comparison dep/json/json.hpp @ 175:9b10175be389

dep/json: update to v3.11.3 anime/db: save anime list to database, very much untested and likely won't work as intended
author Paper <mrpapersonic@gmail.com>
date Thu, 30 Nov 2023 13:52:26 -0500
parents
children
comparison
equal deleted inserted replaced
174:f88eda79c60a 175:9b10175be389
1 // __ _____ _____ _____
2 // __| | __| | | | JSON for Modern C++
3 // | | |__ | | | | | | version 3.11.3
4 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
5 //
6 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
7 // SPDX-License-Identifier: MIT
8
9 /****************************************************************************\
10 * Note on documentation: The source files contain links to the online *
11 * documentation of the public API at https://json.nlohmann.me. This URL *
12 * contains the most recent documentation and should also be applicable to *
13 * previous versions; documentation for deprecated functions is not *
14 * removed, but marked deprecated. See "Generate documentation" section in *
15 * file docs/README.md. *
16 \****************************************************************************/
17
18 #ifndef INCLUDE_NLOHMANN_JSON_HPP_
19 #define INCLUDE_NLOHMANN_JSON_HPP_
20
21 #include <algorithm> // all_of, find, for_each
22 #include <cstddef> // nullptr_t, ptrdiff_t, size_t
23 #include <functional> // hash, less
24 #include <initializer_list> // initializer_list
25 #ifndef JSON_NO_IO
26 #include <iosfwd> // istream, ostream
27 #endif // JSON_NO_IO
28 #include <iterator> // random_access_iterator_tag
29 #include <memory> // unique_ptr
30 #include <string> // string, stoi, to_string
31 #include <utility> // declval, forward, move, pair, swap
32 #include <vector> // vector
33
34 // #include <nlohmann/adl_serializer.hpp>
35 // __ _____ _____ _____
36 // __| | __| | | | JSON for Modern C++
37 // | | |__ | | | | | | version 3.11.3
38 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
39 //
40 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
41 // SPDX-License-Identifier: MIT
42
43
44
45 #include <utility>
46
47 // #include <nlohmann/detail/abi_macros.hpp>
48 // __ _____ _____ _____
49 // __| | __| | | | JSON for Modern C++
50 // | | |__ | | | | | | version 3.11.3
51 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
52 //
53 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
54 // SPDX-License-Identifier: MIT
55
56
57
58 // This file contains all macro definitions affecting or depending on the ABI
59
60 #ifndef JSON_SKIP_LIBRARY_VERSION_CHECK
61 #if defined(NLOHMANN_JSON_VERSION_MAJOR) && defined(NLOHMANN_JSON_VERSION_MINOR) && defined(NLOHMANN_JSON_VERSION_PATCH)
62 #if NLOHMANN_JSON_VERSION_MAJOR != 3 || NLOHMANN_JSON_VERSION_MINOR != 11 || NLOHMANN_JSON_VERSION_PATCH != 3
63 #warning "Already included a different version of the library!"
64 #endif
65 #endif
66 #endif
67
68 #define NLOHMANN_JSON_VERSION_MAJOR 3 // NOLINT(modernize-macro-to-enum)
69 #define NLOHMANN_JSON_VERSION_MINOR 11 // NOLINT(modernize-macro-to-enum)
70 #define NLOHMANN_JSON_VERSION_PATCH 3 // NOLINT(modernize-macro-to-enum)
71
72 #ifndef JSON_DIAGNOSTICS
73 #define JSON_DIAGNOSTICS 0
74 #endif
75
76 #ifndef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
77 #define JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON 0
78 #endif
79
80 #if JSON_DIAGNOSTICS
81 #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS _diag
82 #else
83 #define NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS
84 #endif
85
86 #if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
87 #define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON _ldvcmp
88 #else
89 #define NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON
90 #endif
91
92 #ifndef NLOHMANN_JSON_NAMESPACE_NO_VERSION
93 #define NLOHMANN_JSON_NAMESPACE_NO_VERSION 0
94 #endif
95
96 // Construct the namespace ABI tags component
97 #define NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b) json_abi ## a ## b
98 #define NLOHMANN_JSON_ABI_TAGS_CONCAT(a, b) \
99 NLOHMANN_JSON_ABI_TAGS_CONCAT_EX(a, b)
100
101 #define NLOHMANN_JSON_ABI_TAGS \
102 NLOHMANN_JSON_ABI_TAGS_CONCAT( \
103 NLOHMANN_JSON_ABI_TAG_DIAGNOSTICS, \
104 NLOHMANN_JSON_ABI_TAG_LEGACY_DISCARDED_VALUE_COMPARISON)
105
106 // Construct the namespace version component
107 #define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch) \
108 _v ## major ## _ ## minor ## _ ## patch
109 #define NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(major, minor, patch) \
110 NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT_EX(major, minor, patch)
111
112 #if NLOHMANN_JSON_NAMESPACE_NO_VERSION
113 #define NLOHMANN_JSON_NAMESPACE_VERSION
114 #else
115 #define NLOHMANN_JSON_NAMESPACE_VERSION \
116 NLOHMANN_JSON_NAMESPACE_VERSION_CONCAT(NLOHMANN_JSON_VERSION_MAJOR, \
117 NLOHMANN_JSON_VERSION_MINOR, \
118 NLOHMANN_JSON_VERSION_PATCH)
119 #endif
120
121 // Combine namespace components
122 #define NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b) a ## b
123 #define NLOHMANN_JSON_NAMESPACE_CONCAT(a, b) \
124 NLOHMANN_JSON_NAMESPACE_CONCAT_EX(a, b)
125
126 #ifndef NLOHMANN_JSON_NAMESPACE
127 #define NLOHMANN_JSON_NAMESPACE \
128 nlohmann::NLOHMANN_JSON_NAMESPACE_CONCAT( \
129 NLOHMANN_JSON_ABI_TAGS, \
130 NLOHMANN_JSON_NAMESPACE_VERSION)
131 #endif
132
133 #ifndef NLOHMANN_JSON_NAMESPACE_BEGIN
134 #define NLOHMANN_JSON_NAMESPACE_BEGIN \
135 namespace nlohmann \
136 { \
137 inline namespace NLOHMANN_JSON_NAMESPACE_CONCAT( \
138 NLOHMANN_JSON_ABI_TAGS, \
139 NLOHMANN_JSON_NAMESPACE_VERSION) \
140 {
141 #endif
142
143 #ifndef NLOHMANN_JSON_NAMESPACE_END
144 #define NLOHMANN_JSON_NAMESPACE_END \
145 } /* namespace (inline namespace) NOLINT(readability/namespace) */ \
146 } // namespace nlohmann
147 #endif
148
149 // #include <nlohmann/detail/conversions/from_json.hpp>
150 // __ _____ _____ _____
151 // __| | __| | | | JSON for Modern C++
152 // | | |__ | | | | | | version 3.11.3
153 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
154 //
155 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
156 // SPDX-License-Identifier: MIT
157
158
159
160 #include <algorithm> // transform
161 #include <array> // array
162 #include <forward_list> // forward_list
163 #include <iterator> // inserter, front_inserter, end
164 #include <map> // map
165 #include <string> // string
166 #include <tuple> // tuple, make_tuple
167 #include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
168 #include <unordered_map> // unordered_map
169 #include <utility> // pair, declval
170 #include <valarray> // valarray
171
172 // #include <nlohmann/detail/exceptions.hpp>
173 // __ _____ _____ _____
174 // __| | __| | | | JSON for Modern C++
175 // | | |__ | | | | | | version 3.11.3
176 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
177 //
178 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
179 // SPDX-License-Identifier: MIT
180
181
182
183 #include <cstddef> // nullptr_t
