this list of conditions and the following disclaimer | |
259 // in the documentation and/or other materials provided with the | |
260 // distribution. | |
261 // * Neither the name of Google Inc. nor the names of its | |
262 // contributors may be used to endorse or promote products derived from | |
263 // this software without specific prior written permission. | |
264 // | |
265 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
266 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
267 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
268 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
269 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
270 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
271 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
272 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
273 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
274 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
275 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
276 | |
277 // | |
278 // Low-level types and utilities for porting Google Mock to various | |
279 // platforms. All macros ending with _ and symbols defined in an | |
280 // internal namespace are subject to change without notice. Code | |
281 // outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't | |
282 // end with _ are part of Google Mock's public API and can be used by | |
283 // code outside Google Mock. | |
284 | |
285 // GOOGLETEST_CM0002 DO NOT DELETE | |
286 | |
287 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ | |
288 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ | |
289 | |
290 #include <assert.h> | |
291 #include <stdlib.h> | |
292 #include <cstdint> | |
293 #include <iostream> | |
294 | |
295 // Most of the utilities needed for porting Google Mock are also | |
296 // required for Google Test and are defined in gtest-port.h. | |
297 // | |
298 // Note to maintainers: to reduce code duplication, prefer adding | |
299 // portability utilities to Google Test's gtest-port.h instead of | |
300 // here, as Google Mock depends on Google Test. Only add a utility | |
301 // here if it's truly specific to Google Mock. | |
302 | |
303 #include "gtest/gtest.h" | |
304 // Copyright 2015, Google Inc. | |
305 // All rights reserved. | |
306 // | |
307 // Redistribution and use in source and binary forms, with or without | |
308 // modification, are permitted provided that the following conditions are | |
309 // met: | |
310 // | |
311 // * Redistributions of source code must retain the above copyright | |
312 // notice, this list of conditions and the following disclaimer. | |
313 // * Redistributions in binary form must reproduce the above | |
314 // copyright notice, this list of conditions and the following disclaimer | |
315 // in the documentation and/or other materials provided with the | |
316 // distribution. | |
317 // * Neither the name of Google Inc. nor the names of its | |
318 // contributors may be used to endorse or promote products derived from | |
319 // this software without specific prior written permission. | |
320 // | |
321 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
322 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
323 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
324 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
325 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
326 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
327 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
328 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
329 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
330 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
331 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
332 // | |
333 // Injection point for custom user configurations. See README for details | |
334 // | |
335 // ** Custom implementation starts here ** | |
336 | |
337 // GOOGLETEST_CM0002 DO NOT DELETE | |
338 | |
339 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ | |
340 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ | |
341 | |
342 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ | |
343 | |
344 // For MS Visual C++, check the compiler version. At least VS 2015 is | |
345 // required to compile Google Mock. | |
346 #if defined(_MSC_VER) && _MSC_VER < 1900 | |
347 # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock." | |
348 #endif | |
349 | |
350 // Macro for referencing flags. This is public as we want the user to | |
351 // use this syntax to reference Google Mock flags. | |
352 #define GMOCK_FLAG(name) FLAGS_gmock_##name | |
353 | |
354 #if !defined(GMOCK_DECLARE_bool_) | |
355 | |
356 // Macros for declaring flags. | |
357 # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) | |
358 # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name) | |
359 # define GMOCK_DECLARE_string_(name) \ | |
360 extern GTEST_API_ ::std::string GMOCK_FLAG(name) | |
361 | |
362 // Macros for defining flags. | |
363 # define GMOCK_DEFINE_bool_(name, default_val, doc) \ | |
364 GTEST_API_ bool GMOCK_FLAG(name) = (default_val) | |
365 # define GMOCK_DEFINE_int32_(name, default_val, doc) \ | |
366 GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val) | |
367 # define GMOCK_DEFINE_string_(name, default_val, doc) \ | |
368 GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) | |
369 | |
370 #endif // !defined(GMOCK_DECLARE_bool_) | |
371 | |
372 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ | |
373 | |
374 namespace testing { | |
375 | |
376 template <typename> | |
377 class Matcher; | |
378 | |
379 namespace internal { | |
380 | |
381 // Silence MSVC C4100 (unreferenced formal parameter) and | |
382 // C4805('==': unsafe mix of type 'const int' and type 'const bool') | |
383 #ifdef _MSC_VER | |
384 # pragma warning(push) | |
385 # pragma warning(disable:4100) | |
386 # pragma warning(disable:4805) | |
387 #endif | |
388 | |
389 // Joins a vector of strings as if they are fields of a tuple; returns | |
390 // the joined string. | |
391 GTEST_API_ std::string JoinAsTuple(const Strings& fields); | |
392 | |
393 // Converts an identifier name to a space-separated list of lower-case | |
394 // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is | |
395 // treated as one word. For example, both "FooBar123" and | |
396 // "foo_bar_123" are converted to "foo bar 123". | |
397 GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name); | |
398 | |
399 // GetRawPointer(p) returns the raw pointer underlying p when p is a | |
400 // smart pointer, or returns p itself when p is already a raw pointer. | |
401 // The following default implementation is for the smart pointer case. | |
402 template <typename Pointer> | |
403 inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { | |
404 return p.get(); | |
405 } | |
406 // This overloaded version is for the raw pointer case. | |
407 template <typename Element> | |
408 inline Element* GetRawPointer(Element* p) { return p; } | |
409 | |
410 // MSVC treats wchar_t as a native type usually, but treats it as the | |
411 // same as unsigned short when the compiler option /Zc:wchar_t- is | |
412 // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t | |
413 // is a native type. | |
414 #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED) | |
415 // wchar_t is a typedef. | |
416 #else | |
417 # define GMOCK_WCHAR_T_IS_NATIVE_ 1 | |
418 #endif | |
419 | |
420 // In what follows, we use the term "kind" to indicate whether a type | |
421 // is bool, an integer type (excluding bool), a floating-point type, | |
422 // or none of them. This categorization is useful for determining | |
423 // when a matcher argument type can be safely converted to another | |
424 // type in the implementation of SafeMatcherCast. | |
425 enum TypeKind { | |
426 kBool, kInteger, kFloatingPoint, kOther | |
427 }; | |
428 | |
429 // KindOf<T>::value is the kind of type T. | |
430 template <typename T> struct KindOf { | |
431 enum { value = kOther }; // The default kind. | |
432 }; | |
433 | |
434 // This macro declares that the kind of 'type' is 'kind'. | |
435 #define GMOCK_DECLARE_KIND_(type, kind) \ | |
436 template <> struct KindOf<type> { enum { value = kind }; } | |
437 | |
438 GMOCK_DECLARE_KIND_(bool, kBool); | |
439 | |
440 // All standard integer types. | |
441 GMOCK_DECLARE_KIND_(char, kInteger); | |
442 GMOCK_DECLARE_KIND_(signed char, kInteger); | |
443 GMOCK_DECLARE_KIND_(unsigned char, kInteger); | |
444 GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT | |
445 GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT | |
446 GMOCK_DECLARE_KIND_(int, kInteger); | |
447 GMOCK_DECLARE_KIND_(unsigned int, kInteger); | |
448 GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT | |
449 GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT | |
450 GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT | |
451 GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT | |
452 | |
453 #if GMOCK_WCHAR_T_IS_NATIVE_ | |
454 GMOCK_DECLARE_KIND_(wchar_t, kInteger); | |
455 #endif | |
456 | |
457 // All standard floating-point types. | |
458 GMOCK_DECLARE_KIND_(float, kFloatingPoint); | |
459 GMOCK_DECLARE_KIND_(double, kFloatingPoint); | |
460 GMOCK_DECLARE_KIND_(long double, kFloatingPoint); | |
461 | |
462 #undef GMOCK_DECLARE_KIND_ | |
463 | |
464 // Evaluates to the kind of 'type'. | |
465 #define GMOCK_KIND_OF_(type) \ | |
466 static_cast< ::testing::internal::TypeKind>( \ | |
467 ::testing::internal::KindOf<type>::value) | |
468 | |
469 // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value | |
470 // is true if and only if arithmetic type From can be losslessly converted to | |
471 // arithmetic type To. | |
472 // | |
473 // It's the user's responsibility to ensure that both From and To are | |
474 // raw (i.e. has no CV modifier, is not a pointer, and is not a | |
475 // reference) built-in arithmetic types, kFromKind is the kind of | |
476 // From, and kToKind is the kind of To; the value is | |
477 // implementation-defined when the above pre-condition is violated. | |
478 template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> | |
479 using LosslessArithmeticConvertibleImpl = std::integral_constant< | |
480 bool, | |
481 // clang-format off | |
482 // Converting from bool is always lossless | |
483 (kFromKind == kBool) ? true | |
484 // Converting between any other type kinds will be lossy if the type | |
485 // kinds are not the same. | |
486 : (kFromKind != kToKind) ? false | |
487 : (kFromKind == kInteger && | |
488 // Converting between integers of different widths is allowed so long | |
489 // as the conversion does not go from signed to unsigned. | |
490 (((sizeof(From) < sizeof(To)) && | |
491 !(std::is_signed<From>::value && !std::is_signed<To>::value)) || | |
492 // Converting between integers of the same width only requires the | |
493 // two types to have the same signedness. | |
494 ((sizeof(From) == sizeof(To)) && | |
495 (std::is_signed<From>::value == std::is_signed<To>::value))) | |
496 ) ? true | |
497 // Floating point conversions are lossless if and only if `To` is at least | |
498 // as wide as `From`. | |
499 : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true | |
500 : false | |
501 // clang-format on | |
502 >; | |
503 | |
504 // LosslessArithmeticConvertible<From, To>::value is true if and only if | |
505 // arithmetic type From can be losslessly converted to arithmetic type To. | |
506 // | |
507 // It's the user's responsibility to ensure that both From and To are | |
508 // raw (i.e. has no CV modifier, is not a pointer, and is not a | |
509 // reference) built-in arithmetic types; the value is | |
510 // implementation-defined when the above pre-condition is violated. | |
511 template <typename From, typename To> | |
512 using LosslessArithmeticConvertible = | |
513 LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From, | |
514 GMOCK_KIND_OF_(To), To>; | |
515 | |
516 // This interface knows how to report a Google Mock failure (either | |
517 // non-fatal or fatal). | |
518 class FailureReporterInterface { | |
519 public: | |
520 // The type of a failure (either non-fatal or fatal). | |
521 enum FailureType { | |
522 kNonfatal, kFatal | |
523 }; | |
524 | |
525 virtual ~FailureReporterInterface() {} | |
526 | |
527 // Reports a failure that occurred at the given source file location. | |
528 virtual void ReportFailure(FailureType type, const char* file, int line, | |
529 const std::string& message) = 0; | |
530 }; | |
531 | |
532 // Returns the failure reporter used by Google Mock. | |
533 GTEST_API_ FailureReporterInterface* GetFailureReporter(); | |
534 | |
535 // Asserts that condition is true; aborts the process with the given | |
536 // message if condition is false. We cannot use LOG(FATAL) or CHECK() | |
537 // as Google Mock might be used to mock the log sink itself. We | |
538 // inline this function to prevent it from showing up in the stack | |
539 // trace. | |
540 inline void Assert(bool condition, const char* file, int line, | |
541 const std::string& msg) { | |
542 if (!condition) { | |
543 GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, | |
544 file, line, msg); | |
545 } | |
546 } | |
547 inline void Assert(bool condition, const char* file, int line) { | |
548 Assert(condition, file, line, "Assertion failed."); | |
549 } | |
550 | |
551 // Verifies that condition is true; generates a non-fatal failure if | |
552 // condition is false. | |
553 inline void Expect(bool condition, const char* file, int line, | |
554 const std::string& msg) { | |
555 if (!condition) { | |
556 GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, | |
557 file, line, msg); | |
558 } | |
559 } | |
560 inline void Expect(bool condition, const char* file, int line) { | |
561 Expect(condition, file, line, "Expectation failed."); | |
562 } | |
563 | |
564 // Severity level of a log. | |
565 enum LogSeverity { | |
566 kInfo = 0, | |
567 kWarning = 1 | |
568 }; | |
569 | |
570 // Valid values for the --gmock_verbose flag. | |
571 | |
572 // All logs (informational and warnings) are printed. | |
573 const char kInfoVerbosity[] = "info"; | |
574 // Only warnings are printed. | |
575 const char kWarningVerbosity[] = "warning"; | |
576 // No logs are printed. | |
577 const char kErrorVerbosity[] = "error"; | |
578 | |
579 // Returns true if and only if a log with the given severity is visible | |
580 // according to the --gmock_verbose flag. | |
581 GTEST_API_ bool LogIsVisible(LogSeverity severity); | |
582 | |
583 // Prints the given message to stdout if and only if 'severity' >= the level | |
584 // specified by the --gmock_verbose flag. If stack_frames_to_skip >= | |
585 // 0, also prints the stack trace excluding the top | |
586 // stack_frames_to_skip frames. In opt mode, any positive | |
587 // stack_frames_to_skip is treated as 0, since we don't know which | |
588 // function calls will be inlined by the compiler and need to be | |
589 // conservative. | |
590 GTEST_API_ void Log(LogSeverity severity, const std::string& message, | |
591 int stack_frames_to_skip); | |
592 | |
593 // A marker class that is used to resolve parameterless expectations to the | |
594 // correct overload. This must not be instantiable, to prevent client code from | |
595 // accidentally resolving to the overload; for example: | |
596 // | |
597 // ON_CALL(mock, Method({}, nullptr))... | |
598 // | |
599 class WithoutMatchers { | |
600 private: | |
601 WithoutMatchers() {} | |
602 friend GTEST_API_ WithoutMatchers GetWithoutMatchers(); | |
603 }; | |
604 | |
605 // Internal use only: access the singleton instance of WithoutMatchers. | |
606 GTEST_API_ WithoutMatchers GetWithoutMatchers(); | |
607 | |
608 // Disable MSVC warnings for infinite recursion, since in this case the | |
609 // the recursion is unreachable. | |
610 #ifdef _MSC_VER | |
611 # pragma warning(push) | |
612 # pragma warning(disable:4717) | |
613 #endif | |
614 | |
615 // Invalid<T>() is usable as an expression of type T, but will terminate | |
616 // the program with an assertion failure if actually run. This is useful | |
617 // when a value of type T is needed for compilation, but the statement | |
618 // will not really be executed (or we don't care if the statement | |
619 // crashes). | |
620 template <typename T> | |
621 inline T Invalid() { | |
622 Assert(false, "", -1, "Internal error: attempt to return invalid value"); | |
623 // This statement is unreachable, and would never terminate even if it | |
624 // could be reached. It is provided only to placate compiler warnings | |
625 // about missing return statements. | |
626 return Invalid<T>(); | |
627 } | |
628 | |
629 #ifdef _MSC_VER | |
630 # pragma warning(pop) | |
631 #endif | |
632 | |
633 // Given a raw type (i.e. having no top-level reference or const | |
634 // modifier) RawContainer that's either an STL-style container or a | |
635 // native array, class StlContainerView<RawContainer> has the | |
636 // following members: | |
637 // | |
638 // - type is a type that provides an STL-style container view to | |
639 // (i.e. implements the STL container concept for) RawContainer; | |
640 // - const_reference is a type that provides a reference to a const | |
641 // RawContainer; | |
642 // - ConstReference(raw_container) returns a const reference to an STL-style | |
643 // container view to raw_container, which is a RawContainer. | |
644 // - Copy(raw_container) returns an STL-style container view of a | |
645 // copy of raw_container, which is a RawContainer. | |
646 // | |
647 // This generic version is used when RawContainer itself is already an | |
648 // STL-style container. | |
649 template <class RawContainer> | |
650 class StlContainerView { | |
651 public: | |
652 typedef RawContainer type; | |
653 typedef const type& const_reference; | |
654 | |
655 static const_reference ConstReference(const RawContainer& container) { | |
656 static_assert(!std::is_const<RawContainer>::value, | |
657 "RawContainer type must not be const"); | |
658 return container; | |
659 } | |
660 static type Copy(const RawContainer& container) { return container; } | |
661 }; | |
662 | |
663 // This specialization is used when RawContainer is a native array type. | |
664 template <typename Element, size_t N> | |
665 class StlContainerView<Element[N]> { | |
666 public: | |
667 typedef typename std::remove_const<Element>::type RawElement; | |
668 typedef internal::NativeArray<RawElement> type; | |
669 // NativeArray<T> can represent a native array either by value or by | |
670 // reference (selected by a constructor argument), so 'const type' | |
671 // can be used to reference a const native array. We cannot | |
672 // 'typedef const type& const_reference' here, as that would mean | |
673 // ConstReference() has to return a reference to a local variable. | |
674 typedef const type const_reference; | |
675 | |
676 static const_reference ConstReference(const Element (&array)[N]) { | |
677 static_assert(std::is_same<Element, RawElement>::value, | |
678 "Element type must not be const"); | |
679 return type(array, N, RelationToSourceReference()); | |
680 } | |
681 static type Copy(const Element (&array)[N]) { | |
682 return type(array, N, RelationToSourceCopy()); | |
683 } | |
684 }; | |
685 | |
686 // This specialization is used when RawContainer is a native array | |
687 // represented as a (pointer, size) tuple. | |
688 template <typename ElementPointer, typename Size> | |
689 class StlContainerView< ::std::tuple<ElementPointer, Size> > { | |
690 public: | |
691 typedef typename std::remove_const< | |
692 typename std::pointer_traits<ElementPointer>::element_type>::type | |
693 RawElement; | |
694 typedef internal::NativeArray<RawElement> type; | |
695 typedef const type const_reference; | |
696 | |
697 static const_reference ConstReference( | |
698 const ::std::tuple<ElementPointer, Size>& array) { | |
699 return type(std::get<0>(array), std::get<1>(array), | |
700 RelationToSourceReference()); | |
701 } | |
702 static type Copy(const ::std::tuple<ElementPointer, Size>& array) { | |
703 return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy()); | |
704 } | |
705 }; | |
706 | |
707 // The following specialization prevents the user from instantiating | |
708 // StlContainer with a reference type. | |
709 template <typename T> class StlContainerView<T&>; | |
710 | |
711 // A type transform to remove constness from the first part of a pair. | |
712 // Pairs like that are used as the value_type of associative containers, | |
713 // and this transform produces a similar but assignable pair. | |
714 template <typename T> | |
715 struct RemoveConstFromKey { | |
716 typedef T type; | |
717 }; | |
718 | |
719 // Partially specialized to remove constness from std::pair<const K, V>. | |
720 template <typename K, typename V> | |
721 struct RemoveConstFromKey<std::pair<const K, V> > { | |
722 typedef std::pair<K, V> type; | |
723 }; | |
724 | |
725 // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to | |
726 // reduce code size. | |
727 GTEST_API_ void IllegalDoDefault(const char* file, int line); | |
728 | |
729 template <typename F, typename Tuple, size_t... Idx> | |
730 auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype( | |
731 std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) { | |
732 return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...); | |
733 } | |
734 | |
735 // Apply the function to a tuple of arguments. | |
736 template <typename F, typename Tuple> | |
737 auto Apply(F&& f, Tuple&& args) -> decltype( | |
738 ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), | |
739 MakeIndexSequence<std::tuple_size< | |
740 typename std::remove_reference<Tuple>::type>::value>())) { | |
741 return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), | |
742 MakeIndexSequence<std::tuple_size< | |
743 typename std::remove_reference<Tuple>::type>::value>()); | |
744 } | |
745 | |
746 // Template struct Function<F>, where F must be a function type, contains | |
747 // the following typedefs: | |
748 // | |
749 // Result: the function's return type. | |
750 // Arg<N>: the type of the N-th argument, where N starts with 0. | |
751 // ArgumentTuple: the tuple type consisting of all parameters of F. | |
752 // ArgumentMatcherTuple: the tuple type consisting of Matchers for all | |
753 // parameters of F. | |
754 // MakeResultVoid: the function type obtained by substituting void | |
755 // for the return type of F. | |
756 // MakeResultIgnoredValue: | |
757 // the function type obtained by substituting Something | |
758 // for the return type of F. | |
759 template <typename T> | |
760 struct Function; | |
761 | |
762 template <typename R, typename... Args> | |
763 struct Function<R(Args...)> { | |
764 using Result = R; | |
765 static constexpr size_t ArgumentCount = sizeof...(Args); | |
766 template <size_t I> | |
767 using Arg = ElemFromList<I, Args...>; | |
768 using ArgumentTuple = std::tuple<Args...>; | |
769 using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; | |
770 using MakeResultVoid = void(Args...); | |
771 using MakeResultIgnoredValue = IgnoredValue(Args...); | |
772 }; | |
773 | |
774 template <typename R, typename... Args> | |
775 constexpr size_t Function<R(Args...)>::ArgumentCount; | |
776 | |
777 #ifdef _MSC_VER | |
778 # pragma warning(pop) | |
779 #endif | |
780 | |
781 } // namespace internal | |
782 } // namespace testing | |
783 | |
784 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ | |
785 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ | |
786 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ | |
787 | |
788 // Expands and concatenates the arguments. Constructed macros reevaluate. | |
789 #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2) | |
790 | |
791 // Expands and stringifies the only argument. | |
792 #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__) | |
793 | |
794 // Returns empty. Given a variadic number of arguments. | |
795 #define GMOCK_PP_EMPTY(...) | |
796 | |
797 // Returns a comma. Given a variadic number of arguments. | |
798 #define GMOCK_PP_COMMA(...) , | |
799 | |
800 // Returns the only argument. | |
801 #define GMOCK_PP_IDENTITY(_1) _1 | |
802 | |
803 // Evaluates to the number of arguments after expansion. | |
804 // | |
805 // #define PAIR x, y | |
806 // | |
807 // GMOCK_PP_NARG() => 1 | |
808 // GMOCK_PP_NARG(x) => 1 | |
809 // GMOCK_PP_NARG(x, y) => 2 | |
810 // GMOCK_PP_NARG(PAIR) => 2 | |
811 // | |
812 // Requires: the number of arguments after expansion is at most 15. | |
813 #define GMOCK_PP_NARG(...) \ | |
814 GMOCK_PP_INTERNAL_16TH( \ | |
815 (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) | |
816 | |
817 // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise | |
818 // returns 0. Requires no more than 15 unprotected commas. | |
819 #define GMOCK_PP_HAS_COMMA(...) \ | |
820 GMOCK_PP_INTERNAL_16TH( \ | |
821 (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)) | |
822 | |
823 // Returns the first argument. | |
824 #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg)) | |
825 | |
826 // Returns the tail. A variadic list of all arguments minus the first. Requires | |
827 // at least one argument. | |
828 #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__)) | |
829 | |
830 // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__) | |
831 #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \ | |
832 GMOCK_PP_IDENTITY( \ | |
833 GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__)) | |
834 | |
835 // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise | |
836 // evaluates to `0`. | |
837 // | |
838 // Requires: * the number of arguments after expansion is at most 15. | |
839 // * If the argument is a macro, it must be able to be called with one | |
840 // argument. | |
841 // | |
842 // Implementation details: | |
843 // | |
844 // There is one case when it generates a compile error: if the argument is macro | |
845 // that cannot be called with one argument. | |
846 // | |
847 // #define M(a, b) // it doesn't matter what it expands to | |
848 // | |
849 // // Expected: expands to `0`. | |
850 // // Actual: compile error. | |
851 // GMOCK_PP_IS_EMPTY(M) | |
852 // | |
853 // There are 4 cases tested: | |
854 // | |
855 // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0. | |
856 // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0. | |
857 // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma. | |
858 // Expected 0 | |
859 // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in | |
860 // parenthesis, or is a macro that ()-evaluates to comma. Expected 1. | |
861 // | |
862 // We trigger detection on '0001', i.e. on empty. | |
863 #define GMOCK_PP_IS_EMPTY(...) \ | |
864 GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \ | |
865 GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \ | |
866 GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \ | |
867 GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__())) | |
868 | |
869 // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0. | |
870 #define GMOCK_PP_IF(_Cond, _Then, _Else) \ | |
871 GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else) | |
872 | |
873 // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses. | |
874 // | |
875 // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c | |
876 // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f | |
877 // | |
878 #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \ | |
879 GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else)) | |
880 | |
881 // Evaluates to the number of arguments after expansion. Identifies 'empty' as | |
882 // 0. | |
883 // | |
884 // #define PAIR x, y | |
885 // | |
886 // GMOCK_PP_NARG0() => 0 | |
887 // GMOCK_PP_NARG0(x) => 1 | |
888 // GMOCK_PP_NARG0(x, y) => 2 | |
889 // GMOCK_PP_NARG0(PAIR) => 2 | |
890 // | |
891 // Requires: * the number of arguments after expansion is at most 15. | |
892 // * If the argument is a macro, it must be able to be called with one | |
893 // argument. | |
894 #define GMOCK_PP_NARG0(...) \ | |
895 GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__)) | |
896 | |
897 // Expands to 1 if the first argument starts with something in parentheses, | |
898 // otherwise to 0. | |
899 #define GMOCK_PP_IS_BEGIN_PARENS(...) \ | |
900 GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \ | |
901 GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__)) | |
902 | |
903 // Expands to 1 is there is only one argument and it is enclosed in parentheses. | |
904 #define GMOCK_PP_IS_ENCLOSED_PARENS(...) \ | |
905 GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \ | |
906 GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0) | |
907 | |
908 // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1. | |
909 #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__ | |
910 | |
911 // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data, | |
912 // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple. | |
913 // Requires: * |_Macro| can be called with 3 arguments. | |
914 // * |_Tuple| expansion has no more than 15 elements. | |
915 #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \ | |
916 GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \ | |
917 (0, _Macro, _Data, _Tuple) | |
918 | |
919 // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, ) | |
920 // Empty if _K = 0. | |
921 // Requires: * |_Macro| can be called with 3 arguments. | |
922 // * |_K| literal between 0 and 15 | |
923 #define GMOCK_PP_REPEAT(_Macro, _Data, _N) \ | |
924 GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \ | |
925 (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE) | |
926 | |
927 // Increments the argument, requires the argument to be between 0 and 15. | |
928 #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i) | |
929 | |
930 // Returns comma if _i != 0. Requires _i to be between 0 and 15. | |
931 #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i) | |
932 | |
933 // Internal details follow. Do not use any of these symbols outside of this | |
934 // file or we will break your code. | |
935 #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , ) | |
936 #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2 | |
937 #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__ | |
938 #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5 | |
939 #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \ | |
940 GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \ | |
941 _1, _2, _3, _4)) | |
942 #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 , | |
943 #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then | |
944 #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else | |
945 | |
946 // Because of MSVC treating a token with a comma in it as a single token when | |
947 // passed to another macro, we need to force it to evaluate it as multiple | |
948 // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We | |
949 // define one per possible macro that relies on this behavior. Note "_Args" must | |
950 // be parenthesized. | |
951 #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \ | |
952 _10, _11, _12, _13, _14, _15, _16, \ | |
953 ...) \ | |
954 _16 | |
955 #define GMOCK_PP_INTERNAL_16TH(_Args) \ | |
956 GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args) | |
957 #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1 | |
958 #define GMOCK_PP_INTERNAL_HEAD(_Args) \ | |
959 GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args) | |
960 #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__ | |
961 #define GMOCK_PP_INTERNAL_TAIL(_Args) \ | |
962 GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args) | |
963 | |
964 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _ | |
965 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1, | |
966 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \ | |
967 0, | |
968 #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__ | |
969 #define GMOCK_PP_INTERNAL_INC_0 1 | |
970 #define GMOCK_PP_INTERNAL_INC_1 2 | |
971 #define GMOCK_PP_INTERNAL_INC_2 3 | |
972 #define GMOCK_PP_INTERNAL_INC_3 4 | |
973 #define GMOCK_PP_INTERNAL_INC_4 5 | |
974 #define GMOCK_PP_INTERNAL_INC_5 6 | |
975 #define GMOCK_PP_INTERNAL_INC_6 7 | |
976 #define GMOCK_PP_INTERNAL_INC_7 8 | |
977 #define GMOCK_PP_INTERNAL_INC_8 9 | |
978 #define GMOCK_PP_INTERNAL_INC_9 10 | |
979 #define GMOCK_PP_INTERNAL_INC_10 11 | |
980 #define GMOCK_PP_INTERNAL_INC_11 12 | |
981 #define GMOCK_PP_INTERNAL_INC_12 13 | |
982 #define GMOCK_PP_INTERNAL_INC_13 14 | |
983 #define GMOCK_PP_INTERNAL_INC_14 15 | |
984 #define GMOCK_PP_INTERNAL_INC_15 16 | |
985 #define GMOCK_PP_INTERNAL_COMMA_IF_0 | |
986 #define GMOCK_PP_INTERNAL_COMMA_IF_1 , | |
987 #define GMOCK_PP_INTERNAL_COMMA_IF_2 , | |
988 #define GMOCK_PP_INTERNAL_COMMA_IF_3 , | |
989 #define GMOCK_PP_INTERNAL_COMMA_IF_4 , | |
990 #define GMOCK_PP_INTERNAL_COMMA_IF_5 , | |
991 #define GMOCK_PP_INTERNAL_COMMA_IF_6 , | |
992 #define GMOCK_PP_INTERNAL_COMMA_IF_7 , | |
993 #define GMOCK_PP_INTERNAL_COMMA_IF_8 , | |
994 #define GMOCK_PP_INTERNAL_COMMA_IF_9 , | |
995 #define GMOCK_PP_INTERNAL_COMMA_IF_10 , | |
996 #define GMOCK_PP_INTERNAL_COMMA_IF_11 , | |
997 #define GMOCK_PP_INTERNAL_COMMA_IF_12 , | |
998 #define GMOCK_PP_INTERNAL_COMMA_IF_13 , | |
999 #define GMOCK_PP_INTERNAL_COMMA_IF_14 , | |
1000 #define GMOCK_PP_INTERNAL_COMMA_IF_15 , | |
1001 #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \ | |
1002 _Macro(_i, _Data, _element) | |
1003 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple) | |
1004 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \ | |
1005 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) | |
1006 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \ | |
1007 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1008 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1009 (GMOCK_PP_TAIL _Tuple)) | |
1010 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \ | |
1011 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1012 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1013 (GMOCK_PP_TAIL _Tuple)) | |
1014 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \ | |
1015 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1016 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1017 (GMOCK_PP_TAIL _Tuple)) | |
1018 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \ | |
1019 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1020 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1021 (GMOCK_PP_TAIL _Tuple)) | |
1022 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \ | |
1023 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1024 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1025 (GMOCK_PP_TAIL _Tuple)) | |
1026 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \ | |
1027 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1028 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1029 (GMOCK_PP_TAIL _Tuple)) | |
1030 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \ | |
1031 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1032 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1033 (GMOCK_PP_TAIL _Tuple)) | |
1034 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \ | |
1035 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1036 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1037 (GMOCK_PP_TAIL _Tuple)) | |
1038 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \ | |
1039 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1040 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1041 (GMOCK_PP_TAIL _Tuple)) | |
1042 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \ | |
1043 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1044 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1045 (GMOCK_PP_TAIL _Tuple)) | |
1046 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \ | |
1047 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1048 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1049 (GMOCK_PP_TAIL _Tuple)) | |
1050 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \ | |
1051 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1052 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1053 (GMOCK_PP_TAIL _Tuple)) | |
1054 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \ | |
1055 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1056 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1057 (GMOCK_PP_TAIL _Tuple)) | |
1058 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \ | |
1059 GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ | |
1060 GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \ | |
1061 (GMOCK_PP_TAIL _Tuple)) | |
1062 | |
1063 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ | |
1064 | |
1065 #ifdef _MSC_VER | |
1066 # pragma warning(push) | |
1067 # pragma warning(disable:4100) | |
1068 #endif | |
1069 | |
1070 namespace testing { | |
1071 | |
1072 // To implement an action Foo, define: | |
1073 // 1. a class FooAction that implements the ActionInterface interface, and | |
1074 // 2. a factory function that creates an Action object from a | |
1075 // const FooAction*. | |
1076 // | |
1077 // The two-level delegation design follows that of Matcher, providing | |
1078 // consistency for extension developers. It also eases ownership | |
1079 // management as Action objects can now be copied like plain values. | |
1080 | |
1081 namespace internal { | |
1082 | |
1083 // BuiltInDefaultValueGetter<T, true>::Get() returns a | |
1084 // default-constructed T value. BuiltInDefaultValueGetter<T, | |
1085 // false>::Get() crashes with an error. | |
1086 // | |
1087 // This primary template is used when kDefaultConstructible is true. | |
1088 template <typename T, bool kDefaultConstructible> | |
1089 struct BuiltInDefaultValueGetter { | |
1090 static T Get() { return T(); } | |
1091 }; | |
1092 template <typename T> | |
1093 struct BuiltInDefaultValueGetter<T, false> { | |
1094 static T Get() { | |
1095 Assert(false, __FILE__, __LINE__, | |
1096 "Default action undefined for the function return type."); | |
1097 return internal::Invalid<T>(); | |
1098 // The above statement will never be reached, but is required in | |
1099 // order for this function to compile. | |
1100 } | |
1101 }; | |
1102 | |
1103 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value | |
1104 // for type T, which is NULL when T is a raw pointer type, 0 when T is | |
1105 // a numeric type, false when T is bool, or "" when T is string or | |
1106 // std::string. In addition, in C++11 and above, it turns a | |
1107 // default-constructed T value if T is default constructible. For any | |
1108 // other type T, the built-in default T value is undefined, and the | |
1109 // function will abort the process. | |
1110 template <typename T> | |
1111 class BuiltInDefaultValue { | |
1112 public: | |
1113 // This function returns true if and only if type T has a built-in default | |
1114 // value. | |
1115 static bool Exists() { | |
1116 return ::std::is_default_constructible<T>::value; | |
1117 } | |
1118 | |
1119 static T Get() { | |
1120 return BuiltInDefaultValueGetter< | |
1121 T, ::std::is_default_constructible<T>::value>::Get(); | |
1122 } | |
1123 }; | |
1124 | |
1125 // This partial specialization says that we use the same built-in | |
1126 // default value for T and const T. | |
1127 template <typename T> | |
1128 class BuiltInDefaultValue<const T> { | |
1129 public: | |
1130 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } | |
1131 static T Get() { return BuiltInDefaultValue<T>::Get(); } | |
1132 }; | |
1133 | |
1134 // This partial specialization defines the default values for pointer | |
1135 // types. | |
1136 template <typename T> | |
1137 class BuiltInDefaultValue<T*> { | |
1138 public: | |
1139 static bool Exists() { return true; } | |
1140 static T* Get() { return nullptr; } | |
1141 }; | |
1142 | |
1143 // The following specializations define the default values for | |
1144 // specific types we care about. | |
1145 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ | |
1146 template <> \ | |
1147 class BuiltInDefaultValue<type> { \ | |
1148 public: \ | |
1149 static bool Exists() { return true; } \ | |
1150 static type Get() { return value; } \ | |
1151 } | |
1152 | |
1153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT | |
1154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); | |
1155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); | |
1156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); | |
1157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); | |
1158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); | |
1159 | |
1160 // There's no need for a default action for signed wchar_t, as that | |
1161 // type is the same as wchar_t for gcc, and invalid for MSVC. | |
1162 // | |
1163 // There's also no need for a default action for unsigned wchar_t, as | |
1164 // that type is the same as unsigned int for gcc, and invalid for | |
1165 // MSVC. | |
1166 #if GMOCK_WCHAR_T_IS_NATIVE_ | |
1167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT | |
1168 #endif | |
1169 | |
1170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT | |
1171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT | |
1172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); | |
1173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); | |
1174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT | |
1175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT | |
1176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT | |
1177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT | |
1178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); | |
1179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); | |
1180 | |
1181 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ | |
1182 | |
1183 // Simple two-arg form of std::disjunction. | |
1184 template <typename P, typename Q> | |
1185 using disjunction = typename ::std::conditional<P::value, P, Q>::type; | |
1186 | |
1187 } // namespace internal | |
1188 | |
1189 // When an unexpected function call is encountered, Google Mock will | |
1190 // let it return a default value if the user has specified one for its | |
1191 // return type, or if the return type has a built-in default value; | |
1192 // otherwise Google Mock won't know what value to return and will have | |
1193 // to abort the process. | |
1194 // | |
1195 // The DefaultValue<T> class allows a user to specify the | |
1196 // default value for a type T that is both copyable and publicly | |
1197 // destructible (i.e. anything that can be used as a function return | |
1198 // type). The usage is: | |
1199 // | |
1200 // // Sets the default value for type T to be foo. | |
1201 // DefaultValue<T>::Set(foo); | |
1202 template <typename T> | |
1203 class DefaultValue { | |
1204 public: | |
1205 // Sets the default value for type T; requires T to be | |
1206 // copy-constructable and have a public destructor. | |
1207 static void Set(T x) { | |
1208 delete producer_; | |
1209 producer_ = new FixedValueProducer(x); | |
1210 } | |
1211 | |
1212 // Provides a factory function to be called to generate the default value. | |
1213 // This method can be used even if T is only move-constructible, but it is not | |
1214 // limited to that case. | |
1215 typedef T (*FactoryFunction)(); | |
1216 static void SetFactory(FactoryFunction factory) { | |
1217 delete producer_; | |
1218 producer_ = new FactoryValueProducer(factory); | |
1219 } | |
1220 | |
1221 // Unsets the default value for type T. | |
1222 static void Clear() { | |
1223 delete producer_; | |
1224 producer_ = nullptr; | |
1225 } | |
1226 | |
1227 // Returns true if and only if the user has set the default value for type T. | |
1228 static bool IsSet() { return producer_ != nullptr; } | |
1229 | |
1230 // Returns true if T has a default return value set by the user or there | |
1231 // exists a built-in default value. | |
1232 static bool Exists() { | |
1233 return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); | |
1234 } | |
1235 | |
1236 // Returns the default value for type T if the user has set one; | |
1237 // otherwise returns the built-in default value. Requires that Exists() | |
1238 // is true, which ensures that the return value is well-defined. | |
1239 static T Get() { | |
1240 return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() | |
1241 : producer_->Produce(); | |
1242 } | |
1243 | |
1244 private: | |
1245 class ValueProducer { | |
1246 public: | |
1247 virtual ~ValueProducer() {} | |
1248 virtual T Produce() = 0; | |
1249 }; | |
1250 | |
1251 class FixedValueProducer : public ValueProducer { | |
1252 public: | |
1253 explicit FixedValueProducer(T value) : value_(value) {} | |
1254 T Produce() override { return value_; } | |
1255 | |
1256 private: | |
1257 const T value_; | |
1258 GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); | |
1259 }; | |
1260 | |
1261 class FactoryValueProducer : public ValueProducer { | |
1262 public: | |
1263 explicit FactoryValueProducer(FactoryFunction factory) | |
1264 : factory_(factory) {} | |
1265 T Produce() override { return factory_(); } | |
1266 | |
1267 private: | |
1268 const FactoryFunction factory_; | |
1269 GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); | |
1270 }; | |
1271 | |
1272 static ValueProducer* producer_; | |
1273 }; | |
1274 | |
1275 // This partial specialization allows a user to set default values for | |
1276 // reference types. | |
1277 template <typename T> | |
1278 class DefaultValue<T&> { | |
1279 public: | |
1280 // Sets the default value for type T&. | |
1281 static void Set(T& x) { // NOLINT | |
1282 address_ = &x; | |
1283 } | |
1284 | |
1285 // Unsets the default value for type T&. | |
1286 static void Clear() { address_ = nullptr; } | |
1287 | |
1288 // Returns true if and only if the user has set the default value for type T&. | |
1289 static bool IsSet() { return address_ != nullptr; } | |
1290 | |
1291 // Returns true if T has a default return value set by the user or there | |
1292 // exists a built-in default value. | |
1293 static bool Exists() { | |
1294 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); | |
1295 } | |
1296 | |
1297 // Returns the default value for type T& if the user has set one; | |
1298 // otherwise returns the built-in default value if there is one; | |
1299 // otherwise aborts the process. | |
1300 static T& Get() { | |
1301 return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() | |
1302 : *address_; | |
1303 } | |
1304 | |
1305 private: | |
1306 static T* address_; | |
1307 }; | |
1308 | |
1309 // This specialization allows DefaultValue<void>::Get() to | |
1310 // compile. | |
1311 template <> | |
1312 class DefaultValue<void> { | |
1313 public: | |
1314 static bool Exists() { return true; } | |
1315 static void Get() {} | |
1316 }; | |
1317 | |
1318 // Points to the user-set default value for type T. | |
1319 template <typename T> | |
1320 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; | |
1321 | |
1322 // Points to the user-set default value for type T&. | |
1323 template <typename T> | |
1324 T* DefaultValue<T&>::address_ = nullptr; | |
1325 | |
1326 // Implement this interface to define an action for function type F. | |
1327 template <typename F> | |
1328 class ActionInterface { | |
1329 public: | |
1330 typedef typename internal::Function<F>::Result Result; | |
1331 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | |
1332 | |
1333 ActionInterface() {} | |
1334 virtual ~ActionInterface() {} | |
1335 | |
1336 // Performs the action. This method is not const, as in general an | |
1337 // action can have side effects and be stateful. For example, a | |
1338 // get-the-next-element-from-the-collection action will need to | |
1339 // remember the current element. | |
1340 virtual Result Perform(const ArgumentTuple& args) = 0; | |
1341 | |
1342 private: | |
1343 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); | |
1344 }; | |
1345 | |
1346 // An Action<F> is a copyable and IMMUTABLE (except by assignment) | |
1347 // object that represents an action to be taken when a mock function | |
1348 // of type F is called. The implementation of Action<T> is just a | |
1349 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! | |
1350 // You can view an object implementing ActionInterface<F> as a | |
1351 // concrete action (including its current state), and an Action<F> | |
1352 // object as a handle to it. | |
1353 template <typename F> | |
1354 class Action { | |
1355 // Adapter class to allow constructing Action from a legacy ActionInterface. | |
1356 // New code should create Actions from functors instead. | |
1357 struct ActionAdapter { | |
1358 // Adapter must be copyable to satisfy std::function requirements. | |
1359 ::std::shared_ptr<ActionInterface<F>> impl_; | |
1360 | |
1361 template <typename... Args> | |
1362 typename internal::Function<F>::Result operator()(Args&&... args) { | |
1363 return impl_->Perform( | |
1364 ::std::forward_as_tuple(::std::forward<Args>(args)...)); | |
1365 } | |
1366 }; | |
1367 | |
1368 template <typename G> | |
1369 using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; | |
1370 | |
1371 public: | |
1372 typedef typename internal::Function<F>::Result Result; | |
1373 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | |
1374 | |
1375 // Constructs a null Action. Needed for storing Action objects in | |
1376 // STL containers. | |
1377 Action() {} | |
1378 | |
1379 // Construct an Action from a specified callable. | |
1380 // This cannot take std::function directly, because then Action would not be | |
1381 // directly constructible from lambda (it would require two conversions). | |
1382 template < | |
1383 typename G, | |
1384 typename = typename std::enable_if<internal::disjunction< | |
1385 IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, | |
1386 G>>::value>::type> | |
1387 Action(G&& fun) { // NOLINT | |
1388 Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); | |
1389 } | |
1390 | |
1391 // Constructs an Action from its implementation. | |
1392 explicit Action(ActionInterface<F>* impl) | |
1393 : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} | |
1394 | |
1395 // This constructor allows us to turn an Action<Func> object into an | |
1396 // Action<F>, as long as F's arguments can be implicitly converted | |
1397 // to Func's and Func's return type can be implicitly converted to F's. | |
1398 template <typename Func> | |
1399 explicit Action(const Action<Func>& action) : fun_(action.fun_) {} | |
1400 | |
1401 // Returns true if and only if this is the DoDefault() action. | |
1402 bool IsDoDefault() const { return fun_ == nullptr; } | |
1403 | |
1404 // Performs the action. Note that this method is const even though | |
1405 // the corresponding method in ActionInterface is not. The reason | |
1406 // is that a const Action<F> means that it cannot be re-bound to | |
1407 // another concrete action, not that the concrete action it binds to | |
1408 // cannot change state. (Think of the difference between a const | |
1409 // pointer and a pointer to const.) | |
1410 Result Perform(ArgumentTuple args) const { | |
1411 if (IsDoDefault()) { | |
1412 internal::IllegalDoDefault(__FILE__, __LINE__); | |
1413 } | |
1414 return internal::Apply(fun_, ::std::move(args)); | |
1415 } | |
1416 | |
1417 private: | |
1418 template <typename G> | |
1419 friend class Action; | |
1420 | |
1421 template <typename G> | |
1422 void Init(G&& g, ::std::true_type) { | |
1423 fun_ = ::std::forward<G>(g); | |
1424 } | |
1425 | |
1426 template <typename G> | |
1427 void Init(G&& g, ::std::false_type) { | |
1428 fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; | |
1429 } | |
1430 | |
1431 template <typename FunctionImpl> | |
1432 struct IgnoreArgs { | |
1433 template <typename... Args> | |
1434 Result operator()(const Args&...) const { | |
1435 return function_impl(); | |
1436 } | |
1437 | |
1438 FunctionImpl function_impl; | |
1439 }; | |
1440 | |
1441 // fun_ is an empty function if and only if this is the DoDefault() action. | |
1442 ::std::function<F> fun_; | |
1443 }; | |
1444 | |
1445 // The PolymorphicAction class template makes it easy to implement a | |
1446 // polymorphic action (i.e. an action that can be used in mock | |
1447 // functions of than one type, e.g. Return()). | |
1448 // | |
1449 // To define a polymorphic action, a user first provides a COPYABLE | |
1450 // implementation class that has a Perform() method template: | |
1451 // | |
1452 // class FooAction { | |
1453 // public: | |
1454 // template <typename Result, typename ArgumentTuple> | |
1455 // Result Perform(const ArgumentTuple& args) const { | |
1456 // // Processes the arguments and returns a result, using | |
1457 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. | |
1458 // } | |
1459 // ... | |
1460 // }; | |
1461 // | |
1462 // Then the user creates the polymorphic action using | |
1463 // MakePolymorphicAction(object) where object has type FooAction. See | |
1464 // the definition of Return(void) and SetArgumentPointee<N>(value) for | |
1465 // complete examples. | |
1466 template <typename Impl> | |
1467 class PolymorphicAction { | |
1468 public: | |
1469 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} | |
1470 | |
1471 template <typename F> | |
1472 operator Action<F>() const { | |
1473 return Action<F>(new MonomorphicImpl<F>(impl_)); | |
1474 } | |
1475 | |
1476 private: | |
1477 template <typename F> | |
1478 class MonomorphicImpl : public ActionInterface<F> { | |
1479 public: | |
1480 typedef typename internal::Function<F>::Result Result; | |
1481 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | |
1482 | |
1483 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | |
1484 | |
1485 Result Perform(const ArgumentTuple& args) override { | |
1486 return impl_.template Perform<Result>(args); | |
1487 } | |
1488 | |
1489 private: | |
1490 Impl impl_; | |
1491 }; | |
1492 | |
1493 Impl impl_; | |
1494 }; | |
1495 | |
1496 // Creates an Action from its implementation and returns it. The | |
1497 // created Action object owns the implementation. | |
1498 template <typename F> | |
1499 Action<F> MakeAction(ActionInterface<F>* impl) { | |
1500 return Action<F>(impl); | |
1501 } | |
1502 | |
1503 // Creates a polymorphic action from its implementation. This is | |
1504 // easier to use than the PolymorphicAction<Impl> constructor as it | |
1505 // doesn't require you to explicitly write the template argument, e.g. | |
1506 // | |
1507 // MakePolymorphicAction(foo); | |
1508 // vs | |
1509 // PolymorphicAction<TypeOfFoo>(foo); | |
1510 template <typename Impl> | |
1511 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { | |
1512 return PolymorphicAction<Impl>(impl); | |
1513 } | |
1514 | |
1515 namespace internal { | |
1516 | |
1517 // Helper struct to specialize ReturnAction to execute a move instead of a copy | |
1518 // on return. Useful for move-only types, but could be used on any type. | |
1519 template <typename T> | |
1520 struct ByMoveWrapper { | |
1521 explicit ByMoveWrapper(T value) : payload(std::move(value)) {} | |
1522 T payload; | |
1523 }; | |
1524 | |
1525 // Implements the polymorphic Return(x) action, which can be used in | |
1526 // any function that returns the type of x, regardless of the argument | |
1527 // types. | |
1528 // | |
1529 // Note: The value passed into Return must be converted into | |
1530 // Function<F>::Result when this action is cast to Action<F> rather than | |
1531 // when that action is performed. This is important in scenarios like | |
1532 // | |
1533 // MOCK_METHOD1(Method, T(U)); | |
1534 // ... | |
1535 // { | |
1536 // Foo foo; | |
1537 // X x(&foo); | |
1538 // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); | |
1539 // } | |
1540 // | |
1541 // In the example above the variable x holds reference to foo which leaves | |
1542 // scope and gets destroyed. If copying X just copies a reference to foo, | |
1543 // that copy will be left with a hanging reference. If conversion to T | |
1544 // makes a copy of foo, the above code is safe. To support that scenario, we | |
1545 // need to make sure that the type conversion happens inside the EXPECT_CALL | |
1546 // statement, and conversion of the result of Return to Action<T(U)> is a | |
1547 // good place for that. | |
1548 // | |
1549 // The real life example of the above scenario happens when an invocation | |
1550 // of gtl::Container() is passed into Return. | |
1551 // | |
1552 template <typename R> | |
1553 class ReturnAction { | |
1554 public: | |
1555 // Constructs a ReturnAction object from the value to be returned. | |
1556 // 'value' is passed by value instead of by const reference in order | |
1557 // to allow Return("string literal") to compile. | |
1558 explicit ReturnAction(R value) : value_(new R(std::move(value))) {} | |
1559 | |
1560 // This template type conversion operator allows Return(x) to be | |
1561 // used in ANY function that returns x's type. | |
1562 template <typename F> | |
1563 operator Action<F>() const { // NOLINT | |
1564 // Assert statement belongs here because this is the best place to verify | |
1565 // conditions on F. It produces the clearest error messages | |
1566 // in most compilers. | |
1567 // Impl really belongs in this scope as a local class but can't | |
1568 // because MSVC produces duplicate symbols in different translation units | |
1569 // in this case. Until MS fixes that bug we put Impl into the class scope | |
1570 // and put the typedef both here (for use in assert statement) and | |
1571 // in the Impl class. But both definitions must be the same. | |
1572 typedef typename Function<F>::Result Result; | |
1573 GTEST_COMPILE_ASSERT_( | |
1574 !std::is_reference<Result>::value, | |
1575 use_ReturnRef_instead_of_Return_to_return_a_reference); | |
1576 static_assert(!std::is_void<Result>::value, | |
1577 "Can't use Return() on an action expected to return `void`."); | |
1578 return Action<F>(new Impl<R, F>(value_)); | |
1579 } | |
1580 | |
1581 private: | |
1582 // Implements the Return(x) action for a particular function type F. | |
1583 template <typename R_, typename F> | |
1584 class Impl : public ActionInterface<F> { | |
1585 public: | |
1586 typedef typename Function<F>::Result Result; | |
1587 typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |
1588 | |
1589 // The implicit cast is necessary when Result has more than one | |
1590 // single-argument constructor (e.g. Result is std::vector<int>) and R | |
1591 // has a type conversion operator template. In that case, value_(value) | |
1592 // won't compile as the compiler doesn't known which constructor of | |
1593 // Result to call. ImplicitCast_ forces the compiler to convert R to | |
1594 // Result without considering explicit constructors, thus resolving the | |
1595 // ambiguity. value_ is then initialized using its copy constructor. | |
1596 explicit Impl(const std::shared_ptr<R>& value) | |
1597 : value_before_cast_(*value), | |
1598 value_(ImplicitCast_<Result>(value_before_cast_)) {} | |
1599 | |
1600 Result Perform(const ArgumentTuple&) override { return value_; } | |
1601 | |
1602 private: | |
1603 GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, | |
1604 Result_cannot_be_a_reference_type); | |
1605 // We save the value before casting just in case it is being cast to a | |
1606 // wrapper type. | |
1607 R value_before_cast_; | |
1608 Result value_; | |
1609 | |
1610 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | |
1611 }; | |
1612 | |
1613 // Partially specialize for ByMoveWrapper. This version of ReturnAction will | |
1614 // move its contents instead. | |
1615 template <typename R_, typename F> | |
1616 class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { | |
1617 public: | |
1618 typedef typename Function<F>::Result Result; | |
1619 typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |
1620 | |
1621 explicit Impl(const std::shared_ptr<R>& wrapper) | |
1622 : performed_(false), wrapper_(wrapper) {} | |
1623 | |
1624 Result Perform(const ArgumentTuple&) override { | |
1625 GTEST_CHECK_(!performed_) | |
1626 << "A ByMove() action should only be performed once."; | |
1627 performed_ = true; | |
1628 return std::move(wrapper_->payload); | |
1629 } | |
1630 | |
1631 private: | |
1632 bool performed_; | |
1633 const std::shared_ptr<R> wrapper_; | |
1634 }; | |
1635 | |
1636 const std::shared_ptr<R> value_; | |
1637 }; | |
1638 | |
1639 // Implements the ReturnNull() action. | |
1640 class ReturnNullAction { | |
1641 public: | |
1642 // Allows ReturnNull() to be used in any pointer-returning function. In C++11 | |
1643 // this is enforced by returning nullptr, and in non-C++11 by asserting a | |
1644 // pointer type on compile time. | |
1645 template <typename Result, typename ArgumentTuple> | |
1646 static Result Perform(const ArgumentTuple&) { | |
1647 return nullptr; | |
1648 } | |
1649 }; | |
1650 | |
1651 // Implements the Return() action. | |
1652 class ReturnVoidAction { | |
1653 public: | |
1654 // Allows Return() to be used in any void-returning function. | |
1655 template <typename Result, typename ArgumentTuple> | |
1656 static void Perform(const ArgumentTuple&) { | |
1657 static_assert(std::is_void<Result>::value, "Result should be void."); | |
1658 } | |
1659 }; | |
1660 | |
1661 // Implements the polymorphic ReturnRef(x) action, which can be used | |
1662 // in any function that returns a reference to the type of x, | |
1663 // regardless of the argument types. | |
1664 template <typename T> | |
1665 class ReturnRefAction { | |
1666 public: | |
1667 // Constructs a ReturnRefAction object from the reference to be returned. | |
1668 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT | |
1669 | |
1670 // This template type conversion operator allows ReturnRef(x) to be | |
1671 // used in ANY function that returns a reference to x's type. | |
1672 template <typename F> | |
1673 operator Action<F>() const { | |
1674 typedef typename Function<F>::Result Result; | |
1675 // Asserts that the function return type is a reference. This | |
1676 // catches the user error of using ReturnRef(x) when Return(x) | |
1677 // should be used, and generates some helpful error message. | |
1678 GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, | |
1679 use_Return_instead_of_ReturnRef_to_return_a_value); | |
1680 return Action<F>(new Impl<F>(ref_)); | |
1681 } | |
1682 | |
1683 private: | |
1684 // Implements the ReturnRef(x) action for a particular function type F. | |
1685 template <typename F> | |
1686 class Impl : public ActionInterface<F> { | |
1687 public: | |
1688 typedef typename Function<F>::Result Result; | |
1689 typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |
1690 | |
1691 explicit Impl(T& ref) : ref_(ref) {} // NOLINT | |
1692 | |
1693 Result Perform(const ArgumentTuple&) override { return ref_; } | |
1694 | |
1695 private: | |
1696 T& ref_; | |
1697 }; | |
1698 | |
1699 T& ref_; | |
1700 }; | |
1701 | |
1702 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be | |
1703 // used in any function that returns a reference to the type of x, | |
1704 // regardless of the argument types. | |
1705 template <typename T> | |
1706 class ReturnRefOfCopyAction { | |
1707 public: | |
1708 // Constructs a ReturnRefOfCopyAction object from the reference to | |
1709 // be returned. | |
1710 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT | |
1711 | |
1712 // This template type conversion operator allows ReturnRefOfCopy(x) to be | |
1713 // used in ANY function that returns a reference to x's type. | |
1714 template <typename F> | |
1715 operator Action<F>() const { | |
1716 typedef typename Function<F>::Result Result; | |
1717 // Asserts that the function return type is a reference. This | |
1718 // catches the user error of using ReturnRefOfCopy(x) when Return(x) | |
1719 // should be used, and generates some helpful error message. | |
1720 GTEST_COMPILE_ASSERT_( | |
1721 std::is_reference<Result>::value, | |
1722 use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); | |
1723 return Action<F>(new Impl<F>(value_)); | |
1724 } | |
1725 | |
1726 private: | |
1727 // Implements the ReturnRefOfCopy(x) action for a particular function type F. | |
1728 template <typename F> | |
1729 class Impl : public ActionInterface<F> { | |
1730 public: | |
1731 typedef typename Function<F>::Result Result; | |
1732 typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |
1733 | |
1734 explicit Impl(const T& value) : value_(value) {} // NOLINT | |
1735 | |
1736 Result Perform(const ArgumentTuple&) override { return value_; } | |
1737 | |
1738 private: | |
1739 T value_; | |
1740 }; | |
1741 | |
1742 const T value_; | |
1743 }; | |
1744 | |
1745 // Implements the polymorphic ReturnRoundRobin(v) action, which can be | |
1746 // used in any function that returns the element_type of v. | |
1747 template <typename T> | |
1748 class ReturnRoundRobinAction { | |
1749 public: | |
1750 explicit ReturnRoundRobinAction(std::vector<T> values) { | |
1751 GTEST_CHECK_(!values.empty()) | |
1752 << "ReturnRoundRobin requires at least one element."; | |
1753 state_->values = std::move(values); | |
1754 } | |
1755 | |
1756 template <typename... Args> | |
1757 T operator()(Args&&...) const { | |
1758 return state_->Next(); | |
1759 } | |
1760 | |
1761 private: | |
1762 struct State { | |
1763 T Next() { | |
1764 T ret_val = values[i++]; | |
1765 if (i == values.size()) i = 0; | |
1766 return ret_val; | |
1767 } | |
1768 | |
1769 std::vector<T> values; | |
1770 size_t i = 0; | |
1771 }; | |
1772 std::shared_ptr<State> state_ = std::make_shared<State>(); | |
1773 }; | |
1774 | |
1775 // Implements the polymorphic DoDefault() action. | |
1776 class DoDefaultAction { | |
1777 public: | |
1778 // This template type conversion operator allows DoDefault() to be | |
1779 // used in any function. | |
1780 template <typename F> | |
1781 operator Action<F>() const { return Action<F>(); } // NOLINT | |
1782 }; | |
1783 | |
1784 // Implements the Assign action to set a given pointer referent to a | |
1785 // particular value. | |
1786 template <typename T1, typename T2> | |
1787 class AssignAction { | |
1788 public: | |
1789 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} | |
1790 | |
1791 template <typename Result, typename ArgumentTuple> | |
1792 void Perform(const ArgumentTuple& /* args */) const { | |
1793 *ptr_ = value_; | |
1794 } | |
1795 | |
1796 private: | |
1797 T1* const ptr_; | |
1798 const T2 value_; | |
1799 }; | |
1800 | |
1801 #if !GTEST_OS_WINDOWS_MOBILE | |
1802 | |
1803 // Implements the SetErrnoAndReturn action to simulate return from | |
1804 // various system calls and libc functions. | |
1805 template <typename T> | |
1806 class SetErrnoAndReturnAction { | |
1807 public: | |
1808 SetErrnoAndReturnAction(int errno_value, T result) | |
1809 : errno_(errno_value), | |
1810 result_(result) {} | |
1811 template <typename Result, typename ArgumentTuple> | |
1812 Result Perform(const ArgumentTuple& /* args */) const { | |
1813 errno = errno_; | |
1814 return result_; | |
1815 } | |
1816 | |
1817 private: | |
1818 const int errno_; | |
1819 const T result_; | |
1820 }; | |
1821 | |
1822 #endif // !GTEST_OS_WINDOWS_MOBILE | |
1823 | |
1824 // Implements the SetArgumentPointee<N>(x) action for any function | |
1825 // whose N-th argument (0-based) is a pointer to x's type. | |
1826 template <size_t N, typename A, typename = void> | |
1827 struct SetArgumentPointeeAction { | |
1828 A value; | |
1829 | |
1830 template <typename... Args> | |
1831 void operator()(const Args&... args) const { | |
1832 *::std::get<N>(std::tie(args...)) = value; | |
1833 } | |
1834 }; | |
1835 | |
1836 // Implements the Invoke(object_ptr, &Class::Method) action. | |
1837 template <class Class, typename MethodPtr> | |
1838 struct InvokeMethodAction { | |
1839 Class* const obj_ptr; | |
1840 const MethodPtr method_ptr; | |
1841 | |
1842 template <typename... Args> | |
1843 auto operator()(Args&&... args) const | |
1844 -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { | |
1845 return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); | |
1846 } | |
1847 }; | |
1848 | |
1849 // Implements the InvokeWithoutArgs(f) action. The template argument | |
1850 // FunctionImpl is the implementation type of f, which can be either a | |
1851 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an | |
1852 // Action<F> as long as f's type is compatible with F. | |
1853 template <typename FunctionImpl> | |
1854 struct InvokeWithoutArgsAction { | |
1855 FunctionImpl function_impl; | |
1856 | |
1857 // Allows InvokeWithoutArgs(f) to be used as any action whose type is | |
1858 // compatible with f. | |
1859 template <typename... Args> | |
1860 auto operator()(const Args&...) -> decltype(function_impl()) { | |
1861 return function_impl(); | |
1862 } | |
1863 }; | |
1864 | |
1865 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. | |
1866 template <class Class, typename MethodPtr> | |
1867 struct InvokeMethodWithoutArgsAction { | |
1868 Class* const obj_ptr; | |
1869 const MethodPtr method_ptr; | |
1870 | |
1871 using ReturnType = | |
1872 decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); | |
1873 | |
1874 template <typename... Args> | |
1875 ReturnType operator()(const Args&...) const { | |
1876 return (obj_ptr->*method_ptr)(); | |
1877 } | |
1878 }; | |
1879 | |
1880 // Implements the IgnoreResult(action) action. | |
1881 template <typename A> | |
1882 class IgnoreResultAction { | |
1883 public: | |
1884 explicit IgnoreResultAction(const A& action) : action_(action) {} | |
1885 | |
1886 template <typename F> | |
1887 operator Action<F>() const { | |
1888 // Assert statement belongs here because this is the best place to verify | |
1889 // conditions on F. It produces the clearest error messages | |
1890 // in most compilers. | |
1891 // Impl really belongs in this scope as a local class but can't | |
1892 // because MSVC produces duplicate symbols in different translation units | |
1893 // in this case. Until MS fixes that bug we put Impl into the class scope | |
1894 // and put the typedef both here (for use in assert statement) and | |
1895 // in the Impl class. But both definitions must be the same. | |
1896 typedef typename internal::Function<F>::Result Result; | |
1897 | |
1898 // Asserts at compile time that F returns void. | |
1899 static_assert(std::is_void<Result>::value, "Result type should be void."); | |
1900 | |
1901 return Action<F>(new Impl<F>(action_)); | |
1902 } | |
1903 | |
1904 private: | |
1905 template <typename F> | |
1906 class Impl : public ActionInterface<F> { | |
1907 public: | |
1908 typedef typename internal::Function<F>::Result Result; | |
1909 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | |
1910 | |
1911 explicit Impl(const A& action) : action_(action) {} | |
1912 | |
1913 void Perform(const ArgumentTuple& args) override { | |
1914 // Performs the action and ignores its result. | |
1915 action_.Perform(args); | |
1916 } | |
1917 | |
1918 private: | |
1919 // Type OriginalFunction is the same as F except that its return | |
1920 // type is IgnoredValue. | |
1921 typedef typename internal::Function<F>::MakeResultIgnoredValue | |
1922 OriginalFunction; | |
1923 | |
1924 const Action<OriginalFunction> action_; | |
1925 }; | |
1926 | |
1927 const A action_; | |
1928 }; | |
1929 | |
1930 template <typename InnerAction, size_t... I> | |
1931 struct WithArgsAction { | |
1932 InnerAction action; | |
1933 | |
1934 // The inner action could be anything convertible to Action<X>. | |
1935 // We use the conversion operator to detect the signature of the inner Action. | |
1936 template <typename R, typename... Args> | |
1937 operator Action<R(Args...)>() const { // NOLINT | |
1938 using TupleType = std::tuple<Args...>; | |
1939 Action<R(typename std::tuple_element<I, TupleType>::type...)> | |
1940 converted(action); | |
1941 | |
1942 return [converted](Args... args) -> R { | |
1943 return converted.Perform(std::forward_as_tuple( | |
1944 std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); | |
1945 }; | |
1946 } | |
1947 }; | |
1948 | |
1949 template <typename... Actions> | |
1950 struct DoAllAction { | |
1951 private: | |
1952 template <typename T> | |
1953 using NonFinalType = | |
1954 typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; | |
1955 | |
1956 template <typename ActionT, size_t... I> | |
1957 std::vector<ActionT> Convert(IndexSequence<I...>) const { | |
1958 return {ActionT(std::get<I>(actions))...}; | |
1959 } | |
1960 | |
1961 public: | |
1962 std::tuple<Actions...> actions; | |
1963 | |
1964 template <typename R, typename... Args> | |
1965 operator Action<R(Args...)>() const { // NOLINT | |
1966 struct Op { | |
1967 std::vector<Action<void(NonFinalType<Args>...)>> converted; | |
1968 Action<R(Args...)> last; | |
1969 R operator()(Args... args) const { | |
1970 auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); | |
1971 for (auto& a : converted) { | |
1972 a.Perform(tuple_args); | |
1973 } | |
1974 return last.Perform(std::move(tuple_args)); | |
1975 } | |
1976 }; | |
1977 return Op{Convert<Action<void(NonFinalType<Args>...)>>( | |
1978 MakeIndexSequence<sizeof...(Actions) - 1>()), | |
1979 std::get<sizeof...(Actions) - 1>(actions)}; | |
1980 } | |
1981 }; | |
1982 | |
1983 template <typename T, typename... Params> | |
1984 struct ReturnNewAction { | |
1985 T* operator()() const { | |
1986 return internal::Apply( | |
1987 [](const Params&... unpacked_params) { | |
1988 return new T(unpacked_params...); | |
1989 }, | |
1990 params); | |
1991 } | |
1992 std::tuple<Params...> params; | |
1993 }; | |
1994 | |
1995 template <size_t k> | |
1996 struct ReturnArgAction { | |
1997 template <typename... Args> | |
1998 auto operator()(const Args&... args) const -> | |
1999 typename std::tuple_element<k, std::tuple<Args...>>::type { | |
2000 return std::get<k>(std::tie(args...)); | |
2001 } | |
2002 }; | |
2003 | |
2004 template <size_t k, typename Ptr> | |
2005 struct SaveArgAction { | |
2006 Ptr pointer; | |
2007 | |
2008 template <typename... Args> | |
2009 void operator()(const Args&... args) const { | |
2010 *pointer = std::get<k>(std::tie(args...)); | |
2011 } | |
2012 }; | |
2013 | |
2014 template <size_t k, typename Ptr> | |
2015 struct SaveArgPointeeAction { | |
2016 Ptr pointer; | |
2017 | |
2018 template <typename... Args> | |
2019 void operator()(const Args&... args) const { | |
2020 *pointer = *std::get<k>(std::tie(args...)); | |
2021 } | |
2022 }; | |
2023 | |
2024 template <size_t k, typename T> | |
2025 struct SetArgRefereeAction { | |
2026 T value; | |
2027 | |
2028 template <typename... Args> | |
2029 void operator()(Args&&... args) const { | |
2030 using argk_type = | |
2031 typename ::std::tuple_element<k, std::tuple<Args...>>::type; | |
2032 static_assert(std::is_lvalue_reference<argk_type>::value, | |
2033 "Argument must be a reference type."); | |
2034 std::get<k>(std::tie(args...)) = value; | |
2035 } | |
2036 }; | |
2037 | |
2038 template <size_t k, typename I1, typename I2> | |
2039 struct SetArrayArgumentAction { | |
2040 I1 first; | |
2041 I2 last; | |
2042 | |
2043 template <typename... Args> | |
2044 void operator()(const Args&... args) const { | |
2045 auto value = std::get<k>(std::tie(args...)); | |
2046 for (auto it = first; it != last; ++it, (void)++value) { | |
2047 *value = *it; | |
2048 } | |
2049 } | |
2050 }; | |
2051 | |
2052 template <size_t k> | |
2053 struct DeleteArgAction { | |
2054 template <typename... Args> | |
2055 void operator()(const Args&... args) const { | |
2056 delete std::get<k>(std::tie(args...)); | |
2057 } | |
2058 }; | |
2059 | |
2060 template <typename Ptr> | |
2061 struct ReturnPointeeAction { | |
2062 Ptr pointer; | |
2063 template <typename... Args> | |
2064 auto operator()(const Args&...) const -> decltype(*pointer) { | |
2065 return *pointer; | |
2066 } | |
2067 }; | |
2068 | |
2069 #if GTEST_HAS_EXCEPTIONS | |
2070 template <typename T> | |
2071 struct ThrowAction { | |
2072 T exception; | |
2073 // We use a conversion operator to adapt to any return type. | |
2074 template <typename R, typename... Args> | |
2075 operator Action<R(Args...)>() const { // NOLINT | |
2076 T copy = exception; | |
2077 return [copy](Args...) -> R { throw copy; }; | |
2078 } | |
2079 }; | |
2080 #endif // GTEST_HAS_EXCEPTIONS | |
2081 | |
2082 } // namespace internal | |
2083 | |
2084 // An Unused object can be implicitly constructed from ANY value. | |
2085 // This is handy when defining actions that ignore some or all of the | |
2086 // mock function arguments. For example, given | |
2087 // | |
2088 // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); | |
2089 // MOCK_METHOD3(Bar, double(int index, double x, double y)); | |
2090 // | |
2091 // instead of | |
2092 // | |
2093 // double DistanceToOriginWithLabel(const string& label, double x, double y) { | |
2094 // return sqrt(x*x + y*y); | |
2095 // } | |
2096 // double DistanceToOriginWithIndex(int index, double x, double y) { | |
2097 // return sqrt(x*x + y*y); | |
2098 // } | |
2099 // ... | |
2100 // EXPECT_CALL(mock, Foo("abc", _, _)) | |
2101 // .WillOnce(Invoke(DistanceToOriginWithLabel)); | |
2102 // EXPECT_CALL(mock, Bar(5, _, _)) | |
2103 // .WillOnce(Invoke(DistanceToOriginWithIndex)); | |
2104 // | |
2105 // you could write | |
2106 // | |
2107 // // We can declare any uninteresting argument as Unused. | |
2108 // double DistanceToOrigin(Unused, double x, double y) { | |
2109 // return sqrt(x*x + y*y); | |
2110 // } | |
2111 // ... | |
2112 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); | |
2113 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); | |
2114 typedef internal::IgnoredValue Unused; | |
2115 | |
2116 // Creates an action that does actions a1, a2, ..., sequentially in | |
2117 // each invocation. All but the last action will have a readonly view of the | |
2118 // arguments. | |
2119 template <typename... Action> | |
2120 internal::DoAllAction<typename std::decay<Action>::type...> DoAll( | |
2121 Action&&... action) { | |
2122 return {std::forward_as_tuple(std::forward<Action>(action)...)}; | |
2123 } | |
2124 | |
2125 // WithArg<k>(an_action) creates an action that passes the k-th | |
2126 // (0-based) argument of the mock function to an_action and performs | |
2127 // it. It adapts an action accepting one argument to one that accepts | |
2128 // multiple arguments. For convenience, we also provide | |
2129 // WithArgs<k>(an_action) (defined below) as a synonym. | |
2130 template <size_t k, typename InnerAction> | |
2131 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> | |
2132 WithArg(InnerAction&& action) { | |
2133 return {std::forward<InnerAction>(action)}; | |
2134 } | |
2135 | |
2136 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes | |
2137 // the selected arguments of the mock function to an_action and | |
2138 // performs it. It serves as an adaptor between actions with | |
2139 // different argument lists. | |
2140 template <size_t k, size_t... ks, typename InnerAction> | |
2141 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> | |
2142 WithArgs(InnerAction&& action) { | |
2143 return {std::forward<InnerAction>(action)}; | |
2144 } | |
2145 | |
2146 // WithoutArgs(inner_action) can be used in a mock function with a | |
2147 // non-empty argument list to perform inner_action, which takes no | |
2148 // argument. In other words, it adapts an action accepting no | |
2149 // argument to one that accepts (and ignores) arguments. | |
2150 template <typename InnerAction> | |
2151 internal::WithArgsAction<typename std::decay<InnerAction>::type> | |
2152 WithoutArgs(InnerAction&& action) { | |
2153 return {std::forward<InnerAction>(action)}; | |
2154 } | |
2155 | |
2156 // Creates an action that returns 'value'. 'value' is passed by value | |
2157 // instead of const reference - otherwise Return("string literal") | |
2158 // will trigger a compiler error about using array as initializer. | |
2159 template <typename R> | |
2160 internal::ReturnAction<R> Return(R value) { | |
2161 return internal::ReturnAction<R>(std::move(value)); | |
2162 } | |
2163 | |
2164 // Creates an action that returns NULL. | |
2165 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { | |
2166 return MakePolymorphicAction(internal::ReturnNullAction()); | |
2167 } | |
2168 | |
2169 // Creates an action that returns from a void function. | |
2170 inline PolymorphicAction<internal::ReturnVoidAction> Return() { | |
2171 return MakePolymorphicAction(internal::ReturnVoidAction()); | |
2172 } | |
2173 | |
2174 // Creates an action that returns the reference to a variable. | |
2175 template <typename R> | |
2176 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT | |
2177 return internal::ReturnRefAction<R>(x); | |
2178 } | |
2179 | |
2180 // Prevent using ReturnRef on reference to temporary. | |
2181 template <typename R, R* = nullptr> | |
2182 internal::ReturnRefAction<R> ReturnRef(R&&) = delete; | |
2183 | |
2184 // Creates an action that returns the reference to a copy of the | |
2185 // argument. The copy is created when the action is constructed and | |
2186 // lives as long as the action. | |
2187 template <typename R> | |
2188 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { | |
2189 return internal::ReturnRefOfCopyAction<R>(x); | |
2190 } | |
2191 | |
2192 // Modifies the parent action (a Return() action) to perform a move of the | |
2193 // argument instead of a copy. | |
2194 // Return(ByMove()) actions can only be executed once and will assert this | |
2195 // invariant. | |
2196 template <typename R> | |
2197 internal::ByMoveWrapper<R> ByMove(R x) { | |
2198 return internal::ByMoveWrapper<R>(std::move(x)); | |
2199 } | |
2200 | |
2201 // Creates an action that returns an element of `vals`. Calling this action will | |
2202 // repeatedly return the next value from `vals` until it reaches the end and | |
2203 // will restart from the beginning. | |
2204 template <typename T> | |
2205 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { | |
2206 return internal::ReturnRoundRobinAction<T>(std::move(vals)); | |
2207 } | |
2208 | |
2209 // Creates an action that returns an element of `vals`. Calling this action will | |
2210 // repeatedly return the next value from `vals` until it reaches the end and | |
2211 // will restart from the beginning. | |
2212 template <typename T> | |
2213 internal::ReturnRoundRobinAction<T> ReturnRoundRobin( | |
2214 std::initializer_list<T> vals) { | |
2215 return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); | |
2216 } | |
2217 | |
2218 // Creates an action that does the default action for the give mock function. | |
2219 inline internal::DoDefaultAction DoDefault() { | |
2220 return internal::DoDefaultAction(); | |
2221 } | |
2222 | |
2223 // Creates an action that sets the variable pointed by the N-th | |
2224 // (0-based) function argument to 'value'. | |
2225 template <size_t N, typename T> | |
2226 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { | |
2227 return {std::move(value)}; | |
2228 } | |
2229 | |
2230 // The following version is DEPRECATED. | |
2231 template <size_t N, typename T> | |
2232 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { | |
2233 return {std::move(value)}; | |
2234 } | |
2235 | |
2236 // Creates an action that sets a pointer referent to a given value. | |
2237 template <typename T1, typename T2> | |
2238 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { | |
2239 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); | |
2240 } | |
2241 | |
2242 #if !GTEST_OS_WINDOWS_MOBILE | |
2243 | |
2244 // Creates an action that sets errno and returns the appropriate error. | |
2245 template <typename T> | |
2246 PolymorphicAction<internal::SetErrnoAndReturnAction<T> > | |
2247 SetErrnoAndReturn(int errval, T result) { | |
2248 return MakePolymorphicAction( | |
2249 internal::SetErrnoAndReturnAction<T>(errval, result)); | |
2250 } | |
2251 | |
2252 #endif // !GTEST_OS_WINDOWS_MOBILE | |
2253 | |
2254 // Various overloads for Invoke(). | |
2255 | |
2256 // Legacy function. | |
2257 // Actions can now be implicitly constructed from callables. No need to create | |
2258 // wrapper objects. | |
2259 // This function exists for backwards compatibility. | |
2260 template <typename FunctionImpl> | |
2261 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { | |
2262 return std::forward<FunctionImpl>(function_impl); | |
2263 } | |
2264 | |
2265 // Creates an action that invokes the given method on the given object | |
2266 // with the mock function's arguments. | |
2267 template <class Class, typename MethodPtr> | |
2268 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, | |
2269 MethodPtr method_ptr) { | |
2270 return {obj_ptr, method_ptr}; | |
2271 } | |
2272 | |
2273 // Creates an action that invokes 'function_impl' with no argument. | |
2274 template <typename FunctionImpl> | |
2275 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> | |
2276 InvokeWithoutArgs(FunctionImpl function_impl) { | |
2277 return {std::move(function_impl)}; | |
2278 } | |
2279 | |
2280 // Creates an action that invokes the given method on the given object | |
2281 // with no argument. | |
2282 template <class Class, typename MethodPtr> | |
2283 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( | |
2284 Class* obj_ptr, MethodPtr method_ptr) { | |
2285 return {obj_ptr, method_ptr}; | |
2286 } | |
2287 | |
2288 // Creates an action that performs an_action and throws away its | |
2289 // result. In other words, it changes the return type of an_action to | |
2290 // void. an_action MUST NOT return void, or the code won't compile. | |
2291 template <typename A> | |
2292 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { | |
2293 return internal::IgnoreResultAction<A>(an_action); | |
2294 } | |
2295 | |
2296 // Creates a reference wrapper for the given L-value. If necessary, | |
2297 // you can explicitly specify the type of the reference. For example, | |
2298 // suppose 'derived' is an object of type Derived, ByRef(derived) | |
2299 // would wrap a Derived&. If you want to wrap a const Base& instead, | |
2300 // where Base is a base class of Derived, just write: | |
2301 // | |
2302 // ByRef<const Base>(derived) | |
2303 // | |
2304 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. | |
2305 // However, it may still be used for consistency with ByMove(). | |
2306 template <typename T> | |
2307 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT | |
2308 return ::std::reference_wrapper<T>(l_value); | |
2309 } | |
2310 | |
2311 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new | |
2312 // instance of type T, constructed on the heap with constructor arguments | |
2313 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. | |
2314 template <typename T, typename... Params> | |
2315 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( | |
2316 Params&&... params) { | |
2317 return {std::forward_as_tuple(std::forward<Params>(params)...)}; | |
2318 } | |
2319 | |
2320 // Action ReturnArg<k>() returns the k-th argument of the mock function. | |
2321 template <size_t k> | |
2322 internal::ReturnArgAction<k> ReturnArg() { | |
2323 return {}; | |
2324 } | |
2325 | |
2326 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the | |
2327 // mock function to *pointer. | |
2328 template <size_t k, typename Ptr> | |
2329 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { | |
2330 return {pointer}; | |
2331 } | |
2332 | |
2333 // Action SaveArgPointee<k>(pointer) saves the value pointed to | |
2334 // by the k-th (0-based) argument of the mock function to *pointer. | |
2335 template <size_t k, typename Ptr> | |
2336 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { | |
2337 return {pointer}; | |
2338 } | |
2339 | |
2340 // Action SetArgReferee<k>(value) assigns 'value' to the variable | |
2341 // referenced by the k-th (0-based) argument of the mock function. | |
2342 template <size_t k, typename T> | |
2343 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( | |
2344 T&& value) { | |
2345 return {std::forward<T>(value)}; | |
2346 } | |
2347 | |
2348 // Action SetArrayArgument<k>(first, last) copies the elements in | |
2349 // source range [first, last) to the array pointed to by the k-th | |
2350 // (0-based) argument, which can be either a pointer or an | |
2351 // iterator. The action does not take ownership of the elements in the | |
2352 // source range. | |
2353 template <size_t k, typename I1, typename I2> | |
2354 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, | |
2355 I2 last) { | |
2356 return {first, last}; | |
2357 } | |
2358 | |
2359 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock | |
2360 // function. | |
2361 template <size_t k> | |
2362 internal::DeleteArgAction<k> DeleteArg() { | |
2363 return {}; | |
2364 } | |
2365 | |
2366 // This action returns the value pointed to by 'pointer'. | |
2367 template <typename Ptr> | |
2368 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { | |
2369 return {pointer}; | |
2370 } | |
2371 | |
2372 // Action Throw(exception) can be used in a mock function of any type | |
2373 // to throw the given exception. Any copyable value can be thrown. | |
2374 #if GTEST_HAS_EXCEPTIONS | |
2375 template <typename T> | |
2376 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { | |
2377 return {std::forward<T>(exception)}; | |
2378 } | |
2379 #endif // GTEST_HAS_EXCEPTIONS | |
2380 | |
2381 namespace internal { | |
2382 | |
2383 // A macro from the ACTION* family (defined later in gmock-generated-actions.h) | |
2384 // defines an action that can be used in a mock function. Typically, | |
2385 // these actions only care about a subset of the arguments of the mock | |
2386 // function. For example, if such an action only uses the second | |
2387 // argument, it can be used in any mock function that takes >= 2 | |
2388 // arguments where the type of the second argument is compatible. | |
2389 // | |
2390 // Therefore, the action implementation must be prepared to take more | |
2391 // arguments than it needs. The ExcessiveArg type is used to | |
2392 // represent those excessive arguments. In order to keep the compiler | |
2393 // error messages tractable, we define it in the testing namespace | |
2394 // instead of testing::internal. However, this is an INTERNAL TYPE | |
2395 // and subject to change without notice, so a user MUST NOT USE THIS | |
2396 // TYPE DIRECTLY. | |
2397 struct ExcessiveArg {}; | |
2398 | |
2399 // Builds an implementation of an Action<> for some particular signature, using | |
2400 // a class defined by an ACTION* macro. | |
2401 template <typename F, typename Impl> struct ActionImpl; | |
2402 | |
2403 template <typename Impl> | |
2404 struct ImplBase { | |
2405 struct Holder { | |
2406 // Allows each copy of the Action<> to get to the Impl. | |
2407 explicit operator const Impl&() const { return *ptr; } | |
2408 std::shared_ptr<Impl> ptr; | |
2409 }; | |
2410 using type = typename std::conditional<std::is_constructible<Impl>::value, | |
2411 Impl, Holder>::type; | |
2412 }; | |
2413 | |
2414 template <typename R, typename... Args, typename Impl> | |
2415 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { | |
2416 using Base = typename ImplBase<Impl>::type; | |
2417 using function_type = R(Args...); | |
2418 using args_type = std::tuple<Args...>; | |
2419 | |
2420 ActionImpl() = default; // Only defined if appropriate for Base. | |
2421 explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } | |
2422 | |
2423 R operator()(Args&&... arg) const { | |
2424 static constexpr size_t kMaxArgs = | |
2425 sizeof...(Args) <= 10 ? sizeof...(Args) : 10; | |
2426 return Apply(MakeIndexSequence<kMaxArgs>{}, | |
2427 MakeIndexSequence<10 - kMaxArgs>{}, | |
2428 args_type{std::forward<Args>(arg)...}); | |
2429 } | |
2430 | |
2431 template <std::size_t... arg_id, std::size_t... excess_id> | |
2432 R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, | |
2433 const args_type& args) const { | |
2434 // Impl need not be specific to the signature of action being implemented; | |
2435 // only the implementing function body needs to have all of the specific | |
2436 // types instantiated. Up to 10 of the args that are provided by the | |
2437 // args_type get passed, followed by a dummy of unspecified type for the | |
2438 // remainder up to 10 explicit args. | |
2439 static constexpr ExcessiveArg kExcessArg{}; | |
2440 return static_cast<const Impl&>(*this).template gmock_PerformImpl< | |
2441 /*function_type=*/function_type, /*return_type=*/R, | |
2442 /*args_type=*/args_type, | |
2443 /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( | |
2444 /*args=*/args, std::get<arg_id>(args)..., | |
2445 ((void)excess_id, kExcessArg)...); | |
2446 } | |
2447 }; | |
2448 | |
2449 // Stores a default-constructed Impl as part of the Action<>'s | |
2450 // std::function<>. The Impl should be trivial to copy. | |
2451 template <typename F, typename Impl> | |
2452 ::testing::Action<F> MakeAction() { | |
2453 return ::testing::Action<F>(ActionImpl<F, Impl>()); | |
2454 } | |
2455 | |
2456 // Stores just the one given instance of Impl. | |
2457 template <typename F, typename Impl> | |
2458 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { | |
2459 return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); | |
2460 } | |
2461 | |
2462 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ | |
2463 , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ | |
2464 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ | |
2465 const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ | |
2466 GMOCK_INTERNAL_ARG_UNUSED, , 10) | |
2467 | |
2468 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i | |
2469 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ | |
2470 const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) | |
2471 | |
2472 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type | |
2473 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ | |
2474 GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) | |
2475 | |
2476 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type | |
2477 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ | |
2478 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) | |
2479 | |
2480 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type | |
2481 #define GMOCK_ACTION_TYPE_PARAMS_(params) \ | |
2482 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) | |
2483 | |
2484 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ | |
2485 , param##_type gmock_p##i | |
2486 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ | |
2487 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) | |
2488 | |
2489 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ | |
2490 , std::forward<param##_type>(gmock_p##i) | |
2491 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ | |
2492 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) | |
2493 | |
2494 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ | |
2495 , param(::std::forward<param##_type>(gmock_p##i)) | |
2496 #define GMOCK_ACTION_INIT_PARAMS_(params) \ | |
2497 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) | |
2498 | |
2499 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; | |
2500 #define GMOCK_ACTION_FIELD_PARAMS_(params) \ | |
2501 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) | |
2502 | |
2503 #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ | |
2504 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |
2505 class full_name { \ | |
2506 public: \ | |
2507 explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ | |
2508 : impl_(std::make_shared<gmock_Impl>( \ | |
2509 GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ | |
2510 full_name(const full_name&) = default; \ | |
2511 full_name(full_name&&) noexcept = default; \ | |
2512 template <typename F> \ | |
2513 operator ::testing::Action<F>() const { \ | |
2514 return ::testing::internal::MakeAction<F>(impl_); \ | |
2515 } \ | |
2516 private: \ | |
2517 class gmock_Impl { \ | |
2518 public: \ | |
2519 explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ | |
2520 : GMOCK_ACTION_INIT_PARAMS_(params) {} \ | |
2521 template <typename function_type, typename return_type, \ | |
2522 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |
2523 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | |
2524 GMOCK_ACTION_FIELD_PARAMS_(params) \ | |
2525 }; \ | |
2526 std::shared_ptr<const gmock_Impl> impl_; \ | |
2527 }; \ | |
2528 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |
2529 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ | |
2530 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ | |
2531 return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ | |
2532 GMOCK_ACTION_GVALUE_PARAMS_(params)); \ | |
2533 } \ | |
2534 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ | |
2535 template <typename function_type, typename return_type, typename args_type, \ | |
2536 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |
2537 return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ | |
2538 gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | |
2539 | |
2540 } // namespace internal | |
2541 | |
2542 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. | |
2543 #define ACTION(name) \ | |
2544 class name##Action { \ | |
2545 public: \ | |
2546 explicit name##Action() noexcept {} \ | |
2547 name##Action(const name##Action&) noexcept {} \ | |
2548 template <typename F> \ | |
2549 operator ::testing::Action<F>() const { \ | |
2550 return ::testing::internal::MakeAction<F, gmock_Impl>(); \ | |
2551 } \ | |
2552 private: \ | |
2553 class gmock_Impl { \ | |
2554 public: \ | |
2555 template <typename function_type, typename return_type, \ | |
2556 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |
2557 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | |
2558 }; \ | |
2559 }; \ | |
2560 inline name##Action name() GTEST_MUST_USE_RESULT_; \ | |
2561 inline name##Action name() { return name##Action(); } \ | |
2562 template <typename function_type, typename return_type, typename args_type, \ | |
2563 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |
2564 return_type name##Action::gmock_Impl::gmock_PerformImpl( \ | |
2565 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | |
2566 | |
2567 #define ACTION_P(name, ...) \ | |
2568 GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) | |
2569 | |
2570 #define ACTION_P2(name, ...) \ | |
2571 GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) | |
2572 | |
2573 #define ACTION_P3(name, ...) \ | |
2574 GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) | |
2575 | |
2576 #define ACTION_P4(name, ...) \ | |
2577 GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) | |
2578 | |
2579 #define ACTION_P5(name, ...) \ | |
2580 GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) | |
2581 | |
2582 #define ACTION_P6(name, ...) \ | |
2583 GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) | |
2584 | |
2585 #define ACTION_P7(name, ...) \ | |
2586 GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) | |
2587 | |
2588 #define ACTION_P8(name, ...) \ | |
2589 GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) | |
2590 | |
2591 #define ACTION_P9(name, ...) \ | |
2592 GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) | |
2593 | |
2594 #define ACTION_P10(name, ...) \ | |
2595 GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) | |
2596 | |
2597 } // namespace testing | |
2598 | |
2599 #ifdef _MSC_VER | |
2600 # pragma warning(pop) | |
2601 #endif | |
2602 | |
2603 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ | |
2604 // Copyright 2007, Google Inc. | |
2605 // All rights reserved. | |
2606 // | |
2607 // Redistribution and use in source and binary forms, with or without | |
2608 // modification, are permitted provided that the following conditions are | |
2609 // met: | |
2610 // | |
2611 // * Redistributions of source code must retain the above copyright | |
2612 // notice, this list of conditions and the following disclaimer. | |
2613 // * Redistributions in binary form must reproduce the above | |
2614 // copyright notice, this list of conditions and the following disclaimer | |
2615 // in the documentation and/or other materials provided with the | |
2616 // distribution. | |
2617 // * Neither the name of Google Inc. nor the names of its | |
2618 // contributors may be used to endorse or promote products derived from | |
2619 // this software without specific prior written permission. | |
2620 // | |
2621 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
2622 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
2623 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
2624 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
2625 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
2626 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
2627 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
2628 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
2629 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
2630 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
2631 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
2632 | |
2633 | |
2634 // Google Mock - a framework for writing C++ mock classes. | |
2635 // | |
2636 // This file implements some commonly used cardinalities. More | |
2637 // cardinalities can be defined by the user implementing the | |
2638 // CardinalityInterface interface if necessary. | |
2639 | |
2640 // GOOGLETEST_CM0002 DO NOT DELETE | |
2641 | |
2642 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ | |
2643 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ | |
2644 | |
2645 #include <limits.h> | |
2646 #include <memory> | |
2647 #include <ostream> // NOLINT | |
2648 | |
2649 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ | |
2650 /* class A needs to have dll-interface to be used by clients of class B */) | |
2651 | |
2652 namespace testing { | |
2653 | |
2654 // To implement a cardinality Foo, define: | |
2655 // 1. a class FooCardinality that implements the | |
2656 // CardinalityInterface interface, and | |
2657 // 2. a factory function that creates a Cardinality object from a | |
2658 // const FooCardinality*. | |
2659 // | |
2660 // The two-level delegation design follows that of Matcher, providing | |
2661 // consistency for extension developers. It also eases ownership | |
2662 // management as Cardinality objects can now be copied like plain values. | |
2663 | |
2664 // The implementation of a cardinality. | |
2665 class CardinalityInterface { | |
2666 public: | |
2667 virtual ~CardinalityInterface() {} | |
2668 | |
2669 // Conservative estimate on the lower/upper bound of the number of | |
2670 // calls allowed. | |
2671 virtual int ConservativeLowerBound() const { return 0; } | |
2672 virtual int ConservativeUpperBound() const { return INT_MAX; } | |
2673 | |
2674 // Returns true if and only if call_count calls will satisfy this | |
2675 // cardinality. | |
2676 virtual bool IsSatisfiedByCallCount(int call_count) const = 0; | |
2677 | |
2678 // Returns true if and only if call_count calls will saturate this | |
2679 // cardinality. | |
2680 virtual bool IsSaturatedByCallCount(int call_count) const = 0; | |
2681 | |
2682 // Describes self to an ostream. | |
2683 virtual void DescribeTo(::std::ostream* os) const = 0; | |
2684 }; | |
2685 | |
2686 // A Cardinality is a copyable and IMMUTABLE (except by assignment) | |
2687 // object that specifies how many times a mock function is expected to | |
2688 // be called. The implementation of Cardinality is just a std::shared_ptr | |
2689 // to const CardinalityInterface. Don't inherit from Cardinality! | |
2690 class GTEST_API_ Cardinality { | |
2691 public: | |
2692 // Constructs a null cardinality. Needed for storing Cardinality | |
2693 // objects in STL containers. | |
2694 Cardinality() {} | |
2695 | |
2696 // Constructs a Cardinality from its implementation. | |
2697 explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} | |
2698 | |
2699 // Conservative estimate on the lower/upper bound of the number of | |
2700 // calls allowed. | |
2701 int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } | |
2702 int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } | |
2703 | |
2704 // Returns true if and only if call_count calls will satisfy this | |
2705 // cardinality. | |
2706 bool IsSatisfiedByCallCount(int call_count) const { | |
2707 return impl_->IsSatisfiedByCallCount(call_count); | |
2708 } | |
2709 | |
2710 // Returns true if and only if call_count calls will saturate this | |
2711 // cardinality. | |
2712 bool IsSaturatedByCallCount(int call_count) const { | |
2713 return impl_->IsSaturatedByCallCount(call_count); | |
2714 } | |
2715 | |
2716 // Returns true if and only if call_count calls will over-saturate this | |
2717 // cardinality, i.e. exceed the maximum number of allowed calls. | |
2718 bool IsOverSaturatedByCallCount(int call_count) const { | |
2719 return impl_->IsSaturatedByCallCount(call_count) && | |
2720 !impl_->IsSatisfiedByCallCount(call_count); | |
2721 } | |
2722 | |
2723 // Describes self to an ostream | |
2724 void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } | |
2725 | |
2726 // Describes the given actual call count to an ostream. | |
2727 static void DescribeActualCallCountTo(int actual_call_count, | |
2728 ::std::ostream* os); | |
2729 | |
2730 private: | |
2731 std::shared_ptr<const CardinalityInterface> impl_; | |
2732 }; | |
2733 | |
2734 // Creates a cardinality that allows at least n calls. | |
2735 GTEST_API_ Cardinality AtLeast(int n); | |
2736 | |
2737 // Creates a cardinality that allows at most n calls. | |
2738 GTEST_API_ Cardinality AtMost(int n); | |
2739 | |
2740 // Creates a cardinality that allows any number of calls. | |
2741 GTEST_API_ Cardinality AnyNumber(); | |
2742 | |
2743 // Creates a cardinality that allows between min and max calls. | |
2744 GTEST_API_ Cardinality Between(int min, int max); | |
2745 | |
2746 // Creates a cardinality that allows exactly n calls. | |
2747 GTEST_API_ Cardinality Exactly(int n); | |
2748 | |
2749 // Creates a cardinality from its implementation. | |
2750 inline Cardinality MakeCardinality(const CardinalityInterface* c) { | |
2751 return Cardinality(c); | |
2752 } | |
2753 | |
2754 } // namespace testing | |
2755 | |
2756 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 | |
2757 | |
2758 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ | |
2759 // Copyright 2007, Google Inc. | |
2760 // All rights reserved. | |
2761 // | |
2762 // Redistribution and use in source and binary forms, with or without | |
2763 // modification, are permitted provided that the following conditions are | |
2764 // met: | |
2765 // | |
2766 // * Redistributions of source code must retain the above copyright | |
2767 // notice, this list of conditions and the following disclaimer. | |
2768 // * Redistributions in binary form must reproduce the above | |
2769 // copyright notice, this list of conditions and the following disclaimer | |
2770 // in the documentation and/or other materials provided with the | |
2771 // distribution. | |
2772 // * Neither the name of Google Inc. nor the names of its | |
2773 // contributors may be used to endorse or promote products derived from | |
2774 // this software without specific prior written permission. | |
2775 // | |
2776 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
2777 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
2778 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
2779 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
2780 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
2781 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
2782 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
2783 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
2784 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
2785 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
2786 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
2787 | |
2788 // Google Mock - a framework for writing C++ mock classes. | |
2789 // | |
2790 // This file implements MOCK_METHOD. | |
2791 | |
2792 // GOOGLETEST_CM0002 DO NOT DELETE | |
2793 | |
2794 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT | |
2795 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT | |
2796 | |
2797 #include <type_traits> // IWYU pragma: keep | |
2798 #include <utility> // IWYU pragma: keep | |
2799 | |
2800 // Copyright 2007, Google Inc. | |
2801 // All rights reserved. | |
2802 // | |
2803 // Redistribution and use in source and binary forms, with or without | |
2804 // modification, are permitted provided that the following conditions are | |
2805 // met: | |
2806 // | |
2807 // * Redistributions of source code must retain the above copyright | |
2808 // notice, this list of conditions and the following disclaimer. | |
2809 // * Redistributions in binary form must reproduce the above | |
2810 // copyright notice, this list of conditions and the following disclaimer | |
2811 // in the documentation and/or other materials provided with the | |
2812 // distribution. | |
2813 // * Neither the name of Google Inc. nor the names of its | |
2814 // contributors may be used to endorse or promote products derived from | |
2815 // this software without specific prior written permission. | |
2816 // | |
2817 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
2818 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
2819 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
2820 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
2821 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
2822 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
2823 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
2824 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
2825 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
2826 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
2827 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
2828 | |
2829 | |
2830 // Google Mock - a framework for writing C++ mock classes. | |
2831 // | |
2832 // This file implements the ON_CALL() and EXPECT_CALL() macros. | |
2833 // | |
2834 // A user can use the ON_CALL() macro to specify the default action of | |
2835 // a mock method. The syntax is: | |
2836 // | |
2837 // ON_CALL(mock_object, Method(argument-matchers)) | |
2838 // .With(multi-argument-matcher) | |
2839 // .WillByDefault(action); | |
2840 // | |
2841 // where the .With() clause is optional. | |
2842 // | |
2843 // A user can use the EXPECT_CALL() macro to specify an expectation on | |
2844 // a mock method. The syntax is: | |
2845 // | |
2846 // EXPECT_CALL(mock_object, Method(argument-matchers)) | |
2847 // .With(multi-argument-matchers) | |
2848 // .Times(cardinality) | |
2849 // .InSequence(sequences) | |
2850 // .After(expectations) | |
2851 // .WillOnce(action) | |
2852 // .WillRepeatedly(action) | |
2853 // .RetiresOnSaturation(); | |
2854 // | |
2855 // where all clauses are optional, and .InSequence()/.After()/ | |
2856 // .WillOnce() can appear any number of times. | |
2857 | |
2858 // GOOGLETEST_CM0002 DO NOT DELETE | |
2859 | |
2860 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ | |
2861 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ | |
2862 | |
2863 #include <functional> | |
2864 #include <map> | |
2865 #include <memory> | |
2866 #include <set> | |
2867 #include <sstream> | |
2868 #include <string> | |
2869 #include <type_traits> | |
2870 #include <utility> | |
2871 #include <vector> | |
2872 // Copyright 2007, Google Inc. | |
2873 // All rights reserved. | |
2874 // | |
2875 // Redistribution and use in source and binary forms, with or without | |
2876 // modification, are permitted provided that the following conditions are | |
2877 // met: | |
2878 // | |
2879 // * Redistributions of source code must retain the above copyright | |
2880 // notice, this list of conditions and the following disclaimer. | |
2881 // * Redistributions in binary form must reproduce the above | |
2882 // copyright notice, this list of conditions and the following disclaimer | |
2883 // in the documentation and/or other materials provided with the | |
2884 // distribution. | |
2885 // * Neither the name of Google Inc. nor the names of its | |
2886 // contributors may be used to endorse or promote products derived from | |
2887 // this software without specific prior written permission. | |
2888 // | |
2889 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
2890 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
2891 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
2892 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
2893 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
2894 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
2895 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
2896 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
2897 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
2898 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
2899 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
2900 | |
2901 | |
2902 // Google Mock - a framework for writing C++ mock classes. | |
2903 // | |
2904 // The MATCHER* family of macros can be used in a namespace scope to | |
2905 // define custom matchers easily. | |
2906 // | |
2907 // Basic Usage | |
2908 // =========== | |
2909 // | |
2910 // The syntax | |
2911 // | |
2912 // MATCHER(name, description_string) { statements; } | |
2913 // | |
2914 // defines a matcher with the given name that executes the statements, | |
2915 // which must return a bool to indicate if the match succeeds. Inside | |
2916 // the statements, you can refer to the value being matched by 'arg', | |
2917 // and refer to its type by 'arg_type'. | |
2918 // | |
2919 // The description string documents what the matcher does, and is used | |
2920 // to generate the failure message when the match fails. Since a | |
2921 // MATCHER() is usually defined in a header file shared by multiple | |
2922 // C++ source files, we require the description to be a C-string | |
2923 // literal to avoid possible side effects. It can be empty, in which | |
2924 // case we'll use the sequence of words in the matcher name as the | |
2925 // description. | |
2926 // | |
2927 // For example: | |
2928 // | |
2929 // MATCHER(IsEven, "") { return (arg % 2) == 0; } | |
2930 // | |
2931 // allows you to write | |
2932 // | |
2933 // // Expects mock_foo.Bar(n) to be called where n is even. | |
2934 // EXPECT_CALL(mock_foo, Bar(IsEven())); | |
2935 // | |
2936 // or, | |
2937 // | |
2938 // // Verifies that the value of some_expression is even. | |
2939 // EXPECT_THAT(some_expression, IsEven()); | |
2940 // | |
2941 // If the above assertion fails, it will print something like: | |
2942 // | |
2943 // Value of: some_expression | |
2944 // Expected: is even | |
2945 // Actual: 7 | |
2946 // | |
2947 // where the description "is even" is automatically calculated from the | |
2948 // matcher name IsEven. | |
2949 // | |
2950 // Argument Type | |
2951 // ============= | |
2952 // | |
2953 // Note that the type of the value being matched (arg_type) is | |
2954 // determined by the context in which you use the matcher and is | |
2955 // supplied to you by the compiler, so you don't need to worry about | |
2956 // declaring it (nor can you). This allows the matcher to be | |
2957 // polymorphic. For example, IsEven() can be used to match any type | |
2958 // where the value of "(arg % 2) == 0" can be implicitly converted to | |
2959 // a bool. In the "Bar(IsEven())" example above, if method Bar() | |
2960 // takes an int, 'arg_type' will be int; if it takes an unsigned long, | |
2961 // 'arg_type' will be unsigned long; and so on. | |
2962 // | |
2963 // Parameterizing Matchers | |
2964 // ======================= | |
2965 // | |
2966 // Sometimes you'll want to parameterize the matcher. For that you | |
2967 // can use another macro: | |
2968 // | |
2969 // MATCHER_P(name, param_name, description_string) { statements; } | |
2970 // | |
2971 // For example: | |
2972 // | |
2973 // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } | |
2974 // | |
2975 // will allow you to write: | |
2976 // | |
2977 // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); | |
2978 // | |
2979 // which may lead to this message (assuming n is 10): | |
2980 // | |
2981 // Value of: Blah("a") | |
2982 // Expected: has absolute value 10 | |
2983 // Actual: -9 | |
2984 // | |
2985 // Note that both the matcher description and its parameter are | |
2986 // printed, making the message human-friendly. | |
2987 // | |
2988 // In the matcher definition body, you can write 'foo_type' to | |
2989 // reference the type of a parameter named 'foo'. For example, in the | |
2990 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write | |
2991 // 'value_type' to refer to the type of 'value'. | |
2992 // | |
2993 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to | |
2994 // support multi-parameter matchers. | |
2995 // | |
2996 // Describing Parameterized Matchers | |
2997 // ================================= | |
2998 // | |
2999 // The last argument to MATCHER*() is a string-typed expression. The | |
3000 // expression can reference all of the matcher's parameters and a | |
3001 // special bool-typed variable named 'negation'. When 'negation' is | |
3002 // false, the expression should evaluate to the matcher's description; | |
3003 // otherwise it should evaluate to the description of the negation of | |
3004 // the matcher. For example, | |
3005 // | |
3006 // using testing::PrintToString; | |
3007 // | |
3008 // MATCHER_P2(InClosedRange, low, hi, | |
3009 // std::string(negation ? "is not" : "is") + " in range [" + | |
3010 // PrintToString(low) + ", " + PrintToString(hi) + "]") { | |
3011 // return low <= arg && arg <= hi; | |
3012 // } | |
3013 // ... | |
3014 // EXPECT_THAT(3, InClosedRange(4, 6)); | |
3015 // EXPECT_THAT(3, Not(InClosedRange(2, 4))); | |
3016 // | |
3017 // would generate two failures that contain the text: | |
3018 // | |
3019 // Expected: is in range [4, 6] | |
3020 // ... | |
3021 // Expected: is not in range [2, 4] | |
3022 // | |
3023 // If you specify "" as the description, the failure message will | |
3024 // contain the sequence of words in the matcher name followed by the | |
3025 // parameter values printed as a tuple. For example, | |
3026 // | |
3027 // MATCHER_P2(InClosedRange, low, hi, "") { ... } | |
3028 // ... | |
3029 // EXPECT_THAT(3, InClosedRange(4, 6)); | |
3030 // EXPECT_THAT(3, Not(InClosedRange(2, 4))); | |
3031 // | |
3032 // would generate two failures that contain the text: | |
3033 // | |
3034 // Expected: in closed range (4, 6) | |
3035 // ... | |
3036 // Expected: not (in closed range (2, 4)) | |
3037 // | |
3038 // Types of Matcher Parameters | |
3039 // =========================== | |
3040 // | |
3041 // For the purpose of typing, you can view | |
3042 // | |
3043 // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } | |
3044 // | |
3045 // as shorthand for | |
3046 // | |
3047 // template <typename p1_type, ..., typename pk_type> | |
3048 // FooMatcherPk<p1_type, ..., pk_type> | |
3049 // Foo(p1_type p1, ..., pk_type pk) { ... } | |
3050 // | |
3051 // When you write Foo(v1, ..., vk), the compiler infers the types of | |
3052 // the parameters v1, ..., and vk for you. If you are not happy with | |
3053 // the result of the type inference, you can specify the types by | |
3054 // explicitly instantiating the template, as in Foo<long, bool>(5, | |
3055 // false). As said earlier, you don't get to (or need to) specify | |
3056 // 'arg_type' as that's determined by the context in which the matcher | |
3057 // is used. You can assign the result of expression Foo(p1, ..., pk) | |
3058 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This | |
3059 // can be useful when composing matchers. | |
3060 // | |
3061 // While you can instantiate a matcher template with reference types, | |
3062 // passing the parameters by pointer usually makes your code more | |
3063 // readable. If, however, you still want to pass a parameter by | |
3064 // reference, be aware that in the failure message generated by the | |
3065 // matcher you will see the value of the referenced object but not its | |
3066 // address. | |
3067 // | |
3068 // Explaining Match Results | |
3069 // ======================== | |
3070 // | |
3071 // Sometimes the matcher description alone isn't enough to explain why | |
3072 // the match has failed or succeeded. For example, when expecting a | |
3073 // long string, it can be very helpful to also print the diff between | |
3074 // the expected string and the actual one. To achieve that, you can | |
3075 // optionally stream additional information to a special variable | |
3076 // named result_listener, whose type is a pointer to class | |
3077 // MatchResultListener: | |
3078 // | |
3079 // MATCHER_P(EqualsLongString, str, "") { | |
3080 // if (arg == str) return true; | |
3081 // | |
3082 // *result_listener << "the difference: " | |
3083 /// << DiffStrings(str, arg); | |
3084 // return false; | |
3085 // } | |
3086 // | |
3087 // Overloading Matchers | |
3088 // ==================== | |
3089 // | |
3090 // You can overload matchers with different numbers of parameters: | |
3091 // | |
3092 // MATCHER_P(Blah, a, description_string1) { ... } | |
3093 // MATCHER_P2(Blah, a, b, description_string2) { ... } | |
3094 // | |
3095 // Caveats | |
3096 // ======= | |
3097 // | |
3098 // When defining a new matcher, you should also consider implementing | |
3099 // MatcherInterface or using MakePolymorphicMatcher(). These | |
3100 // approaches require more work than the MATCHER* macros, but also | |
3101 // give you more control on the types of the value being matched and | |
3102 // the matcher parameters, which may leads to better compiler error | |
3103 // messages when the matcher is used wrong. They also allow | |
3104 // overloading matchers based on parameter types (as opposed to just | |
3105 // based on the number of parameters). | |
3106 // | |
3107 // MATCHER*() can only be used in a namespace scope as templates cannot be | |
3108 // declared inside of a local class. | |
3109 // | |
3110 // More Information | |