184 #include <exception> // exception
185 #if JSON_DIAGNOSTICS
186 #include <numeric> // accumulate
187 #endif
188 #include <stdexcept> // runtime_error
189 #include <string> // to_string
190 #include <vector> // vector
191
192 // #include <nlohmann/detail/value_t.hpp>
193 // __ _____ _____ _____
194 // __| | __| | | | JSON for Modern C++
195 // | | |__ | | | | | | version 3.11.3
196 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
197 //
198 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
199 // SPDX-License-Identifier: MIT
200
201
202
203 #include <array> // array
204 #include <cstddef> // size_t
205 #include <cstdint> // uint8_t
206 #include <string> // string
207
208 // #include <nlohmann/detail/macro_scope.hpp>
209 // __ _____ _____ _____
210 // __| | __| | | | JSON for Modern C++
211 // | | |__ | | | | | | version 3.11.3
212 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
213 //
214 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
215 // SPDX-License-Identifier: MIT
216
217
218
219 #include <utility> // declval, pair
220 // #include <nlohmann/detail/meta/detected.hpp>
221 // __ _____ _____ _____
222 // __| | __| | | | JSON for Modern C++
223 // | | |__ | | | | | | version 3.11.3
224 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
225 //
226 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
227 // SPDX-License-Identifier: MIT
228
229
230
231 #include <type_traits>
232
233 // #include <nlohmann/detail/meta/void_t.hpp>
234 // __ _____ _____ _____
235 // __| | __| | | | JSON for Modern C++
236 // | | |__ | | | | | | version 3.11.3
237 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
238 //
239 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
240 // SPDX-License-Identifier: MIT
241
242
243
244 // #include <nlohmann/detail/abi_macros.hpp>
245
246
247 NLOHMANN_JSON_NAMESPACE_BEGIN
248 namespace detail
249 {
250
251 template<typename ...Ts> struct make_void
252 {
253 using type = void;
254 };
255 template<typename ...Ts> using void_t = typename make_void<Ts...>::type;
256
257 } // namespace detail
258 NLOHMANN_JSON_NAMESPACE_END
259
260
261 NLOHMANN_JSON_NAMESPACE_BEGIN
262 namespace detail
263 {
264
265 // https://en.cppreference.com/w/cpp/experimental/is_detected
266 struct nonesuch
267 {
268 nonesuch() = delete;
269 ~nonesuch() = delete;
270 nonesuch(nonesuch const&) = delete;
271 nonesuch(nonesuch const&&) = delete;
272 void operator=(nonesuch const&) = delete;
273 void operator=(nonesuch&&) = delete;
274 };
275
276 template<class Default,
277 class AlwaysVoid,
278 template<class...> class Op,
279 class... Args>
280 struct detector
281 {
282 using value_t = std::false_type;
283 using type = Default;
284 };
285
286 template<class Default, template<class...> class Op, class... Args>
287 struct detector<Default, void_t<Op<Args...>>, Op, Args...>
288 {
289 using value_t = std::true_type;
290 using type = Op<Args...>;
291 };
292
293 template<template<class...> class Op, class... Args>
294 using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
295
296 template<template<class...> class Op, class... Args>
297 struct is_detected_lazy : is_detected<Op, Args...> { };
298
299 template<template<class...> class Op, class... Args>
300 using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
301
302 template<class Default, template<class...> class Op, class... Args>
303 using detected_or = detector<Default, void, Op, Args...>;
304
305 template<class Default, template<class...> class Op, class... Args>
306 using detected_or_t = typename detected_or<Default, Op, Args...>::type;
307
308 template<class Expected, template<class...> class Op, class... Args>
309 using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
310
311 template<class To, template<class...> class Op, class... Args>
312 using is_detected_convertible =
313 std::is_convertible<detected_t<Op, Args...>, To>;
314
315 } // namespace detail
316 NLOHMANN_JSON_NAMESPACE_END
317
318 // #include <nlohmann/thirdparty/hedley/hedley.hpp>
319
320
321 // __ _____ _____ _____
322 // __| | __| | | | JSON for Modern C++
323 // | | |__ | | | | | | version 3.11.3
324 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
325 //
326 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
327 // SPDX-FileCopyrightText: 2016-2021 Evan Nemerson <evan@nemerson.com>
328 // SPDX-License-Identifier: MIT
329
330 /* Hedley - https://nemequ.github.io/hedley
331 * Created by Evan Nemerson <evan@nemerson.com>
332 */
333
334 #if !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < 15)
335 #if defined(JSON_HEDLEY_VERSION)
336 #undef JSON_HEDLEY_VERSION
337 #endif
338 #define JSON_HEDLEY_VERSION 15
339
340 #if defined(JSON_HEDLEY_STRINGIFY_EX)
341 #undef JSON_HEDLEY_STRINGIFY_EX
342 #endif
343 #define JSON_HEDLEY_STRINGIFY_EX(x) #x
344
345 #if defined(JSON_HEDLEY_STRINGIFY)
346 #undef JSON_HEDLEY_STRINGIFY
347 #endif
348 #define JSON_HEDLEY_STRINGIFY(x) JSON_HEDLEY_STRINGIFY_EX(x)
349
350 #if defined(JSON_HEDLEY_CONCAT_EX)
351 #undef JSON_HEDLEY_CONCAT_EX
352 #endif
353 #define JSON_HEDLEY_CONCAT_EX(a,b) a##b
354
355 #if defined(JSON_HEDLEY_CONCAT)
356 #undef JSON_HEDLEY_CONCAT
357 #endif
358 #define JSON_HEDLEY_CONCAT(a,b) JSON_HEDLEY_CONCAT_EX(a,b)
359
360 #if defined(JSON_HEDLEY_CONCAT3_EX)
361 #undef JSON_HEDLEY_CONCAT3_EX
362 #endif
363 #define JSON_HEDLEY_CONCAT3_EX(a,b,c) a##b##c
364
365 #if defined(JSON_HEDLEY_CONCAT3)
366 #undef JSON_HEDLEY_CONCAT3
367 #endif
368 #define JSON_HEDLEY_CONCAT3(a,b,c) JSON_HEDLEY_CONCAT3_EX(a,b,c)
369
370 #if defined(JSON_HEDLEY_VERSION_ENCODE)
371 #undef JSON_HEDLEY_VERSION_ENCODE
372 #endif
373 #define JSON_HEDLEY_VERSION_ENCODE(major,minor,revision) (((major) * 1000000) + ((minor) * 1000) + (revision))
374
375 #if defined(JSON_HEDLEY_VERSION_DECODE_MAJOR)
376 #undef JSON_HEDLEY_VERSION_DECODE_MAJOR
377 #endif
378 #define JSON_HEDLEY_VERSION_DECODE_MAJOR(version) ((version) / 1000000)
379
380 #if defined(JSON_HEDLEY_VERSION_DECODE_MINOR)
381 #undef JSON_HEDLEY_VERSION_DECODE_MINOR
382 #endif
383 #define JSON_HEDLEY_VERSION_DECODE_MINOR(version) (((version) % 1000000) / 1000)
384
385 #if defined(JSON_HEDLEY_VERSION_DECODE_REVISION)
386 #undef JSON_HEDLEY_VERSION_DECODE_REVISION
387 #endif
388 #define JSON_HEDLEY_VERSION_DECODE_REVISION(version) ((version) % 1000)
389
390 #if defined(JSON_HEDLEY_GNUC_VERSION)
391 #undef JSON_HEDLEY_GNUC_VERSION
392 #endif
393 #if defined(__GNUC__) && defined(__GNUC_PATCHLEVEL__)
394 #define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__)
395 #elif defined(__GNUC__)
396 #define JSON_HEDLEY_GNUC_VERSION JSON_HEDLEY_VERSION_ENCODE(__GNUC__, __GNUC_MINOR__, 0)
397 #endif
398
399 #if defined(JSON_HEDLEY_GNUC_VERSION_CHECK)
400 #undef JSON_HEDLEY_GNUC_VERSION_CHECK
401 #endif
402 #if defined(JSON_HEDLEY_GNUC_VERSION)
403 #define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GNUC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
404 #else
405 #define JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch) (0)