3111 // ================ | |
3112 // | |
3113 // To learn more about using these macros, please search for 'MATCHER' | |
3114 // on | |
3115 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md | |
3116 // | |
3117 // This file also implements some commonly used argument matchers. More | |
3118 // matchers can be defined by the user implementing the | |
3119 // MatcherInterface<T> interface if necessary. | |
3120 // | |
3121 // See googletest/include/gtest/gtest-matchers.h for the definition of class | |
3122 // Matcher, class MatcherInterface, and others. | |
3123 | |
3124 // GOOGLETEST_CM0002 DO NOT DELETE | |
3125 | |
3126 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | |
3127 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | |
3128 | |
3129 #include <algorithm> | |
3130 #include <cmath> | |
3131 #include <initializer_list> | |
3132 #include <iterator> | |
3133 #include <limits> | |
3134 #include <memory> | |
3135 #include <ostream> // NOLINT | |
3136 #include <sstream> | |
3137 #include <string> | |
3138 #include <type_traits> | |
3139 #include <utility> | |
3140 #include <vector> | |
3141 | |
3142 | |
3143 // MSVC warning C5046 is new as of VS2017 version 15.8. | |
3144 #if defined(_MSC_VER) && _MSC_VER >= 1915 | |
3145 #define GMOCK_MAYBE_5046_ 5046 | |
3146 #else | |
3147 #define GMOCK_MAYBE_5046_ | |
3148 #endif | |
3149 | |
3150 GTEST_DISABLE_MSC_WARNINGS_PUSH_( | |
3151 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by | |
3152 clients of class B */ | |
3153 /* Symbol involving type with internal linkage not defined */) | |
3154 | |
3155 namespace testing { | |
3156 | |
3157 // To implement a matcher Foo for type T, define: | |
3158 // 1. a class FooMatcherImpl that implements the | |
3159 // MatcherInterface<T> interface, and | |
3160 // 2. a factory function that creates a Matcher<T> object from a | |
3161 // FooMatcherImpl*. | |
3162 // | |
3163 // The two-level delegation design makes it possible to allow a user | |
3164 // to write "v" instead of "Eq(v)" where a Matcher is expected, which | |
3165 // is impossible if we pass matchers by pointers. It also eases | |
3166 // ownership management as Matcher objects can now be copied like | |
3167 // plain values. | |
3168 | |
3169 // A match result listener that stores the explanation in a string. | |
3170 class StringMatchResultListener : public MatchResultListener { | |
3171 public: | |
3172 StringMatchResultListener() : MatchResultListener(&ss_) {} | |
3173 | |
3174 // Returns the explanation accumulated so far. | |
3175 std::string str() const { return ss_.str(); } | |
3176 | |
3177 // Clears the explanation accumulated so far. | |
3178 void Clear() { ss_.str(""); } | |
3179 | |
3180 private: | |
3181 ::std::stringstream ss_; | |
3182 | |
3183 GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); | |
3184 }; | |
3185 | |
3186 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | |
3187 // and MUST NOT BE USED IN USER CODE!!! | |
3188 namespace internal { | |
3189 | |
3190 // The MatcherCastImpl class template is a helper for implementing | |
3191 // MatcherCast(). We need this helper in order to partially | |
3192 // specialize the implementation of MatcherCast() (C++ allows | |
3193 // class/struct templates to be partially specialized, but not | |
3194 // function templates.). | |
3195 | |
3196 // This general version is used when MatcherCast()'s argument is a | |
3197 // polymorphic matcher (i.e. something that can be converted to a | |
3198 // Matcher but is not one yet; for example, Eq(value)) or a value (for | |
3199 // example, "hello"). | |
3200 template <typename T, typename M> | |
3201 class MatcherCastImpl { | |
3202 public: | |
3203 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { | |
3204 // M can be a polymorphic matcher, in which case we want to use | |
3205 // its conversion operator to create Matcher<T>. Or it can be a value | |
3206 // that should be passed to the Matcher<T>'s constructor. | |
3207 // | |
3208 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a | |
3209 // polymorphic matcher because it'll be ambiguous if T has an implicit | |
3210 // constructor from M (this usually happens when T has an implicit | |
3211 // constructor from any type). | |
3212 // | |
3213 // It won't work to unconditionally implicit_cast | |
3214 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger | |
3215 // a user-defined conversion from M to T if one exists (assuming M is | |
3216 // a value). | |
3217 return CastImpl(polymorphic_matcher_or_value, | |
3218 std::is_convertible<M, Matcher<T>>{}, | |
3219 std::is_convertible<M, T>{}); | |
3220 } | |
3221 | |
3222 private: | |
3223 template <bool Ignore> | |
3224 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, | |
3225 std::true_type /* convertible_to_matcher */, | |
3226 std::integral_constant<bool, Ignore>) { | |
3227 // M is implicitly convertible to Matcher<T>, which means that either | |
3228 // M is a polymorphic matcher or Matcher<T> has an implicit constructor | |
3229 // from M. In both cases using the implicit conversion will produce a | |
3230 // matcher. | |
3231 // | |
3232 // Even if T has an implicit constructor from M, it won't be called because | |
3233 // creating Matcher<T> would require a chain of two user-defined conversions | |
3234 // (first to create T from M and then to create Matcher<T> from T). | |
3235 return polymorphic_matcher_or_value; | |
3236 } | |
3237 | |
3238 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic | |
3239 // matcher. It's a value of a type implicitly convertible to T. Use direct | |
3240 // initialization to create a matcher. | |
3241 static Matcher<T> CastImpl(const M& value, | |
3242 std::false_type /* convertible_to_matcher */, | |
3243 std::true_type /* convertible_to_T */) { | |
3244 return Matcher<T>(ImplicitCast_<T>(value)); | |
3245 } | |
3246 | |
3247 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use | |
3248 // polymorphic matcher Eq(value) in this case. | |
3249 // | |
3250 // Note that we first attempt to perform an implicit cast on the value and | |
3251 // only fall back to the polymorphic Eq() matcher afterwards because the | |
3252 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end | |
3253 // which might be undefined even when Rhs is implicitly convertible to Lhs | |
3254 // (e.g. std::pair<const int, int> vs. std::pair<int, int>). | |
3255 // | |
3256 // We don't define this method inline as we need the declaration of Eq(). | |
3257 static Matcher<T> CastImpl(const M& value, | |
3258 std::false_type /* convertible_to_matcher */, | |
3259 std::false_type /* convertible_to_T */); | |
3260 }; | |
3261 | |
3262 // This more specialized version is used when MatcherCast()'s argument | |
3263 // is already a Matcher. This only compiles when type T can be | |
3264 // statically converted to type U. | |
3265 template <typename T, typename U> | |
3266 class MatcherCastImpl<T, Matcher<U> > { | |
3267 public: | |
3268 static Matcher<T> Cast(const Matcher<U>& source_matcher) { | |
3269 return Matcher<T>(new Impl(source_matcher)); | |
3270 } | |
3271 | |
3272 private: | |
3273 class Impl : public MatcherInterface<T> { | |
3274 public: | |
3275 explicit Impl(const Matcher<U>& source_matcher) | |
3276 : source_matcher_(source_matcher) {} | |
3277 | |
3278 // We delegate the matching logic to the source matcher. | |
3279 bool MatchAndExplain(T x, MatchResultListener* listener) const override { | |
3280 using FromType = typename std::remove_cv<typename std::remove_pointer< | |
3281 typename std::remove_reference<T>::type>::type>::type; | |
3282 using ToType = typename std::remove_cv<typename std::remove_pointer< | |
3283 typename std::remove_reference<U>::type>::type>::type; | |
3284 // Do not allow implicitly converting base*/& to derived*/&. | |
3285 static_assert( | |
3286 // Do not trigger if only one of them is a pointer. That implies a | |
3287 // regular conversion and not a down_cast. | |
3288 (std::is_pointer<typename std::remove_reference<T>::type>::value != | |
3289 std::is_pointer<typename std::remove_reference<U>::type>::value) || | |
3290 std::is_same<FromType, ToType>::value || | |
3291 !std::is_base_of<FromType, ToType>::value, | |
3292 "Can't implicitly convert from <base> to <derived>"); | |
3293 | |
3294 // Do the cast to `U` explicitly if necessary. | |
3295 // Otherwise, let implicit conversions do the trick. | |
3296 using CastType = | |
3297 typename std::conditional<std::is_convertible<T&, const U&>::value, | |
3298 T&, U>::type; | |
3299 | |
3300 return source_matcher_.MatchAndExplain(static_cast<CastType>(x), | |
3301 listener); | |
3302 } | |
3303 | |
3304 void DescribeTo(::std::ostream* os) const override { | |
3305 source_matcher_.DescribeTo(os); | |
3306 } | |
3307 | |
3308 void DescribeNegationTo(::std::ostream* os) const override { | |
3309 source_matcher_.DescribeNegationTo(os); | |
3310 } | |
3311 | |
3312 private: | |
3313 const Matcher<U> source_matcher_; | |
3314 }; | |
3315 }; | |
3316 | |
3317 // This even more specialized version is used for efficiently casting | |
3318 // a matcher to its own type. | |
3319 template <typename T> | |
3320 class MatcherCastImpl<T, Matcher<T> > { | |
3321 public: | |
3322 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } | |
3323 }; | |
3324 | |
3325 // Template specialization for parameterless Matcher. | |
3326 template <typename Derived> | |
3327 class MatcherBaseImpl { | |
3328 public: | |
3329 MatcherBaseImpl() = default; | |
3330 | |
3331 template <typename T> | |
3332 operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) | |
3333 return ::testing::Matcher<T>(new | |
3334 typename Derived::template gmock_Impl<T>()); | |
3335 } | |
3336 }; | |
3337 | |
3338 // Template specialization for Matcher with parameters. | |
3339 template <template <typename...> class Derived, typename... Ts> | |
3340 class MatcherBaseImpl<Derived<Ts...>> { | |
3341 public: | |
3342 // Mark the constructor explicit for single argument T to avoid implicit | |
3343 // conversions. | |
3344 template <typename E = std::enable_if<sizeof...(Ts) == 1>, | |
3345 typename E::type* = nullptr> | |
3346 explicit MatcherBaseImpl(Ts... params) | |
3347 : params_(std::forward<Ts>(params)...) {} | |
3348 template <typename E = std::enable_if<sizeof...(Ts) != 1>, | |
3349 typename = typename E::type> | |
3350 MatcherBaseImpl(Ts... params) // NOLINT | |
3351 : params_(std::forward<Ts>(params)...) {} | |
3352 | |
3353 template <typename F> | |
3354 operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) | |
3355 return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); | |
3356 } | |
3357 | |
3358 private: | |
3359 template <typename F, std::size_t... tuple_ids> | |
3360 ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { | |
3361 return ::testing::Matcher<F>( | |
3362 new typename Derived<Ts...>::template gmock_Impl<F>( | |
3363 std::get<tuple_ids>(params_)...)); | |
3364 } | |
3365 | |
3366 const std::tuple<Ts...> params_; | |
3367 }; | |
3368 | |
3369 } // namespace internal | |
3370 | |
3371 // In order to be safe and clear, casting between different matcher | |
3372 // types is done explicitly via MatcherCast<T>(m), which takes a | |
3373 // matcher m and returns a Matcher<T>. It compiles only when T can be | |
3374 // statically converted to the argument type of m. | |
3375 template <typename T, typename M> | |
3376 inline Matcher<T> MatcherCast(const M& matcher) { | |
3377 return internal::MatcherCastImpl<T, M>::Cast(matcher); | |
3378 } | |
3379 | |
3380 // This overload handles polymorphic matchers and values only since | |
3381 // monomorphic matchers are handled by the next one. | |
3382 template <typename T, typename M> | |
3383 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { | |
3384 return MatcherCast<T>(polymorphic_matcher_or_value); | |
3385 } | |
3386 | |
3387 // This overload handles monomorphic matchers. | |
3388 // | |
3389 // In general, if type T can be implicitly converted to type U, we can | |
3390 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is | |
3391 // contravariant): just keep a copy of the original Matcher<U>, convert the | |
3392 // argument from type T to U, and then pass it to the underlying Matcher<U>. | |
3393 // The only exception is when U is a reference and T is not, as the | |
3394 // underlying Matcher<U> may be interested in the argument's address, which | |
3395 // is not preserved in the conversion from T to U. | |
3396 template <typename T, typename U> | |
3397 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { | |
3398 // Enforce that T can be implicitly converted to U. | |
3399 static_assert(std::is_convertible<const T&, const U&>::value, | |
3400 "T must be implicitly convertible to U"); | |
3401 // Enforce that we are not converting a non-reference type T to a reference | |
3402 // type U. | |
3403 GTEST_COMPILE_ASSERT_( | |
3404 std::is_reference<T>::value || !std::is_reference<U>::value, | |
3405 cannot_convert_non_reference_arg_to_reference); | |
3406 // In case both T and U are arithmetic types, enforce that the | |
3407 // conversion is not lossy. | |
3408 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; | |
3409 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; | |
3410 constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; | |
3411 constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; | |
3412 GTEST_COMPILE_ASSERT_( | |
3413 kTIsOther || kUIsOther || | |
3414 (internal::LosslessArithmeticConvertible<RawT, RawU>::value), | |
3415 conversion_of_arithmetic_types_must_be_lossless); | |
3416 return MatcherCast<T>(matcher); | |
3417 } | |
3418 | |
3419 // A<T>() returns a matcher that matches any value of type T. | |
3420 template <typename T> | |
3421 Matcher<T> A(); | |
3422 | |
3423 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | |
3424 // and MUST NOT BE USED IN USER CODE!!! | |
3425 namespace internal { | |
3426 | |
3427 // If the explanation is not empty, prints it to the ostream. | |
3428 inline void PrintIfNotEmpty(const std::string& explanation, | |
3429 ::std::ostream* os) { | |
3430 if (explanation != "" && os != nullptr) { | |
3431 *os << ", " << explanation; | |
3432 } | |
3433 } | |
3434 | |
3435 // Returns true if the given type name is easy to read by a human. | |
3436 // This is used to decide whether printing the type of a value might | |
3437 // be helpful. | |
3438 inline bool IsReadableTypeName(const std::string& type_name) { | |
3439 // We consider a type name readable if it's short or doesn't contain | |
3440 // a template or function type. | |
3441 return (type_name.length() <= 20 || | |
3442 type_name.find_first_of("<(") == std::string::npos); | |
3443 } | |
3444 | |
3445 // Matches the value against the given matcher, prints the value and explains | |
3446 // the match result to the listener. Returns the match result. | |
3447 // 'listener' must not be NULL. | |
3448 // Value cannot be passed by const reference, because some matchers take a | |
3449 // non-const argument. | |
3450 template <typename Value, typename T> | |
3451 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, | |
3452 MatchResultListener* listener) { | |
3453 if (!listener->IsInterested()) { | |
3454 // If the listener is not interested, we do not need to construct the | |
3455 // inner explanation. | |
3456 return matcher.Matches(value); | |
3457 } | |
3458 | |
3459 StringMatchResultListener inner_listener; | |
3460 const bool match = matcher.MatchAndExplain(value, &inner_listener); | |
3461 | |
3462 UniversalPrint(value, listener->stream()); | |
3463 #if GTEST_HAS_RTTI | |
3464 const std::string& type_name = GetTypeName<Value>(); | |
3465 if (IsReadableTypeName(type_name)) | |
3466 *listener->stream() << " (of type " << type_name << ")"; | |
3467 #endif | |
3468 PrintIfNotEmpty(inner_listener.str(), listener->stream()); | |
3469 | |
3470 return match; | |
3471 } | |
3472 | |
3473 // An internal helper class for doing compile-time loop on a tuple's | |
3474 // fields. | |
3475 template <size_t N> | |
3476 class TuplePrefix { | |
3477 public: | |
3478 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true | |
3479 // if and only if the first N fields of matcher_tuple matches | |
3480 // the first N fields of value_tuple, respectively. | |
3481 template <typename MatcherTuple, typename ValueTuple> | |
3482 static bool Matches(const MatcherTuple& matcher_tuple, | |
3483 const ValueTuple& value_tuple) { | |
3484 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && | |
3485 std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); | |
3486 } | |
3487 | |
3488 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) | |
3489 // describes failures in matching the first N fields of matchers | |
3490 // against the first N fields of values. If there is no failure, | |
3491 // nothing will be streamed to os. | |
3492 template <typename MatcherTuple, typename ValueTuple> | |
3493 static void ExplainMatchFailuresTo(const MatcherTuple& matchers, | |
3494 const ValueTuple& values, | |
3495 ::std::ostream* os) { | |
3496 // First, describes failures in the first N - 1 fields. | |
3497 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); | |
3498 | |
3499 // Then describes the failure (if any) in the (N - 1)-th (0-based) | |
3500 // field. | |
3501 typename std::tuple_element<N - 1, MatcherTuple>::type matcher = | |
3502 std::get<N - 1>(matchers); | |
3503 typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; | |
3504 const Value& value = std::get<N - 1>(values); | |
3505 StringMatchResultListener listener; | |
3506 if (!matcher.MatchAndExplain(value, &listener)) { | |
3507 *os << " Expected arg #" << N - 1 << ": "; | |
3508 std::get<N - 1>(matchers).DescribeTo(os); | |
3509 *os << "\n Actual: "; | |
3510 // We remove the reference in type Value to prevent the | |
3511 // universal printer from printing the address of value, which | |
3512 // isn't interesting to the user most of the time. The | |
3513 // matcher's MatchAndExplain() method handles the case when | |
3514 // the address is interesting. | |
3515 internal::UniversalPrint(value, os); | |
3516 PrintIfNotEmpty(listener.str(), os); | |
3517 *os << "\n"; | |
3518 } | |
3519 } | |
3520 }; | |
3521 | |
3522 // The base case. | |
3523 template <> | |
3524 class TuplePrefix<0> { | |
3525 public: | |
3526 template <typename MatcherTuple, typename ValueTuple> | |
3527 static bool Matches(const MatcherTuple& /* matcher_tuple */, | |
3528 const ValueTuple& /* value_tuple */) { | |
3529 return true; | |
3530 } | |
3531 | |
3532 template <typename MatcherTuple, typename ValueTuple> | |
3533 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, | |
3534 const ValueTuple& /* values */, | |
3535 ::std::ostream* /* os */) {} | |
3536 }; | |
3537 | |
3538 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if | |
3539 // all matchers in matcher_tuple match the corresponding fields in | |
3540 // value_tuple. It is a compiler error if matcher_tuple and | |
3541 // value_tuple have different number of fields or incompatible field | |
3542 // types. | |
3543 template <typename MatcherTuple, typename ValueTuple> | |
3544 bool TupleMatches(const MatcherTuple& matcher_tuple, | |
3545 const ValueTuple& value_tuple) { | |
3546 // Makes sure that matcher_tuple and value_tuple have the same | |
3547 // number of fields. | |
3548 GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == | |
3549 std::tuple_size<ValueTuple>::value, | |
3550 matcher_and_value_have_different_numbers_of_fields); | |
3551 return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, | |
3552 value_tuple); | |
3553 } | |
3554 | |
3555 // Describes failures in matching matchers against values. If there | |
3556 // is no failure, nothing will be streamed to os. | |
3557 template <typename MatcherTuple, typename ValueTuple> | |
3558 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, | |
3559 const ValueTuple& values, | |
3560 ::std::ostream* os) { | |
3561 TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( | |
3562 matchers, values, os); | |
3563 } | |
3564 | |
3565 // TransformTupleValues and its helper. | |
3566 // | |
3567 // TransformTupleValuesHelper hides the internal machinery that | |
3568 // TransformTupleValues uses to implement a tuple traversal. | |
3569 template <typename Tuple, typename Func, typename OutIter> | |
3570 class TransformTupleValuesHelper { | |
3571 private: | |
3572 typedef ::std::tuple_size<Tuple> TupleSize; | |
3573 | |
3574 public: | |
3575 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. | |
3576 // Returns the final value of 'out' in case the caller needs it. | |
3577 static OutIter Run(Func f, const Tuple& t, OutIter out) { | |
3578 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); | |
3579 } | |
3580 | |
3581 private: | |
3582 template <typename Tup, size_t kRemainingSize> | |
3583 struct IterateOverTuple { | |
3584 OutIter operator() (Func f, const Tup& t, OutIter out) const { | |
3585 *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); | |
3586 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); | |
3587 } | |
3588 }; | |
3589 template <typename Tup> | |
3590 struct IterateOverTuple<Tup, 0> { | |
3591 OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { | |
3592 return out; | |
3593 } | |
3594 }; | |
3595 }; | |
3596 | |
3597 // Successively invokes 'f(element)' on each element of the tuple 't', | |
3598 // appending each result to the 'out' iterator. Returns the final value | |
3599 // of 'out'. | |
3600 template <typename Tuple, typename Func, typename OutIter> | |
3601 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { | |
3602 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); | |
3603 } | |
3604 | |
3605 // Implements _, a matcher that matches any value of any | |
3606 // type. This is a polymorphic matcher, so we need a template type | |
3607 // conversion operator to make it appearing as a Matcher<T> for any | |
3608 // type T. | |
3609 class AnythingMatcher { | |
3610 public: | |
3611 using is_gtest_matcher = void; | |
3612 | |
3613 template <typename T> | |
3614 bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { | |
3615 return true; | |
3616 } | |
3617 void DescribeTo(std::ostream* os) const { *os << "is anything"; } | |
3618 void DescribeNegationTo(::std::ostream* os) const { | |
3619 // This is mostly for completeness' sake, as it's not very useful | |
3620 // to write Not(A<bool>()). However we cannot completely rule out | |
3621 // such a possibility, and it doesn't hurt to be prepared. | |
3622 *os << "never matches"; | |
3623 } | |
3624 }; | |
3625 | |
3626 // Implements the polymorphic IsNull() matcher, which matches any raw or smart | |
3627 // pointer that is NULL. | |
3628 class IsNullMatcher { | |
3629 public: | |
3630 template <typename Pointer> | |
3631 bool MatchAndExplain(const Pointer& p, | |
3632 MatchResultListener* /* listener */) const { | |
3633 return p == nullptr; | |
3634 } | |
3635 | |
3636 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } | |
3637 void DescribeNegationTo(::std::ostream* os) const { | |
3638 *os << "isn't NULL"; | |
3639 } | |
3640 }; | |
3641 | |
3642 // Implements the polymorphic NotNull() matcher, which matches any raw or smart | |
3643 // pointer that is not NULL. | |
3644 class NotNullMatcher { | |
3645 public: | |
3646 template <typename Pointer> | |
3647 bool MatchAndExplain(const Pointer& p, | |
3648 MatchResultListener* /* listener */) const { | |
3649 return p != nullptr; | |
3650 } | |
3651 | |
3652 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } | |
3653 void DescribeNegationTo(::std::ostream* os) const { | |
3654 *os << "is NULL"; | |
3655 } | |
3656 }; | |
3657 | |
3658 // Ref(variable) matches any argument that is a reference to | |
3659 // 'variable'. This matcher is polymorphic as it can match any | |
3660 // super type of the type of 'variable'. | |
3661 // | |
3662 // The RefMatcher template class implements Ref(variable). It can | |
3663 // only be instantiated with a reference type. This prevents a user | |
3664 // from mistakenly using Ref(x) to match a non-reference function | |
3665 // argument. For example, the following will righteously cause a | |
3666 // compiler error: | |
3667 // | |
3668 // int n; | |
3669 // Matcher<int> m1 = Ref(n); // This won't compile. | |
3670 // Matcher<int&> m2 = Ref(n); // This will compile. | |
3671 template <typename T> | |
3672 class RefMatcher; | |
3673 | |
3674 template <typename T> | |
3675 class RefMatcher<T&> { | |
3676 // Google Mock is a generic framework and thus needs to support | |
3677 // mocking any function types, including those that take non-const | |
3678 // reference arguments. Therefore the template parameter T (and | |
3679 // Super below) can be instantiated to either a const type or a | |
3680 // non-const type. | |
3681 public: | |
3682 // RefMatcher() takes a T& instead of const T&, as we want the | |
3683 // compiler to catch using Ref(const_value) as a matcher for a | |
3684 // non-const reference. | |
3685 explicit RefMatcher(T& x) : object_(x) {} // NOLINT | |
3686 | |
3687 template <typename Super> | |
3688 operator Matcher<Super&>() const { | |
3689 // By passing object_ (type T&) to Impl(), which expects a Super&, | |
3690 // we make sure that Super is a super type of T. In particular, | |
3691 // this catches using Ref(const_value) as a matcher for a | |
3692 // non-const reference, as you cannot implicitly convert a const | |
3693 // reference to a non-const reference. | |
3694 return MakeMatcher(new Impl<Super>(object_)); | |
3695 } | |
3696 | |
3697 private: | |
3698 template <typename Super> | |
3699 class Impl : public MatcherInterface<Super&> { | |
3700 public: | |
3701 explicit Impl(Super& x) : object_(x) {} // NOLINT | |
3702 | |
3703 // MatchAndExplain() takes a Super& (as opposed to const Super&) | |
3704 // in order to match the interface MatcherInterface<Super&>. | |
3705 bool MatchAndExplain(Super& x, | |
3706 MatchResultListener* listener) const override { | |
3707 *listener << "which is located @" << static_cast<const void*>(&x); | |
3708 return &x == &object_; | |
3709 } | |
3710 | |
3711 void DescribeTo(::std::ostream* os) const override { | |
3712 *os << "references the variable "; | |
3713 UniversalPrinter<Super&>::Print(object_, os); | |
3714 } | |
3715 | |
3716 void DescribeNegationTo(::std::ostream* os) const override { | |
3717 *os << "does not reference the variable "; | |
3718 UniversalPrinter<Super&>::Print(object_, os); | |
3719 } | |
3720 | |
3721 private: | |
3722 const Super& object_; | |
3723 }; | |
3724 | |
3725 T& object_; | |
3726 }; | |
3727 | |
3728 // Polymorphic helper functions for narrow and wide string matchers. | |
3729 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { | |
3730 return String::CaseInsensitiveCStringEquals(lhs, rhs); | |
3731 } | |
3732 | |
3733 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, | |
3734 const wchar_t* rhs) { | |
3735 return String::CaseInsensitiveWideCStringEquals(lhs, rhs); | |
3736 } | |
3737 | |
3738 // String comparison for narrow or wide strings that can have embedded NUL | |
3739 // characters. | |
3740 template <typename StringType> | |
3741 bool CaseInsensitiveStringEquals(const StringType& s1, | |
3742 const StringType& s2) { | |
3743 // Are the heads equal? | |
3744 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { | |
3745 return false; | |
3746 } | |
3747 | |
3748 // Skip the equal heads. | |
3749 const typename StringType::value_type nul = 0; | |
3750 const size_t i1 = s1.find(nul), i2 = s2.find(nul); | |
3751 | |
3752 // Are we at the end of either s1 or s2? | |
3753 if (i1 == StringType::npos || i2 == StringType::npos) { | |
3754 return i1 == i2; | |
3755 } | |
3756 | |
3757 // Are the tails equal? | |
3758 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); | |
3759 } | |
3760 | |
3761 // String matchers. | |
3762 | |
3763 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. | |
3764 template <typename StringType> | |
3765 class StrEqualityMatcher { | |
3766 public: | |
3767 StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) | |
3768 : string_(std::move(str)), | |
3769 expect_eq_(expect_eq), | |
3770 case_sensitive_(case_sensitive) {} | |
3771 | |
3772 #if GTEST_INTERNAL_HAS_STRING_VIEW | |
3773 bool MatchAndExplain(const internal::StringView& s, | |
3774 MatchResultListener* listener) const { | |
3775 // This should fail to compile if StringView is used with wide | |
3776 // strings. | |
3777 const StringType& str = std::string(s); | |
3778 return MatchAndExplain(str, listener); | |
3779 } | |
3780 #endif // GTEST_INTERNAL_HAS_STRING_VIEW | |
3781 | |
3782 // Accepts pointer types, particularly: | |
3783 // const char* | |
3784 // char* | |
3785 // const wchar_t* | |
3786 // wchar_t* | |
3787 template <typename CharType> | |
3788 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | |
3789 if (s == nullptr) { | |
3790 return !expect_eq_; | |
3791 } | |
3792 return MatchAndExplain(StringType(s), listener); | |
3793 } | |
3794 | |
3795 // Matches anything that can convert to StringType. | |
3796 // | |
3797 // This is a template, not just a plain function with const StringType&, | |
3798 // because StringView has some interfering non-explicit constructors. | |
3799 template <typename MatcheeStringType> | |
3800 bool MatchAndExplain(const MatcheeStringType& s, | |
3801 MatchResultListener* /* listener */) const { | |
3802 const StringType s2(s); | |
3803 const bool eq = case_sensitive_ ? s2 == string_ : | |
3804 CaseInsensitiveStringEquals(s2, string_); | |
3805 return expect_eq_ == eq; | |
3806 } | |
3807 | |
3808 void DescribeTo(::std::ostream* os) const { | |
3809 DescribeToHelper(expect_eq_, os); | |
3810 } | |
3811 | |
3812 void DescribeNegationTo(::std::ostream* os) const { | |
3813 DescribeToHelper(!expect_eq_, os); | |
3814 } | |
3815 | |
3816 private: | |
3817 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { | |
3818 *os << (expect_eq ? "is " : "isn't "); | |
3819 *os << "equal to "; | |
3820 if (!case_sensitive_) { | |
3821 *os << "(ignoring case) "; | |
3822 } | |
3823 UniversalPrint(string_, os); | |
3824 } | |
3825 | |
3826 const StringType string_; | |
3827 const bool expect_eq_; | |
3828 const bool case_sensitive_; | |
3829 }; | |
3830 | |
3831 // Implements the polymorphic HasSubstr(substring) matcher, which | |
3832 // can be used as a Matcher<T> as long as T can be converted to a | |
3833 // string. | |
3834 template <typename StringType> | |
3835 class HasSubstrMatcher { | |
3836 public: | |
3837 explicit HasSubstrMatcher(const StringType& substring) | |
3838 : substring_(substring) {} | |
3839 | |
3840 #if GTEST_INTERNAL_HAS_STRING_VIEW | |
3841 bool MatchAndExplain(const internal::StringView& s, | |
3842 MatchResultListener* listener) const { | |
3843 // This should fail to compile if StringView is used with wide | |
3844 // strings. | |
3845 const StringType& str = std::string(s); | |
3846 return MatchAndExplain(str, listener); | |
3847 } | |
3848 #endif // GTEST_INTERNAL_HAS_STRING_VIEW | |
3849 | |
3850 // Accepts pointer types, particularly: | |
3851 // const char* | |
3852 // char* | |
3853 // const wchar_t* | |
3854 // wchar_t* | |
3855 template <typename CharType> | |
3856 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | |
3857 return s != nullptr && MatchAndExplain(StringType(s), listener); | |
3858 } | |
3859 | |
3860 // Matches anything that can convert to StringType. | |
3861 // | |
3862 // This is a template, not just a plain function with const StringType&, | |
3863 // because StringView has some interfering non-explicit constructors. | |
3864 template <typename MatcheeStringType> | |
3865 bool MatchAndExplain(const MatcheeStringType& s, | |
3866 MatchResultListener* /* listener */) const { | |
3867 return StringType(s).find(substring_) != StringType::npos; | |
3868 } | |
3869 | |
3870 // Describes what this matcher matches. | |
3871 void DescribeTo(::std::ostream* os) const { | |
3872 *os << "has substring "; | |
3873 UniversalPrint(substring_, os); | |
3874 } | |
3875 | |
3876 void DescribeNegationTo(::std::ostream* os) const { | |
3877 *os << "has no substring "; | |
3878 UniversalPrint(substring_, os); | |
3879 } | |
3880 | |
3881 private: | |
3882 const StringType substring_; | |
3883 }; | |
3884 | |
3885 // Implements the polymorphic StartsWith(substring) matcher, which | |
3886 // can be used as a Matcher<T> as long as T can be converted to a | |
3887 // string. | |
3888 template <typename StringType> | |
3889 class StartsWithMatcher { | |
3890 public: | |
3891 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { | |
3892 } | |
3893 | |
3894 #if GTEST_INTERNAL_HAS_STRING_VIEW | |
3895 bool MatchAndExplain(const internal::StringView& s, | |
3896 MatchResultListener* listener) const { | |
3897 // This should fail to compile if StringView is used with wide | |
3898 // strings. | |
3899 const StringType& str = std::string(s); | |
3900 return MatchAndExplain(str, listener); | |
3901 } | |
3902 #endif // GTEST_INTERNAL_HAS_STRING_VIEW | |
3903 | |
3904 // Accepts pointer types, particularly: | |
3905 // const char* | |
3906 // char* | |
3907 // const wchar_t* | |
3908 // wchar_t* | |
3909 template <typename CharType> | |
3910 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | |
3911 return s != nullptr && MatchAndExplain(StringType(s), listener); | |
3912 } | |
3913 | |
3914 // Matches anything that can convert to StringType. | |
3915 // | |
3916 // This is a template, not just a plain function with const StringType&, | |
3917 // because StringView has some interfering non-explicit constructors. | |
3918 template <typename MatcheeStringType> | |
3919 bool MatchAndExplain(const MatcheeStringType& s, | |
3920 MatchResultListener* /* listener */) const { | |
3921 const StringType& s2(s); | |
3922 return s2.length() >= prefix_.length() && | |
3923 s2.substr(0, prefix_.length()) == prefix_; | |
3924 } | |
3925 | |
3926 void DescribeTo(::std::ostream* os) const { | |
3927 *os << "starts with "; | |
3928 UniversalPrint(prefix_, os); | |
3929 } | |
3930 | |
3931 void DescribeNegationTo(::std::ostream* os) const { | |
3932 *os << "doesn't start with "; | |
3933 UniversalPrint(prefix_, os); | |
3934 } | |
3935 | |
3936 private: | |
3937 const StringType prefix_; | |
3938 }; | |
3939 | |
3940 // Implements the polymorphic EndsWith(substring) matcher, which | |
3941 // can be used as a Matcher<T> as long as T can be converted to a | |
3942 // string. | |
3943 template <typename StringType> | |
3944 class EndsWithMatcher { | |
3945 public: | |
3946 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} | |
3947 | |
3948 #if GTEST_INTERNAL_HAS_STRING_VIEW | |
3949 bool MatchAndExplain(const internal::StringView& s, | |
3950 MatchResultListener* listener) const { | |
3951 // This should fail to compile if StringView is used with wide | |
3952 // strings. | |
3953 const StringType& str = std::string(s); | |
3954 return MatchAndExplain(str, listener); | |
3955 } | |
3956 #endif // GTEST_INTERNAL_HAS_STRING_VIEW | |
3957 | |
3958 // Accepts pointer types, particularly: | |
3959 // const char* | |
3960 // char* | |
3961 // const wchar_t* | |
3962 // wchar_t* | |
3963 template <typename CharType> | |
3964 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | |
3965 return s != nullptr && MatchAndExplain(StringType(s), listener); | |
3966 } | |
3967 | |
3968 // Matches anything that can convert to StringType. | |
3969 // | |
3970 // This is a template, not just a plain function with const StringType&, | |
3971 // because StringView has some interfering non-explicit constructors. | |
3972 template <typename MatcheeStringType> | |
3973 bool MatchAndExplain(const MatcheeStringType& s, | |
3974 MatchResultListener* /* listener */) const { | |
3975 const StringType& s2(s); | |
3976 return s2.length() >= suffix_.length() && | |
3977 s2.substr(s2.length() - suffix_.length()) == suffix_; | |
3978 } | |
3979 | |
3980 void DescribeTo(::std::ostream* os) const { | |
3981 *os << "ends with "; | |
3982 UniversalPrint(suffix_, os); | |
3983 } | |
3984 | |
3985 void DescribeNegationTo(::std::ostream* os) const { | |
3986 *os << "doesn't end with "; | |
3987 UniversalPrint(suffix_, os); | |
3988 } | |
3989 | |
3990 private: | |
3991 const StringType suffix_; | |
3992 }; | |
3993 | |
3994 // Implements a matcher that compares the two fields of a 2-tuple | |
3995 // using one of the ==, <=, <, etc, operators. The two fields being | |
3996 // compared don't have to have the same type. | |
3997 // | |
3998 // The matcher defined here is polymorphic (for example, Eq() can be | |
3999 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, | |
4000 // etc). Therefore we use a template type conversion operator in the | |
4001 // implementation. | |
4002 template <typename D, typename Op> | |
4003 class PairMatchBase { | |
4004 public: | |
4005 template <typename T1, typename T2> | |
4006 operator Matcher<::std::tuple<T1, T2>>() const { | |
4007 return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); | |
4008 } | |
4009 template <typename T1, typename T2> | |
4010 operator Matcher<const ::std::tuple<T1, T2>&>() const { | |
4011 return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); | |
4012 } | |
4013 | |
4014 private: | |
4015 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT | |
4016 return os << D::Desc(); | |
4017 } | |
4018 | |
4019 template <typename Tuple> | |
4020 class Impl : public MatcherInterface<Tuple> { | |
4021 public: | |
4022 bool MatchAndExplain(Tuple args, | |
4023 MatchResultListener* /* listener */) const override { | |
4024 return Op()(::std::get<0>(args), ::std::get<1>(args)); | |
4025 } | |
4026 void DescribeTo(::std::ostream* os) const override { | |
4027 *os << "are " << GetDesc; | |
4028 } | |
4029 void DescribeNegationTo(::std::ostream* os) const override { | |
4030 *os << "aren't " << GetDesc; | |
4031 } | |
4032 }; | |
4033 }; | |
4034 | |
4035 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { | |
4036 public: | |
4037 static const char* Desc() { return "an equal pair"; } | |
4038 }; | |
4039 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { | |
4040 public: | |
4041 static const char* Desc() { return "an unequal pair"; } | |
4042 }; | |
4043 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { | |
4044 public: | |
4045 static const char* Desc() { return "a pair where the first < the second"; } | |
4046 }; | |
4047 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { | |
4048 public: | |
4049 static const char* Desc() { return "a pair where the first > the second"; } | |
4050 }; | |
4051 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { | |
4052 public: | |
4053 static const char* Desc() { return "a pair where the first <= the second"; } | |
4054 }; | |
4055 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { | |
4056 public: | |
4057 static const char* Desc() { return "a pair where the first >= the second"; } | |
4058 }; | |
4059 | |
4060 // Implements the Not(...) matcher for a particular argument type T. | |
4061 // We do not nest it inside the NotMatcher class template, as that | |
4062 // will prevent different instantiations of NotMatcher from sharing | |
4063 // the same NotMatcherImpl<T> class. | |
4064 template <typename T> | |
4065 class NotMatcherImpl : public MatcherInterface<const T&> { | |
4066 public: | |
4067 explicit NotMatcherImpl(const Matcher<T>& matcher) | |
4068 : matcher_(matcher) {} | |
4069 | |
4070 bool MatchAndExplain(const T& x, | |
4071 MatchResultListener* listener) const override { | |
4072 return !matcher_.MatchAndExplain(x, listener); | |
4073 } | |
4074 | |
4075 void DescribeTo(::std::ostream* os) const override { | |
4076 matcher_.DescribeNegationTo(os); | |
4077 } | |
4078 | |
4079 void DescribeNegationTo(::std::ostream* os) const override { | |
4080 matcher_.DescribeTo(os); | |
4081 } | |
4082 | |
4083 private: | |
4084 const Matcher<T> matcher_; | |
4085 }; | |
4086 | |
4087 // Implements the Not(m) matcher, which matches a value that doesn't | |
4088 // match matcher m. | |
4089 template <typename InnerMatcher> | |
4090 class NotMatcher { | |
4091 public: | |
4092 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} | |
4093 | |
4094 // This template type conversion operator allows Not(m) to be used | |
4095 // to match any type m can match. | |
4096 template <typename T> | |
4097 operator Matcher<T>() const { | |
4098 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); | |
4099 } | |
4100 | |
4101 private: | |
4102 InnerMatcher matcher_; | |
4103 }; | |
4104 | |
4105 // Implements the AllOf(m1, m2) matcher for a particular argument type | |
4106 // T. We do not nest it inside the BothOfMatcher class template, as | |
4107 // that will prevent different instantiations of BothOfMatcher from | |
4108 // sharing the same BothOfMatcherImpl<T> class. | |
4109 template <typename T> | |
4110 class AllOfMatcherImpl : public MatcherInterface<const T&> { | |
4111 public: | |
4112 explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) | |
4113 : matchers_(std::move(matchers)) {} | |
4114 | |
4115 void DescribeTo(::std::ostream* os) const override { | |
4116 *os << "("; | |
4117 for (size_t i = 0; i < matchers_.size(); ++i) { | |
4118 if (i != 0) *os << ") and ("; | |
4119 matchers_[i].DescribeTo(os); | |
4120 } | |
4121 *os << ")"; | |
4122 } | |
4123 | |
4124 void DescribeNegationTo(::std::ostream* os) const override { | |
4125 *os << "("; | |
4126 for (size_t i = 0; i < matchers_.size(); ++i) { | |
4127 if (i != 0) *os << ") or ("; | |
4128 matchers_[i].DescribeNegationTo(os); | |
4129 } | |
4130 *os << ")"; | |
4131 } | |
4132 | |
4133 bool MatchAndExplain(const T& x, | |
4134 MatchResultListener* listener) const override { | |
4135 // If either matcher1_ or matcher2_ doesn't match x, we only need | |
4136 // to explain why one of them fails. | |
4137 std::string all_match_result; | |
4138 | |
4139 for (size_t i = 0; i < matchers_.size(); ++i) { | |
4140 StringMatchResultListener slistener; | |
4141 if (matchers_[i].MatchAndExplain(x, &slistener)) { | |
4142 if (all_match_result.empty()) { | |
4143 all_match_result = slistener.str(); | |
4144 } else { | |
4145 std::string result = slistener.str(); | |
4146 if (!result.empty()) { | |
4147 all_match_result += ", and "; | |
4148 all_match_result += result; | |
4149 } | |
4150 } | |
4151 } else { | |
4152 *listener << slistener.str(); | |
4153 return false; | |
4154 } | |
4155 } | |
4156 | |
4157 // Otherwise we need to explain why *both* of them match. | |
4158 *listener << all_match_result; | |
4159 return true; | |
4160 } | |
4161 | |
4162 private: | |
4163 const std::vector<Matcher<T> > matchers_; | |
4164 }; | |
4165 | |
4166 // VariadicMatcher is used for the variadic implementation of | |
4167 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). | |
4168 // CombiningMatcher<T> is used to recursively combine the provided matchers | |
4169 // (of type Args...). | |
4170 template <template <typename T> class CombiningMatcher, typename... Args> | |
4171 class VariadicMatcher { | |
4172 public: | |
4173 VariadicMatcher(const Args&... matchers) // NOLINT | |
4174 : matchers_(matchers...) { | |
4175 static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); | |
4176 } | |
4177 | |
4178 VariadicMatcher(const VariadicMatcher&) = default; | |
4179 VariadicMatcher& operator=(const VariadicMatcher&) = delete; | |
4180 | |
4181 // This template type conversion operator allows an | |
4182 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that | |
4183 // all of the provided matchers (Matcher1, Matcher2, ...) can match. | |
4184 template <typename T> | |
4185 operator Matcher<T>() const { | |
4186 std::vector<Matcher<T> > values; | |
4187 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); | |
4188 return Matcher<T>(new CombiningMatcher<T>(std::move(values))); | |
4189 } | |
4190 | |
4191 private: | |
4192 template <typename T, size_t I> | |
4193 void CreateVariadicMatcher(std::vector<Matcher<T> >* values, | |
4194 std::integral_constant<size_t, I>) const { | |
4195 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); | |
4196 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); | |
4197 } | |
4198 | |
4199 template <typename T> | |
4200 void CreateVariadicMatcher( | |
4201 std::vector<Matcher<T> >*, | |
4202 std::integral_constant<size_t, sizeof...(Args)>) const {} | |
4203 | |
4204 std::tuple<Args...> matchers_; | |
4205 }; | |
4206 | |
4207 template <typename... Args> | |
4208 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; | |
4209 | |
4210 // Implements the AnyOf(m1, m2) matcher for a particular argument type | |
4211 // T. We do not nest it inside the AnyOfMatcher class template, as | |
4212 // that will prevent different instantiations of AnyOfMatcher from | |
4213 // sharing the same EitherOfMatcherImpl<T> class. | |
4214 template <typename T> | |
4215 class AnyOfMatcherImpl : public MatcherInterface<const T&> { | |
4216 public: | |
4217 explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) | |
4218 : matchers_(std::move(matchers)) {} | |
4219 | |
4220 void DescribeTo(::std::ostream* os) const override { | |
4221 *os << "("; | |
4222 for (size_t i = 0; i < matchers_.size(); ++i) { | |
4223 if (i != 0) *os << ") or ("; | |
4224 matchers_[i].DescribeTo(os); | |
4225 } | |
4226 *os << ")"; | |
4227 } | |
4228 | |
4229 void DescribeNegationTo(::std::ostream* os) const override { | |
4230 *os << "("; | |
4231 for (size_t i = 0; i < matchers_.size(); ++i) { | |
4232 if (i != 0) *os << ") and ("; | |
4233 matchers_[i].DescribeNegationTo(os); | |
4234 } | |
4235 *os << ")"; | |
4236 } | |
4237 | |
4238 bool MatchAndExplain(const T& x, | |
4239 MatchResultListener* listener) const override { | |
4240 std::string no_match_result; | |
4241 | |
4242 // If either matcher1_ or matcher2_ matches x, we just need to | |
4243 // explain why *one* of them matches. | |
4244 for (size_t i = 0; i < matchers_.size(); ++i) { | |
4245 StringMatchResultListener slistener; | |
4246 if (matchers_[i].MatchAndExplain(x, &slistener)) { | |
4247 *listener << slistener.str(); | |
4248 return true; | |
4249 } else { | |
4250 if (no_match_result.empty()) { | |
4251 no_match_result = slistener.str(); | |
4252 } else { | |
4253 std::string result = slistener.str(); | |
4254 if (!result.empty()) { | |
4255 no_match_result += ", and "; | |
4256 no_match_result += result; | |
4257 } | |
4258 } | |
4259 } | |
4260 } | |
4261 | |
4262 // Otherwise we need to explain why *both* of them fail. | |
4263 *listener << no_match_result; | |
4264 return false; | |
4265 } | |
4266 | |
4267 private: | |
4268 const std::vector<Matcher<T> > matchers_; | |
4269 }; | |
4270 | |
4271 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). | |
4272 template <typename... Args> | |
4273 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; | |
4274 | |
4275 // Wrapper for implementation of Any/AllOfArray(). | |
4276 template <template <class> class MatcherImpl, typename T> | |
4277 class SomeOfArrayMatcher { | |
4278 public: | |
4279 // Constructs the matcher from a sequence of element values or | |
4280 // element matchers. | |
4281 template <typename Iter> | |
4282 SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} | |
4283 | |
4284 template <typename U> | |
4285 operator Matcher<U>() const { // NOLINT | |
4286 using RawU = typename std::decay<U>::type; | |
4287 std::vector<Matcher<RawU>> matchers; | |
4288 for (const auto& matcher : matchers_) { | |
4289 matchers.push_back(MatcherCast<RawU>(matcher)); | |
4290 } | |
4291 return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); | |
4292 } | |
4293 | |
4294 private: | |
4295 const ::std::vector<T> matchers_; | |
4296 }; | |
4297 | |
4298 template <typename T> | |
4299 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; | |
4300 | |
4301 template <typename T> | |
4302 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; | |
4303 | |
4304 // Used for implementing Truly(pred), which turns a predicate into a | |
4305 // matcher. | |
4306 template <typename Predicate> | |
4307 class TrulyMatcher { | |
4308 public: | |
4309 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} | |
4310 | |
4311 // This method template allows Truly(pred) to be used as a matcher | |
4312 // for type T where T is the argument type of predicate 'pred'. The | |
4313 // argument is passed by reference as the predicate may be | |
4314 // interested in the address of the argument. | |
4315 template <typename T> | |
4316 bool MatchAndExplain(T& x, // NOLINT | |
4317 MatchResultListener* listener) const { | |
4318 // Without the if-statement, MSVC sometimes warns about converting | |
4319 // a value to bool (warning 4800). | |
4320 // | |
4321 // We cannot write 'return !!predicate_(x);' as that doesn't work | |
4322 // when predicate_(x) returns a class convertible to bool but | |
4323 // having no operator!(). | |
4324 if (predicate_(x)) | |
4325 return true; | |
4326 *listener << "didn't satisfy the given predicate"; | |
4327 return false; | |
4328 } | |
4329 | |
4330 void DescribeTo(::std::ostream* os) const { | |
4331 *os << "satisfies the given predicate"; | |
4332 } | |
4333 | |
4334 void DescribeNegationTo(::std::ostream* os) const { | |
4335 *os << "doesn't satisfy the given predicate"; | |
4336 } | |
4337 | |
4338 private: | |
4339 Predicate predicate_; | |
4340 }; | |
4341 | |
4342 // Used for implementing Matches(matcher), which turns a matcher into | |
4343 // a predicate. | |
4344 template <typename M> | |
4345 class MatcherAsPredicate { | |
4346 public: | |
4347 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} | |
4348 | |
4349 // This template operator() allows Matches(m) to be used as a | |
4350 // predicate on type T where m is a matcher on type T. | |
4351 // | |
4352 // The argument x is passed by reference instead of by value, as | |
4353 // some matcher may be interested in its address (e.g. as in | |
4354 // Matches(Ref(n))(x)). | |
4355 template <typename T> | |
4356 bool operator()(const T& x) const { | |
4357 // We let matcher_ commit to a particular type here instead of | |
4358 // when the MatcherAsPredicate object was constructed. This | |
4359 // allows us to write Matches(m) where m is a polymorphic matcher | |
4360 // (e.g. Eq(5)). | |
4361 // | |
4362 // If we write Matcher<T>(matcher_).Matches(x) here, it won't | |
4363 // compile when matcher_ has type Matcher<const T&>; if we write | |
4364 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile | |
4365 // when matcher_ has type Matcher<T>; if we just write | |
4366 // matcher_.Matches(x), it won't compile when matcher_ is | |
4367 // polymorphic, e.g. Eq(5). | |
4368 // | |
4369 // MatcherCast<const T&>() is necessary for making the code work | |
4370 // in all of the above situations. | |
4371 return MatcherCast<const T&>(matcher_).Matches(x); | |
4372 } | |
4373 | |
4374 private: | |
4375 M matcher_; | |
4376 }; | |
4377 | |
4378 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template | |
4379 // argument M must be a type that can be converted to a matcher. | |
4380 template <typename M> | |
4381 class PredicateFormatterFromMatcher { | |
4382 public: | |
4383 explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} | |
4384 | |
4385 // This template () operator allows a PredicateFormatterFromMatcher | |
4386 // object to act as a predicate-formatter suitable for using with | |
4387 // Google Test's EXPECT_PRED_FORMAT1() macro. | |
4388 template <typename T> | |
4389 AssertionResult operator()(const char* value_text, const T& x) const { | |
4390 // We convert matcher_ to a Matcher<const T&> *now* instead of | |
4391 // when the PredicateFormatterFromMatcher object was constructed, | |
4392 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't | |
4393 // know which type to instantiate it to until we actually see the | |
4394 // type of x here. | |
4395 // | |
4396 // We write SafeMatcherCast<const T&>(matcher_) instead of | |
4397 // Matcher<const T&>(matcher_), as the latter won't compile when | |
4398 // matcher_ has type Matcher<T> (e.g. An<int>()). | |
4399 // We don't write MatcherCast<const T&> either, as that allows | |
4400 // potentially unsafe downcasting of the matcher argument. | |
4401 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); | |
4402 | |
4403 // The expected path here is that the matcher should match (i.e. that most | |
4404 // tests pass) so optimize for this case. | |
4405 if (matcher.Matches(x)) { | |
4406 return AssertionSuccess(); | |
4407 } | |
4408 | |
4409 ::std::stringstream ss; | |
4410 ss << "Value of: " << value_text << "\n" | |
4411 << "Expected: "; | |
4412 matcher.DescribeTo(&ss); | |
4413 | |
4414 // Rerun the matcher to "PrintAndExplain" the failure. | |
4415 StringMatchResultListener listener; | |
4416 if (MatchPrintAndExplain(x, matcher, &listener)) { | |
4417 ss << "\n The matcher failed on the initial attempt; but passed when " | |
4418 "rerun to generate the explanation."; | |
4419 } | |
4420 ss << "\n Actual: " << listener.str(); | |
4421 return AssertionFailure() << ss.str(); | |
4422 } | |
4423 | |
4424 private: | |
4425 const M matcher_; | |
4426 }; | |
4427 | |
4428 // A helper function for converting a matcher to a predicate-formatter | |
4429 // without the user needing to explicitly write the type. This is | |
4430 // used for implementing ASSERT_THAT() and EXPECT_THAT(). | |
4431 // Implementation detail: 'matcher' is received by-value to force decaying. | |
4432 template <typename M> | |
4433 inline PredicateFormatterFromMatcher<M> | |
4434 MakePredicateFormatterFromMatcher(M matcher) { | |
4435 return PredicateFormatterFromMatcher<M>(std::move(matcher)); | |
4436 } | |
4437 | |
4438 // Implements the polymorphic IsNan() matcher, which matches any floating type | |
4439 // value that is Nan. | |
4440 class IsNanMatcher { | |
4441 public: | |
4442 template <typename FloatType> | |
4443 bool MatchAndExplain(const FloatType& f, | |
4444 MatchResultListener* /* listener */) const { | |
4445 return (::std::isnan)(f); | |
4446 } | |
4447 | |
4448 void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } | |
4449 void DescribeNegationTo(::std::ostream* os) const { | |
4450 *os << "isn't NaN"; | |
4451 } | |
4452 }; | |
4453 | |
4454 // Implements the polymorphic floating point equality matcher, which matches | |
4455 // two float values using ULP-based approximation or, optionally, a | |
4456 // user-specified epsilon. The template is meant to be instantiated with | |
4457 // FloatType being either float or double. | |
4458 template <typename FloatType> | |
4459 class FloatingEqMatcher { | |
4460 public: | |
4461 // Constructor for FloatingEqMatcher. | |
4462 // The matcher's input will be compared with expected. The matcher treats two | |
4463 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, | |
4464 // equality comparisons between NANs will always return false. We specify a | |
4465 // negative max_abs_error_ term to indicate that ULP-based approximation will | |
4466 // be used for comparison. | |
4467 FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : | |
4468 expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { | |
4469 } | |
4470 | |
4471 // Constructor that supports a user-specified max_abs_error that will be used | |
4472 // for comparison instead of ULP-based approximation. The max absolute | |
4473 // should be non-negative. | |
4474 FloatingEqMatcher(FloatType expected, bool nan_eq_nan, | |
4475 FloatType max_abs_error) | |
4476 : expected_(expected), | |
4477 nan_eq_nan_(nan_eq_nan), | |
4478 max_abs_error_(max_abs_error) { | |
4479 GTEST_CHECK_(max_abs_error >= 0) | |
4480 << ", where max_abs_error is" << max_abs_error; | |
4481 } | |
4482 | |
4483 // Implements floating point equality matcher as a Matcher<T>. | |
4484 template <typename T> | |
4485 class Impl : public MatcherInterface<T> { | |
4486 public: | |
4487 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) | |
4488 : expected_(expected), | |
4489 nan_eq_nan_(nan_eq_nan), | |
4490 max_abs_error_(max_abs_error) {} | |
4491 | |
4492 bool MatchAndExplain(T value, | |
4493 MatchResultListener* listener) const override { | |
4494 const FloatingPoint<FloatType> actual(value), expected(expected_); | |
4495 | |
4496 // Compares NaNs first, if nan_eq_nan_ is true. | |
4497 if (actual.is_nan() || expected.is_nan()) { | |
4498 if (actual.is_nan() && expected.is_nan()) { | |
4499 return nan_eq_nan_; | |
4500 } | |
4501 // One is nan; the other is not nan. | |
4502 return false; | |
4503 } | |
4504 if (HasMaxAbsError()) { | |
4505 // We perform an equality check so that inf will match inf, regardless | |
4506 // of error bounds. If the result of value - expected_ would result in | |
4507 // overflow or if either value is inf, the default result is infinity, | |
4508 // which should only match if max_abs_error_ is also infinity. | |
4509 if (value == expected_) { | |
4510 return true; | |
4511 } | |
4512 | |
4513 const FloatType diff = value - expected_; | |
4514 if (::std::fabs(diff) <= max_abs_error_) { | |
4515 return true; | |
4516 } | |
4517 | |
4518 if (listener->IsInterested()) { | |
4519 *listener << "which is " << diff << " from " << expected_; | |
4520 } | |
4521 return false; | |
4522 } else { | |
4523 return actual.AlmostEquals(expected); | |
4524 } | |
4525 } | |
4526 | |
4527 void DescribeTo(::std::ostream* os) const override { | |
4528 // os->precision() returns the previously set precision, which we | |
4529 // store to restore the ostream to its original configuration | |
4530 // after outputting. | |
4531 const ::std::streamsize old_precision = os->precision( | |
4532 ::std::numeric_limits<FloatType>::digits10 + 2); | |
4533 if (FloatingPoint<FloatType>(expected_).is_nan()) { | |
4534 if (nan_eq_nan_) { | |
4535 *os << "is NaN"; | |
4536 } else { | |
4537 *os << "never matches"; | |
4538 } | |
4539 } else { | |
4540 *os << "is approximately " << expected_; | |
4541 if (HasMaxAbsError()) { | |
4542 *os << " (absolute error <= " << max_abs_error_ << ")"; | |
4543 } | |
4544 } | |
4545 os->precision(old_precision); | |
4546 } | |
4547 | |
4548 void DescribeNegationTo(::std::ostream* os) const override { | |
4549 // As before, get original precision. | |
4550 const ::std::streamsize old_precision = os->precision( | |
4551 ::std::numeric_limits<FloatType>::digits10 + 2); | |
4552 if (FloatingPoint<FloatType>(expected_).is_nan()) { | |
4553 if (nan_eq_nan_) { | |
4554 *os << "isn't NaN"; | |
4555 } else { | |
4556 *os << "is anything"; | |
4557 } | |
4558 } else { | |
4559 *os << "isn't approximately " << expected_; | |
4560 if (HasMaxAbsError()) { | |
4561 *os << " (absolute error > " << max_abs_error_ << ")"; | |
4562 } | |
4563 } | |
4564 // Restore original precision. | |
4565 os->precision(old_precision); | |
4566 } | |
4567 | |
4568 private: | |
4569 bool HasMaxAbsError() const { | |
4570 return max_abs_error_ >= 0; | |
4571 } | |
4572 | |
4573 const FloatType expected_; | |
4574 const bool nan_eq_nan_; | |
4575 // max_abs_error will be used for value comparison when >= 0. | |
4576 const FloatType max_abs_error_; | |
4577 }; | |
4578 | |
4579 // The following 3 type conversion operators allow FloatEq(expected) and | |
4580 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a | |
4581 // Matcher<const float&>, or a Matcher<float&>, but nothing else. | |
4582 operator Matcher<FloatType>() const { | |
4583 return MakeMatcher( | |
4584 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); | |
4585 } | |
4586 | |
4587 operator Matcher<const FloatType&>() const { | |
4588 return MakeMatcher( | |
4589 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | |
4590 } | |
4591 | |
4592 operator Matcher<FloatType&>() const { | |
4593 return MakeMatcher( | |
4594 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | |
4595 } | |
4596 | |
4597 private: | |
4598 const FloatType expected_; | |
4599 const bool nan_eq_nan_; | |
4600 // max_abs_error will be used for value comparison when >= 0. | |
4601 const FloatType max_abs_error_; | |
4602 }; | |
4603 | |
4604 // A 2-tuple ("binary") wrapper around FloatingEqMatcher: | |
4605 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) | |
4606 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) | |
4607 // against y. The former implements "Eq", the latter "Near". At present, there | |
4608 // is no version that compares NaNs as equal. | |
4609 template <typename FloatType> | |
4610 class FloatingEq2Matcher { | |
4611 public: | |
4612 FloatingEq2Matcher() { Init(-1, false); } | |
4613 | |
4614 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } | |
4615 | |
4616 explicit FloatingEq2Matcher(FloatType max_abs_error) { | |
4617 Init(max_abs_error, false); | |
4618 } | |
4619 | |
4620 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { | |
4621 Init(max_abs_error, nan_eq_nan); | |
4622 } | |
4623 | |
4624 template <typename T1, typename T2> | |
4625 operator Matcher<::std::tuple<T1, T2>>() const { | |
4626 return MakeMatcher( | |
4627 new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); | |
4628 } | |
4629 template <typename T1, typename T2> | |
4630 operator Matcher<const ::std::tuple<T1, T2>&>() const { | |
4631 return MakeMatcher( | |