406 #endif
407
408 #if defined(JSON_HEDLEY_MSVC_VERSION)
409 #undef JSON_HEDLEY_MSVC_VERSION
410 #endif
411 #if defined(_MSC_FULL_VER) && (_MSC_FULL_VER >= 140000000) && !defined(__ICL)
412 #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 10000000, (_MSC_FULL_VER % 10000000) / 100000, (_MSC_FULL_VER % 100000) / 100)
413 #elif defined(_MSC_FULL_VER) && !defined(__ICL)
414 #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_FULL_VER / 1000000, (_MSC_FULL_VER % 1000000) / 10000, (_MSC_FULL_VER % 10000) / 10)
415 #elif defined(_MSC_VER) && !defined(__ICL)
416 #define JSON_HEDLEY_MSVC_VERSION JSON_HEDLEY_VERSION_ENCODE(_MSC_VER / 100, _MSC_VER % 100, 0)
417 #endif
418
419 #if defined(JSON_HEDLEY_MSVC_VERSION_CHECK)
420 #undef JSON_HEDLEY_MSVC_VERSION_CHECK
421 #endif
422 #if !defined(JSON_HEDLEY_MSVC_VERSION)
423 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (0)
424 #elif defined(_MSC_VER) && (_MSC_VER >= 1400)
425 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 10000000) + (minor * 100000) + (patch)))
426 #elif defined(_MSC_VER) && (_MSC_VER >= 1200)
427 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_FULL_VER >= ((major * 1000000) + (minor * 10000) + (patch)))
428 #else
429 #define JSON_HEDLEY_MSVC_VERSION_CHECK(major,minor,patch) (_MSC_VER >= ((major * 100) + (minor)))
430 #endif
431
432 #if defined(JSON_HEDLEY_INTEL_VERSION)
433 #undef JSON_HEDLEY_INTEL_VERSION
434 #endif
435 #if defined(__INTEL_COMPILER) && defined(__INTEL_COMPILER_UPDATE) && !defined(__ICL)
436 #define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, __INTEL_COMPILER_UPDATE)
437 #elif defined(__INTEL_COMPILER) && !defined(__ICL)
438 #define JSON_HEDLEY_INTEL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER / 100, __INTEL_COMPILER % 100, 0)
439 #endif
440
441 #if defined(JSON_HEDLEY_INTEL_VERSION_CHECK)
442 #undef JSON_HEDLEY_INTEL_VERSION_CHECK
443 #endif
444 #if defined(JSON_HEDLEY_INTEL_VERSION)
445 #define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_INTEL_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
446 #else
447 #define JSON_HEDLEY_INTEL_VERSION_CHECK(major,minor,patch) (0)
448 #endif
449
450 #if defined(JSON_HEDLEY_INTEL_CL_VERSION)
451 #undef JSON_HEDLEY_INTEL_CL_VERSION
452 #endif
453 #if defined(__INTEL_COMPILER) && defined(__INTEL_COMPILER_UPDATE) && defined(__ICL)
454 #define JSON_HEDLEY_INTEL_CL_VERSION JSON_HEDLEY_VERSION_ENCODE(__INTEL_COMPILER, __INTEL_COMPILER_UPDATE, 0)
455 #endif
456
457 #if defined(JSON_HEDLEY_INTEL_CL_VERSION_CHECK)
458 #undef JSON_HEDLEY_INTEL_CL_VERSION_CHECK
459 #endif
460 #if defined(JSON_HEDLEY_INTEL_CL_VERSION)
461 #define JSON_HEDLEY_INTEL_CL_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_INTEL_CL_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
462 #else
463 #define JSON_HEDLEY_INTEL_CL_VERSION_CHECK(major,minor,patch) (0)
464 #endif
465
466 #if defined(JSON_HEDLEY_PGI_VERSION)
467 #undef JSON_HEDLEY_PGI_VERSION
468 #endif
469 #if defined(__PGI) && defined(__PGIC__) && defined(__PGIC_MINOR__) && defined(__PGIC_PATCHLEVEL__)
470 #define JSON_HEDLEY_PGI_VERSION JSON_HEDLEY_VERSION_ENCODE(__PGIC__, __PGIC_MINOR__, __PGIC_PATCHLEVEL__)
471 #endif
472
473 #if defined(JSON_HEDLEY_PGI_VERSION_CHECK)
474 #undef JSON_HEDLEY_PGI_VERSION_CHECK
475 #endif
476 #if defined(JSON_HEDLEY_PGI_VERSION)
477 #define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PGI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
478 #else
479 #define JSON_HEDLEY_PGI_VERSION_CHECK(major,minor,patch) (0)
480 #endif
481
482 #if defined(JSON_HEDLEY_SUNPRO_VERSION)
483 #undef JSON_HEDLEY_SUNPRO_VERSION
484 #endif
485 #if defined(__SUNPRO_C) && (__SUNPRO_C > 0x1000)
486 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_C >> 16) & 0xf) * 10) + ((__SUNPRO_C >> 12) & 0xf), (((__SUNPRO_C >> 8) & 0xf) * 10) + ((__SUNPRO_C >> 4) & 0xf), (__SUNPRO_C & 0xf) * 10)
487 #elif defined(__SUNPRO_C)
488 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_C >> 8) & 0xf, (__SUNPRO_C >> 4) & 0xf, (__SUNPRO_C) & 0xf)
489 #elif defined(__SUNPRO_CC) && (__SUNPRO_CC > 0x1000)
490 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((((__SUNPRO_CC >> 16) & 0xf) * 10) + ((__SUNPRO_CC >> 12) & 0xf), (((__SUNPRO_CC >> 8) & 0xf) * 10) + ((__SUNPRO_CC >> 4) & 0xf), (__SUNPRO_CC & 0xf) * 10)
491 #elif defined(__SUNPRO_CC)
492 #define JSON_HEDLEY_SUNPRO_VERSION JSON_HEDLEY_VERSION_ENCODE((__SUNPRO_CC >> 8) & 0xf, (__SUNPRO_CC >> 4) & 0xf, (__SUNPRO_CC) & 0xf)
493 #endif
494
495 #if defined(JSON_HEDLEY_SUNPRO_VERSION_CHECK)
496 #undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
497 #endif
498 #if defined(JSON_HEDLEY_SUNPRO_VERSION)
499 #define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_SUNPRO_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
500 #else
501 #define JSON_HEDLEY_SUNPRO_VERSION_CHECK(major,minor,patch) (0)
502 #endif
503
504 #if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
505 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION
506 #endif
507 #if defined(__EMSCRIPTEN__)
508 #define JSON_HEDLEY_EMSCRIPTEN_VERSION JSON_HEDLEY_VERSION_ENCODE(__EMSCRIPTEN_major__, __EMSCRIPTEN_minor__, __EMSCRIPTEN_tiny__)
509 #endif
510
511 #if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK)
512 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
513 #endif
514 #if defined(JSON_HEDLEY_EMSCRIPTEN_VERSION)
515 #define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_EMSCRIPTEN_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
516 #else
517 #define JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK(major,minor,patch) (0)
518 #endif
519
520 #if defined(JSON_HEDLEY_ARM_VERSION)
521 #undef JSON_HEDLEY_ARM_VERSION
522 #endif
523 #if defined(__CC_ARM) && defined(__ARMCOMPILER_VERSION)
524 #define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCOMPILER_VERSION / 1000000, (__ARMCOMPILER_VERSION % 1000000) / 10000, (__ARMCOMPILER_VERSION % 10000) / 100)
525 #elif defined(__CC_ARM) && defined(__ARMCC_VERSION)
526 #define JSON_HEDLEY_ARM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ARMCC_VERSION / 1000000, (__ARMCC_VERSION % 1000000) / 10000, (__ARMCC_VERSION % 10000) / 100)
527 #endif
528
529 #if defined(JSON_HEDLEY_ARM_VERSION_CHECK)
530 #undef JSON_HEDLEY_ARM_VERSION_CHECK
531 #endif
532 #if defined(JSON_HEDLEY_ARM_VERSION)
533 #define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_ARM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
534 #else
535 #define JSON_HEDLEY_ARM_VERSION_CHECK(major,minor,patch) (0)
536 #endif
537
538 #if defined(JSON_HEDLEY_IBM_VERSION)
539 #undef JSON_HEDLEY_IBM_VERSION
540 #endif
541 #if defined(__ibmxl__)
542 #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__ibmxl_version__, __ibmxl_release__, __ibmxl_modification__)
543 #elif defined(__xlC__) && defined(__xlC_ver__)
544 #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, (__xlC_ver__ >> 8) & 0xff)
545 #elif defined(__xlC__)
546 #define JSON_HEDLEY_IBM_VERSION JSON_HEDLEY_VERSION_ENCODE(__xlC__ >> 8, __xlC__ & 0xff, 0)