4632 new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); | |
4633 } | |
4634 | |
4635 private: | |
4636 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT | |
4637 return os << "an almost-equal pair"; | |
4638 } | |
4639 | |
4640 template <typename Tuple> | |
4641 class Impl : public MatcherInterface<Tuple> { | |
4642 public: | |
4643 Impl(FloatType max_abs_error, bool nan_eq_nan) : | |
4644 max_abs_error_(max_abs_error), | |
4645 nan_eq_nan_(nan_eq_nan) {} | |
4646 | |
4647 bool MatchAndExplain(Tuple args, | |
4648 MatchResultListener* listener) const override { | |
4649 if (max_abs_error_ == -1) { | |
4650 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); | |
4651 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( | |
4652 ::std::get<1>(args), listener); | |
4653 } else { | |
4654 FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, | |
4655 max_abs_error_); | |
4656 return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( | |
4657 ::std::get<1>(args), listener); | |
4658 } | |
4659 } | |
4660 void DescribeTo(::std::ostream* os) const override { | |
4661 *os << "are " << GetDesc; | |
4662 } | |
4663 void DescribeNegationTo(::std::ostream* os) const override { | |
4664 *os << "aren't " << GetDesc; | |
4665 } | |
4666 | |
4667 private: | |
4668 FloatType max_abs_error_; | |
4669 const bool nan_eq_nan_; | |
4670 }; | |
4671 | |
4672 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { | |
4673 max_abs_error_ = max_abs_error_val; | |
4674 nan_eq_nan_ = nan_eq_nan_val; | |
4675 } | |
4676 FloatType max_abs_error_; | |
4677 bool nan_eq_nan_; | |
4678 }; | |
4679 | |
4680 // Implements the Pointee(m) matcher for matching a pointer whose | |
4681 // pointee matches matcher m. The pointer can be either raw or smart. | |
4682 template <typename InnerMatcher> | |
4683 class PointeeMatcher { | |
4684 public: | |
4685 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} | |
4686 | |
4687 // This type conversion operator template allows Pointee(m) to be | |
4688 // used as a matcher for any pointer type whose pointee type is | |
4689 // compatible with the inner matcher, where type Pointer can be | |
4690 // either a raw pointer or a smart pointer. | |
4691 // | |
4692 // The reason we do this instead of relying on | |
4693 // MakePolymorphicMatcher() is that the latter is not flexible | |
4694 // enough for implementing the DescribeTo() method of Pointee(). | |
4695 template <typename Pointer> | |
4696 operator Matcher<Pointer>() const { | |
4697 return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); | |
4698 } | |
4699 | |
4700 private: | |
4701 // The monomorphic implementation that works for a particular pointer type. | |
4702 template <typename Pointer> | |
4703 class Impl : public MatcherInterface<Pointer> { | |
4704 public: | |
4705 using Pointee = | |
4706 typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( | |
4707 Pointer)>::element_type; | |
4708 | |
4709 explicit Impl(const InnerMatcher& matcher) | |
4710 : matcher_(MatcherCast<const Pointee&>(matcher)) {} | |
4711 | |
4712 void DescribeTo(::std::ostream* os) const override { | |
4713 *os << "points to a value that "; | |
4714 matcher_.DescribeTo(os); | |
4715 } | |
4716 | |
4717 void DescribeNegationTo(::std::ostream* os) const override { | |
4718 *os << "does not point to a value that "; | |
4719 matcher_.DescribeTo(os); | |
4720 } | |
4721 | |
4722 bool MatchAndExplain(Pointer pointer, | |
4723 MatchResultListener* listener) const override { | |
4724 if (GetRawPointer(pointer) == nullptr) return false; | |
4725 | |
4726 *listener << "which points to "; | |
4727 return MatchPrintAndExplain(*pointer, matcher_, listener); | |
4728 } | |
4729 | |
4730 private: | |
4731 const Matcher<const Pointee&> matcher_; | |
4732 }; | |
4733 | |
4734 const InnerMatcher matcher_; | |
4735 }; | |
4736 | |
4737 // Implements the Pointer(m) matcher | |
4738 // Implements the Pointer(m) matcher for matching a pointer that matches matcher | |
4739 // m. The pointer can be either raw or smart, and will match `m` against the | |
4740 // raw pointer. | |
4741 template <typename InnerMatcher> | |
4742 class PointerMatcher { | |
4743 public: | |
4744 explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} | |
4745 | |
4746 // This type conversion operator template allows Pointer(m) to be | |
4747 // used as a matcher for any pointer type whose pointer type is | |
4748 // compatible with the inner matcher, where type PointerType can be | |
4749 // either a raw pointer or a smart pointer. | |
4750 // | |
4751 // The reason we do this instead of relying on | |
4752 // MakePolymorphicMatcher() is that the latter is not flexible | |
4753 // enough for implementing the DescribeTo() method of Pointer(). | |
4754 template <typename PointerType> | |
4755 operator Matcher<PointerType>() const { // NOLINT | |
4756 return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); | |
4757 } | |
4758 | |
4759 private: | |
4760 // The monomorphic implementation that works for a particular pointer type. | |
4761 template <typename PointerType> | |
4762 class Impl : public MatcherInterface<PointerType> { | |
4763 public: | |
4764 using Pointer = | |
4765 const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( | |
4766 PointerType)>::element_type*; | |
4767 | |
4768 explicit Impl(const InnerMatcher& matcher) | |
4769 : matcher_(MatcherCast<Pointer>(matcher)) {} | |
4770 | |
4771 void DescribeTo(::std::ostream* os) const override { | |
4772 *os << "is a pointer that "; | |
4773 matcher_.DescribeTo(os); | |
4774 } | |
4775 | |
4776 void DescribeNegationTo(::std::ostream* os) const override { | |
4777 *os << "is not a pointer that "; | |
4778 matcher_.DescribeTo(os); | |
4779 } | |
4780 | |
4781 bool MatchAndExplain(PointerType pointer, | |
4782 MatchResultListener* listener) const override { | |
4783 *listener << "which is a pointer that "; | |
4784 Pointer p = GetRawPointer(pointer); | |
4785 return MatchPrintAndExplain(p, matcher_, listener); | |
4786 } | |
4787 | |
4788 private: | |
4789 Matcher<Pointer> matcher_; | |
4790 }; | |
4791 | |
4792 const InnerMatcher matcher_; | |
4793 }; | |
4794 | |
4795 #if GTEST_HAS_RTTI | |
4796 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or | |
4797 // reference that matches inner_matcher when dynamic_cast<T> is applied. | |
4798 // The result of dynamic_cast<To> is forwarded to the inner matcher. | |
4799 // If To is a pointer and the cast fails, the inner matcher will receive NULL. | |
4800 // If To is a reference and the cast fails, this matcher returns false | |
4801 // immediately. | |
4802 template <typename To> | |
4803 class WhenDynamicCastToMatcherBase { | |
4804 public: | |
4805 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) | |
4806 : matcher_(matcher) {} | |
4807 | |
4808 void DescribeTo(::std::ostream* os) const { | |
4809 GetCastTypeDescription(os); | |
4810 matcher_.DescribeTo(os); | |
4811 } | |
4812 | |
4813 void DescribeNegationTo(::std::ostream* os) const { | |
4814 GetCastTypeDescription(os); | |
4815 matcher_.DescribeNegationTo(os); | |
4816 } | |
4817 | |
4818 protected: | |
4819 const Matcher<To> matcher_; | |
4820 | |
4821 static std::string GetToName() { | |
4822 return GetTypeName<To>(); | |
4823 } | |
4824 | |
4825 private: | |
4826 static void GetCastTypeDescription(::std::ostream* os) { | |
4827 *os << "when dynamic_cast to " << GetToName() << ", "; | |
4828 } | |
4829 }; | |
4830 | |
4831 // Primary template. | |
4832 // To is a pointer. Cast and forward the result. | |
4833 template <typename To> | |
4834 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { | |
4835 public: | |
4836 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) | |
4837 : WhenDynamicCastToMatcherBase<To>(matcher) {} | |
4838 | |
4839 template <typename From> | |
4840 bool MatchAndExplain(From from, MatchResultListener* listener) const { | |
4841 To to = dynamic_cast<To>(from); | |
4842 return MatchPrintAndExplain(to, this->matcher_, listener); | |
4843 } | |
4844 }; | |
4845 | |
4846 // Specialize for references. | |
4847 // In this case we return false if the dynamic_cast fails. | |
4848 template <typename To> | |
4849 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { | |
4850 public: | |
4851 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) | |
4852 : WhenDynamicCastToMatcherBase<To&>(matcher) {} | |
4853 | |
4854 template <typename From> | |
4855 bool MatchAndExplain(From& from, MatchResultListener* listener) const { | |
4856 // We don't want an std::bad_cast here, so do the cast with pointers. | |
4857 To* to = dynamic_cast<To*>(&from); | |
4858 if (to == nullptr) { | |
4859 *listener << "which cannot be dynamic_cast to " << this->GetToName(); | |
4860 return false; | |
4861 } | |
4862 return MatchPrintAndExplain(*to, this->matcher_, listener); | |
4863 } | |
4864 }; | |
4865 #endif // GTEST_HAS_RTTI | |
4866 | |
4867 // Implements the Field() matcher for matching a field (i.e. member | |
4868 // variable) of an object. | |
4869 template <typename Class, typename FieldType> | |
4870 class FieldMatcher { | |
4871 public: | |
4872 FieldMatcher(FieldType Class::*field, | |
4873 const Matcher<const FieldType&>& matcher) | |
4874 : field_(field), matcher_(matcher), whose_field_("whose given field ") {} | |
4875 | |
4876 FieldMatcher(const std::string& field_name, FieldType Class::*field, | |
4877 const Matcher<const FieldType&>& matcher) | |
4878 : field_(field), | |
4879 matcher_(matcher), | |
4880 whose_field_("whose field `" + field_name + "` ") {} | |
4881 | |
4882 void DescribeTo(::std::ostream* os) const { | |
4883 *os << "is an object " << whose_field_; | |
4884 matcher_.DescribeTo(os); | |
4885 } | |
4886 | |
4887 void DescribeNegationTo(::std::ostream* os) const { | |
4888 *os << "is an object " << whose_field_; | |
4889 matcher_.DescribeNegationTo(os); | |
4890 } | |
4891 | |
4892 template <typename T> | |
4893 bool MatchAndExplain(const T& value, MatchResultListener* listener) const { | |
4894 // FIXME: The dispatch on std::is_pointer was introduced as a workaround for | |
4895 // a compiler bug, and can now be removed. | |
4896 return MatchAndExplainImpl( | |
4897 typename std::is_pointer<typename std::remove_const<T>::type>::type(), | |
4898 value, listener); | |
4899 } | |
4900 | |
4901 private: | |
4902 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, | |
4903 const Class& obj, | |
4904 MatchResultListener* listener) const { | |
4905 *listener << whose_field_ << "is "; | |
4906 return MatchPrintAndExplain(obj.*field_, matcher_, listener); | |
4907 } | |
4908 | |
4909 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, | |
4910 MatchResultListener* listener) const { | |
4911 if (p == nullptr) return false; | |
4912 | |
4913 *listener << "which points to an object "; | |
4914 // Since *p has a field, it must be a class/struct/union type and | |
4915 // thus cannot be a pointer. Therefore we pass false_type() as | |
4916 // the first argument. | |
4917 return MatchAndExplainImpl(std::false_type(), *p, listener); | |
4918 } | |
4919 | |
4920 const FieldType Class::*field_; | |
4921 const Matcher<const FieldType&> matcher_; | |
4922 | |
4923 // Contains either "whose given field " if the name of the field is unknown | |
4924 // or "whose field `name_of_field` " if the name is known. | |
4925 const std::string whose_field_; | |
4926 }; | |
4927 | |
4928 // Implements the Property() matcher for matching a property | |
4929 // (i.e. return value of a getter method) of an object. | |
4930 // | |
4931 // Property is a const-qualified member function of Class returning | |
4932 // PropertyType. | |
4933 template <typename Class, typename PropertyType, typename Property> | |
4934 class PropertyMatcher { | |
4935 public: | |
4936 typedef const PropertyType& RefToConstProperty; | |
4937 | |
4938 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) | |
4939 : property_(property), | |
4940 matcher_(matcher), | |
4941 whose_property_("whose given property ") {} | |
4942 | |
4943 PropertyMatcher(const std::string& property_name, Property property, | |
4944 const Matcher<RefToConstProperty>& matcher) | |
4945 : property_(property), | |
4946 matcher_(matcher), | |
4947 whose_property_("whose property `" + property_name + "` ") {} | |
4948 | |
4949 void DescribeTo(::std::ostream* os) const { | |
4950 *os << "is an object " << whose_property_; | |
4951 matcher_.DescribeTo(os); | |
4952 } | |
4953 | |
4954 void DescribeNegationTo(::std::ostream* os) const { | |
4955 *os << "is an object " << whose_property_; | |
4956 matcher_.DescribeNegationTo(os); | |
4957 } | |
4958 | |
4959 template <typename T> | |
4960 bool MatchAndExplain(const T&value, MatchResultListener* listener) const { | |
4961 return MatchAndExplainImpl( | |
4962 typename std::is_pointer<typename std::remove_const<T>::type>::type(), | |
4963 value, listener); | |
4964 } | |
4965 | |
4966 private: | |
4967 bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, | |
4968 const Class& obj, | |
4969 MatchResultListener* listener) const { | |
4970 *listener << whose_property_ << "is "; | |
4971 // Cannot pass the return value (for example, int) to MatchPrintAndExplain, | |
4972 // which takes a non-const reference as argument. | |
4973 RefToConstProperty result = (obj.*property_)(); | |
4974 return MatchPrintAndExplain(result, matcher_, listener); | |
4975 } | |
4976 | |
4977 bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, | |
4978 MatchResultListener* listener) const { | |
4979 if (p == nullptr) return false; | |
4980 | |
4981 *listener << "which points to an object "; | |
4982 // Since *p has a property method, it must be a class/struct/union | |
4983 // type and thus cannot be a pointer. Therefore we pass | |
4984 // false_type() as the first argument. | |
4985 return MatchAndExplainImpl(std::false_type(), *p, listener); | |
4986 } | |
4987 | |
4988 Property property_; | |
4989 const Matcher<RefToConstProperty> matcher_; | |
4990 | |
4991 // Contains either "whose given property " if the name of the property is | |
4992 // unknown or "whose property `name_of_property` " if the name is known. | |
4993 const std::string whose_property_; | |
4994 }; | |
4995 | |
4996 // Type traits specifying various features of different functors for ResultOf. | |
4997 // The default template specifies features for functor objects. | |
4998 template <typename Functor> | |
4999 struct CallableTraits { | |
5000 typedef Functor StorageType; | |
5001 | |
5002 static void CheckIsValid(Functor /* functor */) {} | |
5003 | |
5004 template <typename T> | |
5005 static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { | |
5006 return f(arg); | |
5007 } | |
5008 }; | |
5009 | |
5010 // Specialization for function pointers. | |
5011 template <typename ArgType, typename ResType> | |
5012 struct CallableTraits<ResType(*)(ArgType)> { | |
5013 typedef ResType ResultType; | |
5014 typedef ResType(*StorageType)(ArgType); | |
5015 | |
5016 static void CheckIsValid(ResType(*f)(ArgType)) { | |
5017 GTEST_CHECK_(f != nullptr) | |
5018 << "NULL function pointer is passed into ResultOf()."; | |
5019 } | |
5020 template <typename T> | |
5021 static ResType Invoke(ResType(*f)(ArgType), T arg) { | |
5022 return (*f)(arg); | |
5023 } | |
5024 }; | |
5025 | |
5026 // Implements the ResultOf() matcher for matching a return value of a | |
5027 // unary function of an object. | |
5028 template <typename Callable, typename InnerMatcher> | |
5029 class ResultOfMatcher { | |
5030 public: | |
5031 ResultOfMatcher(Callable callable, InnerMatcher matcher) | |
5032 : callable_(std::move(callable)), matcher_(std::move(matcher)) { | |
5033 CallableTraits<Callable>::CheckIsValid(callable_); | |
5034 } | |
5035 | |
5036 template <typename T> | |
5037 operator Matcher<T>() const { | |
5038 return Matcher<T>(new Impl<const T&>(callable_, matcher_)); | |
5039 } | |
5040 | |
5041 private: | |
5042 typedef typename CallableTraits<Callable>::StorageType CallableStorageType; | |
5043 | |
5044 template <typename T> | |
5045 class Impl : public MatcherInterface<T> { | |
5046 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( | |
5047 std::declval<CallableStorageType>(), std::declval<T>())); | |
5048 | |
5049 public: | |
5050 template <typename M> | |
5051 Impl(const CallableStorageType& callable, const M& matcher) | |
5052 : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} | |
5053 | |
5054 void DescribeTo(::std::ostream* os) const override { | |
5055 *os << "is mapped by the given callable to a value that "; | |
5056 matcher_.DescribeTo(os); | |
5057 } | |
5058 | |
5059 void DescribeNegationTo(::std::ostream* os) const override { | |
5060 *os << "is mapped by the given callable to a value that "; | |
5061 matcher_.DescribeNegationTo(os); | |
5062 } | |
5063 | |
5064 bool MatchAndExplain(T obj, MatchResultListener* listener) const override { | |
5065 *listener << "which is mapped by the given callable to "; | |
5066 // Cannot pass the return value directly to MatchPrintAndExplain, which | |
5067 // takes a non-const reference as argument. | |
5068 // Also, specifying template argument explicitly is needed because T could | |
5069 // be a non-const reference (e.g. Matcher<Uncopyable&>). | |
5070 ResultType result = | |
5071 CallableTraits<Callable>::template Invoke<T>(callable_, obj); | |
5072 return MatchPrintAndExplain(result, matcher_, listener); | |
5073 } | |
5074 | |
5075 private: | |
5076 // Functors often define operator() as non-const method even though | |
5077 // they are actually stateless. But we need to use them even when | |
5078 // 'this' is a const pointer. It's the user's responsibility not to | |
5079 // use stateful callables with ResultOf(), which doesn't guarantee | |
5080 // how many times the callable will be invoked. | |
5081 mutable CallableStorageType callable_; | |
5082 const Matcher<ResultType> matcher_; | |
5083 }; // class Impl | |
5084 | |
5085 const CallableStorageType callable_; | |
5086 const InnerMatcher matcher_; | |
5087 }; | |
5088 | |
5089 // Implements a matcher that checks the size of an STL-style container. | |
5090 template <typename SizeMatcher> | |
5091 class SizeIsMatcher { | |
5092 public: | |
5093 explicit SizeIsMatcher(const SizeMatcher& size_matcher) | |
5094 : size_matcher_(size_matcher) { | |
5095 } | |
5096 | |
5097 template <typename Container> | |
5098 operator Matcher<Container>() const { | |
5099 return Matcher<Container>(new Impl<const Container&>(size_matcher_)); | |
5100 } | |
5101 | |
5102 template <typename Container> | |
5103 class Impl : public MatcherInterface<Container> { | |
5104 public: | |
5105 using SizeType = decltype(std::declval<Container>().size()); | |
5106 explicit Impl(const SizeMatcher& size_matcher) | |
5107 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} | |
5108 | |
5109 void DescribeTo(::std::ostream* os) const override { | |
5110 *os << "size "; | |
5111 size_matcher_.DescribeTo(os); | |
5112 } | |
5113 void DescribeNegationTo(::std::ostream* os) const override { | |
5114 *os << "size "; | |
5115 size_matcher_.DescribeNegationTo(os); | |
5116 } | |
5117 | |
5118 bool MatchAndExplain(Container container, | |
5119 MatchResultListener* listener) const override { | |
5120 SizeType size = container.size(); | |
5121 StringMatchResultListener size_listener; | |
5122 const bool result = size_matcher_.MatchAndExplain(size, &size_listener); | |
5123 *listener | |
5124 << "whose size " << size << (result ? " matches" : " doesn't match"); | |
5125 PrintIfNotEmpty(size_listener.str(), listener->stream()); | |
5126 return result; | |
5127 } | |
5128 | |
5129 private: | |
5130 const Matcher<SizeType> size_matcher_; | |
5131 }; | |
5132 | |
5133 private: | |
5134 const SizeMatcher size_matcher_; | |
5135 }; | |
5136 | |
5137 // Implements a matcher that checks the begin()..end() distance of an STL-style | |
5138 // container. | |
5139 template <typename DistanceMatcher> | |
5140 class BeginEndDistanceIsMatcher { | |
5141 public: | |
5142 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) | |
5143 : distance_matcher_(distance_matcher) {} | |
5144 | |
5145 template <typename Container> | |
5146 operator Matcher<Container>() const { | |
5147 return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); | |
5148 } | |
5149 | |
5150 template <typename Container> | |
5151 class Impl : public MatcherInterface<Container> { | |
5152 public: | |
5153 typedef internal::StlContainerView< | |
5154 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; | |
5155 typedef typename std::iterator_traits< | |
5156 typename ContainerView::type::const_iterator>::difference_type | |
5157 DistanceType; | |
5158 explicit Impl(const DistanceMatcher& distance_matcher) | |
5159 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} | |
5160 | |
5161 void DescribeTo(::std::ostream* os) const override { | |
5162 *os << "distance between begin() and end() "; | |
5163 distance_matcher_.DescribeTo(os); | |
5164 } | |
5165 void DescribeNegationTo(::std::ostream* os) const override { | |
5166 *os << "distance between begin() and end() "; | |
5167 distance_matcher_.DescribeNegationTo(os); | |
5168 } | |
5169 | |
5170 bool MatchAndExplain(Container container, | |
5171 MatchResultListener* listener) const override { | |
5172 using std::begin; | |
5173 using std::end; | |
5174 DistanceType distance = std::distance(begin(container), end(container)); | |
5175 StringMatchResultListener distance_listener; | |
5176 const bool result = | |
5177 distance_matcher_.MatchAndExplain(distance, &distance_listener); | |
5178 *listener << "whose distance between begin() and end() " << distance | |
5179 << (result ? " matches" : " doesn't match"); | |
5180 PrintIfNotEmpty(distance_listener.str(), listener->stream()); | |
5181 return result; | |
5182 } | |
5183 | |
5184 private: | |
5185 const Matcher<DistanceType> distance_matcher_; | |
5186 }; | |
5187 | |
5188 private: | |
5189 const DistanceMatcher distance_matcher_; | |
5190 }; | |
5191 | |
5192 // Implements an equality matcher for any STL-style container whose elements | |
5193 // support ==. This matcher is like Eq(), but its failure explanations provide | |
5194 // more detailed information that is useful when the container is used as a set. | |
5195 // The failure message reports elements that are in one of the operands but not | |
5196 // the other. The failure messages do not report duplicate or out-of-order | |
5197 // elements in the containers (which don't properly matter to sets, but can | |
5198 // occur if the containers are vectors or lists, for example). | |
5199 // | |
5200 // Uses the container's const_iterator, value_type, operator ==, | |
5201 // begin(), and end(). | |
5202 template <typename Container> | |
5203 class ContainerEqMatcher { | |
5204 public: | |
5205 typedef internal::StlContainerView<Container> View; | |
5206 typedef typename View::type StlContainer; | |
5207 typedef typename View::const_reference StlContainerReference; | |
5208 | |
5209 static_assert(!std::is_const<Container>::value, | |
5210 "Container type must not be const"); | |
5211 static_assert(!std::is_reference<Container>::value, | |
5212 "Container type must not be a reference"); | |
5213 | |
5214 // We make a copy of expected in case the elements in it are modified | |
5215 // after this matcher is created. | |
5216 explicit ContainerEqMatcher(const Container& expected) | |
5217 : expected_(View::Copy(expected)) {} | |
5218 | |
5219 void DescribeTo(::std::ostream* os) const { | |
5220 *os << "equals "; | |
5221 UniversalPrint(expected_, os); | |
5222 } | |
5223 void DescribeNegationTo(::std::ostream* os) const { | |
5224 *os << "does not equal "; | |
5225 UniversalPrint(expected_, os); | |
5226 } | |
5227 | |
5228 template <typename LhsContainer> | |
5229 bool MatchAndExplain(const LhsContainer& lhs, | |
5230 MatchResultListener* listener) const { | |
5231 typedef internal::StlContainerView< | |
5232 typename std::remove_const<LhsContainer>::type> | |
5233 LhsView; | |
5234 typedef typename LhsView::type LhsStlContainer; | |
5235 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | |
5236 if (lhs_stl_container == expected_) | |
5237 return true; | |
5238 | |
5239 ::std::ostream* const os = listener->stream(); | |
5240 if (os != nullptr) { | |
5241 // Something is different. Check for extra values first. | |
5242 bool printed_header = false; | |
5243 for (typename LhsStlContainer::const_iterator it = | |
5244 lhs_stl_container.begin(); | |
5245 it != lhs_stl_container.end(); ++it) { | |
5246 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == | |
5247 expected_.end()) { | |
5248 if (printed_header) { | |
5249 *os << ", "; | |
5250 } else { | |
5251 *os << "which has these unexpected elements: "; | |
5252 printed_header = true; | |
5253 } | |
5254 UniversalPrint(*it, os); | |
5255 } | |
5256 } | |
5257 | |
5258 // Now check for missing values. | |
5259 bool printed_header2 = false; | |
5260 for (typename StlContainer::const_iterator it = expected_.begin(); | |
5261 it != expected_.end(); ++it) { | |
5262 if (internal::ArrayAwareFind( | |
5263 lhs_stl_container.begin(), lhs_stl_container.end(), *it) == | |
5264 lhs_stl_container.end()) { | |
5265 if (printed_header2) { | |
5266 *os << ", "; | |
5267 } else { | |
5268 *os << (printed_header ? ",\nand" : "which") | |
5269 << " doesn't have these expected elements: "; | |
5270 printed_header2 = true; | |
5271 } | |
5272 UniversalPrint(*it, os); | |
5273 } | |
5274 } | |
5275 } | |
5276 | |
5277 return false; | |
5278 } | |
5279 | |
5280 private: | |
5281 const StlContainer expected_; | |
5282 }; | |
5283 | |
5284 // A comparator functor that uses the < operator to compare two values. | |
5285 struct LessComparator { | |
5286 template <typename T, typename U> | |
5287 bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } | |
5288 }; | |
5289 | |
5290 // Implements WhenSortedBy(comparator, container_matcher). | |
5291 template <typename Comparator, typename ContainerMatcher> | |
5292 class WhenSortedByMatcher { | |
5293 public: | |
5294 WhenSortedByMatcher(const Comparator& comparator, | |
5295 const ContainerMatcher& matcher) | |
5296 : comparator_(comparator), matcher_(matcher) {} | |
5297 | |
5298 template <typename LhsContainer> | |
5299 operator Matcher<LhsContainer>() const { | |
5300 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); | |
5301 } | |
5302 | |
5303 template <typename LhsContainer> | |
5304 class Impl : public MatcherInterface<LhsContainer> { | |
5305 public: | |
5306 typedef internal::StlContainerView< | |
5307 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | |
5308 typedef typename LhsView::type LhsStlContainer; | |
5309 typedef typename LhsView::const_reference LhsStlContainerReference; | |
5310 // Transforms std::pair<const Key, Value> into std::pair<Key, Value> | |
5311 // so that we can match associative containers. | |
5312 typedef typename RemoveConstFromKey< | |
5313 typename LhsStlContainer::value_type>::type LhsValue; | |
5314 | |
5315 Impl(const Comparator& comparator, const ContainerMatcher& matcher) | |
5316 : comparator_(comparator), matcher_(matcher) {} | |
5317 | |
5318 void DescribeTo(::std::ostream* os) const override { | |
5319 *os << "(when sorted) "; | |
5320 matcher_.DescribeTo(os); | |
5321 } | |
5322 | |
5323 void DescribeNegationTo(::std::ostream* os) const override { | |
5324 *os << "(when sorted) "; | |
5325 matcher_.DescribeNegationTo(os); | |
5326 } | |
5327 | |
5328 bool MatchAndExplain(LhsContainer lhs, | |
5329 MatchResultListener* listener) const override { | |
5330 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | |
5331 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), | |
5332 lhs_stl_container.end()); | |
5333 ::std::sort( | |
5334 sorted_container.begin(), sorted_container.end(), comparator_); | |
5335 | |
5336 if (!listener->IsInterested()) { | |
5337 // If the listener is not interested, we do not need to | |
5338 // construct the inner explanation. | |
5339 return matcher_.Matches(sorted_container); | |
5340 } | |
5341 | |
5342 *listener << "which is "; | |
5343 UniversalPrint(sorted_container, listener->stream()); | |
5344 *listener << " when sorted"; | |
5345 | |
5346 StringMatchResultListener inner_listener; | |
5347 const bool match = matcher_.MatchAndExplain(sorted_container, | |
5348 &inner_listener); | |
5349 PrintIfNotEmpty(inner_listener.str(), listener->stream()); | |
5350 return match; | |
5351 } | |
5352 | |
5353 private: | |
5354 const Comparator comparator_; | |
5355 const Matcher<const ::std::vector<LhsValue>&> matcher_; | |
5356 | |
5357 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | |
5358 }; | |
5359 | |
5360 private: | |
5361 const Comparator comparator_; | |
5362 const ContainerMatcher matcher_; | |
5363 }; | |
5364 | |
5365 // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher | |
5366 // must be able to be safely cast to Matcher<std::tuple<const T1&, const | |
5367 // T2&> >, where T1 and T2 are the types of elements in the LHS | |
5368 // container and the RHS container respectively. | |
5369 template <typename TupleMatcher, typename RhsContainer> | |
5370 class PointwiseMatcher { | |
5371 GTEST_COMPILE_ASSERT_( | |
5372 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, | |
5373 use_UnorderedPointwise_with_hash_tables); | |
5374 | |
5375 public: | |
5376 typedef internal::StlContainerView<RhsContainer> RhsView; | |
5377 typedef typename RhsView::type RhsStlContainer; | |
5378 typedef typename RhsStlContainer::value_type RhsValue; | |
5379 | |
5380 static_assert(!std::is_const<RhsContainer>::value, | |
5381 "RhsContainer type must not be const"); | |
5382 static_assert(!std::is_reference<RhsContainer>::value, | |
5383 "RhsContainer type must not be a reference"); | |
5384 | |
5385 // Like ContainerEq, we make a copy of rhs in case the elements in | |
5386 // it are modified after this matcher is created. | |
5387 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) | |
5388 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} | |
5389 | |
5390 template <typename LhsContainer> | |
5391 operator Matcher<LhsContainer>() const { | |
5392 GTEST_COMPILE_ASSERT_( | |
5393 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, | |
5394 use_UnorderedPointwise_with_hash_tables); | |
5395 | |
5396 return Matcher<LhsContainer>( | |
5397 new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); | |
5398 } | |
5399 | |
5400 template <typename LhsContainer> | |
5401 class Impl : public MatcherInterface<LhsContainer> { | |
5402 public: | |
5403 typedef internal::StlContainerView< | |
5404 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | |
5405 typedef typename LhsView::type LhsStlContainer; | |
5406 typedef typename LhsView::const_reference LhsStlContainerReference; | |
5407 typedef typename LhsStlContainer::value_type LhsValue; | |
5408 // We pass the LHS value and the RHS value to the inner matcher by | |
5409 // reference, as they may be expensive to copy. We must use tuple | |
5410 // instead of pair here, as a pair cannot hold references (C++ 98, | |
5411 // 20.2.2 [lib.pairs]). | |
5412 typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; | |
5413 | |
5414 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) | |
5415 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. | |
5416 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), | |
5417 rhs_(rhs) {} | |
5418 | |
5419 void DescribeTo(::std::ostream* os) const override { | |
5420 *os << "contains " << rhs_.size() | |
5421 << " values, where each value and its corresponding value in "; | |
5422 UniversalPrinter<RhsStlContainer>::Print(rhs_, os); | |
5423 *os << " "; | |
5424 mono_tuple_matcher_.DescribeTo(os); | |
5425 } | |
5426 void DescribeNegationTo(::std::ostream* os) const override { | |
5427 *os << "doesn't contain exactly " << rhs_.size() | |
5428 << " values, or contains a value x at some index i" | |
5429 << " where x and the i-th value of "; | |
5430 UniversalPrint(rhs_, os); | |
5431 *os << " "; | |
5432 mono_tuple_matcher_.DescribeNegationTo(os); | |
5433 } | |
5434 | |
5435 bool MatchAndExplain(LhsContainer lhs, | |
5436 MatchResultListener* listener) const override { | |
5437 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | |
5438 const size_t actual_size = lhs_stl_container.size(); | |
5439 if (actual_size != rhs_.size()) { | |
5440 *listener << "which contains " << actual_size << " values"; | |
5441 return false; | |
5442 } | |
5443 | |
5444 typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); | |
5445 typename RhsStlContainer::const_iterator right = rhs_.begin(); | |
5446 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { | |
5447 if (listener->IsInterested()) { | |
5448 StringMatchResultListener inner_listener; | |
5449 // Create InnerMatcherArg as a temporarily object to avoid it outlives | |
5450 // *left and *right. Dereference or the conversion to `const T&` may | |
5451 // return temp objects, e.g for vector<bool>. | |
5452 if (!mono_tuple_matcher_.MatchAndExplain( | |
5453 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), | |
5454 ImplicitCast_<const RhsValue&>(*right)), | |
5455 &inner_listener)) { | |
5456 *listener << "where the value pair ("; | |
5457 UniversalPrint(*left, listener->stream()); | |
5458 *listener << ", "; | |
5459 UniversalPrint(*right, listener->stream()); | |
5460 *listener << ") at index #" << i << " don't match"; | |
5461 PrintIfNotEmpty(inner_listener.str(), listener->stream()); | |
5462 return false; | |
5463 } | |
5464 } else { | |
5465 if (!mono_tuple_matcher_.Matches( | |
5466 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), | |
5467 ImplicitCast_<const RhsValue&>(*right)))) | |
5468 return false; | |
5469 } | |
5470 } | |
5471 | |
5472 return true; | |
5473 } | |
5474 | |
5475 private: | |
5476 const Matcher<InnerMatcherArg> mono_tuple_matcher_; | |
5477 const RhsStlContainer rhs_; | |
5478 }; | |
5479 | |
5480 private: | |
5481 const TupleMatcher tuple_matcher_; | |
5482 const RhsStlContainer rhs_; | |
5483 }; | |
5484 | |
5485 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. | |
5486 template <typename Container> | |
5487 class QuantifierMatcherImpl : public MatcherInterface<Container> { | |
5488 public: | |
5489 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | |
5490 typedef StlContainerView<RawContainer> View; | |
5491 typedef typename View::type StlContainer; | |
5492 typedef typename View::const_reference StlContainerReference; | |
5493 typedef typename StlContainer::value_type Element; | |
5494 | |
5495 template <typename InnerMatcher> | |
5496 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) | |
5497 : inner_matcher_( | |
5498 testing::SafeMatcherCast<const Element&>(inner_matcher)) {} | |
5499 | |
5500 // Checks whether: | |
5501 // * All elements in the container match, if all_elements_should_match. | |
5502 // * Any element in the container matches, if !all_elements_should_match. | |
5503 bool MatchAndExplainImpl(bool all_elements_should_match, | |
5504 Container container, | |
5505 MatchResultListener* listener) const { | |
5506 StlContainerReference stl_container = View::ConstReference(container); | |
5507 size_t i = 0; | |
5508 for (typename StlContainer::const_iterator it = stl_container.begin(); | |
5509 it != stl_container.end(); ++it, ++i) { | |
5510 StringMatchResultListener inner_listener; | |
5511 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); | |
5512 | |
5513 if (matches != all_elements_should_match) { | |
5514 *listener << "whose element #" << i | |
5515 << (matches ? " matches" : " doesn't match"); | |
5516 PrintIfNotEmpty(inner_listener.str(), listener->stream()); | |
5517 return !all_elements_should_match; | |
5518 } | |
5519 } | |
5520 return all_elements_should_match; | |
5521 } | |
5522 | |
5523 protected: | |
5524 const Matcher<const Element&> inner_matcher_; | |
5525 }; | |
5526 | |
5527 // Implements Contains(element_matcher) for the given argument type Container. | |
5528 // Symmetric to EachMatcherImpl. | |
5529 template <typename Container> | |
5530 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { | |
5531 public: | |
5532 template <typename InnerMatcher> | |
5533 explicit ContainsMatcherImpl(InnerMatcher inner_matcher) | |
5534 : QuantifierMatcherImpl<Container>(inner_matcher) {} | |
5535 | |
5536 // Describes what this matcher does. | |
5537 void DescribeTo(::std::ostream* os) const override { | |
5538 *os << "contains at least one element that "; | |
5539 this->inner_matcher_.DescribeTo(os); | |
5540 } | |
5541 | |
5542 void DescribeNegationTo(::std::ostream* os) const override { | |
5543 *os << "doesn't contain any element that "; | |
5544 this->inner_matcher_.DescribeTo(os); | |
5545 } | |
5546 | |
5547 bool MatchAndExplain(Container container, | |
5548 MatchResultListener* listener) const override { | |
5549 return this->MatchAndExplainImpl(false, container, listener); | |
5550 } | |
5551 }; | |
5552 | |
5553 // Implements Each(element_matcher) for the given argument type Container. | |
5554 // Symmetric to ContainsMatcherImpl. | |
5555 template <typename Container> | |
5556 class EachMatcherImpl : public QuantifierMatcherImpl<Container> { | |
5557 public: | |
5558 template <typename InnerMatcher> | |
5559 explicit EachMatcherImpl(InnerMatcher inner_matcher) | |
5560 : QuantifierMatcherImpl<Container>(inner_matcher) {} | |
5561 | |
5562 // Describes what this matcher does. | |
5563 void DescribeTo(::std::ostream* os) const override { | |
5564 *os << "only contains elements that "; | |
5565 this->inner_matcher_.DescribeTo(os); | |
5566 } | |
5567 | |
5568 void DescribeNegationTo(::std::ostream* os) const override { | |
5569 *os << "contains some element that "; | |
5570 this->inner_matcher_.DescribeNegationTo(os); | |
5571 } | |
5572 | |
5573 bool MatchAndExplain(Container container, | |
5574 MatchResultListener* listener) const override { | |
5575 return this->MatchAndExplainImpl(true, container, listener); | |
5576 } | |
5577 }; | |
5578 | |
5579 // Implements polymorphic Contains(element_matcher). | |
5580 template <typename M> | |
5581 class ContainsMatcher { | |
5582 public: | |
5583 explicit ContainsMatcher(M m) : inner_matcher_(m) {} | |
5584 | |
5585 template <typename Container> | |
5586 operator Matcher<Container>() const { | |
5587 return Matcher<Container>( | |
5588 new ContainsMatcherImpl<const Container&>(inner_matcher_)); | |
5589 } | |
5590 | |
5591 private: | |
5592 const M inner_matcher_; | |
5593 }; | |
5594 | |
5595 // Implements polymorphic Each(element_matcher). | |
5596 template <typename M> | |
5597 class EachMatcher { | |
5598 public: | |
5599 explicit EachMatcher(M m) : inner_matcher_(m) {} | |
5600 | |
5601 template <typename Container> | |
5602 operator Matcher<Container>() const { | |
5603 return Matcher<Container>( | |
5604 new EachMatcherImpl<const Container&>(inner_matcher_)); | |
5605 } | |
5606 | |
5607 private: | |
5608 const M inner_matcher_; | |
5609 }; | |
5610 | |
5611 struct Rank1 {}; | |
5612 struct Rank0 : Rank1 {}; | |
5613 | |
5614 namespace pair_getters { | |
5615 using std::get; | |
5616 template <typename T> | |
5617 auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT | |
5618 return get<0>(x); | |
5619 } | |
5620 template <typename T> | |
5621 auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT | |
5622 return x.first; | |
5623 } | |
5624 | |
5625 template <typename T> | |
5626 auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT | |
5627 return get<1>(x); | |
5628 } | |
5629 template <typename T> | |
5630 auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT | |
5631 return x.second; | |
5632 } | |
5633 } // namespace pair_getters | |
5634 | |
5635 // Implements Key(inner_matcher) for the given argument pair type. | |
5636 // Key(inner_matcher) matches an std::pair whose 'first' field matches | |
5637 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an | |
5638 // std::map that contains at least one element whose key is >= 5. | |
5639 template <typename PairType> | |
5640 class KeyMatcherImpl : public MatcherInterface<PairType> { | |
5641 public: | |
5642 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | |
5643 typedef typename RawPairType::first_type KeyType; | |
5644 | |
5645 template <typename InnerMatcher> | |
5646 explicit KeyMatcherImpl(InnerMatcher inner_matcher) | |
5647 : inner_matcher_( | |
5648 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { | |
5649 } | |
5650 | |
5651 // Returns true if and only if 'key_value.first' (the key) matches the inner | |
5652 // matcher. | |
5653 bool MatchAndExplain(PairType key_value, | |
5654 MatchResultListener* listener) const override { | |
5655 StringMatchResultListener inner_listener; | |
5656 const bool match = inner_matcher_.MatchAndExplain( | |
5657 pair_getters::First(key_value, Rank0()), &inner_listener); | |
5658 const std::string explanation = inner_listener.str(); | |
5659 if (explanation != "") { | |
5660 *listener << "whose first field is a value " << explanation; | |
5661 } | |
5662 return match; | |
5663 } | |
5664 | |
5665 // Describes what this matcher does. | |
5666 void DescribeTo(::std::ostream* os) const override { | |
5667 *os << "has a key that "; | |
5668 inner_matcher_.DescribeTo(os); | |
5669 } | |
5670 | |
5671 // Describes what the negation of this matcher does. | |
5672 void DescribeNegationTo(::std::ostream* os) const override { | |
5673 *os << "doesn't have a key that "; | |
5674 inner_matcher_.DescribeTo(os); | |
5675 } | |
5676 | |
5677 private: | |
5678 const Matcher<const KeyType&> inner_matcher_; | |
5679 }; | |
5680 | |
5681 // Implements polymorphic Key(matcher_for_key). | |
5682 template <typename M> | |
5683 class KeyMatcher { | |
5684 public: | |
5685 explicit KeyMatcher(M m) : matcher_for_key_(m) {} | |
5686 | |
5687 template <typename PairType> | |
5688 operator Matcher<PairType>() const { | |
5689 return Matcher<PairType>( | |
5690 new KeyMatcherImpl<const PairType&>(matcher_for_key_)); | |
5691 } | |
5692 | |
5693 private: | |
5694 const M matcher_for_key_; | |
5695 }; | |
5696 | |
5697 // Implements polymorphic Address(matcher_for_address). | |
5698 template <typename InnerMatcher> | |
5699 class AddressMatcher { | |
5700 public: | |
5701 explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} | |
5702 | |
5703 template <typename Type> | |
5704 operator Matcher<Type>() const { // NOLINT | |
5705 return Matcher<Type>(new Impl<const Type&>(matcher_)); | |
5706 } | |
5707 | |
5708 private: | |
5709 // The monomorphic implementation that works for a particular object type. | |
5710 template <typename Type> | |
5711 class Impl : public MatcherInterface<Type> { | |
5712 public: | |
5713 using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; | |
5714 explicit Impl(const InnerMatcher& matcher) | |
5715 : matcher_(MatcherCast<Address>(matcher)) {} | |
5716 | |
5717 void DescribeTo(::std::ostream* os) const override { | |
5718 *os << "has address that "; | |
5719 matcher_.DescribeTo(os); | |
5720 } | |
5721 | |
5722 void DescribeNegationTo(::std::ostream* os) const override { | |
5723 *os << "does not have address that "; | |
5724 matcher_.DescribeTo(os); | |
5725 } | |
5726 | |
5727 bool MatchAndExplain(Type object, | |
5728 MatchResultListener* listener) const override { | |
5729 *listener << "which has address "; | |
5730 Address address = std::addressof(object); | |
5731 return MatchPrintAndExplain(address, matcher_, listener); | |
5732 } | |
5733 | |
5734 private: | |
5735 const Matcher<Address> matcher_; | |
5736 }; | |
5737 const InnerMatcher matcher_; | |
5738 }; | |
5739 | |
5740 // Implements Pair(first_matcher, second_matcher) for the given argument pair | |
5741 // type with its two matchers. See Pair() function below. | |
5742 template <typename PairType> | |
5743 class PairMatcherImpl : public MatcherInterface<PairType> { | |
5744 public: | |
5745 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | |
5746 typedef typename RawPairType::first_type FirstType; | |
5747 typedef typename RawPairType::second_type SecondType; | |
5748 | |
5749 template <typename FirstMatcher, typename SecondMatcher> | |
5750 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) | |
5751 : first_matcher_( | |
5752 testing::SafeMatcherCast<const FirstType&>(first_matcher)), | |
5753 second_matcher_( | |
5754 testing::SafeMatcherCast<const SecondType&>(second_matcher)) { | |
5755 } | |
5756 | |
5757 // Describes what this matcher does. | |
5758 void DescribeTo(::std::ostream* os) const override { | |
5759 *os << "has a first field that "; | |
5760 first_matcher_.DescribeTo(os); | |
5761 *os << ", and has a second field that "; | |
5762 second_matcher_.DescribeTo(os); | |
5763 } | |
5764 | |
5765 // Describes what the negation of this matcher does. | |
5766 void DescribeNegationTo(::std::ostream* os) const override { | |
5767 *os << "has a first field that "; | |
5768 first_matcher_.DescribeNegationTo(os); | |
5769 *os << ", or has a second field that "; | |
5770 second_matcher_.DescribeNegationTo(os); | |
5771 } | |
5772 | |
5773 // Returns true if and only if 'a_pair.first' matches first_matcher and | |
5774 // 'a_pair.second' matches second_matcher. | |
5775 bool MatchAndExplain(PairType a_pair, | |
5776 MatchResultListener* listener) const override { | |
5777 if (!listener->IsInterested()) { | |
5778 // If the listener is not interested, we don't need to construct the | |
5779 // explanation. | |
5780 return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && | |
5781 second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); | |
5782 } | |
5783 StringMatchResultListener first_inner_listener; | |
5784 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), | |
5785 &first_inner_listener)) { | |
5786 *listener << "whose first field does not match"; | |
5787 PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); | |
5788 return false; | |
5789 } | |
5790 StringMatchResultListener second_inner_listener; | |
5791 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), | |
5792 &second_inner_listener)) { | |
5793 *listener << "whose second field does not match"; | |
5794 PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); | |
5795 return false; | |
5796 } | |
5797 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), | |
5798 listener); | |
5799 return true; | |
5800 } | |
5801 | |
5802 private: | |
5803 void ExplainSuccess(const std::string& first_explanation, | |
5804 const std::string& second_explanation, | |
5805 MatchResultListener* listener) const { | |
5806 *listener << "whose both fields match"; | |
5807 if (first_explanation != "") { | |
5808 *listener << ", where the first field is a value " << first_explanation; | |
5809 } | |
5810 if (second_explanation != "") { | |
5811 *listener << ", "; | |
5812 if (first_explanation != "") { | |
5813 *listener << "and "; | |
5814 } else { | |
5815 *listener << "where "; | |
5816 } | |
5817 *listener << "the second field is a value " << second_explanation; | |
5818 } | |
5819 } | |
5820 | |
5821 const Matcher<const FirstType&> first_matcher_; | |
5822 const Matcher<const SecondType&> second_matcher_; | |
5823 }; | |
5824 | |
5825 // Implements polymorphic Pair(first_matcher, second_matcher). | |
5826 template <typename FirstMatcher, typename SecondMatcher> | |
5827 class PairMatcher { | |
5828 public: | |
5829 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) | |
5830 : first_matcher_(first_matcher), second_matcher_(second_matcher) {} | |
5831 | |
5832 template <typename PairType> | |
5833 operator Matcher<PairType> () const { | |
5834 return Matcher<PairType>( | |
5835 new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); | |
5836 } | |
5837 | |
5838 private: | |
5839 const FirstMatcher first_matcher_; | |
5840 const SecondMatcher second_matcher_; | |
5841 }; | |
5842 | |
5843 template <typename T, size_t... I> | |
5844 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) | |
5845 -> decltype(std::tie(get<I>(t)...)) { | |
5846 static_assert(std::tuple_size<T>::value == sizeof...(I), | |
5847 "Number of arguments doesn't match the number of fields."); | |
5848 return std::tie(get<I>(t)...); | |
5849 } | |
5850 | |
5851 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 | |
5852 template <typename T> | |
5853 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { | |
5854 const auto& [a] = t; | |
5855 return std::tie(a); | |
5856 } | |
5857 template <typename T> | |
5858 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { | |
5859 const auto& [a, b] = t; | |
5860 return std::tie(a, b); | |
5861 } | |
5862 template <typename T> | |
5863 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { | |
5864 const auto& [a, b, c] = t; | |
5865 return std::tie(a, b, c); | |
5866 } | |
5867 template <typename T> | |
5868 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { | |
5869 const auto& [a, b, c, d] = t; | |
5870 return std::tie(a, b, c, d); | |
5871 } | |
5872 template <typename T> | |
5873 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { | |
5874 const auto& [a, b, c, d, e] = t; | |
5875 return std::tie(a, b, c, d, e); | |
5876 } | |
5877 template <typename T> | |
5878 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { | |
5879 const auto& [a, b, c, d, e, f] = t; | |
5880 return std::tie(a, b, c, d, e, f); | |
5881 } | |
5882 template <typename T> | |
5883 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { | |
5884 const auto& [a, b, c, d, e, f, g] = t; | |
5885 return std::tie(a, b, c, d, e, f, g); | |
5886 } | |
5887 template <typename T> | |
5888 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { | |
5889 const auto& [a, b, c, d, e, f, g, h] = t; | |
5890 return std::tie(a, b, c, d, e, f, g, h); | |
5891 } | |
5892 template <typename T> | |
5893 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { | |
5894 const auto& [a, b, c, d, e, f, g, h, i] = t; | |
5895 return std::tie(a, b, c, d, e, f, g, h, i); | |
5896 } | |
5897 template <typename T> | |
5898 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { | |
5899 const auto& [a, b, c, d, e, f, g, h, i, j] = t; | |
5900 return std::tie(a, b, c, d, e, f, g, h, i, j); | |
5901 } | |
5902 template <typename T> | |
5903 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { | |
5904 const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; | |
5905 return std::tie(a, b, c, d, e, f, g, h, i, j, k); | |
5906 } | |
5907 template <typename T> | |
5908 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { | |
5909 const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; | |
5910 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); | |
5911 } | |
5912 template <typename T> | |
5913 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { | |
5914 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; | |
5915 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); | |
5916 } | |
5917 template <typename T> | |
5918 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { | |
5919 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; | |
5920 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); | |
5921 } | |
5922 template <typename T> | |
5923 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { | |
5924 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; | |
5925 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); | |
5926 } | |
5927 template <typename T> | |
5928 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { | |
5929 const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; | |
5930 return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); | |
5931 } | |
5932 #endif // defined(__cpp_structured_bindings) | |
5933 | |
5934 template <size_t I, typename T> | |
5935 auto UnpackStruct(const T& t) | |
5936 -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { | |
5937 return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); | |
5938 } | |
5939 | |
5940 // Helper function to do comma folding in C++11. | |
5941 // The array ensures left-to-right order of evaluation. | |
5942 // Usage: VariadicExpand({expr...}); | |
5943 template <typename T, size_t N> | |
5944 void VariadicExpand(const T (&)[N]) {} | |
5945 | |
5946 template <typename Struct, typename StructSize> | |
5947 class FieldsAreMatcherImpl; | |
5948 | |
5949 template <typename Struct, size_t... I> | |
5950 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> | |
5951 : public MatcherInterface<Struct> { | |
5952 using UnpackedType = | |
5953 decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); | |
5954 using MatchersType = std::tuple< | |
5955 Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; | |
5956 | |
5957 public: | |
5958 template <typename Inner> | |
5959 explicit FieldsAreMatcherImpl(const Inner& matchers) | |
5960 : matchers_(testing::SafeMatcherCast< | |
5961 const typename std::tuple_element<I, UnpackedType>::type&>( | |
5962 std::get<I>(matchers))...) {} | |
5963 | |
5964 void DescribeTo(::std::ostream* os) const override { | |
5965 const char* separator = ""; | |
5966 VariadicExpand( | |
5967 {(*os << separator << "has field #" << I << " that ", | |
5968 std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); | |
5969 } | |
5970 | |
5971 void DescribeNegationTo(::std::ostream* os) const override { | |
5972 const char* separator = ""; | |
5973 VariadicExpand({(*os << separator << "has field #" << I << " that ", | |
5974 std::get<I>(matchers_).DescribeNegationTo(os), | |
5975 separator = ", or ")...}); | |
5976 } | |
5977 | |
5978 bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { | |
5979 return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); | |
5980 } | |
5981 | |
5982 private: | |
5983 bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { | |
5984 if (!listener->IsInterested()) { | |
5985 // If the listener is not interested, we don't need to construct the | |
5986 // explanation. | |
5987 bool good = true; | |
5988 VariadicExpand({good = good && std::get<I>(matchers_).Matches( | |
5989 std::get<I>(tuple))...}); | |
5990 return good; | |
5991 } | |
5992 | |
5993 size_t failed_pos = ~size_t{}; | |
5994 | |
5995 std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); | |
5996 | |
5997 VariadicExpand( | |
5998 {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( | |
5999 std::get<I>(tuple), &inner_listener[I]) | |
6000 ? failed_pos = I | |
6001 : 0 ...}); | |
6002 if (failed_pos != ~size_t{}) { | |
6003 *listener << "whose field #" << failed_pos << " does not match"; | |
6004 PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); | |
6005 return false; | |
6006 } | |
6007 | |
6008 *listener << "whose all elements match"; | |
6009 const char* separator = ", where"; | |
6010 for (size_t index = 0; index < sizeof...(I); ++index) { | |
6011 const std::string str = inner_listener[index].str(); | |
6012 if (!str.empty()) { | |
6013 *listener << separator << " field #" << index << " is a value " << str; | |
6014 separator = ", and"; | |
6015 } | |
6016 } | |
6017 | |
6018 return true; | |
6019 } | |
6020 | |
6021 MatchersType matchers_; | |
6022 }; | |
6023 | |
6024 template <typename... Inner> | |
6025 class FieldsAreMatcher { | |
6026 public: | |
6027 explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} | |
6028 | |
6029 template <typename Struct> | |
6030 operator Matcher<Struct>() const { // NOLINT | |
6031 return Matcher<Struct>( | |
6032 new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( | |
6033 matchers_)); | |
6034 } | |
6035 | |
6036 private: | |
6037 std::tuple<Inner...> matchers_; | |
6038 }; | |
6039 | |
6040 // Implements ElementsAre() and ElementsAreArray(). | |
6041 template <typename Container> | |
6042 class ElementsAreMatcherImpl : public MatcherInterface<Container> { | |
6043 public: | |
6044 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | |
6045 typedef internal::StlContainerView<RawContainer> View; | |
6046 typedef typename View::type StlContainer; | |
6047 typedef typename View::const_reference StlContainerReference; | |
6048 typedef typename StlContainer::value_type Element; | |
6049 | |
6050 // Constructs the matcher from a sequence of element values or | |
6051 // element matchers. | |
6052 template <typename InputIter> | |
6053 ElementsAreMatcherImpl(InputIter first, InputIter last) { | |
6054 while (first != last) { | |
6055 matchers_.push_back(MatcherCast<const Element&>(*first++)); | |
6056 } | |
6057 } | |
6058 | |
6059 // Describes what this matcher does. | |
6060 void DescribeTo(::std::ostream* os) const override { | |
6061 if (count() == 0) { | |
6062 *os << "is empty"; | |
6063 } else if (count() == 1) { | |
6064 *os << "has 1 element that "; | |
6065 matchers_[0].DescribeTo(os); | |
6066 } else { | |
6067 *os << "has " << Elements(count()) << " where\n"; | |
6068 for (size_t i = 0; i != count(); ++i) { | |
6069 *os << "element #" << i << " "; | |
6070 matchers_[i].DescribeTo(os); | |
6071 if (i + 1 < count()) { | |
6072 *os << ",\n"; | |
6073 } | |
6074 } | |
6075 } | |
6076 } | |
6077 | |
6078 // Describes what the negation of this matcher does. | |
6079 void DescribeNegationTo(::std::ostream* os) const override { | |
6080 if (count() == 0) { | |
6081 *os << "isn't empty"; | |
6082 return; | |
6083 } | |
6084 | |
6085 *os << "doesn't have " << Elements(count()) << ", or\n"; | |
6086 for (size_t i = 0; i != count(); ++i) { | |
6087 *os << "element #" << i << " "; | |
6088 matchers_[i].DescribeNegationTo(os); | |
6089 if (i + 1 < count()) { | |
6090 *os << ", or\n"; | |
6091 } | |
6092 } | |
6093 } | |
6094 | |
6095 bool MatchAndExplain(Container container, | |
6096 MatchResultListener* listener) const override { | |
6097 // To work with stream-like "containers", we must only walk | |
6098 // through the elements in one pass. | |
6099 | |
6100 const bool listener_interested = listener->IsInterested(); | |
6101 | |
6102 // explanations[i] is the explanation of the element at index i. | |
6103 ::std::vector<std::string> explanations(count()); | |
6104 StlContainerReference stl_container = View::ConstReference(container); | |
6105 typename StlContainer::const_iterator it = stl_container.begin(); | |
6106 size_t exam_pos = 0; | |
6107 bool mismatch_found = false; // Have we found a mismatched element yet? | |
6108 | |
6109 // Go through the elements and matchers in pairs, until we reach | |
6110 // the end of either the elements or the matchers, or until we find a | |
6111 // mismatch. | |
6112 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { | |
6113 bool match; // Does the current element match the current matcher? | |
6114 if (listener_interested) { | |
6115 StringMatchResultListener s; | |
6116 match = matchers_[exam_pos].MatchAndExplain(*it, &s); | |
6117 explanations[exam_pos] = s.str(); | |
6118 } else { | |
6119 match = matchers_[exam_pos].Matches(*it); | |
6120 } | |
6121 | |
6122 if (!match) { | |
6123 mismatch_found = true; | |
6124 break; | |
6125 } | |
6126 } | |
6127 // If mismatch_found is true, 'exam_pos' is the index of the mismatch. | |
6128 | |
6129 // Find how many elements the actual container has. We avoid | |
6130 // calling size() s.t. this code works for stream-like "containers" | |
6131 // that don't define size(). | |
6132 size_t actual_count = exam_pos; | |
6133 for (; it != stl_container.end(); ++it) { | |
6134 ++actual_count; | |
6135 } | |
6136 | |
6137 if (actual_count != count()) { | |
6138 // The element count doesn't match. If the container is empty, | |
6139 // there's no need to explain anything as Google Mock already | |
6140 // prints the empty container. Otherwise we just need to show | |
6141 // how many elements there actually are. | |
6142 if (listener_interested && (actual_count != 0)) { | |
6143 *listener << "which has " << Elements(actual_count); | |
6144 } | |
6145 return false; | |
6146 } | |
6147 | |
6148 if (mismatch_found) { | |
6149 // The element count matches, but the exam_pos-th element doesn't match. | |
6150 if (listener_interested) { | |
6151 *listener << "whose element #" << exam_pos << " doesn't match"; | |
6152 PrintIfNotEmpty(explanations[exam_pos], listener->stream()); | |
6153 } | |
6154 return false; | |
6155 } | |
6156 | |
6157 // Every element matches its expectation. We need to explain why | |
6158 // (the obvious ones can be skipped). | |
6159 if (listener_interested) { | |
6160 bool reason_printed = false; | |
6161 for (size_t i = 0; i != count(); ++i) { | |
6162 const std::string& s = explanations[i]; | |
6163 if (!s.empty()) { | |
6164 if (reason_printed) { | |
6165 *listener << ",\nand "; | |
6166 } | |
6167 *listener << "whose element #" << i << " matches, " << s; | |
6168 reason_printed = true; | |
6169 } | |
6170 } | |
6171 } | |
6172 return true; | |
6173 } | |
6174 | |
6175 private: | |
6176 static Message Elements(size_t count) { | |
6177 return Message() << count << (count == 1 ? " element" : " elements"); | |
6178 } | |
6179 | |
6180 size_t count() const { return matchers_.size(); } | |
6181 | |
6182 ::std::vector<Matcher<const Element&> > matchers_; | |
6183 }; | |
6184 | |
6185 // Connectivity matrix of (elements X matchers), in element-major order. | |
6186 // Initially, there are no edges. | |
6187 // Use NextGraph() to iterate over all possible edge configurations. | |
6188 // Use Randomize() to generate a random edge configuration. | |