547 #endif
548
549 #if defined(JSON_HEDLEY_IBM_VERSION_CHECK)
550 #undef JSON_HEDLEY_IBM_VERSION_CHECK
551 #endif
552 #if defined(JSON_HEDLEY_IBM_VERSION)
553 #define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IBM_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
554 #else
555 #define JSON_HEDLEY_IBM_VERSION_CHECK(major,minor,patch) (0)
556 #endif
557
558 #if defined(JSON_HEDLEY_TI_VERSION)
559 #undef JSON_HEDLEY_TI_VERSION
560 #endif
561 #if \
562 defined(__TI_COMPILER_VERSION__) && \
563 ( \
564 defined(__TMS470__) || defined(__TI_ARM__) || \
565 defined(__MSP430__) || \
566 defined(__TMS320C2000__) \
567 )
568 #if (__TI_COMPILER_VERSION__ >= 16000000)
569 #define JSON_HEDLEY_TI_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
570 #endif
571 #endif
572
573 #if defined(JSON_HEDLEY_TI_VERSION_CHECK)
574 #undef JSON_HEDLEY_TI_VERSION_CHECK
575 #endif
576 #if defined(JSON_HEDLEY_TI_VERSION)
577 #define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
578 #else
579 #define JSON_HEDLEY_TI_VERSION_CHECK(major,minor,patch) (0)
580 #endif
581
582 #if defined(JSON_HEDLEY_TI_CL2000_VERSION)
583 #undef JSON_HEDLEY_TI_CL2000_VERSION
584 #endif
585 #if defined(__TI_COMPILER_VERSION__) && defined(__TMS320C2000__)
586 #define JSON_HEDLEY_TI_CL2000_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
587 #endif
588
589 #if defined(JSON_HEDLEY_TI_CL2000_VERSION_CHECK)
590 #undef JSON_HEDLEY_TI_CL2000_VERSION_CHECK
591 #endif
592 #if defined(JSON_HEDLEY_TI_CL2000_VERSION)
593 #define JSON_HEDLEY_TI_CL2000_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_CL2000_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
594 #else
595 #define JSON_HEDLEY_TI_CL2000_VERSION_CHECK(major,minor,patch) (0)
596 #endif
597
598 #if defined(JSON_HEDLEY_TI_CL430_VERSION)
599 #undef JSON_HEDLEY_TI_CL430_VERSION
600 #endif
601 #if defined(__TI_COMPILER_VERSION__) && defined(__MSP430__)
602 #define JSON_HEDLEY_TI_CL430_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
603 #endif
604
605 #if defined(JSON_HEDLEY_TI_CL430_VERSION_CHECK)
606 #undef JSON_HEDLEY_TI_CL430_VERSION_CHECK
607 #endif
608 #if defined(JSON_HEDLEY_TI_CL430_VERSION)
609 #define JSON_HEDLEY_TI_CL430_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_CL430_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
610 #else
611 #define JSON_HEDLEY_TI_CL430_VERSION_CHECK(major,minor,patch) (0)
612 #endif
613
614 #if defined(JSON_HEDLEY_TI_ARMCL_VERSION)
615 #undef JSON_HEDLEY_TI_ARMCL_VERSION
616 #endif
617 #if defined(__TI_COMPILER_VERSION__) && (defined(__TMS470__) || defined(__TI_ARM__))
618 #define JSON_HEDLEY_TI_ARMCL_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
619 #endif
620
621 #if defined(JSON_HEDLEY_TI_ARMCL_VERSION_CHECK)
622 #undef JSON_HEDLEY_TI_ARMCL_VERSION_CHECK
623 #endif
624 #if defined(JSON_HEDLEY_TI_ARMCL_VERSION)
625 #define JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_ARMCL_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
626 #else
627 #define JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(major,minor,patch) (0)
628 #endif
629
630 #if defined(JSON_HEDLEY_TI_CL6X_VERSION)
631 #undef JSON_HEDLEY_TI_CL6X_VERSION
632 #endif
633 #if defined(__TI_COMPILER_VERSION__) && defined(__TMS320C6X__)
634 #define JSON_HEDLEY_TI_CL6X_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
635 #endif
636
637 #if defined(JSON_HEDLEY_TI_CL6X_VERSION_CHECK)
638 #undef JSON_HEDLEY_TI_CL6X_VERSION_CHECK
639 #endif
640 #if defined(JSON_HEDLEY_TI_CL6X_VERSION)
641 #define JSON_HEDLEY_TI_CL6X_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_CL6X_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
642 #else
643 #define JSON_HEDLEY_TI_CL6X_VERSION_CHECK(major,minor,patch) (0)
644 #endif
645
646 #if defined(JSON_HEDLEY_TI_CL7X_VERSION)
647 #undef JSON_HEDLEY_TI_CL7X_VERSION
648 #endif
649 #if defined(__TI_COMPILER_VERSION__) && defined(__C7000__)
650 #define JSON_HEDLEY_TI_CL7X_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
651 #endif
652
653 #if defined(JSON_HEDLEY_TI_CL7X_VERSION_CHECK)
654 #undef JSON_HEDLEY_TI_CL7X_VERSION_CHECK
655 #endif
656 #if defined(JSON_HEDLEY_TI_CL7X_VERSION)
657 #define JSON_HEDLEY_TI_CL7X_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_CL7X_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
658 #else
659 #define JSON_HEDLEY_TI_CL7X_VERSION_CHECK(major,minor,patch) (0)
660 #endif
661
662 #if defined(JSON_HEDLEY_TI_CLPRU_VERSION)
663 #undef JSON_HEDLEY_TI_CLPRU_VERSION
664 #endif
665 #if defined(__TI_COMPILER_VERSION__) && defined(__PRU__)
666 #define JSON_HEDLEY_TI_CLPRU_VERSION JSON_HEDLEY_VERSION_ENCODE(__TI_COMPILER_VERSION__ / 1000000, (__TI_COMPILER_VERSION__ % 1000000) / 1000, (__TI_COMPILER_VERSION__ % 1000))
667 #endif
668
669 #if defined(JSON_HEDLEY_TI_CLPRU_VERSION_CHECK)
670 #undef JSON_HEDLEY_TI_CLPRU_VERSION_CHECK
671 #endif
672 #if defined(JSON_HEDLEY_TI_CLPRU_VERSION)
673 #define JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TI_CLPRU_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
674 #else
675 #define JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(major,minor,patch) (0)
676 #endif
677
678 #if defined(JSON_HEDLEY_CRAY_VERSION)
679 #undef JSON_HEDLEY_CRAY_VERSION
680 #endif
681 #if defined(_CRAYC)
682 #if defined(_RELEASE_PATCHLEVEL)
683 #define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, _RELEASE_PATCHLEVEL)
684 #else
685 #define JSON_HEDLEY_CRAY_VERSION JSON_HEDLEY_VERSION_ENCODE(_RELEASE_MAJOR, _RELEASE_MINOR, 0)
686 #endif
687 #endif
688
689 #if defined(JSON_HEDLEY_CRAY_VERSION_CHECK)
690 #undef JSON_HEDLEY_CRAY_VERSION_CHECK
691 #endif
692 #if defined(JSON_HEDLEY_CRAY_VERSION)
693 #define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_CRAY_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
694 #else
695 #define JSON_HEDLEY_CRAY_VERSION_CHECK(major,minor,patch) (0)
696 #endif
697
698 #if defined(JSON_HEDLEY_IAR_VERSION)
699 #undef JSON_HEDLEY_IAR_VERSION
700 #endif
701 #if defined(__IAR_SYSTEMS_ICC__)
702 #if __VER__ > 1000
703 #define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE((__VER__ / 1000000), ((__VER__ / 1000) % 1000), (__VER__ % 1000))
704 #else
705 #define JSON_HEDLEY_IAR_VERSION JSON_HEDLEY_VERSION_ENCODE(__VER__ / 100, __VER__ % 100, 0)
706 #endif
707 #endif
708
709 #if defined(JSON_HEDLEY_IAR_VERSION_CHECK)
710 #undef JSON_HEDLEY_IAR_VERSION_CHECK
711 #endif
712 #if defined(JSON_HEDLEY_IAR_VERSION)
713 #define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_IAR_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
714 #else
715 #define JSON_HEDLEY_IAR_VERSION_CHECK(major,minor,patch) (0)
716 #endif
717
718 #if defined(JSON_HEDLEY_TINYC_VERSION)
719 #undef JSON_HEDLEY_TINYC_VERSION
720 #endif
721 #if defined(__TINYC__)
722 #define JSON_HEDLEY_TINYC_VERSION JSON_HEDLEY_VERSION_ENCODE(__TINYC__ / 1000, (__TINYC__ / 100) % 10, __TINYC__ % 100)
723 #endif
724
725 #if defined(JSON_HEDLEY_TINYC_VERSION_CHECK)