6189 class GTEST_API_ MatchMatrix { | |
6190 public: | |
6191 MatchMatrix(size_t num_elements, size_t num_matchers) | |
6192 : num_elements_(num_elements), | |
6193 num_matchers_(num_matchers), | |
6194 matched_(num_elements_* num_matchers_, 0) { | |
6195 } | |
6196 | |
6197 size_t LhsSize() const { return num_elements_; } | |
6198 size_t RhsSize() const { return num_matchers_; } | |
6199 bool HasEdge(size_t ilhs, size_t irhs) const { | |
6200 return matched_[SpaceIndex(ilhs, irhs)] == 1; | |
6201 } | |
6202 void SetEdge(size_t ilhs, size_t irhs, bool b) { | |
6203 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; | |
6204 } | |
6205 | |
6206 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, | |
6207 // adds 1 to that number; returns false if incrementing the graph left it | |
6208 // empty. | |
6209 bool NextGraph(); | |
6210 | |
6211 void Randomize(); | |
6212 | |
6213 std::string DebugString() const; | |
6214 | |
6215 private: | |
6216 size_t SpaceIndex(size_t ilhs, size_t irhs) const { | |
6217 return ilhs * num_matchers_ + irhs; | |
6218 } | |
6219 | |
6220 size_t num_elements_; | |
6221 size_t num_matchers_; | |
6222 | |
6223 // Each element is a char interpreted as bool. They are stored as a | |
6224 // flattened array in lhs-major order, use 'SpaceIndex()' to translate | |
6225 // a (ilhs, irhs) matrix coordinate into an offset. | |
6226 ::std::vector<char> matched_; | |
6227 }; | |
6228 | |
6229 typedef ::std::pair<size_t, size_t> ElementMatcherPair; | |
6230 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; | |
6231 | |
6232 // Returns a maximum bipartite matching for the specified graph 'g'. | |
6233 // The matching is represented as a vector of {element, matcher} pairs. | |
6234 GTEST_API_ ElementMatcherPairs | |
6235 FindMaxBipartiteMatching(const MatchMatrix& g); | |
6236 | |
6237 struct UnorderedMatcherRequire { | |
6238 enum Flags { | |
6239 Superset = 1 << 0, | |
6240 Subset = 1 << 1, | |
6241 ExactMatch = Superset | Subset, | |
6242 }; | |
6243 }; | |
6244 | |
6245 // Untyped base class for implementing UnorderedElementsAre. By | |
6246 // putting logic that's not specific to the element type here, we | |
6247 // reduce binary bloat and increase compilation speed. | |
6248 class GTEST_API_ UnorderedElementsAreMatcherImplBase { | |
6249 protected: | |
6250 explicit UnorderedElementsAreMatcherImplBase( | |
6251 UnorderedMatcherRequire::Flags matcher_flags) | |
6252 : match_flags_(matcher_flags) {} | |
6253 | |
6254 // A vector of matcher describers, one for each element matcher. | |
6255 // Does not own the describers (and thus can be used only when the | |
6256 // element matchers are alive). | |
6257 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; | |
6258 | |
6259 // Describes this UnorderedElementsAre matcher. | |
6260 void DescribeToImpl(::std::ostream* os) const; | |
6261 | |
6262 // Describes the negation of this UnorderedElementsAre matcher. | |
6263 void DescribeNegationToImpl(::std::ostream* os) const; | |
6264 | |
6265 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, | |
6266 const MatchMatrix& matrix, | |
6267 MatchResultListener* listener) const; | |
6268 | |
6269 bool FindPairing(const MatchMatrix& matrix, | |
6270 MatchResultListener* listener) const; | |
6271 | |
6272 MatcherDescriberVec& matcher_describers() { | |
6273 return matcher_describers_; | |
6274 } | |
6275 | |
6276 static Message Elements(size_t n) { | |
6277 return Message() << n << " element" << (n == 1 ? "" : "s"); | |
6278 } | |
6279 | |
6280 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } | |
6281 | |
6282 private: | |
6283 UnorderedMatcherRequire::Flags match_flags_; | |
6284 MatcherDescriberVec matcher_describers_; | |
6285 }; | |
6286 | |
6287 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and | |
6288 // IsSupersetOf. | |
6289 template <typename Container> | |
6290 class UnorderedElementsAreMatcherImpl | |
6291 : public MatcherInterface<Container>, | |
6292 public UnorderedElementsAreMatcherImplBase { | |
6293 public: | |
6294 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | |
6295 typedef internal::StlContainerView<RawContainer> View; | |
6296 typedef typename View::type StlContainer; | |
6297 typedef typename View::const_reference StlContainerReference; | |
6298 typedef typename StlContainer::const_iterator StlContainerConstIterator; | |
6299 typedef typename StlContainer::value_type Element; | |
6300 | |
6301 template <typename InputIter> | |
6302 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, | |
6303 InputIter first, InputIter last) | |
6304 : UnorderedElementsAreMatcherImplBase(matcher_flags) { | |
6305 for (; first != last; ++first) { | |
6306 matchers_.push_back(MatcherCast<const Element&>(*first)); | |
6307 } | |
6308 for (const auto& m : matchers_) { | |
6309 matcher_describers().push_back(m.GetDescriber()); | |
6310 } | |
6311 } | |
6312 | |
6313 // Describes what this matcher does. | |
6314 void DescribeTo(::std::ostream* os) const override { | |
6315 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); | |
6316 } | |
6317 | |
6318 // Describes what the negation of this matcher does. | |
6319 void DescribeNegationTo(::std::ostream* os) const override { | |
6320 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); | |
6321 } | |
6322 | |
6323 bool MatchAndExplain(Container container, | |
6324 MatchResultListener* listener) const override { | |
6325 StlContainerReference stl_container = View::ConstReference(container); | |
6326 ::std::vector<std::string> element_printouts; | |
6327 MatchMatrix matrix = | |
6328 AnalyzeElements(stl_container.begin(), stl_container.end(), | |
6329 &element_printouts, listener); | |
6330 | |
6331 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { | |
6332 return true; | |
6333 } | |
6334 | |
6335 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { | |
6336 if (matrix.LhsSize() != matrix.RhsSize()) { | |
6337 // The element count doesn't match. If the container is empty, | |
6338 // there's no need to explain anything as Google Mock already | |
6339 // prints the empty container. Otherwise we just need to show | |
6340 // how many elements there actually are. | |
6341 if (matrix.LhsSize() != 0 && listener->IsInterested()) { | |
6342 *listener << "which has " << Elements(matrix.LhsSize()); | |
6343 } | |
6344 return false; | |
6345 } | |
6346 } | |
6347 | |
6348 return VerifyMatchMatrix(element_printouts, matrix, listener) && | |
6349 FindPairing(matrix, listener); | |
6350 } | |
6351 | |
6352 private: | |
6353 template <typename ElementIter> | |
6354 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, | |
6355 ::std::vector<std::string>* element_printouts, | |
6356 MatchResultListener* listener) const { | |
6357 element_printouts->clear(); | |
6358 ::std::vector<char> did_match; | |
6359 size_t num_elements = 0; | |
6360 DummyMatchResultListener dummy; | |
6361 for (; elem_first != elem_last; ++num_elements, ++elem_first) { | |
6362 if (listener->IsInterested()) { | |
6363 element_printouts->push_back(PrintToString(*elem_first)); | |
6364 } | |
6365 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | |
6366 did_match.push_back( | |
6367 matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); | |
6368 } | |
6369 } | |
6370 | |
6371 MatchMatrix matrix(num_elements, matchers_.size()); | |
6372 ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); | |
6373 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { | |
6374 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | |
6375 matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); | |
6376 } | |
6377 } | |
6378 return matrix; | |
6379 } | |
6380 | |
6381 ::std::vector<Matcher<const Element&> > matchers_; | |
6382 }; | |
6383 | |
6384 // Functor for use in TransformTuple. | |
6385 // Performs MatcherCast<Target> on an input argument of any type. | |
6386 template <typename Target> | |
6387 struct CastAndAppendTransform { | |
6388 template <typename Arg> | |
6389 Matcher<Target> operator()(const Arg& a) const { | |
6390 return MatcherCast<Target>(a); | |
6391 } | |
6392 }; | |
6393 | |
6394 // Implements UnorderedElementsAre. | |
6395 template <typename MatcherTuple> | |
6396 class UnorderedElementsAreMatcher { | |
6397 public: | |
6398 explicit UnorderedElementsAreMatcher(const MatcherTuple& args) | |
6399 : matchers_(args) {} | |
6400 | |
6401 template <typename Container> | |
6402 operator Matcher<Container>() const { | |
6403 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | |
6404 typedef typename internal::StlContainerView<RawContainer>::type View; | |
6405 typedef typename View::value_type Element; | |
6406 typedef ::std::vector<Matcher<const Element&> > MatcherVec; | |
6407 MatcherVec matchers; | |
6408 matchers.reserve(::std::tuple_size<MatcherTuple>::value); | |
6409 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | |
6410 ::std::back_inserter(matchers)); | |
6411 return Matcher<Container>( | |
6412 new UnorderedElementsAreMatcherImpl<const Container&>( | |
6413 UnorderedMatcherRequire::ExactMatch, matchers.begin(), | |
6414 matchers.end())); | |
6415 } | |
6416 | |
6417 private: | |
6418 const MatcherTuple matchers_; | |
6419 }; | |
6420 | |
6421 // Implements ElementsAre. | |
6422 template <typename MatcherTuple> | |
6423 class ElementsAreMatcher { | |
6424 public: | |
6425 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} | |
6426 | |
6427 template <typename Container> | |
6428 operator Matcher<Container>() const { | |
6429 GTEST_COMPILE_ASSERT_( | |
6430 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || | |
6431 ::std::tuple_size<MatcherTuple>::value < 2, | |
6432 use_UnorderedElementsAre_with_hash_tables); | |
6433 | |
6434 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | |
6435 typedef typename internal::StlContainerView<RawContainer>::type View; | |
6436 typedef typename View::value_type Element; | |
6437 typedef ::std::vector<Matcher<const Element&> > MatcherVec; | |
6438 MatcherVec matchers; | |
6439 matchers.reserve(::std::tuple_size<MatcherTuple>::value); | |
6440 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | |
6441 ::std::back_inserter(matchers)); | |
6442 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( | |
6443 matchers.begin(), matchers.end())); | |
6444 } | |
6445 | |
6446 private: | |
6447 const MatcherTuple matchers_; | |
6448 }; | |
6449 | |
6450 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). | |
6451 template <typename T> | |
6452 class UnorderedElementsAreArrayMatcher { | |
6453 public: | |
6454 template <typename Iter> | |
6455 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, | |
6456 Iter first, Iter last) | |
6457 : match_flags_(match_flags), matchers_(first, last) {} | |
6458 | |
6459 template <typename Container> | |
6460 operator Matcher<Container>() const { | |
6461 return Matcher<Container>( | |
6462 new UnorderedElementsAreMatcherImpl<const Container&>( | |
6463 match_flags_, matchers_.begin(), matchers_.end())); | |
6464 } | |
6465 | |
6466 private: | |
6467 UnorderedMatcherRequire::Flags match_flags_; | |
6468 ::std::vector<T> matchers_; | |
6469 }; | |
6470 | |
6471 // Implements ElementsAreArray(). | |
6472 template <typename T> | |
6473 class ElementsAreArrayMatcher { | |
6474 public: | |
6475 template <typename Iter> | |
6476 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} | |
6477 | |
6478 template <typename Container> | |
6479 operator Matcher<Container>() const { | |
6480 GTEST_COMPILE_ASSERT_( | |
6481 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, | |
6482 use_UnorderedElementsAreArray_with_hash_tables); | |
6483 | |
6484 return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( | |
6485 matchers_.begin(), matchers_.end())); | |
6486 } | |
6487 | |
6488 private: | |
6489 const ::std::vector<T> matchers_; | |
6490 }; | |
6491 | |
6492 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second | |
6493 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, | |
6494 // second) is a polymorphic matcher that matches a value x if and only if | |
6495 // tm matches tuple (x, second). Useful for implementing | |
6496 // UnorderedPointwise() in terms of UnorderedElementsAreArray(). | |
6497 // | |
6498 // BoundSecondMatcher is copyable and assignable, as we need to put | |
6499 // instances of this class in a vector when implementing | |
6500 // UnorderedPointwise(). | |
6501 template <typename Tuple2Matcher, typename Second> | |
6502 class BoundSecondMatcher { | |
6503 public: | |
6504 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) | |
6505 : tuple2_matcher_(tm), second_value_(second) {} | |
6506 | |
6507 BoundSecondMatcher(const BoundSecondMatcher& other) = default; | |
6508 | |
6509 template <typename T> | |
6510 operator Matcher<T>() const { | |
6511 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); | |
6512 } | |
6513 | |
6514 // We have to define this for UnorderedPointwise() to compile in | |
6515 // C++98 mode, as it puts BoundSecondMatcher instances in a vector, | |
6516 // which requires the elements to be assignable in C++98. The | |
6517 // compiler cannot generate the operator= for us, as Tuple2Matcher | |
6518 // and Second may not be assignable. | |
6519 // | |
6520 // However, this should never be called, so the implementation just | |
6521 // need to assert. | |
6522 void operator=(const BoundSecondMatcher& /*rhs*/) { | |
6523 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; | |
6524 } | |
6525 | |
6526 private: | |
6527 template <typename T> | |
6528 class Impl : public MatcherInterface<T> { | |
6529 public: | |
6530 typedef ::std::tuple<T, Second> ArgTuple; | |
6531 | |
6532 Impl(const Tuple2Matcher& tm, const Second& second) | |
6533 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), | |
6534 second_value_(second) {} | |
6535 | |
6536 void DescribeTo(::std::ostream* os) const override { | |
6537 *os << "and "; | |
6538 UniversalPrint(second_value_, os); | |
6539 *os << " "; | |
6540 mono_tuple2_matcher_.DescribeTo(os); | |
6541 } | |
6542 | |
6543 bool MatchAndExplain(T x, MatchResultListener* listener) const override { | |
6544 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), | |
6545 listener); | |
6546 } | |
6547 | |
6548 private: | |
6549 const Matcher<const ArgTuple&> mono_tuple2_matcher_; | |
6550 const Second second_value_; | |
6551 }; | |
6552 | |
6553 const Tuple2Matcher tuple2_matcher_; | |
6554 const Second second_value_; | |
6555 }; | |
6556 | |
6557 // Given a 2-tuple matcher tm and a value second, | |
6558 // MatcherBindSecond(tm, second) returns a matcher that matches a | |
6559 // value x if and only if tm matches tuple (x, second). Useful for | |
6560 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). | |
6561 template <typename Tuple2Matcher, typename Second> | |
6562 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( | |
6563 const Tuple2Matcher& tm, const Second& second) { | |
6564 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); | |
6565 } | |
6566 | |
6567 // Returns the description for a matcher defined using the MATCHER*() | |
6568 // macro where the user-supplied description string is "", if | |
6569 // 'negation' is false; otherwise returns the description of the | |
6570 // negation of the matcher. 'param_values' contains a list of strings | |
6571 // that are the print-out of the matcher's parameters. | |
6572 GTEST_API_ std::string FormatMatcherDescription(bool negation, | |
6573 const char* matcher_name, | |
6574 const Strings& param_values); | |
6575 | |
6576 // Implements a matcher that checks the value of a optional<> type variable. | |
6577 template <typename ValueMatcher> | |
6578 class OptionalMatcher { | |
6579 public: | |
6580 explicit OptionalMatcher(const ValueMatcher& value_matcher) | |
6581 : value_matcher_(value_matcher) {} | |
6582 | |
6583 template <typename Optional> | |
6584 operator Matcher<Optional>() const { | |
6585 return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); | |
6586 } | |
6587 | |
6588 template <typename Optional> | |
6589 class Impl : public MatcherInterface<Optional> { | |
6590 public: | |
6591 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; | |
6592 typedef typename OptionalView::value_type ValueType; | |
6593 explicit Impl(const ValueMatcher& value_matcher) | |
6594 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} | |
6595 | |
6596 void DescribeTo(::std::ostream* os) const override { | |
6597 *os << "value "; | |
6598 value_matcher_.DescribeTo(os); | |
6599 } | |
6600 | |
6601 void DescribeNegationTo(::std::ostream* os) const override { | |
6602 *os << "value "; | |
6603 value_matcher_.DescribeNegationTo(os); | |
6604 } | |
6605 | |
6606 bool MatchAndExplain(Optional optional, | |
6607 MatchResultListener* listener) const override { | |
6608 if (!optional) { | |
6609 *listener << "which is not engaged"; | |
6610 return false; | |
6611 } | |
6612 const ValueType& value = *optional; | |
6613 StringMatchResultListener value_listener; | |
6614 const bool match = value_matcher_.MatchAndExplain(value, &value_listener); | |
6615 *listener << "whose value " << PrintToString(value) | |
6616 << (match ? " matches" : " doesn't match"); | |
6617 PrintIfNotEmpty(value_listener.str(), listener->stream()); | |
6618 return match; | |
6619 } | |
6620 | |
6621 private: | |
6622 const Matcher<ValueType> value_matcher_; | |
6623 }; | |
6624 | |
6625 private: | |
6626 const ValueMatcher value_matcher_; | |
6627 }; | |
6628 | |
6629 namespace variant_matcher { | |
6630 // Overloads to allow VariantMatcher to do proper ADL lookup. | |
6631 template <typename T> | |
6632 void holds_alternative() {} | |
6633 template <typename T> | |
6634 void get() {} | |
6635 | |
6636 // Implements a matcher that checks the value of a variant<> type variable. | |
6637 template <typename T> | |
6638 class VariantMatcher { | |
6639 public: | |
6640 explicit VariantMatcher(::testing::Matcher<const T&> matcher) | |
6641 : matcher_(std::move(matcher)) {} | |
6642 | |
6643 template <typename Variant> | |
6644 bool MatchAndExplain(const Variant& value, | |
6645 ::testing::MatchResultListener* listener) const { | |
6646 using std::get; | |
6647 if (!listener->IsInterested()) { | |
6648 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); | |
6649 } | |
6650 | |
6651 if (!holds_alternative<T>(value)) { | |
6652 *listener << "whose value is not of type '" << GetTypeName() << "'"; | |
6653 return false; | |
6654 } | |
6655 | |
6656 const T& elem = get<T>(value); | |
6657 StringMatchResultListener elem_listener; | |
6658 const bool match = matcher_.MatchAndExplain(elem, &elem_listener); | |
6659 *listener << "whose value " << PrintToString(elem) | |
6660 << (match ? " matches" : " doesn't match"); | |
6661 PrintIfNotEmpty(elem_listener.str(), listener->stream()); | |
6662 return match; | |
6663 } | |
6664 | |
6665 void DescribeTo(std::ostream* os) const { | |
6666 *os << "is a variant<> with value of type '" << GetTypeName() | |
6667 << "' and the value "; | |
6668 matcher_.DescribeTo(os); | |
6669 } | |
6670 | |
6671 void DescribeNegationTo(std::ostream* os) const { | |
6672 *os << "is a variant<> with value of type other than '" << GetTypeName() | |
6673 << "' or the value "; | |
6674 matcher_.DescribeNegationTo(os); | |
6675 } | |
6676 | |
6677 private: | |
6678 static std::string GetTypeName() { | |
6679 #if GTEST_HAS_RTTI | |
6680 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( | |
6681 return internal::GetTypeName<T>()); | |
6682 #endif | |
6683 return "the element type"; | |
6684 } | |
6685 | |
6686 const ::testing::Matcher<const T&> matcher_; | |
6687 }; | |
6688 | |
6689 } // namespace variant_matcher | |
6690 | |
6691 namespace any_cast_matcher { | |
6692 | |
6693 // Overloads to allow AnyCastMatcher to do proper ADL lookup. | |
6694 template <typename T> | |
6695 void any_cast() {} | |
6696 | |
6697 // Implements a matcher that any_casts the value. | |
6698 template <typename T> | |
6699 class AnyCastMatcher { | |
6700 public: | |
6701 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) | |
6702 : matcher_(matcher) {} | |
6703 | |
6704 template <typename AnyType> | |
6705 bool MatchAndExplain(const AnyType& value, | |
6706 ::testing::MatchResultListener* listener) const { | |
6707 if (!listener->IsInterested()) { | |
6708 const T* ptr = any_cast<T>(&value); | |
6709 return ptr != nullptr && matcher_.Matches(*ptr); | |
6710 } | |
6711 | |
6712 const T* elem = any_cast<T>(&value); | |
6713 if (elem == nullptr) { | |
6714 *listener << "whose value is not of type '" << GetTypeName() << "'"; | |
6715 return false; | |
6716 } | |
6717 | |
6718 StringMatchResultListener elem_listener; | |
6719 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); | |
6720 *listener << "whose value " << PrintToString(*elem) | |
6721 << (match ? " matches" : " doesn't match"); | |
6722 PrintIfNotEmpty(elem_listener.str(), listener->stream()); | |
6723 return match; | |
6724 } | |
6725 | |
6726 void DescribeTo(std::ostream* os) const { | |
6727 *os << "is an 'any' type with value of type '" << GetTypeName() | |
6728 << "' and the value "; | |
6729 matcher_.DescribeTo(os); | |
6730 } | |
6731 | |
6732 void DescribeNegationTo(std::ostream* os) const { | |
6733 *os << "is an 'any' type with value of type other than '" << GetTypeName() | |
6734 << "' or the value "; | |
6735 matcher_.DescribeNegationTo(os); | |
6736 } | |
6737 | |
6738 private: | |
6739 static std::string GetTypeName() { | |
6740 #if GTEST_HAS_RTTI | |
6741 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( | |
6742 return internal::GetTypeName<T>()); | |
6743 #endif | |
6744 return "the element type"; | |
6745 } | |
6746 | |
6747 const ::testing::Matcher<const T&> matcher_; | |
6748 }; | |
6749 | |
6750 } // namespace any_cast_matcher | |
6751 | |
6752 // Implements the Args() matcher. | |
6753 template <class ArgsTuple, size_t... k> | |
6754 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { | |
6755 public: | |
6756 using RawArgsTuple = typename std::decay<ArgsTuple>::type; | |
6757 using SelectedArgs = | |
6758 std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; | |
6759 using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; | |
6760 | |
6761 template <typename InnerMatcher> | |
6762 explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) | |
6763 : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} | |
6764 | |
6765 bool MatchAndExplain(ArgsTuple args, | |
6766 MatchResultListener* listener) const override { | |
6767 // Workaround spurious C4100 on MSVC<=15.7 when k is empty. | |
6768 (void)args; | |
6769 const SelectedArgs& selected_args = | |
6770 std::forward_as_tuple(std::get<k>(args)...); | |
6771 if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); | |
6772 | |
6773 PrintIndices(listener->stream()); | |
6774 *listener << "are " << PrintToString(selected_args); | |
6775 | |
6776 StringMatchResultListener inner_listener; | |
6777 const bool match = | |
6778 inner_matcher_.MatchAndExplain(selected_args, &inner_listener); | |
6779 PrintIfNotEmpty(inner_listener.str(), listener->stream()); | |
6780 return match; | |
6781 } | |
6782 | |
6783 void DescribeTo(::std::ostream* os) const override { | |
6784 *os << "are a tuple "; | |
6785 PrintIndices(os); | |
6786 inner_matcher_.DescribeTo(os); | |
6787 } | |
6788 | |
6789 void DescribeNegationTo(::std::ostream* os) const override { | |
6790 *os << "are a tuple "; | |
6791 PrintIndices(os); | |
6792 inner_matcher_.DescribeNegationTo(os); | |
6793 } | |
6794 | |
6795 private: | |
6796 // Prints the indices of the selected fields. | |
6797 static void PrintIndices(::std::ostream* os) { | |
6798 *os << "whose fields ("; | |
6799 const char* sep = ""; | |
6800 // Workaround spurious C4189 on MSVC<=15.7 when k is empty. | |
6801 (void)sep; | |
6802 const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; | |
6803 (void)dummy; | |
6804 *os << ") "; | |
6805 } | |
6806 | |
6807 MonomorphicInnerMatcher inner_matcher_; | |
6808 }; | |
6809 | |
6810 template <class InnerMatcher, size_t... k> | |
6811 class ArgsMatcher { | |
6812 public: | |
6813 explicit ArgsMatcher(InnerMatcher inner_matcher) | |
6814 : inner_matcher_(std::move(inner_matcher)) {} | |
6815 | |
6816 template <typename ArgsTuple> | |
6817 operator Matcher<ArgsTuple>() const { // NOLINT | |
6818 return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); | |
6819 } | |
6820 | |
6821 private: | |
6822 InnerMatcher inner_matcher_; | |
6823 }; | |
6824 | |
6825 } // namespace internal | |
6826 | |
6827 // ElementsAreArray(iterator_first, iterator_last) | |
6828 // ElementsAreArray(pointer, count) | |
6829 // ElementsAreArray(array) | |
6830 // ElementsAreArray(container) | |
6831 // ElementsAreArray({ e1, e2, ..., en }) | |
6832 // | |
6833 // The ElementsAreArray() functions are like ElementsAre(...), except | |
6834 // that they are given a homogeneous sequence rather than taking each | |
6835 // element as a function argument. The sequence can be specified as an | |
6836 // array, a pointer and count, a vector, an initializer list, or an | |
6837 // STL iterator range. In each of these cases, the underlying sequence | |
6838 // can be either a sequence of values or a sequence of matchers. | |
6839 // | |
6840 // All forms of ElementsAreArray() make a copy of the input matcher sequence. | |
6841 | |
6842 template <typename Iter> | |
6843 inline internal::ElementsAreArrayMatcher< | |
6844 typename ::std::iterator_traits<Iter>::value_type> | |
6845 ElementsAreArray(Iter first, Iter last) { | |
6846 typedef typename ::std::iterator_traits<Iter>::value_type T; | |
6847 return internal::ElementsAreArrayMatcher<T>(first, last); | |
6848 } | |
6849 | |
6850 template <typename T> | |
6851 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | |
6852 const T* pointer, size_t count) { | |
6853 return ElementsAreArray(pointer, pointer + count); | |
6854 } | |
6855 | |
6856 template <typename T, size_t N> | |
6857 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | |
6858 const T (&array)[N]) { | |
6859 return ElementsAreArray(array, N); | |
6860 } | |
6861 | |
6862 template <typename Container> | |
6863 inline internal::ElementsAreArrayMatcher<typename Container::value_type> | |
6864 ElementsAreArray(const Container& container) { | |
6865 return ElementsAreArray(container.begin(), container.end()); | |
6866 } | |
6867 | |
6868 template <typename T> | |
6869 inline internal::ElementsAreArrayMatcher<T> | |
6870 ElementsAreArray(::std::initializer_list<T> xs) { | |
6871 return ElementsAreArray(xs.begin(), xs.end()); | |
6872 } | |
6873 | |
6874 // UnorderedElementsAreArray(iterator_first, iterator_last) | |
6875 // UnorderedElementsAreArray(pointer, count) | |
6876 // UnorderedElementsAreArray(array) | |
6877 // UnorderedElementsAreArray(container) | |
6878 // UnorderedElementsAreArray({ e1, e2, ..., en }) | |
6879 // | |
6880 // UnorderedElementsAreArray() verifies that a bijective mapping onto a | |
6881 // collection of matchers exists. | |
6882 // | |
6883 // The matchers can be specified as an array, a pointer and count, a container, | |
6884 // an initializer list, or an STL iterator range. In each of these cases, the | |
6885 // underlying matchers can be either values or matchers. | |
6886 | |
6887 template <typename Iter> | |
6888 inline internal::UnorderedElementsAreArrayMatcher< | |
6889 typename ::std::iterator_traits<Iter>::value_type> | |
6890 UnorderedElementsAreArray(Iter first, Iter last) { | |
6891 typedef typename ::std::iterator_traits<Iter>::value_type T; | |
6892 return internal::UnorderedElementsAreArrayMatcher<T>( | |
6893 internal::UnorderedMatcherRequire::ExactMatch, first, last); | |
6894 } | |
6895 | |
6896 template <typename T> | |
6897 inline internal::UnorderedElementsAreArrayMatcher<T> | |
6898 UnorderedElementsAreArray(const T* pointer, size_t count) { | |
6899 return UnorderedElementsAreArray(pointer, pointer + count); | |
6900 } | |
6901 | |
6902 template <typename T, size_t N> | |
6903 inline internal::UnorderedElementsAreArrayMatcher<T> | |
6904 UnorderedElementsAreArray(const T (&array)[N]) { | |
6905 return UnorderedElementsAreArray(array, N); | |
6906 } | |
6907 | |
6908 template <typename Container> | |
6909 inline internal::UnorderedElementsAreArrayMatcher< | |
6910 typename Container::value_type> | |
6911 UnorderedElementsAreArray(const Container& container) { | |
6912 return UnorderedElementsAreArray(container.begin(), container.end()); | |
6913 } | |
6914 | |
6915 template <typename T> | |
6916 inline internal::UnorderedElementsAreArrayMatcher<T> | |
6917 UnorderedElementsAreArray(::std::initializer_list<T> xs) { | |
6918 return UnorderedElementsAreArray(xs.begin(), xs.end()); | |
6919 } | |
6920 | |
6921 // _ is a matcher that matches anything of any type. | |
6922 // | |
6923 // This definition is fine as: | |
6924 // | |
6925 // 1. The C++ standard permits using the name _ in a namespace that | |
6926 // is not the global namespace or ::std. | |
6927 // 2. The AnythingMatcher class has no data member or constructor, | |
6928 // so it's OK to create global variables of this type. | |
6929 // 3. c-style has approved of using _ in this case. | |
6930 const internal::AnythingMatcher _ = {}; | |
6931 // Creates a matcher that matches any value of the given type T. | |
6932 template <typename T> | |
6933 inline Matcher<T> A() { | |
6934 return _; | |
6935 } | |
6936 | |
6937 // Creates a matcher that matches any value of the given type T. | |
6938 template <typename T> | |
6939 inline Matcher<T> An() { | |
6940 return _; | |
6941 } | |
6942 | |
6943 template <typename T, typename M> | |
6944 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( | |
6945 const M& value, std::false_type /* convertible_to_matcher */, | |
6946 std::false_type /* convertible_to_T */) { | |
6947 return Eq(value); | |
6948 } | |
6949 | |
6950 // Creates a polymorphic matcher that matches any NULL pointer. | |
6951 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { | |
6952 return MakePolymorphicMatcher(internal::IsNullMatcher()); | |
6953 } | |
6954 | |
6955 // Creates a polymorphic matcher that matches any non-NULL pointer. | |
6956 // This is convenient as Not(NULL) doesn't compile (the compiler | |
6957 // thinks that that expression is comparing a pointer with an integer). | |
6958 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { | |
6959 return MakePolymorphicMatcher(internal::NotNullMatcher()); | |
6960 } | |
6961 | |
6962 // Creates a polymorphic matcher that matches any argument that | |
6963 // references variable x. | |
6964 template <typename T> | |
6965 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT | |
6966 return internal::RefMatcher<T&>(x); | |
6967 } | |
6968 | |
6969 // Creates a polymorphic matcher that matches any NaN floating point. | |
6970 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { | |
6971 return MakePolymorphicMatcher(internal::IsNanMatcher()); | |
6972 } | |
6973 | |
6974 // Creates a matcher that matches any double argument approximately | |
6975 // equal to rhs, where two NANs are considered unequal. | |
6976 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { | |
6977 return internal::FloatingEqMatcher<double>(rhs, false); | |
6978 } | |
6979 | |
6980 // Creates a matcher that matches any double argument approximately | |
6981 // equal to rhs, including NaN values when rhs is NaN. | |
6982 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { | |
6983 return internal::FloatingEqMatcher<double>(rhs, true); | |
6984 } | |
6985 | |
6986 // Creates a matcher that matches any double argument approximately equal to | |
6987 // rhs, up to the specified max absolute error bound, where two NANs are | |
6988 // considered unequal. The max absolute error bound must be non-negative. | |
6989 inline internal::FloatingEqMatcher<double> DoubleNear( | |
6990 double rhs, double max_abs_error) { | |
6991 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); | |
6992 } | |
6993 | |
6994 // Creates a matcher that matches any double argument approximately equal to | |
6995 // rhs, up to the specified max absolute error bound, including NaN values when | |
6996 // rhs is NaN. The max absolute error bound must be non-negative. | |
6997 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( | |
6998 double rhs, double max_abs_error) { | |
6999 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); | |
7000 } | |
7001 | |
7002 // Creates a matcher that matches any float argument approximately | |
7003 // equal to rhs, where two NANs are considered unequal. | |
7004 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { | |
7005 return internal::FloatingEqMatcher<float>(rhs, false); | |
7006 } | |
7007 | |
7008 // Creates a matcher that matches any float argument approximately | |
7009 // equal to rhs, including NaN values when rhs is NaN. | |
7010 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { | |
7011 return internal::FloatingEqMatcher<float>(rhs, true); | |
7012 } | |
7013 | |
7014 // Creates a matcher that matches any float argument approximately equal to | |
7015 // rhs, up to the specified max absolute error bound, where two NANs are | |
7016 // considered unequal. The max absolute error bound must be non-negative. | |
7017 inline internal::FloatingEqMatcher<float> FloatNear( | |
7018 float rhs, float max_abs_error) { | |
7019 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); | |
7020 } | |
7021 | |
7022 // Creates a matcher that matches any float argument approximately equal to | |
7023 // rhs, up to the specified max absolute error bound, including NaN values when | |
7024 // rhs is NaN. The max absolute error bound must be non-negative. | |
7025 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( | |
7026 float rhs, float max_abs_error) { | |
7027 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); | |
7028 } | |
7029 | |
7030 // Creates a matcher that matches a pointer (raw or smart) that points | |
7031 // to a value that matches inner_matcher. | |
7032 template <typename InnerMatcher> | |
7033 inline internal::PointeeMatcher<InnerMatcher> Pointee( | |
7034 const InnerMatcher& inner_matcher) { | |
7035 return internal::PointeeMatcher<InnerMatcher>(inner_matcher); | |
7036 } | |
7037 | |
7038 #if GTEST_HAS_RTTI | |
7039 // Creates a matcher that matches a pointer or reference that matches | |
7040 // inner_matcher when dynamic_cast<To> is applied. | |
7041 // The result of dynamic_cast<To> is forwarded to the inner matcher. | |
7042 // If To is a pointer and the cast fails, the inner matcher will receive NULL. | |
7043 // If To is a reference and the cast fails, this matcher returns false | |
7044 // immediately. | |
7045 template <typename To> | |
7046 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > | |
7047 WhenDynamicCastTo(const Matcher<To>& inner_matcher) { | |
7048 return MakePolymorphicMatcher( | |
7049 internal::WhenDynamicCastToMatcher<To>(inner_matcher)); | |
7050 } | |
7051 #endif // GTEST_HAS_RTTI | |
7052 | |
7053 // Creates a matcher that matches an object whose given field matches | |
7054 // 'matcher'. For example, | |
7055 // Field(&Foo::number, Ge(5)) | |
7056 // matches a Foo object x if and only if x.number >= 5. | |
7057 template <typename Class, typename FieldType, typename FieldMatcher> | |
7058 inline PolymorphicMatcher< | |
7059 internal::FieldMatcher<Class, FieldType> > Field( | |
7060 FieldType Class::*field, const FieldMatcher& matcher) { | |
7061 return MakePolymorphicMatcher( | |
7062 internal::FieldMatcher<Class, FieldType>( | |
7063 field, MatcherCast<const FieldType&>(matcher))); | |
7064 // The call to MatcherCast() is required for supporting inner | |
7065 // matchers of compatible types. For example, it allows | |
7066 // Field(&Foo::bar, m) | |
7067 // to compile where bar is an int32 and m is a matcher for int64. | |
7068 } | |
7069 | |
7070 // Same as Field() but also takes the name of the field to provide better error | |
7071 // messages. | |
7072 template <typename Class, typename FieldType, typename FieldMatcher> | |
7073 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( | |
7074 const std::string& field_name, FieldType Class::*field, | |
7075 const FieldMatcher& matcher) { | |
7076 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( | |
7077 field_name, field, MatcherCast<const FieldType&>(matcher))); | |
7078 } | |
7079 | |
7080 // Creates a matcher that matches an object whose given property | |
7081 // matches 'matcher'. For example, | |
7082 // Property(&Foo::str, StartsWith("hi")) | |
7083 // matches a Foo object x if and only if x.str() starts with "hi". | |
7084 template <typename Class, typename PropertyType, typename PropertyMatcher> | |
7085 inline PolymorphicMatcher<internal::PropertyMatcher< | |
7086 Class, PropertyType, PropertyType (Class::*)() const> > | |
7087 Property(PropertyType (Class::*property)() const, | |
7088 const PropertyMatcher& matcher) { | |
7089 return MakePolymorphicMatcher( | |
7090 internal::PropertyMatcher<Class, PropertyType, | |
7091 PropertyType (Class::*)() const>( | |
7092 property, MatcherCast<const PropertyType&>(matcher))); | |
7093 // The call to MatcherCast() is required for supporting inner | |
7094 // matchers of compatible types. For example, it allows | |
7095 // Property(&Foo::bar, m) | |
7096 // to compile where bar() returns an int32 and m is a matcher for int64. | |
7097 } | |
7098 | |
7099 // Same as Property() above, but also takes the name of the property to provide | |
7100 // better error messages. | |
7101 template <typename Class, typename PropertyType, typename PropertyMatcher> | |
7102 inline PolymorphicMatcher<internal::PropertyMatcher< | |
7103 Class, PropertyType, PropertyType (Class::*)() const> > | |
7104 Property(const std::string& property_name, | |
7105 PropertyType (Class::*property)() const, | |
7106 const PropertyMatcher& matcher) { | |
7107 return MakePolymorphicMatcher( | |
7108 internal::PropertyMatcher<Class, PropertyType, | |
7109 PropertyType (Class::*)() const>( | |
7110 property_name, property, MatcherCast<const PropertyType&>(matcher))); | |
7111 } | |
7112 | |
7113 // The same as above but for reference-qualified member functions. | |
7114 template <typename Class, typename PropertyType, typename PropertyMatcher> | |
7115 inline PolymorphicMatcher<internal::PropertyMatcher< | |
7116 Class, PropertyType, PropertyType (Class::*)() const &> > | |
7117 Property(PropertyType (Class::*property)() const &, | |
7118 const PropertyMatcher& matcher) { | |
7119 return MakePolymorphicMatcher( | |
7120 internal::PropertyMatcher<Class, PropertyType, | |
7121 PropertyType (Class::*)() const&>( | |
7122 property, MatcherCast<const PropertyType&>(matcher))); | |
7123 } | |
7124 | |
7125 // Three-argument form for reference-qualified member functions. | |
7126 template <typename Class, typename PropertyType, typename PropertyMatcher> | |
7127 inline PolymorphicMatcher<internal::PropertyMatcher< | |
7128 Class, PropertyType, PropertyType (Class::*)() const &> > | |
7129 Property(const std::string& property_name, | |
7130 PropertyType (Class::*property)() const &, | |
7131 const PropertyMatcher& matcher) { | |
7132 return MakePolymorphicMatcher( | |
7133 internal::PropertyMatcher<Class, PropertyType, | |
7134 PropertyType (Class::*)() const&>( | |
7135 property_name, property, MatcherCast<const PropertyType&>(matcher))); | |
7136 } | |
7137 | |
7138 // Creates a matcher that matches an object if and only if the result of | |
7139 // applying a callable to x matches 'matcher'. For example, | |
7140 // ResultOf(f, StartsWith("hi")) | |
7141 // matches a Foo object x if and only if f(x) starts with "hi". | |
7142 // `callable` parameter can be a function, function pointer, or a functor. It is | |
7143 // required to keep no state affecting the results of the calls on it and make | |
7144 // no assumptions about how many calls will be made. Any state it keeps must be | |
7145 // protected from the concurrent access. | |
7146 template <typename Callable, typename InnerMatcher> | |
7147 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( | |
7148 Callable callable, InnerMatcher matcher) { | |
7149 return internal::ResultOfMatcher<Callable, InnerMatcher>( | |
7150 std::move(callable), std::move(matcher)); | |
7151 } | |
7152 | |
7153 // String matchers. | |
7154 | |
7155 // Matches a string equal to str. | |
7156 template <typename T = std::string> | |
7157 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( | |
7158 const internal::StringLike<T>& str) { | |
7159 return MakePolymorphicMatcher( | |
7160 internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); | |
7161 } | |
7162 | |
7163 // Matches a string not equal to str. | |
7164 template <typename T = std::string> | |
7165 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( | |
7166 const internal::StringLike<T>& str) { | |
7167 return MakePolymorphicMatcher( | |
7168 internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); | |
7169 } | |
7170 | |
7171 // Matches a string equal to str, ignoring case. | |
7172 template <typename T = std::string> | |
7173 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( | |
7174 const internal::StringLike<T>& str) { | |
7175 return MakePolymorphicMatcher( | |
7176 internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); | |
7177 } | |
7178 | |
7179 // Matches a string not equal to str, ignoring case. | |
7180 template <typename T = std::string> | |
7181 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( | |
7182 const internal::StringLike<T>& str) { | |
7183 return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( | |
7184 std::string(str), false, false)); | |
7185 } | |
7186 | |
7187 // Creates a matcher that matches any string, std::string, or C string | |
7188 // that contains the given substring. | |
7189 template <typename T = std::string> | |
7190 PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( | |
7191 const internal::StringLike<T>& substring) { | |
7192 return MakePolymorphicMatcher( | |
7193 internal::HasSubstrMatcher<std::string>(std::string(substring))); | |
7194 } | |
7195 | |
7196 // Matches a string that starts with 'prefix' (case-sensitive). | |
7197 template <typename T = std::string> | |
7198 PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( | |
7199 const internal::StringLike<T>& prefix) { | |
7200 return MakePolymorphicMatcher( | |
7201 internal::StartsWithMatcher<std::string>(std::string(prefix))); | |
7202 } | |
7203 | |
7204 // Matches a string that ends with 'suffix' (case-sensitive). | |
7205 template <typename T = std::string> | |
7206 PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( | |
7207 const internal::StringLike<T>& suffix) { | |
7208 return MakePolymorphicMatcher( | |
7209 internal::EndsWithMatcher<std::string>(std::string(suffix))); | |
7210 } | |
7211 | |
7212 #if GTEST_HAS_STD_WSTRING | |
7213 // Wide string matchers. | |
7214 | |
7215 // Matches a string equal to str. | |
7216 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( | |
7217 const std::wstring& str) { | |
7218 return MakePolymorphicMatcher( | |
7219 internal::StrEqualityMatcher<std::wstring>(str, true, true)); | |
7220 } | |
7221 | |
7222 // Matches a string not equal to str. | |
7223 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( | |
7224 const std::wstring& str) { | |
7225 return MakePolymorphicMatcher( | |
7226 internal::StrEqualityMatcher<std::wstring>(str, false, true)); | |
7227 } | |
7228 | |
7229 // Matches a string equal to str, ignoring case. | |
7230 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > | |
7231 StrCaseEq(const std::wstring& str) { | |
7232 return MakePolymorphicMatcher( | |
7233 internal::StrEqualityMatcher<std::wstring>(str, true, false)); | |
7234 } | |
7235 | |
7236 // Matches a string not equal to str, ignoring case. | |
7237 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > | |
7238 StrCaseNe(const std::wstring& str) { | |
7239 return MakePolymorphicMatcher( | |
7240 internal::StrEqualityMatcher<std::wstring>(str, false, false)); | |
7241 } | |
7242 | |
7243 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string | |
7244 // that contains the given substring. | |
7245 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( | |
7246 const std::wstring& substring) { | |
7247 return MakePolymorphicMatcher( | |
7248 internal::HasSubstrMatcher<std::wstring>(substring)); | |
7249 } | |
7250 | |
7251 // Matches a string that starts with 'prefix' (case-sensitive). | |
7252 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > | |
7253 StartsWith(const std::wstring& prefix) { | |
7254 return MakePolymorphicMatcher( | |
7255 internal::StartsWithMatcher<std::wstring>(prefix)); | |
7256 } | |
7257 | |
7258 // Matches a string that ends with 'suffix' (case-sensitive). | |
7259 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( | |
7260 const std::wstring& suffix) { | |
7261 return MakePolymorphicMatcher( | |
7262 internal::EndsWithMatcher<std::wstring>(suffix)); | |
7263 } | |
7264 | |
7265 #endif // GTEST_HAS_STD_WSTRING | |
7266 | |
7267 // Creates a polymorphic matcher that matches a 2-tuple where the | |
7268 // first field == the second field. | |
7269 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } | |
7270 | |
7271 // Creates a polymorphic matcher that matches a 2-tuple where the | |
7272 // first field >= the second field. | |
7273 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } | |
7274 | |
7275 // Creates a polymorphic matcher that matches a 2-tuple where the | |
7276 // first field > the second field. | |
7277 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } | |
7278 | |
7279 // Creates a polymorphic matcher that matches a 2-tuple where the | |
7280 // first field <= the second field. | |
7281 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } | |
7282 | |
7283 // Creates a polymorphic matcher that matches a 2-tuple where the | |
7284 // first field < the second field. | |
7285 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } | |
7286 | |
7287 // Creates a polymorphic matcher that matches a 2-tuple where the | |
7288 // first field != the second field. | |
7289 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } | |
7290 | |
7291 // Creates a polymorphic matcher that matches a 2-tuple where | |
7292 // FloatEq(first field) matches the second field. | |
7293 inline internal::FloatingEq2Matcher<float> FloatEq() { | |
7294 return internal::FloatingEq2Matcher<float>(); | |
7295 } | |
7296 | |
7297 // Creates a polymorphic matcher that matches a 2-tuple where | |
7298 // DoubleEq(first field) matches the second field. | |
7299 inline internal::FloatingEq2Matcher<double> DoubleEq() { | |
7300 return internal::FloatingEq2Matcher<double>(); | |
7301 } | |
7302 | |
7303 // Creates a polymorphic matcher that matches a 2-tuple where | |
7304 // FloatEq(first field) matches the second field with NaN equality. | |
7305 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { | |
7306 return internal::FloatingEq2Matcher<float>(true); | |
7307 } | |
7308 | |
7309 // Creates a polymorphic matcher that matches a 2-tuple where | |
7310 // DoubleEq(first field) matches the second field with NaN equality. | |
7311 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { | |
7312 return internal::FloatingEq2Matcher<double>(true); | |
7313 } | |
7314 | |
7315 // Creates a polymorphic matcher that matches a 2-tuple where | |
7316 // FloatNear(first field, max_abs_error) matches the second field. | |
7317 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { | |
7318 return internal::FloatingEq2Matcher<float>(max_abs_error); | |
7319 } | |
7320 | |
7321 // Creates a polymorphic matcher that matches a 2-tuple where | |
7322 // DoubleNear(first field, max_abs_error) matches the second field. | |
7323 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { | |
7324 return internal::FloatingEq2Matcher<double>(max_abs_error); | |
7325 } | |
7326 | |
7327 // Creates a polymorphic matcher that matches a 2-tuple where | |
7328 // FloatNear(first field, max_abs_error) matches the second field with NaN | |
7329 // equality. | |
7330 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( | |
7331 float max_abs_error) { | |
7332 return internal::FloatingEq2Matcher<float>(max_abs_error, true); | |
7333 } | |
7334 | |
7335 // Creates a polymorphic matcher that matches a 2-tuple where | |
7336 // DoubleNear(first field, max_abs_error) matches the second field with NaN | |
7337 // equality. | |
7338 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( | |
7339 double max_abs_error) { | |
7340 return internal::FloatingEq2Matcher<double>(max_abs_error, true); | |
7341 } | |
7342 | |
7343 // Creates a matcher that matches any value of type T that m doesn't | |
7344 // match. | |
7345 template <typename InnerMatcher> | |
7346 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { | |
7347 return internal::NotMatcher<InnerMatcher>(m); | |
7348 } | |
7349 | |
7350 // Returns a matcher that matches anything that satisfies the given | |
7351 // predicate. The predicate can be any unary function or functor | |
7352 // whose return type can be implicitly converted to bool. | |
7353 template <typename Predicate> | |
7354 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > | |
7355 Truly(Predicate pred) { | |
7356 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); | |
7357 } | |
7358 | |
7359 // Returns a matcher that matches the container size. The container must | |
7360 // support both size() and size_type which all STL-like containers provide. | |
7361 // Note that the parameter 'size' can be a value of type size_type as well as | |
7362 // matcher. For instance: | |
7363 // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. | |
7364 // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. | |
7365 template <typename SizeMatcher> | |
7366 inline internal::SizeIsMatcher<SizeMatcher> | |
7367 SizeIs(const SizeMatcher& size_matcher) { | |
7368 return internal::SizeIsMatcher<SizeMatcher>(size_matcher); | |
7369 } | |
7370 | |
7371 // Returns a matcher that matches the distance between the container's begin() | |
7372 // iterator and its end() iterator, i.e. the size of the container. This matcher | |
7373 // can be used instead of SizeIs with containers such as std::forward_list which | |
7374 // do not implement size(). The container must provide const_iterator (with | |
7375 // valid iterator_traits), begin() and end(). | |
7376 template <typename DistanceMatcher> | |
7377 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> | |
7378 BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { | |
7379 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); | |
7380 } | |
7381 | |
7382 // Returns a matcher that matches an equal container. | |
7383 // This matcher behaves like Eq(), but in the event of mismatch lists the | |
7384 // values that are included in one container but not the other. (Duplicate | |
7385 // values and order differences are not explained.) | |
7386 template <typename Container> | |
7387 inline PolymorphicMatcher<internal::ContainerEqMatcher< | |
7388 typename std::remove_const<Container>::type>> | |
7389 ContainerEq(const Container& rhs) { | |
7390 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); | |
7391 } | |
7392 | |
7393 // Returns a matcher that matches a container that, when sorted using | |
7394 // the given comparator, matches container_matcher. | |
7395 template <typename Comparator, typename ContainerMatcher> | |
7396 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> | |
7397 WhenSortedBy(const Comparator& comparator, | |
7398 const ContainerMatcher& container_matcher) { | |
7399 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( | |
7400 comparator, container_matcher); | |
7401 } | |
7402 | |
7403 // Returns a matcher that matches a container that, when sorted using | |
7404 // the < operator, matches container_matcher. | |
7405 template <typename ContainerMatcher> | |
7406 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> | |
7407 WhenSorted(const ContainerMatcher& container_matcher) { | |
7408 return | |
7409 internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( | |
7410 internal::LessComparator(), container_matcher); | |
7411 } | |
7412 | |
7413 // Matches an STL-style container or a native array that contains the | |
7414 // same number of elements as in rhs, where its i-th element and rhs's | |
7415 // i-th element (as a pair) satisfy the given pair matcher, for all i. | |
7416 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const | |
7417 // T1&, const T2&> >, where T1 and T2 are the types of elements in the | |
7418 // LHS container and the RHS container respectively. | |
7419 template <typename TupleMatcher, typename Container> | |
7420 inline internal::PointwiseMatcher<TupleMatcher, | |
7421 typename std::remove_const<Container>::type> | |
7422 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { | |
7423 return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, | |
7424 rhs); | |
7425 } | |
7426 | |
7427 | |
7428 // Supports the Pointwise(m, {a, b, c}) syntax. | |
7429 template <typename TupleMatcher, typename T> | |
7430 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( | |
7431 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { | |
7432 return Pointwise(tuple_matcher, std::vector<T>(rhs)); | |
7433 } | |
7434 | |
7435 | |
7436 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style | |
7437 // container or a native array that contains the same number of | |
7438 // elements as in rhs, where in some permutation of the container, its | |
7439 // i-th element and rhs's i-th element (as a pair) satisfy the given | |
7440 // pair matcher, for all i. Tuple2Matcher must be able to be safely | |
7441 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are | |
7442 // the types of elements in the LHS container and the RHS container | |
7443 // respectively. | |
7444 // | |
7445 // This is like Pointwise(pair_matcher, rhs), except that the element | |
7446 // order doesn't matter. | |
7447 template <typename Tuple2Matcher, typename RhsContainer> | |
7448 inline internal::UnorderedElementsAreArrayMatcher< | |
7449 typename internal::BoundSecondMatcher< | |
7450 Tuple2Matcher, | |
7451 typename internal::StlContainerView< | |
7452 typename std::remove_const<RhsContainer>::type>::type::value_type>> | |
7453 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | |
7454 const RhsContainer& rhs_container) { | |
7455 // RhsView allows the same code to handle RhsContainer being a | |
7456 // STL-style container and it being a native C-style array. | |
7457 typedef typename internal::StlContainerView<RhsContainer> RhsView; | |
7458 typedef typename RhsView::type RhsStlContainer; | |
7459 typedef typename RhsStlContainer::value_type Second; | |
7460 const RhsStlContainer& rhs_stl_container = | |
7461 RhsView::ConstReference(rhs_container); | |
7462 | |
7463 // Create a matcher for each element in rhs_container. | |
7464 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; | |
7465 for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); | |
7466 it != rhs_stl_container.end(); ++it) { | |
7467 matchers.push_back( | |
7468 internal::MatcherBindSecond(tuple2_matcher, *it)); | |
7469 } | |
7470 | |
7471 // Delegate the work to UnorderedElementsAreArray(). | |
7472 return UnorderedElementsAreArray(matchers); | |
7473 } | |
7474 | |
7475 | |
7476 // Supports the UnorderedPointwise(m, {a, b, c}) syntax. | |
7477 template <typename Tuple2Matcher, typename T> | |
7478 inline internal::UnorderedElementsAreArrayMatcher< | |
7479 typename internal::BoundSecondMatcher<Tuple2Matcher, T> > | |
7480 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | |
7481 std::initializer_list<T> rhs) { | |
7482 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); | |
7483 } | |
7484 | |
7485 | |
7486 // Matches an STL-style container or a native array that contains at | |
7487 // least one element matching the given value or matcher. | |
7488 // | |
7489 // Examples: | |
7490 // ::std::set<int> page_ids; | |
7491 // page_ids.insert(3); | |
7492 // page_ids.insert(1); | |
7493 // EXPECT_THAT(page_ids, Contains(1)); | |
7494 // EXPECT_THAT(page_ids, Contains(Gt(2))); | |
7495 // EXPECT_THAT(page_ids, Not(Contains(4))); | |
7496 // | |
7497 // ::std::map<int, size_t> page_lengths; | |
7498 // page_lengths[1] = 100; | |
7499 // EXPECT_THAT(page_lengths, | |
7500 // Contains(::std::pair<const int, size_t>(1, 100))); | |
7501 // | |
7502 // const char* user_ids[] = { "joe", "mike", "tom" }; | |
7503 // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); | |
7504 template <typename M> | |
7505 inline internal::ContainsMatcher<M> Contains(M matcher) { | |
7506 return internal::ContainsMatcher<M>(matcher); | |
7507 } | |
7508 | |
7509 // IsSupersetOf(iterator_first, iterator_last) | |
7510 // IsSupersetOf(pointer, count) | |
7511 // IsSupersetOf(array) | |
7512 // IsSupersetOf(container) | |
7513 // IsSupersetOf({e1, e2, ..., en}) | |
7514 // | |
7515 // IsSupersetOf() verifies that a surjective partial mapping onto a collection | |
7516 // of matchers exists. In other words, a container matches | |
7517 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation | |
7518 // {y1, ..., yn} of some of the container's elements where y1 matches e1, | |
7519 // ..., and yn matches en. Obviously, the size of the container must be >= n | |
7520 // in order to have a match. Examples: | |
7521 // | |
7522 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and | |
7523 // 1 matches Ne(0). | |
7524 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches | |
7525 // both Eq(1) and Lt(2). The reason is that different matchers must be used | |
7526 // for elements in different slots of the container. | |
7527 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches | |
7528 // Eq(1) and (the second) 1 matches Lt(2). | |
7529 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) | |
7530 // Gt(1) and 3 matches (the second) Gt(1). | |
7531 // | |
7532 // The matchers can be specified as an array, a pointer and count, a container, | |
7533 // an initializer list, or an STL iterator range. In each of these cases, the | |
7534 // underlying matchers can be either values or matchers. | |
7535 | |
7536 template <typename Iter> | |
7537 inline internal::UnorderedElementsAreArrayMatcher< | |
7538 typename ::std::iterator_traits<Iter>::value_type> | |
7539 IsSupersetOf(Iter first, Iter last) { | |
7540 typedef typename ::std::iterator_traits<Iter>::value_type T; | |
7541 return internal::UnorderedElementsAreArrayMatcher<T>( | |
7542 internal::UnorderedMatcherRequire::Superset, first, last); | |
7543 } | |
7544 | |
7545 template <typename T> | |
7546 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | |
7547 const T* pointer, size_t count) { | |
7548 return IsSupersetOf(pointer, pointer + count); | |
7549 } | |
7550 | |
7551 template <typename T, size_t N> | |
7552 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | |
7553 const T (&array)[N]) { | |
7554 return IsSupersetOf(array, N); | |
7555 } | |
7556 | |
7557 template <typename Container> | |
7558 inline internal::UnorderedElementsAreArrayMatcher< | |
7559 typename Container::value_type> | |
7560 IsSupersetOf(const Container& container) { | |
7561 return IsSupersetOf(container.begin(), container.end()); | |
7562 } | |
7563 | |
7564 template <typename T> | |
7565 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( | |
7566 ::std::initializer_list<T> xs) { | |
7567 return IsSupersetOf(xs.begin(), xs.end()); | |
7568 } | |
7569 | |
7570 // IsSubsetOf(iterator_first, iterator_last) | |
7571 // IsSubsetOf(pointer, count) | |
7572 // IsSubsetOf(array) | |
7573 // IsSubsetOf(container) | |
7574 // IsSubsetOf({e1, e2, ..., en}) | |
7575 // | |
7576 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers | |
7577 // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and | |
7578 // only if there is a subset of matchers {m1, ..., mk} which would match the | |
7579 // container using UnorderedElementsAre. Obviously, the size of the container | |
7580 // must be <= n in order to have a match. Examples: | |
7581 // | |
7582 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). | |
7583 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 | |
7584 // matches Lt(0). | |
7585 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both | |
7586 // match Gt(0). The reason is that different matchers must be used for | |
7587 // elements in different slots of the container. | |
7588 // | |
7589 // The matchers can be specified as an array, a pointer and count, a container, | |
7590 // an initializer list, or an STL iterator range. In each of these cases, the | |
7591 // underlying matchers can be either values or matchers. | |
7592 | |
7593 template <typename Iter> | |
7594 inline internal::UnorderedElementsAreArrayMatcher< | |
7595 typename ::std::iterator_traits<Iter>::value_type> | |
7596 IsSubsetOf(Iter first, Iter last) { | |
7597 typedef typename ::std::iterator_traits<Iter>::value_type T; | |
7598 return internal::UnorderedElementsAreArrayMatcher<T>( | |
7599 internal::UnorderedMatcherRequire::Subset, first, last); | |
7600 } | |
7601 | |
7602 template <typename T> | |