726 #undef JSON_HEDLEY_TINYC_VERSION_CHECK
727 #endif
728 #if defined(JSON_HEDLEY_TINYC_VERSION)
729 #define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_TINYC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
730 #else
731 #define JSON_HEDLEY_TINYC_VERSION_CHECK(major,minor,patch) (0)
732 #endif
733
734 #if defined(JSON_HEDLEY_DMC_VERSION)
735 #undef JSON_HEDLEY_DMC_VERSION
736 #endif
737 #if defined(__DMC__)
738 #define JSON_HEDLEY_DMC_VERSION JSON_HEDLEY_VERSION_ENCODE(__DMC__ >> 8, (__DMC__ >> 4) & 0xf, __DMC__ & 0xf)
739 #endif
740
741 #if defined(JSON_HEDLEY_DMC_VERSION_CHECK)
742 #undef JSON_HEDLEY_DMC_VERSION_CHECK
743 #endif
744 #if defined(JSON_HEDLEY_DMC_VERSION)
745 #define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_DMC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
746 #else
747 #define JSON_HEDLEY_DMC_VERSION_CHECK(major,minor,patch) (0)
748 #endif
749
750 #if defined(JSON_HEDLEY_COMPCERT_VERSION)
751 #undef JSON_HEDLEY_COMPCERT_VERSION
752 #endif
753 #if defined(__COMPCERT_VERSION__)
754 #define JSON_HEDLEY_COMPCERT_VERSION JSON_HEDLEY_VERSION_ENCODE(__COMPCERT_VERSION__ / 10000, (__COMPCERT_VERSION__ / 100) % 100, __COMPCERT_VERSION__ % 100)
755 #endif
756
757 #if defined(JSON_HEDLEY_COMPCERT_VERSION_CHECK)
758 #undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
759 #endif
760 #if defined(JSON_HEDLEY_COMPCERT_VERSION)
761 #define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_COMPCERT_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
762 #else
763 #define JSON_HEDLEY_COMPCERT_VERSION_CHECK(major,minor,patch) (0)
764 #endif
765
766 #if defined(JSON_HEDLEY_PELLES_VERSION)
767 #undef JSON_HEDLEY_PELLES_VERSION
768 #endif
769 #if defined(__POCC__)
770 #define JSON_HEDLEY_PELLES_VERSION JSON_HEDLEY_VERSION_ENCODE(__POCC__ / 100, __POCC__ % 100, 0)
771 #endif
772
773 #if defined(JSON_HEDLEY_PELLES_VERSION_CHECK)
774 #undef JSON_HEDLEY_PELLES_VERSION_CHECK
775 #endif
776 #if defined(JSON_HEDLEY_PELLES_VERSION)
777 #define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_PELLES_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
778 #else
779 #define JSON_HEDLEY_PELLES_VERSION_CHECK(major,minor,patch) (0)
780 #endif
781
782 #if defined(JSON_HEDLEY_MCST_LCC_VERSION)
783 #undef JSON_HEDLEY_MCST_LCC_VERSION
784 #endif
785 #if defined(__LCC__) && defined(__LCC_MINOR__)
786 #define JSON_HEDLEY_MCST_LCC_VERSION JSON_HEDLEY_VERSION_ENCODE(__LCC__ / 100, __LCC__ % 100, __LCC_MINOR__)
787 #endif
788
789 #if defined(JSON_HEDLEY_MCST_LCC_VERSION_CHECK)
790 #undef JSON_HEDLEY_MCST_LCC_VERSION_CHECK
791 #endif
792 #if defined(JSON_HEDLEY_MCST_LCC_VERSION)
793 #define JSON_HEDLEY_MCST_LCC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_MCST_LCC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
794 #else
795 #define JSON_HEDLEY_MCST_LCC_VERSION_CHECK(major,minor,patch) (0)
796 #endif
797
798 #if defined(JSON_HEDLEY_GCC_VERSION)
799 #undef JSON_HEDLEY_GCC_VERSION
800 #endif
801 #if \
802 defined(JSON_HEDLEY_GNUC_VERSION) && \
803 !defined(__clang__) && \
804 !defined(JSON_HEDLEY_INTEL_VERSION) && \
805 !defined(JSON_HEDLEY_PGI_VERSION) && \
806 !defined(JSON_HEDLEY_ARM_VERSION) && \
807 !defined(JSON_HEDLEY_CRAY_VERSION) && \
808 !defined(JSON_HEDLEY_TI_VERSION) && \
809 !defined(JSON_HEDLEY_TI_ARMCL_VERSION) && \
810 !defined(JSON_HEDLEY_TI_CL430_VERSION) && \
811 !defined(JSON_HEDLEY_TI_CL2000_VERSION) && \
812 !defined(JSON_HEDLEY_TI_CL6X_VERSION) && \
813 !defined(JSON_HEDLEY_TI_CL7X_VERSION) && \
814 !defined(JSON_HEDLEY_TI_CLPRU_VERSION) && \
815 !defined(__COMPCERT__) && \
816 !defined(JSON_HEDLEY_MCST_LCC_VERSION)
817 #define JSON_HEDLEY_GCC_VERSION JSON_HEDLEY_GNUC_VERSION
818 #endif
819
820 #if defined(JSON_HEDLEY_GCC_VERSION_CHECK)
821 #undef JSON_HEDLEY_GCC_VERSION_CHECK
822 #endif
823 #if defined(JSON_HEDLEY_GCC_VERSION)
824 #define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (JSON_HEDLEY_GCC_VERSION >= JSON_HEDLEY_VERSION_ENCODE(major, minor, patch))
825 #else
826 #define JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch) (0)
827 #endif
828
829 #if defined(JSON_HEDLEY_HAS_ATTRIBUTE)
830 #undef JSON_HEDLEY_HAS_ATTRIBUTE
831 #endif
832 #if \
833 defined(__has_attribute) && \
834 ( \
835 (!defined(JSON_HEDLEY_IAR_VERSION) || JSON_HEDLEY_IAR_VERSION_CHECK(8,5,9)) \
836 )
837 # define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) __has_attribute(attribute)
838 #else
839 # define JSON_HEDLEY_HAS_ATTRIBUTE(attribute) (0)
840 #endif
841
842 #if defined(JSON_HEDLEY_GNUC_HAS_ATTRIBUTE)
843 #undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
844 #endif
845 #if defined(__has_attribute)
846 #define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_HAS_ATTRIBUTE(attribute)
847 #else
848 #define JSON_HEDLEY_GNUC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
849 #endif
850
851 #if defined(JSON_HEDLEY_GCC_HAS_ATTRIBUTE)
852 #undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
853 #endif
854 #if defined(__has_attribute)
855 #define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_HAS_ATTRIBUTE(attribute)
856 #else
857 #define JSON_HEDLEY_GCC_HAS_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
858 #endif
859
860 #if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE)
861 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
862 #endif
863 #if \
864 defined(__has_cpp_attribute) && \
865 defined(__cplusplus) && \
866 (!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0))
867 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) __has_cpp_attribute(attribute)
868 #else
869 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute) (0)
870 #endif
871
872 #if defined(JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS)
873 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS
874 #endif
875 #if !defined(__cplusplus) || !defined(__has_cpp_attribute)
876 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) (0)
877 #elif \
878 !defined(JSON_HEDLEY_PGI_VERSION) && \
879 !defined(JSON_HEDLEY_IAR_VERSION) && \
880 (!defined(JSON_HEDLEY_SUNPRO_VERSION) || JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0)) && \
881 (!defined(JSON_HEDLEY_MSVC_VERSION) || JSON_HEDLEY_MSVC_VERSION_CHECK(19,20,0))
882 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(ns::attribute)
883 #else
884 #define JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(ns,attribute) (0)
885 #endif
886
887 #if defined(JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE)
888 #undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
889 #endif
890 #if defined(__has_cpp_attribute) && defined(__cplusplus)
891 #define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
892 #else
893 #define JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
894 #endif
895
896 #if defined(JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE)
897 #undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
898 #endif
899 #if defined(__has_cpp_attribute) && defined(__cplusplus)
900 #define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) __has_cpp_attribute(attribute)
901 #else
902 #define JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
903 #endif
904
905 #if defined(JSON_HEDLEY_HAS_BUILTIN)
906 #undef JSON_HEDLEY_HAS_BUILTIN
907 #endif
908 #if defined(__has_builtin)
909 #define JSON_HEDLEY_HAS_BUILTIN(builtin) __has_builtin(builtin)
910 #else
911 #define JSON_HEDLEY_HAS_BUILTIN(builtin) (0)
912 #endif
913
914 #if defined(JSON_HEDLEY_GNUC_HAS_BUILTIN)
915 #undef JSON_HEDLEY_GNUC_HAS_BUILTIN
916 #endif
917 #if defined(__has_builtin)
918 #define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
919 #else
920 #define JSON_HEDLEY_GNUC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
921 #endif
922
923 #if defined(JSON_HEDLEY_GCC_HAS_BUILTIN)
924 #undef JSON_HEDLEY_GCC_HAS_BUILTIN
925 #endif
926 #if defined(__has_builtin)
927 #define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) __has_builtin(builtin)
928 #else
929 #define JSON_HEDLEY_GCC_HAS_BUILTIN(builtin,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
930 #endif
931
932 #if defined(JSON_HEDLEY_HAS_FEATURE)
933 #undef JSON_HEDLEY_HAS_FEATURE
934 #endif
935 #if defined(__has_feature)
936 #define JSON_HEDLEY_HAS_FEATURE(feature) __has_feature(feature)
937 #else
938 #define JSON_HEDLEY_HAS_FEATURE(feature) (0)
939 #endif
940
941 #if defined(JSON_HEDLEY_GNUC_HAS_FEATURE)
942 #undef JSON_HEDLEY_GNUC_HAS_FEATURE
943 #endif
944 #if defined(__has_feature)
945 #define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
946 #else
947 #define JSON_HEDLEY_GNUC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
948 #endif
949
950 #if defined(JSON_HEDLEY_GCC_HAS_FEATURE)
951 #undef JSON_HEDLEY_GCC_HAS_FEATURE
952 #endif
953 #if defined(__has_feature)
954 #define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) __has_feature(feature)
955 #else
956 #define JSON_HEDLEY_GCC_HAS_FEATURE(feature,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
957 #endif
958
959 #if defined(JSON_HEDLEY_HAS_EXTENSION)
960 #undef JSON_HEDLEY_HAS_EXTENSION
961 #endif
962 #if defined(__has_extension)
963 #define JSON_HEDLEY_HAS_EXTENSION(extension) __has_extension(extension)
964 #else
965 #define JSON_HEDLEY_HAS_EXTENSION(extension) (0)
966 #endif
967
968 #if defined(JSON_HEDLEY_GNUC_HAS_EXTENSION)
969 #undef JSON_HEDLEY_GNUC_HAS_EXTENSION
970 #endif
971 #if defined(__has_extension)
972 #define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
973 #else
974 #define JSON_HEDLEY_GNUC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
975 #endif
976
977 #if defined(JSON_HEDLEY_GCC_HAS_EXTENSION)
978 #undef JSON_HEDLEY_GCC_HAS_EXTENSION
979 #endif
980 #if defined(__has_extension)
981 #define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) __has_extension(extension)
982 #else
983 #define JSON_HEDLEY_GCC_HAS_EXTENSION(extension,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
984 #endif
985
986 #if defined(JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE)
987 #undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
988 #endif
989 #if defined(__has_declspec_attribute)
990 #define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) __has_declspec_attribute(attribute)
991 #else
992 #define JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute) (0)
993 #endif
994
995 #if defined(JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE)
996 #undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
997 #endif
998 #if defined(__has_declspec_attribute)
999 #define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
1000 #else
1001 #define JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
1002 #endif
1003
1004 #if defined(JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE)
1005 #undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
1006 #endif
1007 #if defined(__has_declspec_attribute)
1008 #define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) __has_declspec_attribute(attribute)
1009 #else
1010 #define JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE(attribute,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
1011 #endif
1012
1013 #if defined(JSON_HEDLEY_HAS_WARNING)
1014 #undef JSON_HEDLEY_HAS_WARNING
1015 #endif
1016 #if defined(__has_warning)
1017 #define JSON_HEDLEY_HAS_WARNING(warning) __has_warning(warning)
1018 #else
1019 #define JSON_HEDLEY_HAS_WARNING(warning) (0)
1020 #endif
1021
1022 #if defined(JSON_HEDLEY_GNUC_HAS_WARNING)
1023 #undef JSON_HEDLEY_GNUC_HAS_WARNING
1024 #endif
1025 #if defined(__has_warning)
1026 #define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
1027 #else
1028 #define JSON_HEDLEY_GNUC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GNUC_VERSION_CHECK(major,minor,patch)
1029 #endif
1030
1031 #if defined(JSON_HEDLEY_GCC_HAS_WARNING)
1032 #undef JSON_HEDLEY_GCC_HAS_WARNING
1033 #endif
1034 #if defined(__has_warning)
1035 #define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) __has_warning(warning)
1036 #else
1037 #define JSON_HEDLEY_GCC_HAS_WARNING(warning,major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
1038 #endif
1039
1040 #if \
1041 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
1042 defined(__clang__) || \
1043 JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
1044 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1045 JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
1046 JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0) || \
1047 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1048 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1049 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,7,0) || \
1050 JSON_HEDLEY_TI_CL430_VERSION_CHECK(2,0,1) || \
1051 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,1,0) || \
1052 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,0,0) || \
1053 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1054 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1055 JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0) || \
1056 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,17) || \
1057 JSON_HEDLEY_SUNPRO_VERSION_CHECK(8,0,0) || \
1058 (JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) && defined(__C99_PRAGMA_OPERATOR))
1059 #define JSON_HEDLEY_PRAGMA(value) _Pragma(#value)
1060 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
1061 #define JSON_HEDLEY_PRAGMA(value) __pragma(value)
1062 #else
1063 #define JSON_HEDLEY_PRAGMA(value)
1064 #endif
1065
1066 #if defined(JSON_HEDLEY_DIAGNOSTIC_PUSH)
1067 #undef JSON_HEDLEY_DIAGNOSTIC_PUSH
1068 #endif
1069 #if defined(JSON_HEDLEY_DIAGNOSTIC_POP)
1070 #undef JSON_HEDLEY_DIAGNOSTIC_POP
1071 #endif
1072 #if defined(__clang__)
1073 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("clang diagnostic push")
1074 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("clang diagnostic pop")
1075 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1076 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