7603 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | |
7604 const T* pointer, size_t count) { | |
7605 return IsSubsetOf(pointer, pointer + count); | |
7606 } | |
7607 | |
7608 template <typename T, size_t N> | |
7609 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | |
7610 const T (&array)[N]) { | |
7611 return IsSubsetOf(array, N); | |
7612 } | |
7613 | |
7614 template <typename Container> | |
7615 inline internal::UnorderedElementsAreArrayMatcher< | |
7616 typename Container::value_type> | |
7617 IsSubsetOf(const Container& container) { | |
7618 return IsSubsetOf(container.begin(), container.end()); | |
7619 } | |
7620 | |
7621 template <typename T> | |
7622 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( | |
7623 ::std::initializer_list<T> xs) { | |
7624 return IsSubsetOf(xs.begin(), xs.end()); | |
7625 } | |
7626 | |
7627 // Matches an STL-style container or a native array that contains only | |
7628 // elements matching the given value or matcher. | |
7629 // | |
7630 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only | |
7631 // the messages are different. | |
7632 // | |
7633 // Examples: | |
7634 // ::std::set<int> page_ids; | |
7635 // // Each(m) matches an empty container, regardless of what m is. | |
7636 // EXPECT_THAT(page_ids, Each(Eq(1))); | |
7637 // EXPECT_THAT(page_ids, Each(Eq(77))); | |
7638 // | |
7639 // page_ids.insert(3); | |
7640 // EXPECT_THAT(page_ids, Each(Gt(0))); | |
7641 // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); | |
7642 // page_ids.insert(1); | |
7643 // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); | |
7644 // | |
7645 // ::std::map<int, size_t> page_lengths; | |
7646 // page_lengths[1] = 100; | |
7647 // page_lengths[2] = 200; | |
7648 // page_lengths[3] = 300; | |
7649 // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); | |
7650 // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); | |
7651 // | |
7652 // const char* user_ids[] = { "joe", "mike", "tom" }; | |
7653 // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); | |
7654 template <typename M> | |
7655 inline internal::EachMatcher<M> Each(M matcher) { | |
7656 return internal::EachMatcher<M>(matcher); | |
7657 } | |
7658 | |
7659 // Key(inner_matcher) matches an std::pair whose 'first' field matches | |
7660 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an | |
7661 // std::map that contains at least one element whose key is >= 5. | |
7662 template <typename M> | |
7663 inline internal::KeyMatcher<M> Key(M inner_matcher) { | |
7664 return internal::KeyMatcher<M>(inner_matcher); | |
7665 } | |
7666 | |
7667 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field | |
7668 // matches first_matcher and whose 'second' field matches second_matcher. For | |
7669 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used | |
7670 // to match a std::map<int, string> that contains exactly one element whose key | |
7671 // is >= 5 and whose value equals "foo". | |
7672 template <typename FirstMatcher, typename SecondMatcher> | |
7673 inline internal::PairMatcher<FirstMatcher, SecondMatcher> | |
7674 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { | |
7675 return internal::PairMatcher<FirstMatcher, SecondMatcher>( | |
7676 first_matcher, second_matcher); | |
7677 } | |
7678 | |
7679 namespace no_adl { | |
7680 // FieldsAre(matchers...) matches piecewise the fields of compatible structs. | |
7681 // These include those that support `get<I>(obj)`, and when structured bindings | |
7682 // are enabled any class that supports them. | |
7683 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. | |
7684 template <typename... M> | |
7685 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( | |
7686 M&&... matchers) { | |
7687 return internal::FieldsAreMatcher<typename std::decay<M>::type...>( | |
7688 std::forward<M>(matchers)...); | |
7689 } | |
7690 | |
7691 // Creates a matcher that matches a pointer (raw or smart) that matches | |
7692 // inner_matcher. | |
7693 template <typename InnerMatcher> | |
7694 inline internal::PointerMatcher<InnerMatcher> Pointer( | |
7695 const InnerMatcher& inner_matcher) { | |
7696 return internal::PointerMatcher<InnerMatcher>(inner_matcher); | |
7697 } | |
7698 | |
7699 // Creates a matcher that matches an object that has an address that matches | |
7700 // inner_matcher. | |
7701 template <typename InnerMatcher> | |
7702 inline internal::AddressMatcher<InnerMatcher> Address( | |
7703 const InnerMatcher& inner_matcher) { | |
7704 return internal::AddressMatcher<InnerMatcher>(inner_matcher); | |
7705 } | |
7706 } // namespace no_adl | |
7707 | |
7708 // Returns a predicate that is satisfied by anything that matches the | |
7709 // given matcher. | |
7710 template <typename M> | |
7711 inline internal::MatcherAsPredicate<M> Matches(M matcher) { | |
7712 return internal::MatcherAsPredicate<M>(matcher); | |
7713 } | |
7714 | |
7715 // Returns true if and only if the value matches the matcher. | |
7716 template <typename T, typename M> | |
7717 inline bool Value(const T& value, M matcher) { | |
7718 return testing::Matches(matcher)(value); | |
7719 } | |
7720 | |
7721 // Matches the value against the given matcher and explains the match | |
7722 // result to listener. | |
7723 template <typename T, typename M> | |
7724 inline bool ExplainMatchResult( | |
7725 M matcher, const T& value, MatchResultListener* listener) { | |
7726 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); | |
7727 } | |
7728 | |
7729 // Returns a string representation of the given matcher. Useful for description | |
7730 // strings of matchers defined using MATCHER_P* macros that accept matchers as | |
7731 // their arguments. For example: | |
7732 // | |
7733 // MATCHER_P(XAndYThat, matcher, | |
7734 // "X that " + DescribeMatcher<int>(matcher, negation) + | |
7735 // " and Y that " + DescribeMatcher<double>(matcher, negation)) { | |
7736 // return ExplainMatchResult(matcher, arg.x(), result_listener) && | |
7737 // ExplainMatchResult(matcher, arg.y(), result_listener); | |
7738 // } | |
7739 template <typename T, typename M> | |
7740 std::string DescribeMatcher(const M& matcher, bool negation = false) { | |
7741 ::std::stringstream ss; | |
7742 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); | |
7743 if (negation) { | |
7744 monomorphic_matcher.DescribeNegationTo(&ss); | |
7745 } else { | |
7746 monomorphic_matcher.DescribeTo(&ss); | |
7747 } | |
7748 return ss.str(); | |
7749 } | |
7750 | |
7751 template <typename... Args> | |
7752 internal::ElementsAreMatcher< | |
7753 std::tuple<typename std::decay<const Args&>::type...>> | |
7754 ElementsAre(const Args&... matchers) { | |
7755 return internal::ElementsAreMatcher< | |
7756 std::tuple<typename std::decay<const Args&>::type...>>( | |
7757 std::make_tuple(matchers...)); | |
7758 } | |
7759 | |
7760 template <typename... Args> | |
7761 internal::UnorderedElementsAreMatcher< | |
7762 std::tuple<typename std::decay<const Args&>::type...>> | |
7763 UnorderedElementsAre(const Args&... matchers) { | |
7764 return internal::UnorderedElementsAreMatcher< | |
7765 std::tuple<typename std::decay<const Args&>::type...>>( | |
7766 std::make_tuple(matchers...)); | |
7767 } | |
7768 | |
7769 // Define variadic matcher versions. | |
7770 template <typename... Args> | |
7771 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( | |
7772 const Args&... matchers) { | |
7773 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( | |
7774 matchers...); | |
7775 } | |
7776 | |
7777 template <typename... Args> | |
7778 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( | |
7779 const Args&... matchers) { | |
7780 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( | |
7781 matchers...); | |
7782 } | |
7783 | |
7784 // AnyOfArray(array) | |
7785 // AnyOfArray(pointer, count) | |
7786 // AnyOfArray(container) | |
7787 // AnyOfArray({ e1, e2, ..., en }) | |
7788 // AnyOfArray(iterator_first, iterator_last) | |
7789 // | |
7790 // AnyOfArray() verifies whether a given value matches any member of a | |
7791 // collection of matchers. | |
7792 // | |
7793 // AllOfArray(array) | |
7794 // AllOfArray(pointer, count) | |
7795 // AllOfArray(container) | |
7796 // AllOfArray({ e1, e2, ..., en }) | |
7797 // AllOfArray(iterator_first, iterator_last) | |
7798 // | |
7799 // AllOfArray() verifies whether a given value matches all members of a | |
7800 // collection of matchers. | |
7801 // | |
7802 // The matchers can be specified as an array, a pointer and count, a container, | |
7803 // an initializer list, or an STL iterator range. In each of these cases, the | |
7804 // underlying matchers can be either values or matchers. | |
7805 | |
7806 template <typename Iter> | |
7807 inline internal::AnyOfArrayMatcher< | |
7808 typename ::std::iterator_traits<Iter>::value_type> | |
7809 AnyOfArray(Iter first, Iter last) { | |
7810 return internal::AnyOfArrayMatcher< | |
7811 typename ::std::iterator_traits<Iter>::value_type>(first, last); | |
7812 } | |
7813 | |
7814 template <typename Iter> | |
7815 inline internal::AllOfArrayMatcher< | |
7816 typename ::std::iterator_traits<Iter>::value_type> | |
7817 AllOfArray(Iter first, Iter last) { | |
7818 return internal::AllOfArrayMatcher< | |
7819 typename ::std::iterator_traits<Iter>::value_type>(first, last); | |
7820 } | |
7821 | |
7822 template <typename T> | |
7823 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { | |
7824 return AnyOfArray(ptr, ptr + count); | |
7825 } | |
7826 | |
7827 template <typename T> | |
7828 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { | |
7829 return AllOfArray(ptr, ptr + count); | |
7830 } | |
7831 | |
7832 template <typename T, size_t N> | |
7833 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { | |
7834 return AnyOfArray(array, N); | |
7835 } | |
7836 | |
7837 template <typename T, size_t N> | |
7838 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { | |
7839 return AllOfArray(array, N); | |
7840 } | |
7841 | |
7842 template <typename Container> | |
7843 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( | |
7844 const Container& container) { | |
7845 return AnyOfArray(container.begin(), container.end()); | |
7846 } | |
7847 | |
7848 template <typename Container> | |
7849 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( | |
7850 const Container& container) { | |
7851 return AllOfArray(container.begin(), container.end()); | |
7852 } | |
7853 | |
7854 template <typename T> | |
7855 inline internal::AnyOfArrayMatcher<T> AnyOfArray( | |
7856 ::std::initializer_list<T> xs) { | |
7857 return AnyOfArray(xs.begin(), xs.end()); | |
7858 } | |
7859 | |
7860 template <typename T> | |
7861 inline internal::AllOfArrayMatcher<T> AllOfArray( | |
7862 ::std::initializer_list<T> xs) { | |
7863 return AllOfArray(xs.begin(), xs.end()); | |
7864 } | |
7865 | |
7866 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected | |
7867 // fields of it matches a_matcher. C++ doesn't support default | |
7868 // arguments for function templates, so we have to overload it. | |
7869 template <size_t... k, typename InnerMatcher> | |
7870 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( | |
7871 InnerMatcher&& matcher) { | |
7872 return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( | |
7873 std::forward<InnerMatcher>(matcher)); | |
7874 } | |
7875 | |
7876 // AllArgs(m) is a synonym of m. This is useful in | |
7877 // | |
7878 // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); | |
7879 // | |
7880 // which is easier to read than | |
7881 // | |
7882 // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); | |
7883 template <typename InnerMatcher> | |
7884 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } | |
7885 | |
7886 // Returns a matcher that matches the value of an optional<> type variable. | |
7887 // The matcher implementation only uses '!arg' and requires that the optional<> | |
7888 // type has a 'value_type' member type and that '*arg' is of type 'value_type' | |
7889 // and is printable using 'PrintToString'. It is compatible with | |
7890 // std::optional/std::experimental::optional. | |
7891 // Note that to compare an optional type variable against nullopt you should | |
7892 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the | |
7893 // optional value contains an optional itself. | |
7894 template <typename ValueMatcher> | |
7895 inline internal::OptionalMatcher<ValueMatcher> Optional( | |
7896 const ValueMatcher& value_matcher) { | |
7897 return internal::OptionalMatcher<ValueMatcher>(value_matcher); | |
7898 } | |
7899 | |
7900 // Returns a matcher that matches the value of a absl::any type variable. | |
7901 template <typename T> | |
7902 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( | |
7903 const Matcher<const T&>& matcher) { | |
7904 return MakePolymorphicMatcher( | |
7905 internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); | |
7906 } | |
7907 | |
7908 // Returns a matcher that matches the value of a variant<> type variable. | |
7909 // The matcher implementation uses ADL to find the holds_alternative and get | |
7910 // functions. | |
7911 // It is compatible with std::variant. | |
7912 template <typename T> | |
7913 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( | |
7914 const Matcher<const T&>& matcher) { | |
7915 return MakePolymorphicMatcher( | |
7916 internal::variant_matcher::VariantMatcher<T>(matcher)); | |
7917 } | |
7918 | |
7919 #if GTEST_HAS_EXCEPTIONS | |
7920 | |
7921 // Anything inside the `internal` namespace is internal to the implementation | |
7922 // and must not be used in user code! | |
7923 namespace internal { | |
7924 | |
7925 class WithWhatMatcherImpl { | |
7926 public: | |
7927 WithWhatMatcherImpl(Matcher<std::string> matcher) | |
7928 : matcher_(std::move(matcher)) {} | |
7929 | |
7930 void DescribeTo(std::ostream* os) const { | |
7931 *os << "contains .what() that "; | |
7932 matcher_.DescribeTo(os); | |
7933 } | |
7934 | |
7935 void DescribeNegationTo(std::ostream* os) const { | |
7936 *os << "contains .what() that does not "; | |
7937 matcher_.DescribeTo(os); | |
7938 } | |
7939 | |
7940 template <typename Err> | |
7941 bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { | |
7942 *listener << "which contains .what() that "; | |
7943 return matcher_.MatchAndExplain(err.what(), listener); | |
7944 } | |
7945 | |
7946 private: | |
7947 const Matcher<std::string> matcher_; | |
7948 }; | |
7949 | |
7950 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( | |
7951 Matcher<std::string> m) { | |
7952 return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); | |
7953 } | |
7954 | |
7955 template <typename Err> | |
7956 class ExceptionMatcherImpl { | |
7957 class NeverThrown { | |
7958 public: | |
7959 const char* what() const noexcept { | |
7960 return "this exception should never be thrown"; | |
7961 } | |
7962 }; | |
7963 | |
7964 // If the matchee raises an exception of a wrong type, we'd like to | |
7965 // catch it and print its message and type. To do that, we add an additional | |
7966 // catch clause: | |
7967 // | |
7968 // try { ... } | |
7969 // catch (const Err&) { /* an expected exception */ } | |
7970 // catch (const std::exception&) { /* exception of a wrong type */ } | |
7971 // | |
7972 // However, if the `Err` itself is `std::exception`, we'd end up with two | |
7973 // identical `catch` clauses: | |
7974 // | |
7975 // try { ... } | |
7976 // catch (const std::exception&) { /* an expected exception */ } | |
7977 // catch (const std::exception&) { /* exception of a wrong type */ } | |
7978 // | |
7979 // This can cause a warning or an error in some compilers. To resolve | |
7980 // the issue, we use a fake error type whenever `Err` is `std::exception`: | |
7981 // | |
7982 // try { ... } | |
7983 // catch (const std::exception&) { /* an expected exception */ } | |
7984 // catch (const NeverThrown&) { /* exception of a wrong type */ } | |
7985 using DefaultExceptionType = typename std::conditional< | |
7986 std::is_same<typename std::remove_cv< | |
7987 typename std::remove_reference<Err>::type>::type, | |
7988 std::exception>::value, | |
7989 const NeverThrown&, const std::exception&>::type; | |
7990 | |
7991 public: | |
7992 ExceptionMatcherImpl(Matcher<const Err&> matcher) | |
7993 : matcher_(std::move(matcher)) {} | |
7994 | |
7995 void DescribeTo(std::ostream* os) const { | |
7996 *os << "throws an exception which is a " << GetTypeName<Err>(); | |
7997 *os << " which "; | |
7998 matcher_.DescribeTo(os); | |
7999 } | |
8000 | |
8001 void DescribeNegationTo(std::ostream* os) const { | |
8002 *os << "throws an exception which is not a " << GetTypeName<Err>(); | |
8003 *os << " which "; | |
8004 matcher_.DescribeNegationTo(os); | |
8005 } | |
8006 | |
8007 template <typename T> | |
8008 bool MatchAndExplain(T&& x, MatchResultListener* listener) const { | |
8009 try { | |
8010 (void)(std::forward<T>(x)()); | |
8011 } catch (const Err& err) { | |
8012 *listener << "throws an exception which is a " << GetTypeName<Err>(); | |
8013 *listener << " "; | |
8014 return matcher_.MatchAndExplain(err, listener); | |
8015 } catch (DefaultExceptionType err) { | |
8016 #if GTEST_HAS_RTTI | |
8017 *listener << "throws an exception of type " << GetTypeName(typeid(err)); | |
8018 *listener << " "; | |
8019 #else | |
8020 *listener << "throws an std::exception-derived type "; | |
8021 #endif | |
8022 *listener << "with description \"" << err.what() << "\""; | |
8023 return false; | |
8024 } catch (...) { | |
8025 *listener << "throws an exception of an unknown type"; | |
8026 return false; | |
8027 } | |
8028 | |
8029 *listener << "does not throw any exception"; | |
8030 return false; | |
8031 } | |
8032 | |
8033 private: | |
8034 const Matcher<const Err&> matcher_; | |
8035 }; | |
8036 | |
8037 } // namespace internal | |
8038 | |
8039 // Throws() | |
8040 // Throws(exceptionMatcher) | |
8041 // ThrowsMessage(messageMatcher) | |
8042 // | |
8043 // This matcher accepts a callable and verifies that when invoked, it throws | |
8044 // an exception with the given type and properties. | |
8045 // | |
8046 // Examples: | |
8047 // | |
8048 // EXPECT_THAT( | |
8049 // []() { throw std::runtime_error("message"); }, | |
8050 // Throws<std::runtime_error>()); | |
8051 // | |
8052 // EXPECT_THAT( | |
8053 // []() { throw std::runtime_error("message"); }, | |
8054 // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); | |
8055 // | |
8056 // EXPECT_THAT( | |
8057 // []() { throw std::runtime_error("message"); }, | |
8058 // Throws<std::runtime_error>( | |
8059 // Property(&std::runtime_error::what, HasSubstr("message")))); | |
8060 | |
8061 template <typename Err> | |
8062 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { | |
8063 return MakePolymorphicMatcher( | |
8064 internal::ExceptionMatcherImpl<Err>(A<const Err&>())); | |
8065 } | |
8066 | |
8067 template <typename Err, typename ExceptionMatcher> | |
8068 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( | |
8069 const ExceptionMatcher& exception_matcher) { | |
8070 // Using matcher cast allows users to pass a matcher of a more broad type. | |
8071 // For example user may want to pass Matcher<std::exception> | |
8072 // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. | |
8073 return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( | |
8074 SafeMatcherCast<const Err&>(exception_matcher))); | |
8075 } | |
8076 | |
8077 template <typename Err, typename MessageMatcher> | |
8078 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( | |
8079 MessageMatcher&& message_matcher) { | |
8080 static_assert(std::is_base_of<std::exception, Err>::value, | |
8081 "expected an std::exception-derived type"); | |
8082 return Throws<Err>(internal::WithWhat( | |
8083 MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); | |
8084 } | |
8085 | |
8086 #endif // GTEST_HAS_EXCEPTIONS | |
8087 | |
8088 // These macros allow using matchers to check values in Google Test | |
8089 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) | |
8090 // succeed if and only if the value matches the matcher. If the assertion | |
8091 // fails, the value and the description of the matcher will be printed. | |
8092 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ | |
8093 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | |
8094 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ | |
8095 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | |
8096 | |
8097 // MATCHER* macroses itself are listed below. | |
8098 #define MATCHER(name, description) \ | |
8099 class name##Matcher \ | |
8100 : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ | |
8101 public: \ | |
8102 template <typename arg_type> \ | |
8103 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ | |
8104 public: \ | |
8105 gmock_Impl() {} \ | |
8106 bool MatchAndExplain( \ | |
8107 const arg_type& arg, \ | |
8108 ::testing::MatchResultListener* result_listener) const override; \ | |
8109 void DescribeTo(::std::ostream* gmock_os) const override { \ | |
8110 *gmock_os << FormatDescription(false); \ | |
8111 } \ | |
8112 void DescribeNegationTo(::std::ostream* gmock_os) const override { \ | |
8113 *gmock_os << FormatDescription(true); \ | |
8114 } \ | |
8115 \ | |
8116 private: \ | |
8117 ::std::string FormatDescription(bool negation) const { \ | |
8118 ::std::string gmock_description = (description); \ | |
8119 if (!gmock_description.empty()) { \ | |
8120 return gmock_description; \ | |
8121 } \ | |
8122 return ::testing::internal::FormatMatcherDescription(negation, #name, \ | |
8123 {}); \ | |
8124 } \ | |
8125 }; \ | |
8126 }; \ | |
8127 GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ | |
8128 template <typename arg_type> \ | |
8129 bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ | |
8130 const arg_type& arg, \ | |
8131 ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ | |
8132 const | |
8133 | |
8134 #define MATCHER_P(name, p0, description) \ | |
8135 GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) | |
8136 #define MATCHER_P2(name, p0, p1, description) \ | |
8137 GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) | |
8138 #define MATCHER_P3(name, p0, p1, p2, description) \ | |
8139 GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) | |
8140 #define MATCHER_P4(name, p0, p1, p2, p3, description) \ | |
8141 GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) | |
8142 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ | |
8143 GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ | |
8144 (p0, p1, p2, p3, p4)) | |
8145 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ | |
8146 GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ | |
8147 (p0, p1, p2, p3, p4, p5)) | |
8148 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ | |
8149 GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ | |
8150 (p0, p1, p2, p3, p4, p5, p6)) | |
8151 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ | |
8152 GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ | |
8153 (p0, p1, p2, p3, p4, p5, p6, p7)) | |
8154 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ | |
8155 GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ | |
8156 (p0, p1, p2, p3, p4, p5, p6, p7, p8)) | |
8157 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ | |
8158 GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ | |
8159 (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) | |
8160 | |
8161 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \ | |
8162 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ | |
8163 class full_name : public ::testing::internal::MatcherBaseImpl< \ | |
8164 full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ | |
8165 public: \ | |
8166 using full_name::MatcherBaseImpl::MatcherBaseImpl; \ | |
8167 template <typename arg_type> \ | |
8168 class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ | |
8169 public: \ | |
8170 explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ | |
8171 : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ | |
8172 bool MatchAndExplain( \ | |
8173 const arg_type& arg, \ | |
8174 ::testing::MatchResultListener* result_listener) const override; \ | |
8175 void DescribeTo(::std::ostream* gmock_os) const override { \ | |
8176 *gmock_os << FormatDescription(false); \ | |
8177 } \ | |
8178 void DescribeNegationTo(::std::ostream* gmock_os) const override { \ | |
8179 *gmock_os << FormatDescription(true); \ | |
8180 } \ | |
8181 GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ | |
8182 \ | |
8183 private: \ | |
8184 ::std::string FormatDescription(bool negation) const { \ | |
8185 ::std::string gmock_description = (description); \ | |
8186 if (!gmock_description.empty()) { \ | |
8187 return gmock_description; \ | |
8188 } \ | |
8189 return ::testing::internal::FormatMatcherDescription( \ | |
8190 negation, #name, \ | |
8191 ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ | |
8192 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ | |
8193 GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ | |
8194 } \ | |
8195 }; \ | |
8196 }; \ | |
8197 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ | |
8198 inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ | |
8199 GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ | |
8200 return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ | |
8201 GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ | |
8202 } \ | |
8203 template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ | |
8204 template <typename arg_type> \ | |
8205 bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ | |
8206 arg_type>::MatchAndExplain(const arg_type& arg, \ | |
8207 ::testing::MatchResultListener* \ | |
8208 result_listener GTEST_ATTRIBUTE_UNUSED_) \ | |
8209 const | |
8210 | |
8211 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ | |
8212 GMOCK_PP_TAIL( \ | |
8213 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) | |
8214 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ | |
8215 , typename arg##_type | |
8216 | |
8217 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ | |
8218 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) | |
8219 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ | |
8220 , arg##_type | |
8221 | |
8222 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ | |
8223 GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ | |
8224 GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) | |
8225 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ | |
8226 , arg##_type gmock_p##i | |
8227 | |
8228 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ | |
8229 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) | |
8230 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ | |
8231 , arg(::std::forward<arg##_type>(gmock_p##i)) | |
8232 | |
8233 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ | |
8234 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) | |
8235 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ | |
8236 const arg##_type arg; | |
8237 | |
8238 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ | |
8239 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) | |
8240 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg | |
8241 | |
8242 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ | |
8243 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) | |
8244 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ | |
8245 , gmock_p##i | |
8246 | |
8247 // To prevent ADL on certain functions we put them on a separate namespace. | |
8248 using namespace no_adl; // NOLINT | |
8249 | |
8250 } // namespace testing | |
8251 | |
8252 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 | |
8253 | |
8254 // Include any custom callback matchers added by the local installation. | |
8255 // We must include this header at the end to make sure it can use the | |
8256 // declarations from this file. | |
8257 // Copyright 2015, Google Inc. | |
8258 // All rights reserved. | |
8259 // | |
8260 // Redistribution and use in source and binary forms, with or without | |
8261 // modification, are permitted provided that the following conditions are | |
8262 // met: | |
8263 // | |
8264 // * Redistributions of source code must retain the above copyright | |
8265 // notice, this list of conditions and the following disclaimer. | |
8266 // * Redistributions in binary form must reproduce the above | |
8267 // copyright notice, this list of conditions and the following disclaimer | |
8268 // in the documentation and/or other materials provided with the | |
8269 // distribution. | |
8270 // * Neither the name of Google Inc. nor the names of its | |
8271 // contributors may be used to endorse or promote products derived from | |
8272 // this software without specific prior written permission. | |
8273 // | |
8274 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
8275 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
8276 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
8277 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
8278 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
8279 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
8280 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
8281 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
8282 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
8283 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
8284 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
8285 // | |
8286 // Injection point for custom user configurations. See README for details | |
8287 // | |
8288 // GOOGLETEST_CM0002 DO NOT DELETE | |
8289 | |
8290 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ | |
8291 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ | |
8292 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ | |
8293 | |
8294 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | |
8295 | |
8296 #if GTEST_HAS_EXCEPTIONS | |
8297 # include <stdexcept> // NOLINT | |
8298 #endif | |
8299 | |
8300 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ | |
8301 /* class A needs to have dll-interface to be used by clients of class B */) | |
8302 | |
8303 namespace testing { | |
8304 | |
8305 // An abstract handle of an expectation. | |
8306 class Expectation; | |
8307 | |
8308 // A set of expectation handles. | |
8309 class ExpectationSet; | |
8310 | |
8311 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | |
8312 // and MUST NOT BE USED IN USER CODE!!! | |
8313 namespace internal { | |
8314 | |
8315 // Implements a mock function. | |
8316 template <typename F> class FunctionMocker; | |
8317 | |
8318 // Base class for expectations. | |
8319 class ExpectationBase; | |
8320 | |
8321 // Implements an expectation. | |
8322 template <typename F> class TypedExpectation; | |
8323 | |
8324 // Helper class for testing the Expectation class template. | |
8325 class ExpectationTester; | |
8326 | |
8327 // Helper classes for implementing NiceMock, StrictMock, and NaggyMock. | |
8328 template <typename MockClass> | |
8329 class NiceMockImpl; | |
8330 template <typename MockClass> | |
8331 class StrictMockImpl; | |
8332 template <typename MockClass> | |
8333 class NaggyMockImpl; | |
8334 | |
8335 // Protects the mock object registry (in class Mock), all function | |
8336 // mockers, and all expectations. | |
8337 // | |
8338 // The reason we don't use more fine-grained protection is: when a | |
8339 // mock function Foo() is called, it needs to consult its expectations | |
8340 // to see which one should be picked. If another thread is allowed to | |
8341 // call a mock function (either Foo() or a different one) at the same | |
8342 // time, it could affect the "retired" attributes of Foo()'s | |
8343 // expectations when InSequence() is used, and thus affect which | |
8344 // expectation gets picked. Therefore, we sequence all mock function | |
8345 // calls to ensure the integrity of the mock objects' states. | |
8346 GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); | |
8347 | |
8348 // Untyped base class for ActionResultHolder<R>. | |
8349 class UntypedActionResultHolderBase; | |
8350 | |
8351 // Abstract base class of FunctionMocker. This is the | |
8352 // type-agnostic part of the function mocker interface. Its pure | |
8353 // virtual methods are implemented by FunctionMocker. | |
8354 class GTEST_API_ UntypedFunctionMockerBase { | |
8355 public: | |
8356 UntypedFunctionMockerBase(); | |
8357 virtual ~UntypedFunctionMockerBase(); | |
8358 | |
8359 // Verifies that all expectations on this mock function have been | |
8360 // satisfied. Reports one or more Google Test non-fatal failures | |
8361 // and returns false if not. | |
8362 bool VerifyAndClearExpectationsLocked() | |
8363 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | |
8364 | |
8365 // Clears the ON_CALL()s set on this mock function. | |
8366 virtual void ClearDefaultActionsLocked() | |
8367 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0; | |
8368 | |
8369 // In all of the following Untyped* functions, it's the caller's | |
8370 // responsibility to guarantee the correctness of the arguments' | |
8371 // types. | |
8372 | |
8373 // Performs the default action with the given arguments and returns | |
8374 // the action's result. The call description string will be used in | |
8375 // the error message to describe the call in the case the default | |
8376 // action fails. | |
8377 // L = * | |
8378 virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( | |
8379 void* untyped_args, const std::string& call_description) const = 0; | |
8380 | |
8381 // Performs the given action with the given arguments and returns | |
8382 // the action's result. | |
8383 // L = * | |
8384 virtual UntypedActionResultHolderBase* UntypedPerformAction( | |
8385 const void* untyped_action, void* untyped_args) const = 0; | |
8386 | |
8387 // Writes a message that the call is uninteresting (i.e. neither | |
8388 // explicitly expected nor explicitly unexpected) to the given | |
8389 // ostream. | |
8390 virtual void UntypedDescribeUninterestingCall( | |
8391 const void* untyped_args, | |
8392 ::std::ostream* os) const | |
8393 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; | |
8394 | |
8395 // Returns the expectation that matches the given function arguments | |
8396 // (or NULL is there's no match); when a match is found, | |
8397 // untyped_action is set to point to the action that should be | |
8398 // performed (or NULL if the action is "do default"), and | |
8399 // is_excessive is modified to indicate whether the call exceeds the | |
8400 // expected number. | |
8401 virtual const ExpectationBase* UntypedFindMatchingExpectation( | |
8402 const void* untyped_args, | |
8403 const void** untyped_action, bool* is_excessive, | |
8404 ::std::ostream* what, ::std::ostream* why) | |
8405 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; | |
8406 | |
8407 // Prints the given function arguments to the ostream. | |
8408 virtual void UntypedPrintArgs(const void* untyped_args, | |
8409 ::std::ostream* os) const = 0; | |
8410 | |
8411 // Sets the mock object this mock method belongs to, and registers | |
8412 // this information in the global mock registry. Will be called | |
8413 // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock | |
8414 // method. | |
8415 void RegisterOwner(const void* mock_obj) | |
8416 GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | |
8417 | |
8418 // Sets the mock object this mock method belongs to, and sets the | |
8419 // name of the mock function. Will be called upon each invocation | |
8420 // of this mock function. | |
8421 void SetOwnerAndName(const void* mock_obj, const char* name) | |
8422 GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | |
8423 | |
8424 // Returns the mock object this mock method belongs to. Must be | |
8425 // called after RegisterOwner() or SetOwnerAndName() has been | |
8426 // called. | |
8427 const void* MockObject() const | |
8428 GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | |
8429 | |
8430 // Returns the name of this mock method. Must be called after | |
8431 // SetOwnerAndName() has been called. | |
8432 const char* Name() const | |
8433 GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | |
8434 | |
8435 // Returns the result of invoking this mock function with the given | |
8436 // arguments. This function can be safely called from multiple | |
8437 // threads concurrently. The caller is responsible for deleting the | |
8438 // result. | |
8439 UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args) | |
8440 GTEST_LOCK_EXCLUDED_(g_gmock_mutex); | |
8441 | |
8442 protected: | |
8443 typedef std::vector<const void*> UntypedOnCallSpecs; | |
8444 | |
8445 using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>; | |
8446 | |
8447 // Returns an Expectation object that references and co-owns exp, | |
8448 // which must be an expectation on this mock function. | |
8449 Expectation GetHandleOf(ExpectationBase* exp); | |
8450 | |
8451 // Address of the mock object this mock method belongs to. Only | |
8452 // valid after this mock method has been called or | |
8453 // ON_CALL/EXPECT_CALL has been invoked on it. | |
8454 const void* mock_obj_; // Protected by g_gmock_mutex. | |
8455 | |
8456 // Name of the function being mocked. Only valid after this mock | |
8457 // method has been called. | |
8458 const char* name_; // Protected by g_gmock_mutex. | |
8459 | |
8460 // All default action specs for this function mocker. | |
8461 UntypedOnCallSpecs untyped_on_call_specs_; | |
8462 | |
8463 // All expectations for this function mocker. | |
8464 // | |
8465 // It's undefined behavior to interleave expectations (EXPECT_CALLs | |
8466 // or ON_CALLs) and mock function calls. Also, the order of | |
8467 // expectations is important. Therefore it's a logic race condition | |
8468 // to read/write untyped_expectations_ concurrently. In order for | |
8469 // tools like tsan to catch concurrent read/write accesses to | |
8470 // untyped_expectations, we deliberately leave accesses to it | |
8471 // unprotected. | |
8472 UntypedExpectations untyped_expectations_; | |
8473 }; // class UntypedFunctionMockerBase | |
8474 | |
8475 // Untyped base class for OnCallSpec<F>. | |
8476 class UntypedOnCallSpecBase { | |
8477 public: | |
8478 // The arguments are the location of the ON_CALL() statement. | |
8479 UntypedOnCallSpecBase(const char* a_file, int a_line) | |
8480 : file_(a_file), line_(a_line), last_clause_(kNone) {} | |
8481 | |
8482 // Where in the source file was the default action spec defined? | |
8483 const char* file() const { return file_; } | |
8484 int line() const { return line_; } | |
8485 | |
8486 protected: | |
8487 // Gives each clause in the ON_CALL() statement a name. | |
8488 enum Clause { | |
8489 // Do not change the order of the enum members! The run-time | |
8490 // syntax checking relies on it. | |
8491 kNone, | |
8492 kWith, | |
8493 kWillByDefault | |
8494 }; | |
8495 | |
8496 // Asserts that the ON_CALL() statement has a certain property. | |
8497 void AssertSpecProperty(bool property, | |
8498 const std::string& failure_message) const { | |
8499 Assert(property, file_, line_, failure_message); | |
8500 } | |
8501 | |
8502 // Expects that the ON_CALL() statement has a certain property. | |
8503 void ExpectSpecProperty(bool property, | |
8504 const std::string& failure_message) const { | |
8505 Expect(property, file_, line_, failure_message); | |
8506 } | |
8507 | |
8508 const char* file_; | |
8509 int line_; | |
8510 | |
8511 // The last clause in the ON_CALL() statement as seen so far. | |
8512 // Initially kNone and changes as the statement is parsed. | |
8513 Clause last_clause_; | |
8514 }; // class UntypedOnCallSpecBase | |
8515 | |
8516 // This template class implements an ON_CALL spec. | |
8517 template <typename F> | |
8518 class OnCallSpec : public UntypedOnCallSpecBase { | |
8519 public: | |
8520 typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |
8521 typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; | |
8522 | |
8523 // Constructs an OnCallSpec object from the information inside | |
8524 // the parenthesis of an ON_CALL() statement. | |
8525 OnCallSpec(const char* a_file, int a_line, | |
8526 const ArgumentMatcherTuple& matchers) | |
8527 : UntypedOnCallSpecBase(a_file, a_line), | |
8528 matchers_(matchers), | |
8529 // By default, extra_matcher_ should match anything. However, | |
8530 // we cannot initialize it with _ as that causes ambiguity between | |
8531 // Matcher's copy and move constructor for some argument types. | |
8532 extra_matcher_(A<const ArgumentTuple&>()) {} | |
8533 | |
8534 // Implements the .With() clause. | |
8535 OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { | |
8536 // Makes sure this is called at most once. | |
8537 ExpectSpecProperty(last_clause_ < kWith, | |
8538 ".With() cannot appear " | |
8539 "more than once in an ON_CALL()."); | |
8540 last_clause_ = kWith; | |
8541 | |
8542 extra_matcher_ = m; | |
8543 return *this; | |
8544 } | |
8545 | |
8546 // Implements the .WillByDefault() clause. | |
8547 OnCallSpec& WillByDefault(const Action<F>& action) { | |
8548 ExpectSpecProperty(last_clause_ < kWillByDefault, | |
8549 ".WillByDefault() must appear " | |
8550 "exactly once in an ON_CALL()."); | |
8551 last_clause_ = kWillByDefault; | |
8552 | |
8553 ExpectSpecProperty(!action.IsDoDefault(), | |
8554 "DoDefault() cannot be used in ON_CALL()."); | |
8555 action_ = action; | |
8556 return *this; | |
8557 } | |
8558 | |
8559 // Returns true if and only if the given arguments match the matchers. | |
8560 bool Matches(const ArgumentTuple& args) const { | |
8561 return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); | |
8562 } | |
8563 | |
8564 // Returns the action specified by the user. | |
8565 const Action<F>& GetAction() const { | |
8566 AssertSpecProperty(last_clause_ == kWillByDefault, | |
8567 ".WillByDefault() must appear exactly " | |
8568 "once in an ON_CALL()."); | |
8569 return action_; | |
8570 } | |
8571 | |
8572 private: | |
8573 // The information in statement | |
8574 // | |
8575 // ON_CALL(mock_object, Method(matchers)) | |
8576 // .With(multi-argument-matcher) | |
8577 // .WillByDefault(action); | |
8578 // | |
8579 // is recorded in the data members like this: | |
8580 // | |
8581 // source file that contains the statement => file_ | |
8582 // line number of the statement => line_ | |
8583 // matchers => matchers_ | |
8584 // multi-argument-matcher => extra_matcher_ | |
8585 // action => action_ | |
8586 ArgumentMatcherTuple matchers_; | |
8587 Matcher<const ArgumentTuple&> extra_matcher_; | |
8588 Action<F> action_; | |
8589 }; // class OnCallSpec | |
8590 | |
8591 // Possible reactions on uninteresting calls. | |
8592 enum CallReaction { | |
8593 kAllow, | |
8594 kWarn, | |
8595 kFail, | |
8596 }; | |
8597 | |
8598 } // namespace internal | |
8599 | |
8600 // Utilities for manipulating mock objects. | |
8601 class GTEST_API_ Mock { | |
8602 public: | |
8603 // The following public methods can be called concurrently. | |
8604 | |
8605 // Tells Google Mock to ignore mock_obj when checking for leaked | |
8606 // mock objects. | |
8607 static void AllowLeak(const void* mock_obj) | |
8608 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8609 | |
8610 // Verifies and clears all expectations on the given mock object. | |
8611 // If the expectations aren't satisfied, generates one or more | |
8612 // Google Test non-fatal failures and returns false. | |
8613 static bool VerifyAndClearExpectations(void* mock_obj) | |
8614 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8615 | |
8616 // Verifies all expectations on the given mock object and clears its | |
8617 // default actions and expectations. Returns true if and only if the | |
8618 // verification was successful. | |
8619 static bool VerifyAndClear(void* mock_obj) | |
8620 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8621 | |
8622 // Returns whether the mock was created as a naggy mock (default) | |
8623 static bool IsNaggy(void* mock_obj) | |
8624 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8625 // Returns whether the mock was created as a nice mock | |
8626 static bool IsNice(void* mock_obj) | |
8627 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8628 // Returns whether the mock was created as a strict mock | |
8629 static bool IsStrict(void* mock_obj) | |
8630 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8631 | |
8632 private: | |
8633 friend class internal::UntypedFunctionMockerBase; | |
8634 | |
8635 // Needed for a function mocker to register itself (so that we know | |
8636 // how to clear a mock object). | |
8637 template <typename F> | |
8638 friend class internal::FunctionMocker; | |
8639 | |
8640 template <typename MockClass> | |
8641 friend class internal::NiceMockImpl; | |
8642 template <typename MockClass> | |
8643 friend class internal::NaggyMockImpl; | |
8644 template <typename MockClass> | |
8645 friend class internal::StrictMockImpl; | |
8646 | |
8647 // Tells Google Mock to allow uninteresting calls on the given mock | |
8648 // object. | |
8649 static void AllowUninterestingCalls(const void* mock_obj) | |
8650 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8651 | |
8652 // Tells Google Mock to warn the user about uninteresting calls on | |
8653 // the given mock object. | |
8654 static void WarnUninterestingCalls(const void* mock_obj) | |
8655 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8656 | |
8657 // Tells Google Mock to fail uninteresting calls on the given mock | |
8658 // object. | |
8659 static void FailUninterestingCalls(const void* mock_obj) | |
8660 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8661 | |
8662 // Tells Google Mock the given mock object is being destroyed and | |
8663 // its entry in the call-reaction table should be removed. | |
8664 static void UnregisterCallReaction(const void* mock_obj) | |
8665 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8666 | |
8667 // Returns the reaction Google Mock will have on uninteresting calls | |
8668 // made on the given mock object. | |
8669 static internal::CallReaction GetReactionOnUninterestingCalls( | |
8670 const void* mock_obj) | |
8671 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8672 | |
8673 // Verifies that all expectations on the given mock object have been | |
8674 // satisfied. Reports one or more Google Test non-fatal failures | |
8675 // and returns false if not. | |
8676 static bool VerifyAndClearExpectationsLocked(void* mock_obj) | |
8677 GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); | |
8678 | |
8679 // Clears all ON_CALL()s set on the given mock object. | |
8680 static void ClearDefaultActionsLocked(void* mock_obj) | |
8681 GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); | |
8682 | |
8683 // Registers a mock object and a mock method it owns. | |
8684 static void Register( | |
8685 const void* mock_obj, | |
8686 internal::UntypedFunctionMockerBase* mocker) | |
8687 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8688 | |
8689 // Tells Google Mock where in the source code mock_obj is used in an | |
8690 // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this | |
8691 // information helps the user identify which object it is. | |
8692 static void RegisterUseByOnCallOrExpectCall( | |
8693 const void* mock_obj, const char* file, int line) | |
8694 GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); | |
8695 | |
8696 // Unregisters a mock method; removes the owning mock object from | |
8697 // the registry when the last mock method associated with it has | |
8698 // been unregistered. This is called only in the destructor of | |
8699 // FunctionMocker. | |
8700 static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) | |
8701 GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); | |
8702 }; // class Mock | |
8703 | |
8704 // An abstract handle of an expectation. Useful in the .After() | |
8705 // clause of EXPECT_CALL() for setting the (partial) order of | |
8706 // expectations. The syntax: | |
8707 // | |
8708 // Expectation e1 = EXPECT_CALL(...)...; | |
8709 // EXPECT_CALL(...).After(e1)...; | |
8710 // | |
8711 // sets two expectations where the latter can only be matched after | |
8712 // the former has been satisfied. | |
8713 // | |
8714 // Notes: | |
8715 // - This class is copyable and has value semantics. | |
8716 // - Constness is shallow: a const Expectation object itself cannot | |
8717 // be modified, but the mutable methods of the ExpectationBase | |
8718 // object it references can be called via expectation_base(). | |
8719 | |
8720 class GTEST_API_ Expectation { | |
8721 public: | |
8722 // Constructs a null object that doesn't reference any expectation. | |
8723 Expectation(); | |
8724 Expectation(Expectation&&) = default; | |
8725 Expectation(const Expectation&) = default; | |
8726 Expectation& operator=(Expectation&&) = default; | |
8727 Expectation& operator=(const Expectation&) = default; | |
8728 ~Expectation(); | |
8729 | |
8730 // This single-argument ctor must not be explicit, in order to support the | |
8731 // Expectation e = EXPECT_CALL(...); | |
8732 // syntax. | |
8733 // | |
8734 // A TypedExpectation object stores its pre-requisites as | |
8735 // Expectation objects, and needs to call the non-const Retire() | |
8736 // method on the ExpectationBase objects they reference. Therefore | |
8737 // Expectation must receive a *non-const* reference to the | |
8738 // ExpectationBase object. | |
8739 Expectation(internal::ExpectationBase& exp); // NOLINT | |
8740 | |
8741 // The compiler-generated copy ctor and operator= work exactly as | |
8742 // intended, so we don't need to define our own. | |
8743 | |
8744 // Returns true if and only if rhs references the same expectation as this | |
8745 // object does. | |
8746 bool operator==(const Expectation& rhs) const { | |
8747 return expectation_base_ == rhs.expectation_base_; | |
8748 } | |
8749 | |
8750 bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } | |
8751 | |
8752 private: | |
8753 friend class ExpectationSet; | |
8754 friend class Sequence; | |
8755 friend class ::testing::internal::ExpectationBase; | |
8756 friend class ::testing::internal::UntypedFunctionMockerBase; | |
8757 | |
8758 template <typename F> | |
8759 friend class ::testing::internal::FunctionMocker; | |
8760 | |
8761 template <typename F> | |
8762 friend class ::testing::internal::TypedExpectation; | |
8763 | |
8764 // This comparator is needed for putting Expectation objects into a set. | |
8765 class Less { | |
8766 public: | |
8767 bool operator()(const Expectation& lhs, const Expectation& rhs) const { | |
8768 return lhs.expectation_base_.get() < rhs.expectation_base_.get(); | |
8769 } | |
8770 }; | |
8771 | |
8772 typedef ::std::set<Expectation, Less> Set; | |
8773 | |
8774 Expectation( | |
8775 const std::shared_ptr<internal::ExpectationBase>& expectation_base); | |
8776 | |
8777 // Returns the expectation this object references. | |
8778 const std::shared_ptr<internal::ExpectationBase>& expectation_base() const { | |
8779 return expectation_base_; | |
8780 } | |
8781 | |
8782 // A shared_ptr that co-owns the expectation this handle references. | |
8783 std::shared_ptr<internal::ExpectationBase> expectation_base_; | |
8784 }; | |
8785 | |
8786 // A set of expectation handles. Useful in the .After() clause of | |
8787 // EXPECT_CALL() for setting the (partial) order of expectations. The | |
8788 // syntax: | |
8789 // | |
8790 // ExpectationSet es; | |
8791 // es += EXPECT_CALL(...)...; | |
8792 // es += EXPECT_CALL(...)...; | |
8793 // EXPECT_CALL(...).After(es)...; | |
8794 // | |
8795 // sets three expectations where the last one can only be matched | |
8796 // after the first two have both been satisfied. | |
8797 // | |
8798 // This class is copyable and has value semantics. | |
8799 class ExpectationSet { | |
8800 public: | |
8801 // A bidirectional iterator that can read a const element in the set. | |
8802 typedef Expectation::Set::const_iterator const_iterator; | |
8803 | |
8804 // An object stored in the set. This is an alias of Expectation. | |
8805 typedef Expectation::Set::value_type value_type; | |
8806 | |
8807 // Constructs an empty set. | |
8808 ExpectationSet() {} | |
8809 | |
8810 // This single-argument ctor must not be explicit, in order to support the | |
8811 // ExpectationSet es = EXPECT_CALL(...); | |
8812 // syntax. | |
8813 ExpectationSet(internal::ExpectationBase& exp) { // NOLINT | |
8814 *this += Expectation(exp); | |
8815 } | |
8816 | |
8817 // This single-argument ctor implements implicit conversion from | |
8818 // Expectation and thus must not be explicit. This allows either an | |
8819 // Expectation or an ExpectationSet to be used in .After(). | |
8820 ExpectationSet(const Expectation& e) { // NOLINT | |
8821 *this += e; | |
8822 } | |
8823 | |
8824 // The compiler-generator ctor and operator= works exactly as | |
8825 // intended, so we don't need to define our own. | |
8826 | |
8827 // Returns true if and only if rhs contains the same set of Expectation | |
8828 // objects as this does. | |
8829 bool operator==(const ExpectationSet& rhs) const { | |
8830 return expectations_ == rhs.expectations_; | |
8831 } | |
8832 | |
8833 bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } | |
8834 | |
8835 // Implements the syntax | |
8836 // expectation_set += EXPECT_CALL(...); | |
8837 ExpectationSet& operator+=(const Expectation& e) { | |
8838 expectations_.insert(e); | |
8839 return *this; | |
8840 } | |
8841 | |
8842 int size() const { return static_cast<int>(expectations_.size()); } | |
8843 | |
8844 const_iterator begin() const { return expectations_.begin(); } | |
8845 const_iterator end() const { return expectations_.end(); } | |
8846 | |
8847 private: | |
8848 Expectation::Set expectations_; | |
8849 }; | |
8850 | |
8851 | |
8852 // Sequence objects are used by a user to specify the relative order | |
8853 // in which the expectations should match. They are copyable (we rely | |
8854 // on the compiler-defined copy constructor and assignment operator). | |
8855 class GTEST_API_ Sequence { | |
8856 public: | |
8857 // Constructs an empty sequence. | |
8858 Sequence() : last_expectation_(new Expectation) {} | |
8859 | |
8860 // Adds an expectation to this sequence. The caller must ensure | |
8861 // that no other thread is accessing this Sequence object. | |
8862 void AddExpectation(const Expectation& expectation) const; | |
8863 | |
8864 private: | |
8865 // The last expectation in this sequence. | |
8866 std::shared_ptr<Expectation> last_expectation_; | |
8867 }; // class Sequence | |
8868 | |
8869 // An object of this type causes all EXPECT_CALL() statements | |
8870 // encountered in its scope to be put in an anonymous sequence. The | |
8871 // work is done in the constructor and destructor. You should only | |
8872 // create an InSequence object on the stack. | |
8873 // | |
8874 // The sole purpose for this class is to support easy definition of | |
8875 // sequential expectations, e.g. | |
8876 // | |
8877 // { | |
8878 // InSequence dummy; // The name of the object doesn't matter. | |
8879 // | |
8880 // // The following expectations must match in the order they appear. | |
8881 // EXPECT_CALL(a, Bar())...; | |
8882 // EXPECT_CALL(a, Baz())...; | |
8883 // ... | |
8884 // EXPECT_CALL(b, Xyz())...; | |
8885 // } | |
8886 // | |
8887 // You can create InSequence objects in multiple threads, as long as | |
8888 // they are used to affect different mock objects. The idea is that | |
8889 // each thread can create and set up its own mocks as if it's the only | |
8890 // thread. However, for clarity of your tests we recommend you to set | |
8891 // up mocks in the main thread unless you have a good reason not to do | |
8892 // so. | |
8893 class GTEST_API_ InSequence { | |
8894 public: | |
8895 InSequence(); | |
8896 ~InSequence(); | |
8897 private: | |
8898 bool sequence_created_; | |
8899 | |
8900 GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT | |
8901 } GTEST_ATTRIBUTE_UNUSED_; | |
8902 | |
8903 namespace internal { | |
8904 | |
8905 // Points to the implicit sequence introduced by a living InSequence | |
8906 // object (if any) in the current thread or NULL. | |
8907 GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; | |
8908 | |
8909 // Base class for implementing expectations. | |
8910 // | |
8911 // There are two reasons for having a type-agnostic base class for | |
8912 // Expectation: | |
8913 // | |
8914 // 1. We need to store collections of expectations of different | |
8915 // types (e.g. all pre-requisites of a particular expectation, all | |
8916 // expectations in a sequence). Therefore these expectation objects | |
8917 // must share a common base class. | |
8918 // | |
8919 // 2. We can avoid binary code bloat by moving methods not depending | |
8920 // on the template argument of Expectation to the base class. | |
8921 // | |
8922 // This class is internal and mustn't be used by user code directly. | |
8923 class GTEST_API_ ExpectationBase { | |
8924 public: | |
8925 // source_text is the EXPECT_CALL(...) source that created this Expectation. | |
8926 ExpectationBase(const char* file, int line, const std::string& source_text); | |
8927 | |
8928 virtual ~ExpectationBase(); | |
8929 | |
8930 // Where in the source file was the expectation spec defined? | |
8931 const char* file() const { return file_; } | |
8932 int line() const { return line_; } | |
8933 const char* source_text() const { return source_text_.c_str(); } | |
8934 // Returns the cardinality specified in the expectation spec. | |
8935 const Cardinality& cardinality() const { return cardinality_; } | |
8936 | |
8937 // Describes the source file location of this expectation. | |
8938 void DescribeLocationTo(::std::ostream* os) const { | |
8939 *os << FormatFileLocation(file(), line()) << " "; | |
8940 } | |
8941 | |
8942 // Describes how many times a function call matching this | |
8943 // expectation has occurred. | |
8944 void DescribeCallCountTo(::std::ostream* os) const | |
8945 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | |
8946 | |
8947 // If this mock method has an extra matcher (i.e. .With(matcher)), | |
8948 // describes it to the ostream. | |
8949 virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; | |
8950 | |
8951 protected: | |
8952 friend class ::testing::Expectation; | |
8953 friend class UntypedFunctionMockerBase; | |
8954 | |
8955 enum Clause { | |
8956 // Don't change the order of the enum members! | |
8957 kNone, | |
8958 kWith, | |
8959 kTimes, | |
8960 kInSequence, | |
8961 kAfter, | |
8962 kWillOnce, | |
8963 kWillRepeatedly, | |
8964 kRetiresOnSaturation | |
8965 }; | |
8966 | |
8967 typedef std::vector<const void*> UntypedActions; | |
8968 | |
8969 // Returns an Expectation object that references and co-owns this | |
8970 // expectation. | |
8971 virtual Expectation GetHandle() = 0; | |
8972 | |
8973 // Asserts that the EXPECT_CALL() statement has the given property. | |
8974 void AssertSpecProperty(bool property, | |
8975 const std::string& failure_message) const { | |
8976 Assert(property, file_, line_, failure_message); | |
8977 } | |
8978 | |
8979 // Expects that the EXPECT_CALL() statement has the given property. | |
8980 void ExpectSpecProperty(bool property, | |
8981 const std::string& failure_message) const { | |
8982 Expect(property, file_, line_, failure_message); | |
8983 } | |
8984 | |
8985 // Explicitly specifies the cardinality of this expectation. Used | |
8986 // by the subclasses to implement the .Times() clause. | |
8987 void SpecifyCardinality(const Cardinality& cardinality); | |
8988 | |
8989 // Returns true if and only if the user specified the cardinality | |
8990 // explicitly using a .Times(). | |
8991 bool cardinality_specified() const { return cardinality_specified_; } | |
8992 | |
8993 // Sets the cardinality of this expectation spec. | |
8994 void set_cardinality(const Cardinality& a_cardinality) { | |
8995 cardinality_ = a_cardinality; | |
8996 } | |
8997 | |
8998 // The following group of methods should only be called after the | |
8999 // EXPECT_CALL() statement, and only when g_gmock_mutex is held by | |
9000 // the current thread. | |
9001 | |
9002 // Retires all pre-requisites of this expectation. | |
9003 void RetireAllPreRequisites() | |
9004 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | |
9005 | |
9006 // Returns true if and only if this expectation is retired. | |
9007 bool is_retired() const | |
9008 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9009 g_gmock_mutex.AssertHeld(); | |
9010 return retired_; | |
9011 } | |
9012 | |
9013 // Retires this expectation. | |
9014 void Retire() | |
9015 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9016 g_gmock_mutex.AssertHeld(); | |
9017 retired_ = true; | |
9018 } | |
9019 | |
9020 // Returns true if and only if this expectation is satisfied. | |
9021 bool IsSatisfied() const | |
9022 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9023 g_gmock_mutex.AssertHeld(); | |
9024 return cardinality().IsSatisfiedByCallCount(call_count_); | |
9025 } | |
9026 | |
9027 // Returns true if and only if this expectation is saturated. | |
9028 bool IsSaturated() const | |