1077 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
1078 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
1079 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("GCC diagnostic push")
1080 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("GCC diagnostic pop")
1081 #elif \
1082 JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0) || \
1083 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1084 #define JSON_HEDLEY_DIAGNOSTIC_PUSH __pragma(warning(push))
1085 #define JSON_HEDLEY_DIAGNOSTIC_POP __pragma(warning(pop))
1086 #elif JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0)
1087 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("push")
1088 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("pop")
1089 #elif \
1090 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1091 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1092 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,4,0) || \
1093 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,1,0) || \
1094 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1095 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0)
1096 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("diag_push")
1097 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("diag_pop")
1098 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
1099 #define JSON_HEDLEY_DIAGNOSTIC_PUSH _Pragma("warning(push)")
1100 #define JSON_HEDLEY_DIAGNOSTIC_POP _Pragma("warning(pop)")
1101 #else
1102 #define JSON_HEDLEY_DIAGNOSTIC_PUSH
1103 #define JSON_HEDLEY_DIAGNOSTIC_POP
1104 #endif
1105
1106 /* JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_ is for
1107 HEDLEY INTERNAL USE ONLY. API subject to change without notice. */
1108 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_)
1109 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_
1110 #endif
1111 #if defined(__cplusplus)
1112 # if JSON_HEDLEY_HAS_WARNING("-Wc++98-compat")
1113 # if JSON_HEDLEY_HAS_WARNING("-Wc++17-extensions")
1114 # if JSON_HEDLEY_HAS_WARNING("-Wc++1z-extensions")
1115 # define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(xpr) \
1116 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1117 _Pragma("clang diagnostic ignored \"-Wc++98-compat\"") \
1118 _Pragma("clang diagnostic ignored \"-Wc++17-extensions\"") \
1119 _Pragma("clang diagnostic ignored \"-Wc++1z-extensions\"") \
1120 xpr \
1121 JSON_HEDLEY_DIAGNOSTIC_POP
1122 # else
1123 # define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(xpr) \
1124 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1125 _Pragma("clang diagnostic ignored \"-Wc++98-compat\"") \
1126 _Pragma("clang diagnostic ignored \"-Wc++17-extensions\"") \
1127 xpr \
1128 JSON_HEDLEY_DIAGNOSTIC_POP
1129 # endif
1130 # else
1131 # define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(xpr) \
1132 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1133 _Pragma("clang diagnostic ignored \"-Wc++98-compat\"") \
1134 xpr \
1135 JSON_HEDLEY_DIAGNOSTIC_POP
1136 # endif
1137 # endif
1138 #endif
1139 #if !defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_)
1140 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(x) x
1141 #endif
1142
1143 #if defined(JSON_HEDLEY_CONST_CAST)
1144 #undef JSON_HEDLEY_CONST_CAST
1145 #endif
1146 #if defined(__cplusplus)
1147 # define JSON_HEDLEY_CONST_CAST(T, expr) (const_cast<T>(expr))
1148 #elif \
1149 JSON_HEDLEY_HAS_WARNING("-Wcast-qual") || \
1150 JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0) || \
1151 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1152 # define JSON_HEDLEY_CONST_CAST(T, expr) (__extension__ ({ \
1153 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1154 JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL \
1155 ((T) (expr)); \
1156 JSON_HEDLEY_DIAGNOSTIC_POP \
1157 }))
1158 #else
1159 # define JSON_HEDLEY_CONST_CAST(T, expr) ((T) (expr))
1160 #endif
1161
1162 #if defined(JSON_HEDLEY_REINTERPRET_CAST)
1163 #undef JSON_HEDLEY_REINTERPRET_CAST
1164 #endif
1165 #if defined(__cplusplus)
1166 #define JSON_HEDLEY_REINTERPRET_CAST(T, expr) (reinterpret_cast<T>(expr))
1167 #else
1168 #define JSON_HEDLEY_REINTERPRET_CAST(T, expr) ((T) (expr))
1169 #endif
1170
1171 #if defined(JSON_HEDLEY_STATIC_CAST)
1172 #undef JSON_HEDLEY_STATIC_CAST
1173 #endif
1174 #if defined(__cplusplus)
1175 #define JSON_HEDLEY_STATIC_CAST(T, expr) (static_cast<T>(expr))
1176 #else
1177 #define JSON_HEDLEY_STATIC_CAST(T, expr) ((T) (expr))
1178 #endif
1179
1180 #if defined(JSON_HEDLEY_CPP_CAST)
1181 #undef JSON_HEDLEY_CPP_CAST
1182 #endif
1183 #if defined(__cplusplus)
1184 # if JSON_HEDLEY_HAS_WARNING("-Wold-style-cast")
1185 # define JSON_HEDLEY_CPP_CAST(T, expr) \
1186 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1187 _Pragma("clang diagnostic ignored \"-Wold-style-cast\"") \
1188 ((T) (expr)) \
1189 JSON_HEDLEY_DIAGNOSTIC_POP
1190 # elif JSON_HEDLEY_IAR_VERSION_CHECK(8,3,0)
1191 # define JSON_HEDLEY_CPP_CAST(T, expr) \
1192 JSON_HEDLEY_DIAGNOSTIC_PUSH \
1193 _Pragma("diag_suppress=Pe137") \
1194 JSON_HEDLEY_DIAGNOSTIC_POP
1195 # else
1196 # define JSON_HEDLEY_CPP_CAST(T, expr) ((T) (expr))
1197 # endif
1198 #else
1199 # define JSON_HEDLEY_CPP_CAST(T, expr) (expr)
1200 #endif
1201
1202 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED)
1203 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
1204 #endif
1205 #if JSON_HEDLEY_HAS_WARNING("-Wdeprecated-declarations")
1206 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("clang diagnostic ignored \"-Wdeprecated-declarations\"")
1207 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1208 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warning(disable:1478 1786)")
1209 #elif JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1210 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED __pragma(warning(disable:1478 1786))
1211 #elif JSON_HEDLEY_PGI_VERSION_CHECK(20,7,0)
1212 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1215,1216,1444,1445")
1213 #elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1214 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1215,1444")
1215 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
1216 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
1217 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
1218 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED __pragma(warning(disable:4996))
1219 #elif JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1220 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1215,1444")
1221 #elif \
1222 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1223 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1224 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1225 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1226 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1227 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1228 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1229 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1230 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1231 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1232 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0)