9029 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9030 g_gmock_mutex.AssertHeld(); | |
9031 return cardinality().IsSaturatedByCallCount(call_count_); | |
9032 } | |
9033 | |
9034 // Returns true if and only if this expectation is over-saturated. | |
9035 bool IsOverSaturated() const | |
9036 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9037 g_gmock_mutex.AssertHeld(); | |
9038 return cardinality().IsOverSaturatedByCallCount(call_count_); | |
9039 } | |
9040 | |
9041 // Returns true if and only if all pre-requisites of this expectation are | |
9042 // satisfied. | |
9043 bool AllPrerequisitesAreSatisfied() const | |
9044 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | |
9045 | |
9046 // Adds unsatisfied pre-requisites of this expectation to 'result'. | |
9047 void FindUnsatisfiedPrerequisites(ExpectationSet* result) const | |
9048 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); | |
9049 | |
9050 // Returns the number this expectation has been invoked. | |
9051 int call_count() const | |
9052 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9053 g_gmock_mutex.AssertHeld(); | |
9054 return call_count_; | |
9055 } | |
9056 | |
9057 // Increments the number this expectation has been invoked. | |
9058 void IncrementCallCount() | |
9059 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9060 g_gmock_mutex.AssertHeld(); | |
9061 call_count_++; | |
9062 } | |
9063 | |
9064 // Checks the action count (i.e. the number of WillOnce() and | |
9065 // WillRepeatedly() clauses) against the cardinality if this hasn't | |
9066 // been done before. Prints a warning if there are too many or too | |
9067 // few actions. | |
9068 void CheckActionCountIfNotDone() const | |
9069 GTEST_LOCK_EXCLUDED_(mutex_); | |
9070 | |
9071 friend class ::testing::Sequence; | |
9072 friend class ::testing::internal::ExpectationTester; | |
9073 | |
9074 template <typename Function> | |
9075 friend class TypedExpectation; | |
9076 | |
9077 // Implements the .Times() clause. | |
9078 void UntypedTimes(const Cardinality& a_cardinality); | |
9079 | |
9080 // This group of fields are part of the spec and won't change after | |
9081 // an EXPECT_CALL() statement finishes. | |
9082 const char* file_; // The file that contains the expectation. | |
9083 int line_; // The line number of the expectation. | |
9084 const std::string source_text_; // The EXPECT_CALL(...) source text. | |
9085 // True if and only if the cardinality is specified explicitly. | |
9086 bool cardinality_specified_; | |
9087 Cardinality cardinality_; // The cardinality of the expectation. | |
9088 // The immediate pre-requisites (i.e. expectations that must be | |
9089 // satisfied before this expectation can be matched) of this | |
9090 // expectation. We use std::shared_ptr in the set because we want an | |
9091 // Expectation object to be co-owned by its FunctionMocker and its | |
9092 // successors. This allows multiple mock objects to be deleted at | |
9093 // different times. | |
9094 ExpectationSet immediate_prerequisites_; | |
9095 | |
9096 // This group of fields are the current state of the expectation, | |
9097 // and can change as the mock function is called. | |
9098 int call_count_; // How many times this expectation has been invoked. | |
9099 bool retired_; // True if and only if this expectation has retired. | |
9100 UntypedActions untyped_actions_; | |
9101 bool extra_matcher_specified_; | |
9102 bool repeated_action_specified_; // True if a WillRepeatedly() was specified. | |
9103 bool retires_on_saturation_; | |
9104 Clause last_clause_; | |
9105 mutable bool action_count_checked_; // Under mutex_. | |
9106 mutable Mutex mutex_; // Protects action_count_checked_. | |
9107 }; // class ExpectationBase | |
9108 | |
9109 // Impements an expectation for the given function type. | |
9110 template <typename F> | |
9111 class TypedExpectation : public ExpectationBase { | |
9112 public: | |
9113 typedef typename Function<F>::ArgumentTuple ArgumentTuple; | |
9114 typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; | |
9115 typedef typename Function<F>::Result Result; | |
9116 | |
9117 TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line, | |
9118 const std::string& a_source_text, | |
9119 const ArgumentMatcherTuple& m) | |
9120 : ExpectationBase(a_file, a_line, a_source_text), | |
9121 owner_(owner), | |
9122 matchers_(m), | |
9123 // By default, extra_matcher_ should match anything. However, | |
9124 // we cannot initialize it with _ as that causes ambiguity between | |
9125 // Matcher's copy and move constructor for some argument types. | |
9126 extra_matcher_(A<const ArgumentTuple&>()), | |
9127 repeated_action_(DoDefault()) {} | |
9128 | |
9129 ~TypedExpectation() override { | |
9130 // Check the validity of the action count if it hasn't been done | |
9131 // yet (for example, if the expectation was never used). | |
9132 CheckActionCountIfNotDone(); | |
9133 for (UntypedActions::const_iterator it = untyped_actions_.begin(); | |
9134 it != untyped_actions_.end(); ++it) { | |
9135 delete static_cast<const Action<F>*>(*it); | |
9136 } | |
9137 } | |
9138 | |
9139 // Implements the .With() clause. | |
9140 TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { | |
9141 if (last_clause_ == kWith) { | |
9142 ExpectSpecProperty(false, | |
9143 ".With() cannot appear " | |
9144 "more than once in an EXPECT_CALL()."); | |
9145 } else { | |
9146 ExpectSpecProperty(last_clause_ < kWith, | |
9147 ".With() must be the first " | |
9148 "clause in an EXPECT_CALL()."); | |
9149 } | |
9150 last_clause_ = kWith; | |
9151 | |
9152 extra_matcher_ = m; | |
9153 extra_matcher_specified_ = true; | |
9154 return *this; | |
9155 } | |
9156 | |
9157 // Implements the .Times() clause. | |
9158 TypedExpectation& Times(const Cardinality& a_cardinality) { | |
9159 ExpectationBase::UntypedTimes(a_cardinality); | |
9160 return *this; | |
9161 } | |
9162 | |
9163 // Implements the .Times() clause. | |
9164 TypedExpectation& Times(int n) { | |
9165 return Times(Exactly(n)); | |
9166 } | |
9167 | |
9168 // Implements the .InSequence() clause. | |
9169 TypedExpectation& InSequence(const Sequence& s) { | |
9170 ExpectSpecProperty(last_clause_ <= kInSequence, | |
9171 ".InSequence() cannot appear after .After()," | |
9172 " .WillOnce(), .WillRepeatedly(), or " | |
9173 ".RetiresOnSaturation()."); | |
9174 last_clause_ = kInSequence; | |
9175 | |
9176 s.AddExpectation(GetHandle()); | |
9177 return *this; | |
9178 } | |
9179 TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { | |
9180 return InSequence(s1).InSequence(s2); | |
9181 } | |
9182 TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, | |
9183 const Sequence& s3) { | |
9184 return InSequence(s1, s2).InSequence(s3); | |
9185 } | |
9186 TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, | |
9187 const Sequence& s3, const Sequence& s4) { | |
9188 return InSequence(s1, s2, s3).InSequence(s4); | |
9189 } | |
9190 TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, | |
9191 const Sequence& s3, const Sequence& s4, | |
9192 const Sequence& s5) { | |
9193 return InSequence(s1, s2, s3, s4).InSequence(s5); | |
9194 } | |
9195 | |
9196 // Implements that .After() clause. | |
9197 TypedExpectation& After(const ExpectationSet& s) { | |
9198 ExpectSpecProperty(last_clause_ <= kAfter, | |
9199 ".After() cannot appear after .WillOnce()," | |
9200 " .WillRepeatedly(), or " | |
9201 ".RetiresOnSaturation()."); | |
9202 last_clause_ = kAfter; | |
9203 | |
9204 for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { | |
9205 immediate_prerequisites_ += *it; | |
9206 } | |
9207 return *this; | |
9208 } | |
9209 TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { | |
9210 return After(s1).After(s2); | |
9211 } | |
9212 TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, | |
9213 const ExpectationSet& s3) { | |
9214 return After(s1, s2).After(s3); | |
9215 } | |
9216 TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, | |
9217 const ExpectationSet& s3, const ExpectationSet& s4) { | |
9218 return After(s1, s2, s3).After(s4); | |
9219 } | |
9220 TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, | |
9221 const ExpectationSet& s3, const ExpectationSet& s4, | |
9222 const ExpectationSet& s5) { | |
9223 return After(s1, s2, s3, s4).After(s5); | |
9224 } | |
9225 | |
9226 // Implements the .WillOnce() clause. | |
9227 TypedExpectation& WillOnce(const Action<F>& action) { | |
9228 ExpectSpecProperty(last_clause_ <= kWillOnce, | |
9229 ".WillOnce() cannot appear after " | |
9230 ".WillRepeatedly() or .RetiresOnSaturation()."); | |
9231 last_clause_ = kWillOnce; | |
9232 | |
9233 untyped_actions_.push_back(new Action<F>(action)); | |
9234 if (!cardinality_specified()) { | |
9235 set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); | |
9236 } | |
9237 return *this; | |
9238 } | |
9239 | |
9240 // Implements the .WillRepeatedly() clause. | |
9241 TypedExpectation& WillRepeatedly(const Action<F>& action) { | |
9242 if (last_clause_ == kWillRepeatedly) { | |
9243 ExpectSpecProperty(false, | |
9244 ".WillRepeatedly() cannot appear " | |
9245 "more than once in an EXPECT_CALL()."); | |
9246 } else { | |
9247 ExpectSpecProperty(last_clause_ < kWillRepeatedly, | |
9248 ".WillRepeatedly() cannot appear " | |
9249 "after .RetiresOnSaturation()."); | |
9250 } | |
9251 last_clause_ = kWillRepeatedly; | |
9252 repeated_action_specified_ = true; | |
9253 | |
9254 repeated_action_ = action; | |
9255 if (!cardinality_specified()) { | |
9256 set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); | |
9257 } | |
9258 | |
9259 // Now that no more action clauses can be specified, we check | |
9260 // whether their count makes sense. | |
9261 CheckActionCountIfNotDone(); | |
9262 return *this; | |
9263 } | |
9264 | |
9265 // Implements the .RetiresOnSaturation() clause. | |
9266 TypedExpectation& RetiresOnSaturation() { | |
9267 ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, | |
9268 ".RetiresOnSaturation() cannot appear " | |
9269 "more than once."); | |
9270 last_clause_ = kRetiresOnSaturation; | |
9271 retires_on_saturation_ = true; | |
9272 | |
9273 // Now that no more action clauses can be specified, we check | |
9274 // whether their count makes sense. | |
9275 CheckActionCountIfNotDone(); | |
9276 return *this; | |
9277 } | |
9278 | |
9279 // Returns the matchers for the arguments as specified inside the | |
9280 // EXPECT_CALL() macro. | |
9281 const ArgumentMatcherTuple& matchers() const { | |
9282 return matchers_; | |
9283 } | |
9284 | |
9285 // Returns the matcher specified by the .With() clause. | |
9286 const Matcher<const ArgumentTuple&>& extra_matcher() const { | |
9287 return extra_matcher_; | |
9288 } | |
9289 | |
9290 // Returns the action specified by the .WillRepeatedly() clause. | |
9291 const Action<F>& repeated_action() const { return repeated_action_; } | |
9292 | |
9293 // If this mock method has an extra matcher (i.e. .With(matcher)), | |
9294 // describes it to the ostream. | |
9295 void MaybeDescribeExtraMatcherTo(::std::ostream* os) override { | |
9296 if (extra_matcher_specified_) { | |
9297 *os << " Expected args: "; | |
9298 extra_matcher_.DescribeTo(os); | |
9299 *os << "\n"; | |
9300 } | |
9301 } | |
9302 | |
9303 private: | |
9304 template <typename Function> | |
9305 friend class FunctionMocker; | |
9306 | |
9307 // Returns an Expectation object that references and co-owns this | |
9308 // expectation. | |
9309 Expectation GetHandle() override { return owner_->GetHandleOf(this); } | |
9310 | |
9311 // The following methods will be called only after the EXPECT_CALL() | |
9312 // statement finishes and when the current thread holds | |
9313 // g_gmock_mutex. | |
9314 | |
9315 // Returns true if and only if this expectation matches the given arguments. | |
9316 bool Matches(const ArgumentTuple& args) const | |
9317 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9318 g_gmock_mutex.AssertHeld(); | |
9319 return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); | |
9320 } | |
9321 | |
9322 // Returns true if and only if this expectation should handle the given | |
9323 // arguments. | |
9324 bool ShouldHandleArguments(const ArgumentTuple& args) const | |
9325 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9326 g_gmock_mutex.AssertHeld(); | |
9327 | |
9328 // In case the action count wasn't checked when the expectation | |
9329 // was defined (e.g. if this expectation has no WillRepeatedly() | |
9330 // or RetiresOnSaturation() clause), we check it when the | |
9331 // expectation is used for the first time. | |
9332 CheckActionCountIfNotDone(); | |
9333 return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); | |
9334 } | |
9335 | |
9336 // Describes the result of matching the arguments against this | |
9337 // expectation to the given ostream. | |
9338 void ExplainMatchResultTo( | |
9339 const ArgumentTuple& args, | |
9340 ::std::ostream* os) const | |
9341 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9342 g_gmock_mutex.AssertHeld(); | |
9343 | |
9344 if (is_retired()) { | |
9345 *os << " Expected: the expectation is active\n" | |
9346 << " Actual: it is retired\n"; | |
9347 } else if (!Matches(args)) { | |
9348 if (!TupleMatches(matchers_, args)) { | |
9349 ExplainMatchFailureTupleTo(matchers_, args, os); | |
9350 } | |
9351 StringMatchResultListener listener; | |
9352 if (!extra_matcher_.MatchAndExplain(args, &listener)) { | |
9353 *os << " Expected args: "; | |
9354 extra_matcher_.DescribeTo(os); | |
9355 *os << "\n Actual: don't match"; | |
9356 | |
9357 internal::PrintIfNotEmpty(listener.str(), os); | |
9358 *os << "\n"; | |
9359 } | |
9360 } else if (!AllPrerequisitesAreSatisfied()) { | |
9361 *os << " Expected: all pre-requisites are satisfied\n" | |
9362 << " Actual: the following immediate pre-requisites " | |
9363 << "are not satisfied:\n"; | |
9364 ExpectationSet unsatisfied_prereqs; | |
9365 FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); | |
9366 int i = 0; | |
9367 for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); | |
9368 it != unsatisfied_prereqs.end(); ++it) { | |
9369 it->expectation_base()->DescribeLocationTo(os); | |
9370 *os << "pre-requisite #" << i++ << "\n"; | |
9371 } | |
9372 *os << " (end of pre-requisites)\n"; | |
9373 } else { | |
9374 // This line is here just for completeness' sake. It will never | |
9375 // be executed as currently the ExplainMatchResultTo() function | |
9376 // is called only when the mock function call does NOT match the | |
9377 // expectation. | |
9378 *os << "The call matches the expectation.\n"; | |
9379 } | |
9380 } | |
9381 | |
9382 // Returns the action that should be taken for the current invocation. | |
9383 const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker, | |
9384 const ArgumentTuple& args) const | |
9385 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9386 g_gmock_mutex.AssertHeld(); | |
9387 const int count = call_count(); | |
9388 Assert(count >= 1, __FILE__, __LINE__, | |
9389 "call_count() is <= 0 when GetCurrentAction() is " | |
9390 "called - this should never happen."); | |
9391 | |
9392 const int action_count = static_cast<int>(untyped_actions_.size()); | |
9393 if (action_count > 0 && !repeated_action_specified_ && | |
9394 count > action_count) { | |
9395 // If there is at least one WillOnce() and no WillRepeatedly(), | |
9396 // we warn the user when the WillOnce() clauses ran out. | |
9397 ::std::stringstream ss; | |
9398 DescribeLocationTo(&ss); | |
9399 ss << "Actions ran out in " << source_text() << "...\n" | |
9400 << "Called " << count << " times, but only " | |
9401 << action_count << " WillOnce()" | |
9402 << (action_count == 1 ? " is" : "s are") << " specified - "; | |
9403 mocker->DescribeDefaultActionTo(args, &ss); | |
9404 Log(kWarning, ss.str(), 1); | |
9405 } | |
9406 | |
9407 return count <= action_count | |
9408 ? *static_cast<const Action<F>*>( | |
9409 untyped_actions_[static_cast<size_t>(count - 1)]) | |
9410 : repeated_action(); | |
9411 } | |
9412 | |
9413 // Given the arguments of a mock function call, if the call will | |
9414 // over-saturate this expectation, returns the default action; | |
9415 // otherwise, returns the next action in this expectation. Also | |
9416 // describes *what* happened to 'what', and explains *why* Google | |
9417 // Mock does it to 'why'. This method is not const as it calls | |
9418 // IncrementCallCount(). A return value of NULL means the default | |
9419 // action. | |
9420 const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker, | |
9421 const ArgumentTuple& args, | |
9422 ::std::ostream* what, | |
9423 ::std::ostream* why) | |
9424 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9425 g_gmock_mutex.AssertHeld(); | |
9426 if (IsSaturated()) { | |
9427 // We have an excessive call. | |
9428 IncrementCallCount(); | |
9429 *what << "Mock function called more times than expected - "; | |
9430 mocker->DescribeDefaultActionTo(args, what); | |
9431 DescribeCallCountTo(why); | |
9432 | |
9433 return nullptr; | |
9434 } | |
9435 | |
9436 IncrementCallCount(); | |
9437 RetireAllPreRequisites(); | |
9438 | |
9439 if (retires_on_saturation_ && IsSaturated()) { | |
9440 Retire(); | |
9441 } | |
9442 | |
9443 // Must be done after IncrementCount()! | |
9444 *what << "Mock function call matches " << source_text() <<"...\n"; | |
9445 return &(GetCurrentAction(mocker, args)); | |
9446 } | |
9447 | |
9448 // All the fields below won't change once the EXPECT_CALL() | |
9449 // statement finishes. | |
9450 FunctionMocker<F>* const owner_; | |
9451 ArgumentMatcherTuple matchers_; | |
9452 Matcher<const ArgumentTuple&> extra_matcher_; | |
9453 Action<F> repeated_action_; | |
9454 | |
9455 GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); | |
9456 }; // class TypedExpectation | |
9457 | |
9458 // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for | |
9459 // specifying the default behavior of, or expectation on, a mock | |
9460 // function. | |
9461 | |
9462 // Note: class MockSpec really belongs to the ::testing namespace. | |
9463 // However if we define it in ::testing, MSVC will complain when | |
9464 // classes in ::testing::internal declare it as a friend class | |
9465 // template. To workaround this compiler bug, we define MockSpec in | |
9466 // ::testing::internal and import it into ::testing. | |
9467 | |
9468 // Logs a message including file and line number information. | |
9469 GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, | |
9470 const char* file, int line, | |
9471 const std::string& message); | |
9472 | |
9473 template <typename F> | |
9474 class MockSpec { | |
9475 public: | |
9476 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; | |
9477 typedef typename internal::Function<F>::ArgumentMatcherTuple | |
9478 ArgumentMatcherTuple; | |
9479 | |
9480 // Constructs a MockSpec object, given the function mocker object | |
9481 // that the spec is associated with. | |
9482 MockSpec(internal::FunctionMocker<F>* function_mocker, | |
9483 const ArgumentMatcherTuple& matchers) | |
9484 : function_mocker_(function_mocker), matchers_(matchers) {} | |
9485 | |
9486 // Adds a new default action spec to the function mocker and returns | |
9487 // the newly created spec. | |
9488 internal::OnCallSpec<F>& InternalDefaultActionSetAt( | |
9489 const char* file, int line, const char* obj, const char* call) { | |
9490 LogWithLocation(internal::kInfo, file, line, | |
9491 std::string("ON_CALL(") + obj + ", " + call + ") invoked"); | |
9492 return function_mocker_->AddNewOnCallSpec(file, line, matchers_); | |
9493 } | |
9494 | |
9495 // Adds a new expectation spec to the function mocker and returns | |
9496 // the newly created spec. | |
9497 internal::TypedExpectation<F>& InternalExpectedAt( | |
9498 const char* file, int line, const char* obj, const char* call) { | |
9499 const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " + | |
9500 call + ")"); | |
9501 LogWithLocation(internal::kInfo, file, line, source_text + " invoked"); | |
9502 return function_mocker_->AddNewExpectation( | |
9503 file, line, source_text, matchers_); | |
9504 } | |
9505 | |
9506 // This operator overload is used to swallow the superfluous parameter list | |
9507 // introduced by the ON/EXPECT_CALL macros. See the macro comments for more | |
9508 // explanation. | |
9509 MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) { | |
9510 return *this; | |
9511 } | |
9512 | |
9513 private: | |
9514 template <typename Function> | |
9515 friend class internal::FunctionMocker; | |
9516 | |
9517 // The function mocker that owns this spec. | |
9518 internal::FunctionMocker<F>* const function_mocker_; | |
9519 // The argument matchers specified in the spec. | |
9520 ArgumentMatcherTuple matchers_; | |
9521 }; // class MockSpec | |
9522 | |
9523 // Wrapper type for generically holding an ordinary value or lvalue reference. | |
9524 // If T is not a reference type, it must be copyable or movable. | |
9525 // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless | |
9526 // T is a move-only value type (which means that it will always be copyable | |
9527 // if the current platform does not support move semantics). | |
9528 // | |
9529 // The primary template defines handling for values, but function header | |
9530 // comments describe the contract for the whole template (including | |
9531 // specializations). | |
9532 template <typename T> | |
9533 class ReferenceOrValueWrapper { | |
9534 public: | |
9535 // Constructs a wrapper from the given value/reference. | |
9536 explicit ReferenceOrValueWrapper(T value) | |
9537 : value_(std::move(value)) { | |
9538 } | |
9539 | |
9540 // Unwraps and returns the underlying value/reference, exactly as | |
9541 // originally passed. The behavior of calling this more than once on | |
9542 // the same object is unspecified. | |
9543 T Unwrap() { return std::move(value_); } | |
9544 | |
9545 // Provides nondestructive access to the underlying value/reference. | |
9546 // Always returns a const reference (more precisely, | |
9547 // const std::add_lvalue_reference<T>::type). The behavior of calling this | |
9548 // after calling Unwrap on the same object is unspecified. | |
9549 const T& Peek() const { | |
9550 return value_; | |
9551 } | |
9552 | |
9553 private: | |
9554 T value_; | |
9555 }; | |
9556 | |
9557 // Specialization for lvalue reference types. See primary template | |
9558 // for documentation. | |
9559 template <typename T> | |
9560 class ReferenceOrValueWrapper<T&> { | |
9561 public: | |
9562 // Workaround for debatable pass-by-reference lint warning (c-library-team | |
9563 // policy precludes NOLINT in this context) | |
9564 typedef T& reference; | |
9565 explicit ReferenceOrValueWrapper(reference ref) | |
9566 : value_ptr_(&ref) {} | |
9567 T& Unwrap() { return *value_ptr_; } | |
9568 const T& Peek() const { return *value_ptr_; } | |
9569 | |
9570 private: | |
9571 T* value_ptr_; | |
9572 }; | |
9573 | |
9574 // C++ treats the void type specially. For example, you cannot define | |
9575 // a void-typed variable or pass a void value to a function. | |
9576 // ActionResultHolder<T> holds a value of type T, where T must be a | |
9577 // copyable type or void (T doesn't need to be default-constructable). | |
9578 // It hides the syntactic difference between void and other types, and | |
9579 // is used to unify the code for invoking both void-returning and | |
9580 // non-void-returning mock functions. | |
9581 | |
9582 // Untyped base class for ActionResultHolder<T>. | |
9583 class UntypedActionResultHolderBase { | |
9584 public: | |
9585 virtual ~UntypedActionResultHolderBase() {} | |
9586 | |
9587 // Prints the held value as an action's result to os. | |
9588 virtual void PrintAsActionResult(::std::ostream* os) const = 0; | |
9589 }; | |
9590 | |
9591 // This generic definition is used when T is not void. | |
9592 template <typename T> | |
9593 class ActionResultHolder : public UntypedActionResultHolderBase { | |
9594 public: | |
9595 // Returns the held value. Must not be called more than once. | |
9596 T Unwrap() { | |
9597 return result_.Unwrap(); | |
9598 } | |
9599 | |
9600 // Prints the held value as an action's result to os. | |
9601 void PrintAsActionResult(::std::ostream* os) const override { | |
9602 *os << "\n Returns: "; | |
9603 // T may be a reference type, so we don't use UniversalPrint(). | |
9604 UniversalPrinter<T>::Print(result_.Peek(), os); | |
9605 } | |
9606 | |
9607 // Performs the given mock function's default action and returns the | |
9608 // result in a new-ed ActionResultHolder. | |
9609 template <typename F> | |
9610 static ActionResultHolder* PerformDefaultAction( | |
9611 const FunctionMocker<F>* func_mocker, | |
9612 typename Function<F>::ArgumentTuple&& args, | |
9613 const std::string& call_description) { | |
9614 return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction( | |
9615 std::move(args), call_description))); | |
9616 } | |
9617 | |
9618 // Performs the given action and returns the result in a new-ed | |
9619 // ActionResultHolder. | |
9620 template <typename F> | |
9621 static ActionResultHolder* PerformAction( | |
9622 const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { | |
9623 return new ActionResultHolder( | |
9624 Wrapper(action.Perform(std::move(args)))); | |
9625 } | |
9626 | |
9627 private: | |
9628 typedef ReferenceOrValueWrapper<T> Wrapper; | |
9629 | |
9630 explicit ActionResultHolder(Wrapper result) | |
9631 : result_(std::move(result)) { | |
9632 } | |
9633 | |
9634 Wrapper result_; | |
9635 | |
9636 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); | |
9637 }; | |
9638 | |
9639 // Specialization for T = void. | |
9640 template <> | |
9641 class ActionResultHolder<void> : public UntypedActionResultHolderBase { | |
9642 public: | |
9643 void Unwrap() { } | |
9644 | |
9645 void PrintAsActionResult(::std::ostream* /* os */) const override {} | |
9646 | |
9647 // Performs the given mock function's default action and returns ownership | |
9648 // of an empty ActionResultHolder*. | |
9649 template <typename F> | |
9650 static ActionResultHolder* PerformDefaultAction( | |
9651 const FunctionMocker<F>* func_mocker, | |
9652 typename Function<F>::ArgumentTuple&& args, | |
9653 const std::string& call_description) { | |
9654 func_mocker->PerformDefaultAction(std::move(args), call_description); | |
9655 return new ActionResultHolder; | |
9656 } | |
9657 | |
9658 // Performs the given action and returns ownership of an empty | |
9659 // ActionResultHolder*. | |
9660 template <typename F> | |
9661 static ActionResultHolder* PerformAction( | |
9662 const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { | |
9663 action.Perform(std::move(args)); | |
9664 return new ActionResultHolder; | |
9665 } | |
9666 | |
9667 private: | |
9668 ActionResultHolder() {} | |
9669 GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); | |
9670 }; | |
9671 | |
9672 template <typename F> | |
9673 class FunctionMocker; | |
9674 | |
9675 template <typename R, typename... Args> | |
9676 class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase { | |
9677 using F = R(Args...); | |
9678 | |
9679 public: | |
9680 using Result = R; | |
9681 using ArgumentTuple = std::tuple<Args...>; | |
9682 using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; | |
9683 | |
9684 FunctionMocker() {} | |
9685 | |
9686 // There is no generally useful and implementable semantics of | |
9687 // copying a mock object, so copying a mock is usually a user error. | |
9688 // Thus we disallow copying function mockers. If the user really | |
9689 // wants to copy a mock object, they should implement their own copy | |
9690 // operation, for example: | |
9691 // | |
9692 // class MockFoo : public Foo { | |
9693 // public: | |
9694 // // Defines a copy constructor explicitly. | |
9695 // MockFoo(const MockFoo& src) {} | |
9696 // ... | |
9697 // }; | |
9698 FunctionMocker(const FunctionMocker&) = delete; | |
9699 FunctionMocker& operator=(const FunctionMocker&) = delete; | |
9700 | |
9701 // The destructor verifies that all expectations on this mock | |
9702 // function have been satisfied. If not, it will report Google Test | |
9703 // non-fatal failures for the violations. | |
9704 ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | |
9705 MutexLock l(&g_gmock_mutex); | |
9706 VerifyAndClearExpectationsLocked(); | |
9707 Mock::UnregisterLocked(this); | |
9708 ClearDefaultActionsLocked(); | |
9709 } | |
9710 | |
9711 // Returns the ON_CALL spec that matches this mock function with the | |
9712 // given arguments; returns NULL if no matching ON_CALL is found. | |
9713 // L = * | |
9714 const OnCallSpec<F>* FindOnCallSpec( | |
9715 const ArgumentTuple& args) const { | |
9716 for (UntypedOnCallSpecs::const_reverse_iterator it | |
9717 = untyped_on_call_specs_.rbegin(); | |
9718 it != untyped_on_call_specs_.rend(); ++it) { | |
9719 const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); | |
9720 if (spec->Matches(args)) | |
9721 return spec; | |
9722 } | |
9723 | |
9724 return nullptr; | |
9725 } | |
9726 | |
9727 // Performs the default action of this mock function on the given | |
9728 // arguments and returns the result. Asserts (or throws if | |
9729 // exceptions are enabled) with a helpful call descrption if there | |
9730 // is no valid return value. This method doesn't depend on the | |
9731 // mutable state of this object, and thus can be called concurrently | |
9732 // without locking. | |
9733 // L = * | |
9734 Result PerformDefaultAction(ArgumentTuple&& args, | |
9735 const std::string& call_description) const { | |
9736 const OnCallSpec<F>* const spec = | |
9737 this->FindOnCallSpec(args); | |
9738 if (spec != nullptr) { | |
9739 return spec->GetAction().Perform(std::move(args)); | |
9740 } | |
9741 const std::string message = | |
9742 call_description + | |
9743 "\n The mock function has no default action " | |
9744 "set, and its return type has no default value set."; | |
9745 #if GTEST_HAS_EXCEPTIONS | |
9746 if (!DefaultValue<Result>::Exists()) { | |
9747 throw std::runtime_error(message); | |
9748 } | |
9749 #else | |
9750 Assert(DefaultValue<Result>::Exists(), "", -1, message); | |
9751 #endif | |
9752 return DefaultValue<Result>::Get(); | |
9753 } | |
9754 | |
9755 // Performs the default action with the given arguments and returns | |
9756 // the action's result. The call description string will be used in | |
9757 // the error message to describe the call in the case the default | |
9758 // action fails. The caller is responsible for deleting the result. | |
9759 // L = * | |
9760 UntypedActionResultHolderBase* UntypedPerformDefaultAction( | |
9761 void* untyped_args, // must point to an ArgumentTuple | |
9762 const std::string& call_description) const override { | |
9763 ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); | |
9764 return ResultHolder::PerformDefaultAction(this, std::move(*args), | |
9765 call_description); | |
9766 } | |
9767 | |
9768 // Performs the given action with the given arguments and returns | |
9769 // the action's result. The caller is responsible for deleting the | |
9770 // result. | |
9771 // L = * | |
9772 UntypedActionResultHolderBase* UntypedPerformAction( | |
9773 const void* untyped_action, void* untyped_args) const override { | |
9774 // Make a copy of the action before performing it, in case the | |
9775 // action deletes the mock object (and thus deletes itself). | |
9776 const Action<F> action = *static_cast<const Action<F>*>(untyped_action); | |
9777 ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); | |
9778 return ResultHolder::PerformAction(action, std::move(*args)); | |
9779 } | |
9780 | |
9781 // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): | |
9782 // clears the ON_CALL()s set on this mock function. | |
9783 void ClearDefaultActionsLocked() override | |
9784 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9785 g_gmock_mutex.AssertHeld(); | |
9786 | |
9787 // Deleting our default actions may trigger other mock objects to be | |
9788 // deleted, for example if an action contains a reference counted smart | |
9789 // pointer to that mock object, and that is the last reference. So if we | |
9790 // delete our actions within the context of the global mutex we may deadlock | |
9791 // when this method is called again. Instead, make a copy of the set of | |
9792 // actions to delete, clear our set within the mutex, and then delete the | |
9793 // actions outside of the mutex. | |
9794 UntypedOnCallSpecs specs_to_delete; | |
9795 untyped_on_call_specs_.swap(specs_to_delete); | |
9796 | |
9797 g_gmock_mutex.Unlock(); | |
9798 for (UntypedOnCallSpecs::const_iterator it = | |
9799 specs_to_delete.begin(); | |
9800 it != specs_to_delete.end(); ++it) { | |
9801 delete static_cast<const OnCallSpec<F>*>(*it); | |
9802 } | |
9803 | |
9804 // Lock the mutex again, since the caller expects it to be locked when we | |
9805 // return. | |
9806 g_gmock_mutex.Lock(); | |
9807 } | |
9808 | |
9809 // Returns the result of invoking this mock function with the given | |
9810 // arguments. This function can be safely called from multiple | |
9811 // threads concurrently. | |
9812 Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | |
9813 ArgumentTuple tuple(std::forward<Args>(args)...); | |
9814 std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>( | |
9815 this->UntypedInvokeWith(static_cast<void*>(&tuple)))); | |
9816 return holder->Unwrap(); | |
9817 } | |
9818 | |
9819 MockSpec<F> With(Matcher<Args>... m) { | |
9820 return MockSpec<F>(this, ::std::make_tuple(std::move(m)...)); | |
9821 } | |
9822 | |
9823 protected: | |
9824 template <typename Function> | |
9825 friend class MockSpec; | |
9826 | |
9827 typedef ActionResultHolder<Result> ResultHolder; | |
9828 | |
9829 // Adds and returns a default action spec for this mock function. | |
9830 OnCallSpec<F>& AddNewOnCallSpec( | |
9831 const char* file, int line, | |
9832 const ArgumentMatcherTuple& m) | |
9833 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | |
9834 Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); | |
9835 OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); | |
9836 untyped_on_call_specs_.push_back(on_call_spec); | |
9837 return *on_call_spec; | |
9838 } | |
9839 | |
9840 // Adds and returns an expectation spec for this mock function. | |
9841 TypedExpectation<F>& AddNewExpectation(const char* file, int line, | |
9842 const std::string& source_text, | |
9843 const ArgumentMatcherTuple& m) | |
9844 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | |
9845 Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); | |
9846 TypedExpectation<F>* const expectation = | |
9847 new TypedExpectation<F>(this, file, line, source_text, m); | |
9848 const std::shared_ptr<ExpectationBase> untyped_expectation(expectation); | |
9849 // See the definition of untyped_expectations_ for why access to | |
9850 // it is unprotected here. | |
9851 untyped_expectations_.push_back(untyped_expectation); | |
9852 | |
9853 // Adds this expectation into the implicit sequence if there is one. | |
9854 Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); | |
9855 if (implicit_sequence != nullptr) { | |
9856 implicit_sequence->AddExpectation(Expectation(untyped_expectation)); | |
9857 } | |
9858 | |
9859 return *expectation; | |
9860 } | |
9861 | |
9862 private: | |
9863 template <typename Func> friend class TypedExpectation; | |
9864 | |
9865 // Some utilities needed for implementing UntypedInvokeWith(). | |
9866 | |
9867 // Describes what default action will be performed for the given | |
9868 // arguments. | |
9869 // L = * | |
9870 void DescribeDefaultActionTo(const ArgumentTuple& args, | |
9871 ::std::ostream* os) const { | |
9872 const OnCallSpec<F>* const spec = FindOnCallSpec(args); | |
9873 | |
9874 if (spec == nullptr) { | |
9875 *os << (std::is_void<Result>::value ? "returning directly.\n" | |
9876 : "returning default value.\n"); | |
9877 } else { | |
9878 *os << "taking default action specified at:\n" | |
9879 << FormatFileLocation(spec->file(), spec->line()) << "\n"; | |
9880 } | |
9881 } | |
9882 | |
9883 // Writes a message that the call is uninteresting (i.e. neither | |
9884 // explicitly expected nor explicitly unexpected) to the given | |
9885 // ostream. | |
9886 void UntypedDescribeUninterestingCall(const void* untyped_args, | |
9887 ::std::ostream* os) const override | |
9888 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | |
9889 const ArgumentTuple& args = | |
9890 *static_cast<const ArgumentTuple*>(untyped_args); | |
9891 *os << "Uninteresting mock function call - "; | |
9892 DescribeDefaultActionTo(args, os); | |
9893 *os << " Function call: " << Name(); | |
9894 UniversalPrint(args, os); | |
9895 } | |
9896 | |
9897 // Returns the expectation that matches the given function arguments | |
9898 // (or NULL is there's no match); when a match is found, | |
9899 // untyped_action is set to point to the action that should be | |
9900 // performed (or NULL if the action is "do default"), and | |
9901 // is_excessive is modified to indicate whether the call exceeds the | |
9902 // expected number. | |
9903 // | |
9904 // Critical section: We must find the matching expectation and the | |
9905 // corresponding action that needs to be taken in an ATOMIC | |
9906 // transaction. Otherwise another thread may call this mock | |
9907 // method in the middle and mess up the state. | |
9908 // | |
9909 // However, performing the action has to be left out of the critical | |
9910 // section. The reason is that we have no control on what the | |
9911 // action does (it can invoke an arbitrary user function or even a | |
9912 // mock function) and excessive locking could cause a dead lock. | |
9913 const ExpectationBase* UntypedFindMatchingExpectation( | |
9914 const void* untyped_args, const void** untyped_action, bool* is_excessive, | |
9915 ::std::ostream* what, ::std::ostream* why) override | |
9916 GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { | |
9917 const ArgumentTuple& args = | |
9918 *static_cast<const ArgumentTuple*>(untyped_args); | |
9919 MutexLock l(&g_gmock_mutex); | |
9920 TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); | |
9921 if (exp == nullptr) { // A match wasn't found. | |
9922 this->FormatUnexpectedCallMessageLocked(args, what, why); | |
9923 return nullptr; | |
9924 } | |
9925 | |
9926 // This line must be done before calling GetActionForArguments(), | |
9927 // which will increment the call count for *exp and thus affect | |
9928 // its saturation status. | |
9929 *is_excessive = exp->IsSaturated(); | |
9930 const Action<F>* action = exp->GetActionForArguments(this, args, what, why); | |
9931 if (action != nullptr && action->IsDoDefault()) | |
9932 action = nullptr; // Normalize "do default" to NULL. | |
9933 *untyped_action = action; | |
9934 return exp; | |
9935 } | |
9936 | |
9937 // Prints the given function arguments to the ostream. | |
9938 void UntypedPrintArgs(const void* untyped_args, | |
9939 ::std::ostream* os) const override { | |
9940 const ArgumentTuple& args = | |
9941 *static_cast<const ArgumentTuple*>(untyped_args); | |
9942 UniversalPrint(args, os); | |
9943 } | |
9944 | |
9945 // Returns the expectation that matches the arguments, or NULL if no | |
9946 // expectation matches them. | |
9947 TypedExpectation<F>* FindMatchingExpectationLocked( | |
9948 const ArgumentTuple& args) const | |
9949 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9950 g_gmock_mutex.AssertHeld(); | |
9951 // See the definition of untyped_expectations_ for why access to | |
9952 // it is unprotected here. | |
9953 for (typename UntypedExpectations::const_reverse_iterator it = | |
9954 untyped_expectations_.rbegin(); | |
9955 it != untyped_expectations_.rend(); ++it) { | |
9956 TypedExpectation<F>* const exp = | |
9957 static_cast<TypedExpectation<F>*>(it->get()); | |
9958 if (exp->ShouldHandleArguments(args)) { | |
9959 return exp; | |
9960 } | |
9961 } | |
9962 return nullptr; | |
9963 } | |
9964 | |
9965 // Returns a message that the arguments don't match any expectation. | |
9966 void FormatUnexpectedCallMessageLocked( | |
9967 const ArgumentTuple& args, | |
9968 ::std::ostream* os, | |
9969 ::std::ostream* why) const | |
9970 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9971 g_gmock_mutex.AssertHeld(); | |
9972 *os << "\nUnexpected mock function call - "; | |
9973 DescribeDefaultActionTo(args, os); | |
9974 PrintTriedExpectationsLocked(args, why); | |
9975 } | |
9976 | |
9977 // Prints a list of expectations that have been tried against the | |
9978 // current mock function call. | |
9979 void PrintTriedExpectationsLocked( | |
9980 const ArgumentTuple& args, | |
9981 ::std::ostream* why) const | |
9982 GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { | |
9983 g_gmock_mutex.AssertHeld(); | |
9984 const size_t count = untyped_expectations_.size(); | |
9985 *why << "Google Mock tried the following " << count << " " | |
9986 << (count == 1 ? "expectation, but it didn't match" : | |
9987 "expectations, but none matched") | |
9988 << ":\n"; | |
9989 for (size_t i = 0; i < count; i++) { | |
9990 TypedExpectation<F>* const expectation = | |
9991 static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); | |
9992 *why << "\n"; | |
9993 expectation->DescribeLocationTo(why); | |
9994 if (count > 1) { | |
9995 *why << "tried expectation #" << i << ": "; | |
9996 } | |
9997 *why << expectation->source_text() << "...\n"; | |
9998 expectation->ExplainMatchResultTo(args, why); | |
9999 expectation->DescribeCallCountTo(why); | |
10000 } | |
10001 } | |
10002 }; // class FunctionMocker | |
10003 | |
10004 // Reports an uninteresting call (whose description is in msg) in the | |
10005 // manner specified by 'reaction'. | |
10006 void ReportUninterestingCall(CallReaction reaction, const std::string& msg); | |
10007 | |
10008 } // namespace internal | |
10009 | |
10010 namespace internal { | |
10011 | |
10012 template <typename F> | |
10013 class MockFunction; | |
10014 | |
10015 template <typename R, typename... Args> | |
10016 class MockFunction<R(Args...)> { | |
10017 public: | |
10018 MockFunction(const MockFunction&) = delete; | |
10019 MockFunction& operator=(const MockFunction&) = delete; | |
10020 | |
10021 std::function<R(Args...)> AsStdFunction() { | |
10022 return [this](Args... args) -> R { | |
10023 return this->Call(std::forward<Args>(args)...); | |
10024 }; | |
10025 } | |
10026 | |
10027 // Implementation detail: the expansion of the MOCK_METHOD macro. | |
10028 R Call(Args... args) { | |
10029 mock_.SetOwnerAndName(this, "Call"); | |
10030 return mock_.Invoke(std::forward<Args>(args)...); | |
10031 } | |
10032 | |
10033 MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) { | |
10034 mock_.RegisterOwner(this); | |
10035 return mock_.With(std::move(m)...); | |
10036 } | |
10037 | |
10038 MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) { | |
10039 return this->gmock_Call(::testing::A<Args>()...); | |
10040 } | |
10041 | |
10042 protected: | |
10043 MockFunction() = default; | |
10044 ~MockFunction() = default; | |
10045 | |
10046 private: | |
10047 FunctionMocker<R(Args...)> mock_; | |
10048 }; | |
10049 | |
10050 /* | |
10051 The SignatureOf<F> struct is a meta-function returning function signature | |
10052 corresponding to the provided F argument. | |
10053 | |
10054 It makes use of MockFunction easier by allowing it to accept more F arguments | |
10055 than just function signatures. | |
10056 | |
10057 Specializations provided here cover only a signature type itself and | |
10058 std::function. However, if need be it can be easily extended to cover also other | |
10059 types (like for example boost::function). | |
10060 */ | |
10061 | |
10062 template <typename F> | |
10063 struct SignatureOf; | |
10064 | |
10065 template <typename R, typename... Args> | |
10066 struct SignatureOf<R(Args...)> { | |
10067 using type = R(Args...); | |
10068 }; | |
10069 | |
10070 template <typename F> | |
10071 struct SignatureOf<std::function<F>> : SignatureOf<F> {}; | |
10072 | |
10073 template <typename F> | |
10074 using SignatureOfT = typename SignatureOf<F>::type; | |
10075 | |
10076 } // namespace internal | |
10077 | |
10078 // A MockFunction<F> type has one mock method whose type is | |
10079 // internal::SignatureOfT<F>. It is useful when you just want your | |
10080 // test code to emit some messages and have Google Mock verify the | |
10081 // right messages are sent (and perhaps at the right times). For | |
10082 // example, if you are exercising code: | |
10083 // | |
10084 // Foo(1); | |
10085 // Foo(2); | |
10086 // Foo(3); | |
10087 // | |
10088 // and want to verify that Foo(1) and Foo(3) both invoke | |
10089 // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: | |
10090 // | |
10091 // TEST(FooTest, InvokesBarCorrectly) { | |
10092 // MyMock mock; | |
10093 // MockFunction<void(string check_point_name)> check; | |
10094 // { | |
10095 // InSequence s; | |
10096 // | |
10097 // EXPECT_CALL(mock, Bar("a")); | |
10098 // EXPECT_CALL(check, Call("1")); | |
10099 // EXPECT_CALL(check, Call("2")); | |
10100 // EXPECT_CALL(mock, Bar("a")); | |
10101 // } | |
10102 // Foo(1); | |
10103 // check.Call("1"); | |
10104 // Foo(2); | |
10105 // check.Call("2"); | |
10106 // Foo(3); | |
10107 // } | |
10108 // | |
10109 // The expectation spec says that the first Bar("a") must happen | |
10110 // before check point "1", the second Bar("a") must happen after check | |
10111 // point "2", and nothing should happen between the two check | |
10112 // points. The explicit check points make it easy to tell which | |
10113 // Bar("a") is called by which call to Foo(). | |
10114 // | |
10115 // MockFunction<F> can also be used to exercise code that accepts | |
10116 // std::function<internal::SignatureOfT<F>> callbacks. To do so, use | |
10117 // AsStdFunction() method to create std::function proxy forwarding to | |
10118 // original object's Call. Example: | |
10119 // | |
10120 // TEST(FooTest, RunsCallbackWithBarArgument) { | |
10121 // MockFunction<int(string)> callback; | |
10122 // EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1)); | |
10123 // Foo(callback.AsStdFunction()); | |
10124 // } | |
10125 // | |
10126 // The internal::SignatureOfT<F> indirection allows to use other types | |
10127 // than just function signature type. This is typically useful when | |
10128 // providing a mock for a predefined std::function type. Example: | |
10129 // | |
10130 // using FilterPredicate = std::function<bool(string)>; | |
10131 // void MyFilterAlgorithm(FilterPredicate predicate); | |
10132 // | |
10133 // TEST(FooTest, FilterPredicateAlwaysAccepts) { | |
10134 // MockFunction<FilterPredicate> predicateMock; | |
10135 // EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true)); | |
10136 // MyFilterAlgorithm(predicateMock.AsStdFunction()); | |
10137 // } | |
10138 template <typename F> | |
10139 class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> { | |
10140 using Base = internal::MockFunction<internal::SignatureOfT<F>>; | |
10141 | |
10142 public: | |
10143 using Base::Base; | |
10144 }; | |
10145 | |
10146 // The style guide prohibits "using" statements in a namespace scope | |
10147 // inside a header file. However, the MockSpec class template is | |
10148 // meant to be defined in the ::testing namespace. The following line | |
10149 // is just a trick for working around a bug in MSVC 8.0, which cannot | |
10150 // handle it if we define MockSpec in ::testing. | |
10151 using internal::MockSpec; | |
10152 | |
10153 // Const(x) is a convenient function for obtaining a const reference | |
10154 // to x. This is useful for setting expectations on an overloaded | |
10155 // const mock method, e.g. | |
10156 // | |
10157 // class MockFoo : public FooInterface { | |
10158 // public: | |
10159 // MOCK_METHOD0(Bar, int()); | |
10160 // MOCK_CONST_METHOD0(Bar, int&()); | |
10161 // }; | |
10162 // | |
10163 // MockFoo foo; | |
10164 // // Expects a call to non-const MockFoo::Bar(). | |
10165 // EXPECT_CALL(foo, Bar()); | |
10166 // // Expects a call to const MockFoo::Bar(). | |
10167 // EXPECT_CALL(Const(foo), Bar()); | |
10168 template <typename T> | |
10169 inline const T& Const(const T& x) { return x; } | |
10170 | |
10171 // Constructs an Expectation object that references and co-owns exp. | |
10172 inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT | |
10173 : expectation_base_(exp.GetHandle().expectation_base()) {} | |
10174 | |
10175 } // namespace testing | |
10176 | |
10177 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 | |
10178 | |
10179 // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is | |
10180 // required to avoid compile errors when the name of the method used in call is | |
10181 // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro | |
10182 // tests in internal/gmock-spec-builders_test.cc for more details. | |
10183 // | |
10184 // This macro supports statements both with and without parameter matchers. If | |
10185 // the parameter list is omitted, gMock will accept any parameters, which allows | |
10186 // tests to be written that don't need to encode the number of method | |
10187 // parameter. This technique may only be used for non-overloaded methods. | |
10188 // | |
10189 // // These are the same: | |
10190 // ON_CALL(mock, NoArgsMethod()).WillByDefault(...); | |
10191 // ON_CALL(mock, NoArgsMethod).WillByDefault(...); | |
10192 // | |
10193 // // As are these: | |
10194 // ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...); | |
10195 // ON_CALL(mock, TwoArgsMethod).WillByDefault(...); | |
10196 // | |
10197 // // Can also specify args if you want, of course: | |
10198 // ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...); | |
10199 // | |
10200 // // Overloads work as long as you specify parameters: | |
10201 // ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...); | |
10202 // ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...); | |
10203 // | |
10204 // // Oops! Which overload did you want? | |
10205 // ON_CALL(mock, OverloadedMethod).WillByDefault(...); | |
10206 // => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous | |
10207 // | |
10208 // How this works: The mock class uses two overloads of the gmock_Method | |
10209 // expectation setter method plus an operator() overload on the MockSpec object. | |
10210 // In the matcher list form, the macro expands to: | |
10211 // | |
10212 // // This statement: | |
10213 // ON_CALL(mock, TwoArgsMethod(_, 45))... | |
10214 // | |
10215 // // ...expands to: | |
10216 // mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)... | |
10217 // |-------------v---------------||------------v-------------| | |
10218 // invokes first overload swallowed by operator() | |
10219 // | |
10220 // // ...which is essentially: | |
10221 // mock.gmock_TwoArgsMethod(_, 45)... | |
10222 // | |
10223 // Whereas the form without a matcher list: | |
10224 // | |
10225 // // This statement: | |
10226 // ON_CALL(mock, TwoArgsMethod)... | |
10227 // | |
10228 // // ...expands to: | |
10229 // mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)... | |
10230 // |-----------------------v--------------------------| | |
10231 // invokes second overload | |
10232 // | |
10233 // // ...which is essentially: | |
10234 // mock.gmock_TwoArgsMethod(_, _)... | |
10235 // | |
10236 // The WithoutMatchers() argument is used to disambiguate overloads and to | |
10237 // block the caller from accidentally invoking the second overload directly. The | |
10238 // second argument is an internal type derived from the method signature. The | |
10239 // failure to disambiguate two overloads of this method in the ON_CALL statement | |
10240 // is how we block callers from setting expectations on overloaded methods. | |
10241 #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \ | |
10242 ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \ | |
10243 nullptr) \ | |
10244 .Setter(__FILE__, __LINE__, #mock_expr, #call) | |
10245 | |
10246 #define ON_CALL(obj, call) \ | |
10247 GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call) | |
10248 | |
10249 #define EXPECT_CALL(obj, call) \ | |
10250 GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call) | |
10251 | |
10252 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ | |
10253 | |
10254 namespace testing { | |
10255 namespace internal { | |
10256 template <typename T> | |
10257 using identity_t = T; | |
10258 | |
10259 template <typename Pattern> | |
10260 struct ThisRefAdjuster { | |
10261 template <typename T> | |
10262 using AdjustT = typename std::conditional< | |
10263 std::is_const<typename std::remove_reference<Pattern>::type>::value, | |
10264 typename std::conditional<std::is_lvalue_reference<Pattern>::value, | |
10265 const T&, const T&&>::type, | |
10266 typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&, | |
10267 T&&>::type>::type; | |
10268 | |
10269 template <typename MockType> | |
10270 static AdjustT<MockType> Adjust(const MockType& mock) { | |
10271 return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock)); | |
10272 } | |
10273 }; | |
10274 | |
10275 } // namespace internal | |
10276 | |
10277 // The style guide prohibits "using" statements in a namespace scope | |
10278 // inside a header file. However, the FunctionMocker class template | |
10279 // is meant to be defined in the ::testing namespace. The following | |
10280 // line is just a trick for working around a bug in MSVC 8.0, which | |
10281 // cannot handle it if we define FunctionMocker in ::testing. | |
10282 using internal::FunctionMocker; | |
10283 } // namespace testing | |
10284 | |
10285 #define MOCK_METHOD(...) \ | |
10286 GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__) | |
10287 | |
10288 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \ | |
10289 GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | |
10290 | |
10291 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \ | |
10292 GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | |
10293 | |
10294 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \ | |
10295 GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ()) | |
10296 | |
10297 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \ | |
10298 GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \ | |
10299 GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \ | |
10300 GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ | |
10301 GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \ | |
10302 GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ | |
10303 GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ | |
10304 GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \ | |
10305 GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \ | |
10306 GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \ | |
10307 GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \ | |
10308 (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args))) | |
10309 | |
10310 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \ | |
10311 GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | |
10312 | |
10313 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \ | |
10314 GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | |
10315 | |
10316 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \ | |
10317 GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) | |
10318 | |
10319 #define GMOCK_INTERNAL_WRONG_ARITY(...) \ | |
10320 static_assert( \ | |
10321 false, \ | |
10322 "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \ | |
10323 "_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \ | |
10324 "enclosed in parentheses. If _Ret is a type with unprotected commas, " \ | |
10325 "it must also be enclosed in parentheses.") | |
10326 | |
10327 #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \ | |
10328 static_assert( \ | |
10329 GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \ | |
10330 GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.") | |
10331 | |
10332 #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \ | |
10333 static_assert( \ | |
10334 std::is_function<__VA_ARGS__>::value, \ | |
10335 "Signature must be a function type, maybe return type contains " \ | |
10336 "unprotected comma."); \ | |
10337 static_assert( \ | |
10338 ::testing::tuple_size<typename ::testing::internal::Function< \ | |
10339 __VA_ARGS__>::ArgumentTuple>::value == _N, \ | |
10340 "This method does not take " GMOCK_PP_STRINGIZE( \ | |
10341 _N) " arguments. Parenthesize all types with unprotected commas.") | |
10342 | |
10343 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ | |
10344 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec) | |
10345 | |
10346 #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \ | |
10347 _Override, _Final, _NoexceptSpec, \ | |
10348 _CallType, _RefSpec, _Signature) \ | |
10349 typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \ | |
10350 _Signature)>::Result \ | |
10351 GMOCK_INTERNAL_EXPAND(_CallType) \ | |
10352 _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \ | |
10353 GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \ | |
10354 GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \ | |
10355 GMOCK_MOCKER_(_N, _Constness, _MethodName) \ | |
10356 .SetOwnerAndName(this, #_MethodName); \ | |
10357 return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ | |
10358 .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \ | |
10359 } \ | |
10360 ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ | |
10361 GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \ | |
10362 GMOCK_PP_IF(_Constness, const, ) _RefSpec { \ | |
10363 GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \ | |
10364 return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ | |
10365 .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \ | |
10366 } \ | |
10367 ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ | |
10368 const ::testing::internal::WithoutMatchers&, \ | |
10369 GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \ | |
10370 GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \ | |
10371 return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \ | |
10372 _Constness, const, ) int _RefSpec>::Adjust(*this) \ | |
10373 .gmock_##_MethodName(GMOCK_PP_REPEAT( \ | |
10374 GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \ | |
10375 } \ | |
10376 mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \ | |
10377 GMOCK_MOCKER_(_N, _Constness, _MethodName) | |
10378 | |
10379 #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__ | |
10380 | |
10381 // Five Valid modifiers. | |
10382 #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \ | |
10383 GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple)) | |
10384 | |
10385 #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \ | |
10386 GMOCK_PP_HAS_COMMA( \ | |
10387 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple)) | |
10388 | |
10389 #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \ | |
10390 GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple)) | |
10391 | |
10392 #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \ | |
10393 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple) | |
10394 | |
10395 #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \ | |
10396 GMOCK_PP_IF( \ | |
10397 GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \ | |
10398 _elem, ) | |
10399 | |
10400 #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \ | |
10401 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple) | |
10402 | |
10403 #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \ | |
10404 GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \ | |
10405 GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), ) | |
10406 | |
10407 #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \ | |
10408 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple) | |
10409 | |
10410 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \ | |
10411 static_assert( \ | |
10412 (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \ | |
10413 GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \ | |
10414 GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \ | |
10415 GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \ | |
10416 GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \ | |
10417 GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \ | |
10418 GMOCK_PP_STRINGIZE( \ | |
10419 _elem) " cannot be recognized as a valid specification modifier."); | |
10420 | |
10421 // Modifiers implementation. | |
10422 #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \ | |
10423 GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem) | |
10424 | |
10425 #define GMOCK_INTERNAL_DETECT_CONST_I_const , | |
10426 | |
10427 #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \ | |
10428 GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem) | |
10429 | |
10430 #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override , | |
10431 | |
10432 #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \ | |
10433 GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem) | |
10434 | |