1233 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress 1291,1718")
1234 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && !defined(__cplusplus)
1235 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,E_DEPRECATED_ATT,E_DEPRECATED_ATT_MESS)")
1236 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) && defined(__cplusplus)
1237 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("error_messages(off,symdeprecated,symdeprecated2)")
1238 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1239 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("diag_suppress=Pe1444,Pe1215")
1240 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,90,0)
1241 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED _Pragma("warn(disable:2241)")
1242 #else
1243 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
1244 #endif
1245
1246 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS)
1247 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
1248 #endif
1249 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
1250 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("clang diagnostic ignored \"-Wunknown-pragmas\"")
1251 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1252 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("warning(disable:161)")
1253 #elif JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1254 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS __pragma(warning(disable:161))
1255 #elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1256 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 1675")
1257 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0)
1258 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("GCC diagnostic ignored \"-Wunknown-pragmas\"")
1259 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0)
1260 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS __pragma(warning(disable:4068))
1261 #elif \
1262 JSON_HEDLEY_TI_VERSION_CHECK(16,9,0) || \
1263 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,0,0) || \
1264 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1265 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,3,0)
1266 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 163")
1267 #elif JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,0,0)
1268 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 163")
1269 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1270 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress=Pe161")
1271 #elif JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1272 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS _Pragma("diag_suppress 161")
1273 #else
1274 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
1275 #endif
1276
1277 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES)
1278 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
1279 #endif
1280 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-attributes")
1281 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("clang diagnostic ignored \"-Wunknown-attributes\"")
1282 #elif JSON_HEDLEY_GCC_VERSION_CHECK(4,6,0)
1283 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
1284 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0)
1285 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("warning(disable:1292)")
1286 #elif JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1287 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES __pragma(warning(disable:1292))
1288 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(19,0,0)
1289 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES __pragma(warning(disable:5030))
1290 #elif JSON_HEDLEY_PGI_VERSION_CHECK(20,7,0)
1291 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1097,1098")
1292 #elif JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0)
1293 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1097")
1294 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)
1295 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("error_messages(off,attrskipunsup)")
1296 #elif \
1297 JSON_HEDLEY_TI_VERSION_CHECK(18,1,0) || \
1298 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,3,0) || \
1299 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0)
1300 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1173")
1301 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1302 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress=Pe1097")
1303 #elif JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1304 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES _Pragma("diag_suppress 1097")
1305 #else
1306 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
1307 #endif
1308
1309 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL)
1310 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
1311 #endif
1312 #if JSON_HEDLEY_HAS_WARNING("-Wcast-qual")
1313 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("clang diagnostic ignored \"-Wcast-qual\"")
1314 #elif JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
1315 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("warning(disable:2203 2331)")
1316 #elif JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0)
1317 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL _Pragma("GCC diagnostic ignored \"-Wcast-qual\"")
1318 #else
1319 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
1320 #endif
1321
1322 #if defined(JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION)
1323 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION
1324 #endif
1325 #if JSON_HEDLEY_HAS_WARNING("-Wunused-function")
1326 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION _Pragma("clang diagnostic ignored \"-Wunused-function\"")
1327 #elif JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0)
1328 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION _Pragma("GCC diagnostic ignored \"-Wunused-function\"")
1329 #elif JSON_HEDLEY_MSVC_VERSION_CHECK(1,0,0)
1330 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION __pragma(warning(disable:4505))
1331 #elif JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1332 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION _Pragma("diag_suppress 3142")
1333 #else
1334 #define JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION
1335 #endif
1336
1337 #if defined(JSON_HEDLEY_DEPRECATED)
1338 #undef JSON_HEDLEY_DEPRECATED
1339 #endif
1340 #if defined(JSON_HEDLEY_DEPRECATED_FOR)
1341 #undef JSON_HEDLEY_DEPRECATED_FOR
1342 #endif
1343 #if \
1344 JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0) || \
1345 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1346 #define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated("Since " # since))
1347 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated("Since " #since "; use " #replacement))
1348 #elif \
1349 (JSON_HEDLEY_HAS_