10435 #define GMOCK_INTERNAL_DETECT_FINAL_I_final , | |
10436 | |
10437 #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \ | |
10438 GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem) | |
10439 | |
10440 #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept , | |
10441 | |
10442 #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \ | |
10443 GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem) | |
10444 | |
10445 #define GMOCK_INTERNAL_DETECT_REF_I_ref , | |
10446 | |
10447 #define GMOCK_INTERNAL_UNPACK_ref(x) x | |
10448 | |
10449 #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \ | |
10450 GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \ | |
10451 GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \ | |
10452 (_elem) | |
10453 | |
10454 // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and | |
10455 // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows | |
10456 // maybe they can be simplified somehow. | |
10457 #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \ | |
10458 GMOCK_INTERNAL_IS_CALLTYPE_I( \ | |
10459 GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) | |
10460 #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg) | |
10461 | |
10462 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \ | |
10463 GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \ | |
10464 GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) | |
10465 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \ | |
10466 GMOCK_PP_IDENTITY _arg | |
10467 | |
10468 #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype | |
10469 | |
10470 // Note: The use of `identity_t` here allows _Ret to represent return types that | |
10471 // would normally need to be specified in a different way. For example, a method | |
10472 // returning a function pointer must be written as | |
10473 // | |
10474 // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...) | |
10475 // | |
10476 // But we only support placing the return type at the beginning. To handle this, | |
10477 // we wrap all calls in identity_t, so that a declaration will be expanded to | |
10478 // | |
10479 // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...) | |
10480 // | |
10481 // This allows us to work around the syntactic oddities of function/method | |
10482 // types. | |
10483 #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \ | |
10484 ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \ | |
10485 GMOCK_PP_REMOVE_PARENS, \ | |
10486 GMOCK_PP_IDENTITY)(_Ret)>( \ | |
10487 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args)) | |
10488 | |
10489 #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \ | |
10490 GMOCK_PP_COMMA_IF(_i) \ | |
10491 GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \ | |
10492 GMOCK_PP_IDENTITY) \ | |
10493 (_elem) | |
10494 | |
10495 #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \ | |
10496 GMOCK_PP_COMMA_IF(_i) \ | |
10497 GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ | |
10498 gmock_a##_i | |
10499 | |
10500 #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \ | |
10501 GMOCK_PP_COMMA_IF(_i) \ | |
10502 ::std::forward<GMOCK_INTERNAL_ARG_O( \ | |
10503 _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i) | |
10504 | |
10505 #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \ | |
10506 GMOCK_PP_COMMA_IF(_i) \ | |
10507 GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ | |
10508 gmock_a##_i | |
10509 | |
10510 #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \ | |
10511 GMOCK_PP_COMMA_IF(_i) \ | |
10512 gmock_a##_i | |
10513 | |
10514 #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \ | |
10515 GMOCK_PP_COMMA_IF(_i) \ | |
10516 ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>() | |
10517 | |
10518 #define GMOCK_INTERNAL_ARG_O(_i, ...) \ | |
10519 typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type | |
10520 | |
10521 #define GMOCK_INTERNAL_MATCHER_O(_i, ...) \ | |
10522 const ::testing::Matcher<typename ::testing::internal::Function< \ | |
10523 __VA_ARGS__>::template Arg<_i>::type>& | |
10524 | |
10525 #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__) | |
10526 #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__) | |
10527 #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__) | |
10528 #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__) | |
10529 #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__) | |
10530 #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__) | |
10531 #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__) | |
10532 #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__) | |
10533 #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__) | |
10534 #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__) | |
10535 #define MOCK_METHOD10(m, ...) \ | |
10536 GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__) | |
10537 | |
10538 #define MOCK_CONST_METHOD0(m, ...) \ | |
10539 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__) | |
10540 #define MOCK_CONST_METHOD1(m, ...) \ | |
10541 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__) | |
10542 #define MOCK_CONST_METHOD2(m, ...) \ | |
10543 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__) | |
10544 #define MOCK_CONST_METHOD3(m, ...) \ | |
10545 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__) | |
10546 #define MOCK_CONST_METHOD4(m, ...) \ | |
10547 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__) | |
10548 #define MOCK_CONST_METHOD5(m, ...) \ | |
10549 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__) | |
10550 #define MOCK_CONST_METHOD6(m, ...) \ | |
10551 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__) | |
10552 #define MOCK_CONST_METHOD7(m, ...) \ | |
10553 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__) | |
10554 #define MOCK_CONST_METHOD8(m, ...) \ | |
10555 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__) | |
10556 #define MOCK_CONST_METHOD9(m, ...) \ | |
10557 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__) | |
10558 #define MOCK_CONST_METHOD10(m, ...) \ | |
10559 GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__) | |
10560 | |
10561 #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__) | |
10562 #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__) | |
10563 #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__) | |
10564 #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__) | |
10565 #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__) | |
10566 #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__) | |
10567 #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__) | |
10568 #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__) | |
10569 #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__) | |
10570 #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__) | |
10571 #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__) | |
10572 | |
10573 #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__) | |
10574 #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__) | |
10575 #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__) | |
10576 #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__) | |
10577 #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__) | |
10578 #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__) | |
10579 #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__) | |
10580 #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__) | |
10581 #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__) | |
10582 #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__) | |
10583 #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__) | |
10584 | |
10585 #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \ | |
10586 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__) | |
10587 #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \ | |
10588 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__) | |
10589 #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \ | |
10590 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__) | |
10591 #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \ | |
10592 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__) | |
10593 #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \ | |
10594 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__) | |
10595 #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \ | |
10596 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__) | |
10597 #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \ | |
10598 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__) | |
10599 #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \ | |
10600 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__) | |
10601 #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \ | |
10602 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__) | |
10603 #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \ | |
10604 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__) | |
10605 #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \ | |
10606 GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__) | |
10607 | |
10608 #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \ | |
10609 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__) | |
10610 #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \ | |
10611 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__) | |
10612 #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \ | |
10613 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__) | |
10614 #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \ | |
10615 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__) | |
10616 #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \ | |
10617 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__) | |
10618 #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \ | |
10619 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__) | |
10620 #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \ | |
10621 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__) | |
10622 #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \ | |
10623 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__) | |
10624 #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \ | |
10625 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__) | |
10626 #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \ | |
10627 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__) | |
10628 #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \ | |
10629 GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__) | |
10630 | |
10631 #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ | |
10632 MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10633 #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ | |
10634 MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10635 #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ | |
10636 MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10637 #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ | |
10638 MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10639 #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ | |
10640 MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10641 #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ | |
10642 MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10643 #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ | |
10644 MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10645 #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ | |
10646 MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10647 #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ | |
10648 MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10649 #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ | |
10650 MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10651 #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ | |
10652 MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10653 | |
10654 #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ | |
10655 MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10656 #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ | |
10657 MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10658 #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ | |
10659 MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10660 #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ | |
10661 MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10662 #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ | |
10663 MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10664 #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ | |
10665 MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10666 #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ | |
10667 MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10668 #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ | |
10669 MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10670 #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ | |
10671 MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10672 #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ | |
10673 MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10674 #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ | |
10675 MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) | |
10676 | |
10677 #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \ | |
10678 GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ | |
10679 args_num, ::testing::internal::identity_t<__VA_ARGS__>); \ | |
10680 GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ | |
10681 args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \ | |
10682 (::testing::internal::identity_t<__VA_ARGS__>)) | |
10683 | |
10684 #define GMOCK_MOCKER_(arity, constness, Method) \ | |
10685 GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) | |
10686 | |
10687 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ | |
10688 // Copyright 2007, Google Inc. | |
10689 // All rights reserved. | |
10690 // | |
10691 // Redistribution and use in source and binary forms, with or without | |
10692 // modification, are permitted provided that the following conditions are | |
10693 // met: | |
10694 // | |
10695 // * Redistributions of source code must retain the above copyright | |
10696 // notice, this list of conditions and the following disclaimer. | |
10697 // * Redistributions in binary form must reproduce the above | |
10698 // copyright notice, this list of conditions and the following disclaimer | |
10699 // in the documentation and/or other materials provided with the | |
10700 // distribution. | |
10701 // * Neither the name of Google Inc. nor the names of its | |
10702 // contributors may be used to endorse or promote products derived from | |
10703 // this software without specific prior written permission. | |
10704 // | |
10705 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
10706 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
10707 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
10708 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
10709 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
10710 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
10711 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
10712 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
10713 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
10714 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
10715 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
10716 | |
10717 | |
10718 // Google Mock - a framework for writing C++ mock classes. | |
10719 // | |
10720 // This file implements some commonly used variadic actions. | |
10721 | |
10722 // GOOGLETEST_CM0002 DO NOT DELETE | |
10723 | |
10724 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ | |
10725 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ | |
10726 | |
10727 #include <memory> | |
10728 #include <utility> | |
10729 | |
10730 | |
10731 // Include any custom callback actions added by the local installation. | |
10732 // GOOGLETEST_CM0002 DO NOT DELETE | |
10733 | |
10734 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ | |
10735 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ | |
10736 | |
10737 #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ | |
10738 | |
10739 // Sometimes you want to give an action explicit template parameters | |
10740 // that cannot be inferred from its value parameters. ACTION() and | |
10741 // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that | |
10742 // and can be viewed as an extension to ACTION() and ACTION_P*(). | |
10743 // | |
10744 // The syntax: | |
10745 // | |
10746 // ACTION_TEMPLATE(ActionName, | |
10747 // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), | |
10748 // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } | |
10749 // | |
10750 // defines an action template that takes m explicit template | |
10751 // parameters and n value parameters. name_i is the name of the i-th | |
10752 // template parameter, and kind_i specifies whether it's a typename, | |
10753 // an integral constant, or a template. p_i is the name of the i-th | |
10754 // value parameter. | |
10755 // | |
10756 // Example: | |
10757 // | |
10758 // // DuplicateArg<k, T>(output) converts the k-th argument of the mock | |
10759 // // function to type T and copies it to *output. | |
10760 // ACTION_TEMPLATE(DuplicateArg, | |
10761 // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), | |
10762 // AND_1_VALUE_PARAMS(output)) { | |
10763 // *output = T(::std::get<k>(args)); | |
10764 // } | |
10765 // ... | |
10766 // int n; | |
10767 // EXPECT_CALL(mock, Foo(_, _)) | |
10768 // .WillOnce(DuplicateArg<1, unsigned char>(&n)); | |
10769 // | |
10770 // To create an instance of an action template, write: | |
10771 // | |
10772 // ActionName<t1, ..., t_m>(v1, ..., v_n) | |
10773 // | |
10774 // where the ts are the template arguments and the vs are the value | |
10775 // arguments. The value argument types are inferred by the compiler. | |
10776 // If you want to explicitly specify the value argument types, you can | |
10777 // provide additional template arguments: | |
10778 // | |
10779 // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) | |
10780 // | |
10781 // where u_i is the desired type of v_i. | |
10782 // | |
10783 // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the | |
10784 // number of value parameters, but not on the number of template | |
10785 // parameters. Without the restriction, the meaning of the following | |
10786 // is unclear: | |
10787 // | |
10788 // OverloadedAction<int, bool>(x); | |
10789 // | |
10790 // Are we using a single-template-parameter action where 'bool' refers | |
10791 // to the type of x, or are we using a two-template-parameter action | |
10792 // where the compiler is asked to infer the type of x? | |
10793 // | |
10794 // Implementation notes: | |
10795 // | |
10796 // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and | |
10797 // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for | |
10798 // implementing ACTION_TEMPLATE. The main trick we use is to create | |
10799 // new macro invocations when expanding a macro. For example, we have | |
10800 // | |
10801 // #define ACTION_TEMPLATE(name, template_params, value_params) | |
10802 // ... GMOCK_INTERNAL_DECL_##template_params ... | |
10803 // | |
10804 // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) | |
10805 // to expand to | |
10806 // | |
10807 // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... | |
10808 // | |
10809 // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the | |
10810 // preprocessor will continue to expand it to | |
10811 // | |
10812 // ... typename T ... | |
10813 // | |
10814 // This technique conforms to the C++ standard and is portable. It | |
10815 // allows us to implement action templates using O(N) code, where N is | |
10816 // the maximum number of template/value parameters supported. Without | |
10817 // using it, we'd have to devote O(N^2) amount of code to implement all | |
10818 // combinations of m and n. | |
10819 | |
10820 // Declares the template parameters. | |
10821 #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 | |
10822 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ | |
10823 name1) kind0 name0, kind1 name1 | |
10824 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10825 kind2, name2) kind0 name0, kind1 name1, kind2 name2 | |
10826 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10827 kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ | |
10828 kind3 name3 | |
10829 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10830 kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ | |
10831 kind2 name2, kind3 name3, kind4 name4 | |
10832 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10833 kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ | |
10834 kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 | |
10835 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10836 kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | |
10837 name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ | |
10838 kind5 name5, kind6 name6 | |
10839 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10840 kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | |
10841 kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ | |
10842 kind4 name4, kind5 name5, kind6 name6, kind7 name7 | |
10843 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10844 kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | |
10845 kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ | |
10846 kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ | |
10847 kind8 name8 | |
10848 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ | |
10849 name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | |
10850 name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ | |
10851 kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ | |
10852 kind6 name6, kind7 name7, kind8 name8, kind9 name9 | |
10853 | |
10854 // Lists the template parameters. | |
10855 #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 | |
10856 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ | |
10857 name1) name0, name1 | |
10858 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10859 kind2, name2) name0, name1, name2 | |
10860 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10861 kind2, name2, kind3, name3) name0, name1, name2, name3 | |
10862 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10863 kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ | |
10864 name4 | |
10865 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10866 kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ | |
10867 name2, name3, name4, name5 | |
10868 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10869 kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | |
10870 name6) name0, name1, name2, name3, name4, name5, name6 | |
10871 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10872 kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | |
10873 kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 | |
10874 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ | |
10875 kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ | |
10876 kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ | |
10877 name6, name7, name8 | |
10878 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ | |
10879 name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ | |
10880 name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ | |
10881 name3, name4, name5, name6, name7, name8, name9 | |
10882 | |
10883 // Declares the types of value parameters. | |
10884 #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() | |
10885 #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type | |
10886 #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ | |
10887 typename p0##_type, typename p1##_type | |
10888 #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ | |
10889 typename p0##_type, typename p1##_type, typename p2##_type | |
10890 #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ | |
10891 typename p0##_type, typename p1##_type, typename p2##_type, \ | |
10892 typename p3##_type | |
10893 #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ | |
10894 typename p0##_type, typename p1##_type, typename p2##_type, \ | |
10895 typename p3##_type, typename p4##_type | |
10896 #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ | |
10897 typename p0##_type, typename p1##_type, typename p2##_type, \ | |
10898 typename p3##_type, typename p4##_type, typename p5##_type | |
10899 #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
10900 p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ | |
10901 typename p3##_type, typename p4##_type, typename p5##_type, \ | |
10902 typename p6##_type | |
10903 #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
10904 p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ | |
10905 typename p3##_type, typename p4##_type, typename p5##_type, \ | |
10906 typename p6##_type, typename p7##_type | |
10907 #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
10908 p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ | |
10909 typename p3##_type, typename p4##_type, typename p5##_type, \ | |
10910 typename p6##_type, typename p7##_type, typename p8##_type | |
10911 #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
10912 p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ | |
10913 typename p2##_type, typename p3##_type, typename p4##_type, \ | |
10914 typename p5##_type, typename p6##_type, typename p7##_type, \ | |
10915 typename p8##_type, typename p9##_type | |
10916 | |
10917 // Initializes the value parameters. | |
10918 #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ | |
10919 () | |
10920 #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ | |
10921 (p0##_type gmock_p0) : p0(::std::move(gmock_p0)) | |
10922 #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ | |
10923 (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \ | |
10924 p1(::std::move(gmock_p1)) | |
10925 #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ | |
10926 (p0##_type gmock_p0, p1##_type gmock_p1, \ | |
10927 p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \ | |
10928 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)) | |
10929 #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ | |
10930 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10931 p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \ | |
10932 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10933 p3(::std::move(gmock_p3)) | |
10934 #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ | |
10935 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10936 p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \ | |
10937 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10938 p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)) | |
10939 #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ | |
10940 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10941 p3##_type gmock_p3, p4##_type gmock_p4, \ | |
10942 p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \ | |
10943 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10944 p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | |
10945 p5(::std::move(gmock_p5)) | |
10946 #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ | |
10947 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10948 p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | |
10949 p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \ | |
10950 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10951 p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | |
10952 p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)) | |
10953 #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ | |
10954 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10955 p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | |
10956 p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \ | |
10957 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10958 p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | |
10959 p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ | |
10960 p7(::std::move(gmock_p7)) | |
10961 #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
10962 p7, p8)\ | |
10963 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10964 p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | |
10965 p6##_type gmock_p6, p7##_type gmock_p7, \ | |
10966 p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \ | |
10967 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10968 p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | |
10969 p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ | |
10970 p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)) | |
10971 #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
10972 p7, p8, p9)\ | |
10973 (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ | |
10974 p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ | |
10975 p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ | |
10976 p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \ | |
10977 p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ | |
10978 p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ | |
10979 p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ | |
10980 p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \ | |
10981 p9(::std::move(gmock_p9)) | |
10982 | |
10983 // Defines the copy constructor | |
10984 #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \ | |
10985 {} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 | |
10986 #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default; | |
10987 #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default; | |
10988 #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default; | |
10989 #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default; | |
10990 #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default; | |
10991 #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default; | |
10992 #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default; | |
10993 #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default; | |
10994 #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default; | |
10995 #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default; | |
10996 | |
10997 // Declares the fields for storing the value parameters. | |
10998 #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() | |
10999 #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; | |
11000 #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ | |
11001 p1##_type p1; | |
11002 #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ | |
11003 p1##_type p1; p2##_type p2; | |
11004 #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ | |
11005 p1##_type p1; p2##_type p2; p3##_type p3; | |
11006 #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ | |
11007 p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; | |
11008 #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ | |
11009 p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ | |
11010 p5##_type p5; | |
11011 #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11012 p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ | |
11013 p5##_type p5; p6##_type p6; | |
11014 #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11015 p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ | |
11016 p5##_type p5; p6##_type p6; p7##_type p7; | |
11017 #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11018 p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ | |
11019 p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; | |
11020 #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11021 p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ | |
11022 p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ | |
11023 p9##_type p9; | |
11024 | |
11025 // Lists the value parameters. | |
11026 #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() | |
11027 #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 | |
11028 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 | |
11029 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 | |
11030 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 | |
11031 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ | |
11032 p2, p3, p4 | |
11033 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ | |
11034 p1, p2, p3, p4, p5 | |
11035 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11036 p6) p0, p1, p2, p3, p4, p5, p6 | |
11037 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11038 p7) p0, p1, p2, p3, p4, p5, p6, p7 | |
11039 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11040 p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 | |
11041 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11042 p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 | |
11043 | |
11044 // Lists the value parameter types. | |
11045 #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() | |
11046 #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type | |
11047 #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ | |
11048 p1##_type | |
11049 #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ | |
11050 p1##_type, p2##_type | |
11051 #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ | |
11052 p0##_type, p1##_type, p2##_type, p3##_type | |
11053 #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ | |
11054 p0##_type, p1##_type, p2##_type, p3##_type, p4##_type | |
11055 #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ | |
11056 p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type | |
11057 #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11058 p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ | |
11059 p6##_type | |
11060 #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11061 p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ | |
11062 p5##_type, p6##_type, p7##_type | |
11063 #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11064 p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ | |
11065 p5##_type, p6##_type, p7##_type, p8##_type | |
11066 #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11067 p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ | |
11068 p5##_type, p6##_type, p7##_type, p8##_type, p9##_type | |
11069 | |
11070 // Declares the value parameters. | |
11071 #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() | |
11072 #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 | |
11073 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ | |
11074 p1##_type p1 | |
11075 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ | |
11076 p1##_type p1, p2##_type p2 | |
11077 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ | |
11078 p1##_type p1, p2##_type p2, p3##_type p3 | |
11079 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ | |
11080 p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 | |
11081 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ | |
11082 p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ | |
11083 p5##_type p5 | |
11084 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ | |
11085 p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ | |
11086 p5##_type p5, p6##_type p6 | |
11087 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11088 p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ | |
11089 p5##_type p5, p6##_type p6, p7##_type p7 | |
11090 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11091 p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ | |
11092 p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 | |
11093 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11094 p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ | |
11095 p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ | |
11096 p9##_type p9 | |
11097 | |
11098 // The suffix of the class template implementing the action template. | |
11099 #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() | |
11100 #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P | |
11101 #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 | |
11102 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 | |
11103 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 | |
11104 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 | |
11105 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 | |
11106 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 | |
11107 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11108 p7) P8 | |
11109 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11110 p7, p8) P9 | |
11111 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ | |
11112 p7, p8, p9) P10 | |
11113 | |
11114 // The name of the class template implementing the action template. | |
11115 #define GMOCK_ACTION_CLASS_(name, value_params)\ | |
11116 GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) | |
11117 | |
11118 #define ACTION_TEMPLATE(name, template_params, value_params) \ | |
11119 template <GMOCK_INTERNAL_DECL_##template_params \ | |
11120 GMOCK_INTERNAL_DECL_TYPE_##value_params> \ | |
11121 class GMOCK_ACTION_CLASS_(name, value_params) { \ | |
11122 public: \ | |
11123 explicit GMOCK_ACTION_CLASS_(name, value_params)( \ | |
11124 GMOCK_INTERNAL_DECL_##value_params) \ | |
11125 GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ | |
11126 = default; , \ | |
11127 : impl_(std::make_shared<gmock_Impl>( \ | |
11128 GMOCK_INTERNAL_LIST_##value_params)) { }) \ | |
11129 GMOCK_ACTION_CLASS_(name, value_params)( \ | |
11130 const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \ | |
11131 GMOCK_INTERNAL_DEFN_COPY_##value_params \ | |
11132 GMOCK_ACTION_CLASS_(name, value_params)( \ | |
11133 GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \ | |
11134 GMOCK_INTERNAL_DEFN_COPY_##value_params \ | |
11135 template <typename F> \ | |
11136 operator ::testing::Action<F>() const { \ | |
11137 return GMOCK_PP_IF( \ | |
11138 GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ | |
11139 (::testing::internal::MakeAction<F, gmock_Impl>()), \ | |
11140 (::testing::internal::MakeAction<F>(impl_))); \ | |
11141 } \ | |
11142 private: \ | |
11143 class gmock_Impl { \ | |
11144 public: \ | |
11145 explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \ | |
11146 template <typename function_type, typename return_type, \ | |
11147 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |
11148 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ | |
11149 GMOCK_INTERNAL_DEFN_##value_params \ | |
11150 }; \ | |
11151 GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ | |
11152 , std::shared_ptr<const gmock_Impl> impl_;) \ | |
11153 }; \ | |
11154 template <GMOCK_INTERNAL_DECL_##template_params \ | |
11155 GMOCK_INTERNAL_DECL_TYPE_##value_params> \ | |
11156 GMOCK_ACTION_CLASS_(name, value_params)< \ | |
11157 GMOCK_INTERNAL_LIST_##template_params \ | |
11158 GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ | |
11159 GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \ | |
11160 template <GMOCK_INTERNAL_DECL_##template_params \ | |
11161 GMOCK_INTERNAL_DECL_TYPE_##value_params> \ | |
11162 inline GMOCK_ACTION_CLASS_(name, value_params)< \ | |
11163 GMOCK_INTERNAL_LIST_##template_params \ | |
11164 GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ | |
11165 GMOCK_INTERNAL_DECL_##value_params) { \ | |
11166 return GMOCK_ACTION_CLASS_(name, value_params)< \ | |
11167 GMOCK_INTERNAL_LIST_##template_params \ | |
11168 GMOCK_INTERNAL_LIST_TYPE_##value_params>( \ | |
11169 GMOCK_INTERNAL_LIST_##value_params); \ | |
11170 } \ | |
11171 template <GMOCK_INTERNAL_DECL_##template_params \ | |
11172 GMOCK_INTERNAL_DECL_TYPE_##value_params> \ | |
11173 template <typename function_type, typename return_type, typename args_type, \ | |
11174 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ | |
11175 return_type GMOCK_ACTION_CLASS_(name, value_params)< \ | |
11176 GMOCK_INTERNAL_LIST_##template_params \ | |
11177 GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \ | |
11178 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const | |
11179 | |
11180 namespace testing { | |
11181 | |
11182 // The ACTION*() macros trigger warning C4100 (unreferenced formal | |
11183 // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in | |
11184 // the macro definition, as the warnings are generated when the macro | |
11185 // is expanded and macro expansion cannot contain #pragma. Therefore | |
11186 // we suppress them here. | |
11187 #ifdef _MSC_VER | |
11188 # pragma warning(push) | |
11189 # pragma warning(disable:4100) | |
11190 #endif | |
11191 | |
11192 namespace internal { | |
11193 | |
11194 // internal::InvokeArgument - a helper for InvokeArgument action. | |
11195 // The basic overloads are provided here for generic functors. | |
11196 // Overloads for other custom-callables are provided in the | |
11197 // internal/custom/gmock-generated-actions.h header. | |
11198 template <typename F, typename... Args> | |
11199 auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) { | |
11200 return f(args...); | |
11201 } | |
11202 | |
11203 template <std::size_t index, typename... Params> | |
11204 struct InvokeArgumentAction { | |
11205 template <typename... Args> | |
11206 auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument( | |
11207 std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)), | |
11208 std::declval<const Params&>()...)) { | |
11209 internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{}, | |
11210 std::forward<Args>(args)...); | |
11211 return params.Apply([&](const Params&... unpacked_params) { | |
11212 auto&& callable = args_tuple.template Get<index>(); | |
11213 return internal::InvokeArgument( | |
11214 std::forward<decltype(callable)>(callable), unpacked_params...); | |
11215 }); | |
11216 } | |
11217 | |
11218 internal::FlatTuple<Params...> params; | |
11219 }; | |
11220 | |
11221 } // namespace internal | |
11222 | |
11223 // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th | |
11224 // (0-based) argument, which must be a k-ary callable, of the mock | |
11225 // function, with arguments a1, a2, ..., a_k. | |
11226 // | |
11227 // Notes: | |
11228 // | |
11229 // 1. The arguments are passed by value by default. If you need to | |
11230 // pass an argument by reference, wrap it inside std::ref(). For | |
11231 // example, | |
11232 // | |
11233 // InvokeArgument<1>(5, string("Hello"), std::ref(foo)) | |
11234 // | |
11235 // passes 5 and string("Hello") by value, and passes foo by | |
11236 // reference. | |
11237 // | |
11238 // 2. If the callable takes an argument by reference but std::ref() is | |
11239 // not used, it will receive the reference to a copy of the value, | |
11240 // instead of the original value. For example, when the 0-th | |
11241 // argument of the mock function takes a const string&, the action | |
11242 // | |
11243 // InvokeArgument<0>(string("Hello")) | |
11244 // | |
11245 // makes a copy of the temporary string("Hello") object and passes a | |
11246 // reference of the copy, instead of the original temporary object, | |
11247 // to the callable. This makes it easy for a user to define an | |
11248 // InvokeArgument action from temporary values and have it performed | |
11249 // later. | |
11250 template <std::size_t index, typename... Params> | |
11251 internal::InvokeArgumentAction<index, typename std::decay<Params>::type...> | |
11252 InvokeArgument(Params&&... params) { | |
11253 return {internal::FlatTuple<typename std::decay<Params>::type...>( | |
11254 internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)}; | |
11255 } | |
11256 | |
11257 #ifdef _MSC_VER | |
11258 # pragma warning(pop) | |
11259 #endif | |
11260 | |
11261 } // namespace testing | |
11262 | |
11263 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ | |
11264 // Copyright 2013, Google Inc. | |
11265 // All rights reserved. | |
11266 // | |
11267 // Redistribution and use in source and binary forms, with or without | |
11268 // modification, are permitted provided that the following conditions are | |
11269 // met: | |
11270 // | |
11271 // * Redistributions of source code must retain the above copyright | |
11272 // notice, this list of conditions and the following disclaimer. | |
11273 // * Redistributions in binary form must reproduce the above | |
11274 // copyright notice, this list of conditions and the following disclaimer | |
11275 // in the documentation and/or other materials provided with the | |
11276 // distribution. | |
11277 // * Neither the name of Google Inc. nor the names of its | |
11278 // contributors may be used to endorse or promote products derived from | |
11279 // this software without specific prior written permission. | |
11280 // | |
11281 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
11282 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
11283 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
11284 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
11285 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
11286 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
11287 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
11288 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
11289 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
11290 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
11291 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
11292 | |
11293 | |
11294 // Google Mock - a framework for writing C++ mock classes. | |
11295 // | |
11296 // This file implements some matchers that depend on gmock-matchers.h. | |
11297 // | |
11298 // Note that tests are implemented in gmock-matchers_test.cc rather than | |
11299 // gmock-more-matchers-test.cc. | |
11300 | |
11301 // GOOGLETEST_CM0002 DO NOT DELETE | |
11302 | |
11303 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ | |
11304 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ | |
11305 | |
11306 | |
11307 namespace testing { | |
11308 | |
11309 // Silence C4100 (unreferenced formal | |
11310 // parameter) for MSVC | |
11311 #ifdef _MSC_VER | |
11312 # pragma warning(push) | |
11313 # pragma warning(disable:4100) | |
11314 #if (_MSC_VER == 1900) | |
11315 // and silence C4800 (C4800: 'int *const ': forcing value | |
11316 // to bool 'true' or 'false') for MSVC 14 | |
11317 # pragma warning(disable:4800) | |
11318 #endif | |
11319 #endif | |
11320 | |
11321 // Defines a matcher that matches an empty container. The container must | |
11322 // support both size() and empty(), which all STL-like containers provide. | |
11323 MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") { | |
11324 if (arg.empty()) { | |
11325 return true; | |
11326 } | |
11327 *result_listener << "whose size is " << arg.size(); | |
11328 return false; | |
11329 } | |
11330 | |
11331 // Define a matcher that matches a value that evaluates in boolean | |
11332 // context to true. Useful for types that define "explicit operator | |
11333 // bool" operators and so can't be compared for equality with true | |
11334 // and false. | |
11335 MATCHER(IsTrue, negation ? "is false" : "is true") { | |
11336 return static_cast<bool>(arg); | |
11337 } | |
11338 | |
11339 // Define a matcher that matches a value that evaluates in boolean | |
11340 // context to false. Useful for types that define "explicit operator | |
11341 // bool" operators and so can't be compared for equality with true | |
11342 // and false. | |
11343 MATCHER(IsFalse, negation ? "is true" : "is false") { | |
11344 return !static_cast<bool>(arg); | |
11345 } | |
11346 | |
11347 #ifdef _MSC_VER | |
11348 # pragma warning(pop) | |
11349 #endif | |
11350 | |
11351 | |
11352 } // namespace testing | |
11353 | |
11354 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ | |
11355 // Copyright 2008, Google Inc. | |
11356 // All rights reserved. | |
11357 // | |
11358 // Redistribution and use in source and binary forms, with or without | |
11359 // modification, are permitted provided that the following conditions are | |
11360 // met: | |
11361 // | |
11362 // * Redistributions of source code must retain the above copyright | |
11363 // notice, this list of conditions and the following disclaimer. | |
11364 // * Redistributions in binary form must reproduce the above | |
11365 // copyright notice, this list of conditions and the following disclaimer | |
11366 // in the documentation and/or other materials provided with the | |
11367 // distribution. | |
11368 // * Neither the name of Google Inc. nor the names of its | |
11369 // contributors may be used to endorse or promote products derived from | |
11370 // this software without specific prior written permission. | |
11371 // | |
11372 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
11373 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
11374 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
11375 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
11376 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
11377 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
11378 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
11379 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
11380 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
11381 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
11382 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
11383 | |
11384 | |
11385 // Implements class templates NiceMock, NaggyMock, and StrictMock. | |
11386 // | |
11387 // Given a mock class MockFoo that is created using Google Mock, | |
11388 // NiceMock<MockFoo> is a subclass of MockFoo that allows | |
11389 // uninteresting calls (i.e. calls to mock methods that have no | |
11390 // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo | |
11391 // that prints a warning when an uninteresting call occurs, and | |
11392 // StrictMock<MockFoo> is a subclass of MockFoo that treats all | |
11393 // uninteresting calls as errors. | |
11394 // | |
11395 // Currently a mock is naggy by default, so MockFoo and | |
11396 // NaggyMock<MockFoo> behave like the same. However, we will soon | |
11397 // switch the default behavior of mocks to be nice, as that in general | |
11398 // leads to more maintainable tests. When that happens, MockFoo will | |
11399 // stop behaving like NaggyMock<MockFoo> and start behaving like | |
11400 // NiceMock<MockFoo>. | |
11401 // | |
11402 // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of | |
11403 // their respective base class. Therefore you can write | |
11404 // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo | |
11405 // has a constructor that accepts (int, const char*), for example. | |
11406 // | |
11407 // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>, | |
11408 // and StrictMock<MockFoo> only works for mock methods defined using | |
11409 // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. | |
11410 // If a mock method is defined in a base class of MockFoo, the "nice" | |
11411 // or "strict" modifier may not affect it, depending on the compiler. | |
11412 // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT | |
11413 // supported. | |
11414 | |
11415 // GOOGLETEST_CM0002 DO NOT DELETE | |
11416 | |
11417 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ | |
11418 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ | |
11419 | |
11420 #include <type_traits> | |
11421 | |
11422 | |
11423 namespace testing { | |
11424 template <class MockClass> | |
11425 class NiceMock; | |
11426 template <class MockClass> | |
11427 class NaggyMock; | |
11428 template <class MockClass> | |
11429 class StrictMock; | |
11430 | |
11431 namespace internal { | |
11432 template <typename T> | |
11433 std::true_type StrictnessModifierProbe(const NiceMock<T>&); | |
11434 template <typename T> | |
11435 std::true_type StrictnessModifierProbe(const NaggyMock<T>&); | |
11436 template <typename T> | |
11437 std::true_type StrictnessModifierProbe(const StrictMock<T>&); | |
11438 std::false_type StrictnessModifierProbe(...); | |
11439 | |
11440 template <typename T> | |
11441 constexpr bool HasStrictnessModifier() { | |
11442 return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value; | |
11443 } | |
11444 | |
11445 // Base classes that register and deregister with testing::Mock to alter the | |
11446 // default behavior around uninteresting calls. Inheriting from one of these | |
11447 // classes first and then MockClass ensures the MockClass constructor is run | |
11448 // after registration, and that the MockClass destructor runs before | |
11449 // deregistration. This guarantees that MockClass's constructor and destructor | |
11450 // run with the same level of strictness as its instance methods. | |
11451 | |
11452 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \ | |
11453 (defined(_MSC_VER) || defined(__clang__)) | |
11454 // We need to mark these classes with this declspec to ensure that | |
11455 // the empty base class optimization is performed. | |
11456 #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases) | |
11457 #else | |
11458 #define GTEST_INTERNAL_EMPTY_BASE_CLASS | |
11459 #endif | |
11460 | |
11461 template <typename Base> | |
11462 class NiceMockImpl { | |
11463 public: | |
11464 NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); } | |
11465 | |
11466 ~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } | |
11467 }; | |
11468 | |
11469 template <typename Base> | |
11470 class NaggyMockImpl { | |
11471 public: | |
11472 NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); } | |
11473 | |
11474 ~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } | |
11475 }; | |
11476 | |
11477 template <typename Base> | |
11478 class StrictMockImpl { | |
11479 public: | |
11480 StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); } | |
11481 | |
11482 ~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } | |
11483 }; | |
11484 | |
11485 } // namespace internal | |
11486 | |
11487 template <class MockClass> | |
11488 class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock | |
11489 : private internal::NiceMockImpl<MockClass>, | |
11490 public MockClass { | |
11491 public: | |
11492 static_assert(!internal::HasStrictnessModifier<MockClass>(), | |
11493 "Can't apply NiceMock to a class hierarchy that already has a " | |
11494 "strictness modifier. See " | |
11495 "https://google.github.io/googletest/" | |
11496 "gmock_cook_book.html#NiceStrictNaggy"); | |
11497 NiceMock() : MockClass() { | |
11498 static_assert(sizeof(*this) == sizeof(MockClass), | |
11499 "The impl subclass shouldn't introduce any padding"); | |
11500 } | |
11501 | |
11502 // Ideally, we would inherit base class's constructors through a using | |
11503 // declaration, which would preserve their visibility. However, many existing | |
11504 // tests rely on the fact that current implementation reexports protected | |
11505 // constructors as public. These tests would need to be cleaned up first. | |
11506 | |
11507 // Single argument constructor is special-cased so that it can be | |
11508 // made explicit. | |
11509 template <typename A> | |
11510 explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) { | |
11511 static_assert(sizeof(*this) == sizeof(MockClass), | |
11512 "The impl subclass shouldn't introduce any padding"); | |
11513 } | |
11514 | |
11515 template <typename TArg1, typename TArg2, typename... An> | |
11516 NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args) | |
11517 : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), | |
11518 std::forward<An>(args)...) { | |
11519 static_assert(sizeof(*this) == sizeof(MockClass), | |
11520 "The impl subclass shouldn't introduce any padding"); | |
11521 } | |
11522 | |
11523 private: | |
11524 GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); | |
11525 }; | |
11526 | |
11527 template <class MockClass> | |
11528 class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock | |
11529 : private internal::NaggyMockImpl<MockClass>, | |
11530 public MockClass { | |
11531 static_assert(!internal::HasStrictnessModifier<MockClass>(), | |
11532 "Can't apply NaggyMock to a class hierarchy that already has a " | |
11533 "strictness modifier. See " | |
11534 "https://google.github.io/googletest/" | |
11535 "gmock_cook_book.html#NiceStrictNaggy"); | |
11536 | |
11537 public: | |
11538 NaggyMock() : MockClass() { | |
11539 static_assert(sizeof(*this) == sizeof(MockClass), | |
11540 "The impl subclass shouldn't introduce any padding"); | |
11541 } | |
11542 | |
11543 // Ideally, we would inherit base class's constructors through a using | |
11544 // declaration, which would preserve their visibility. However, many existing | |
11545 // tests rely on the fact that current implementation reexports protected | |
11546 // constructors as public. These tests would need to be cleaned up first. | |
11547 | |
11548 // Single argument constructor is special-cased so that it can be | |
11549 // made explicit. | |
11550 template <typename A> | |
11551 explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) { | |
11552 static_assert(sizeof(*this) == sizeof(MockClass), | |
11553 "The impl subclass shouldn't introduce any padding"); | |
11554 } | |
11555 | |
11556 template <typename TArg1, typename TArg2, typename... An> | |
11557 NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args) | |
11558 : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), | |
11559 std::forward<An>(args)...) { | |
11560 static_assert(sizeof(*this) == sizeof(MockClass), | |
11561 "The impl subclass shouldn't introduce any padding"); | |
11562 } | |
11563 | |
11564 private: | |
11565 GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock); | |
11566 }; | |
11567 | |
11568 template <class MockClass> | |
11569 class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock | |
11570 : private internal::StrictMockImpl<MockClass>, | |
11571 public MockClass { | |
11572 public: | |
11573 static_assert( | |
11574 !internal::HasStrictnessModifier<MockClass>(), | |
11575 "Can't apply StrictMock to a class hierarchy that already has a " | |
11576 "strictness modifier. See " | |
11577 "https://google.github.io/googletest/" | |
11578 "gmock_cook_book.html#NiceStrictNaggy"); | |
11579 StrictMock() : MockClass() { | |
11580 static_assert(sizeof(*this) == sizeof(MockClass), | |
11581 "The impl subclass shouldn't introduce any padding"); | |
11582 } | |
11583 | |
11584 // Ideally, we would inherit base class's constructors through a using | |
11585 // declaration, which would preserve their visibility. However, many existing | |
11586 // tests rely on the fact that current implementation reexports protected | |
11587 // constructors as public. These tests would need to be cleaned up first. | |
11588 | |
11589 // Single argument constructor is special-cased so that it can be | |
11590 // made explicit. | |
11591 template <typename A> | |
11592 explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) { | |
11593 static_assert(sizeof(*this) == sizeof(MockClass), | |
11594 "The impl subclass shouldn't introduce any padding"); | |
11595 } | |
11596 | |
11597 template <typename TArg1, typename TArg2, typename... An> | |
11598 StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args) | |
11599 : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), | |
11600 std::forward<An>(args)...) { | |
11601 static_assert(sizeof(*this) == sizeof(MockClass), | |
11602 "The impl subclass shouldn't introduce any padding"); | |
11603 } | |
11604 | |
11605 private: | |
11606 GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); | |
11607 }; | |
11608 | |
11609 #undef GTEST_INTERNAL_EMPTY_BASE_CLASS | |
11610 | |
11611 } // namespace testing | |
11612 | |
11613 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ | |
11614 | |
11615 namespace testing { | |
11616 | |
11617 // Declares Google Mock flags that we want a user to use programmatically. | |
11618 GMOCK_DECLARE_bool_(catch_leaked_mocks); | |
11619 GMOCK_DECLARE_string_(verbose); | |
11620 GMOCK_DECLARE_int32_(default_mock_behavior); | |
11621 | |
11622 // Initializes Google Mock. This must be called before running the | |
11623 // tests. In particular, it parses the command line for the flags | |
11624 // that Google Mock recognizes. Whenever a Google Mock flag is seen, | |
11625 // it is removed from argv, and *argc is decremented. | |
11626 // | |
11627 // No value is returned. Instead, the Google Mock flag variables are | |
11628 // updated. | |
11629 // | |
11630 // Since Google Test is needed for Google Mock to work, this function | |
11631 // also initializes Google Test and parses its flags, if that hasn't | |
11632 // been done. | |
11633 GTEST_API_ void InitGoogleMock(int* argc, char** argv); | |
11634 | |
11635 // This overloaded version can be used in Windows programs compiled in | |
11636 // UNICODE mode. | |
11637 GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv); | |
11638 | |
11639 // This overloaded version can be used on Arduino/embedded platforms where | |
11640 // there is no argc/argv. | |
11641 GTEST_API_ void InitGoogleMock(); | |
11642 | |
11643 } // namespace testing | |
11644 | |
11645 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ |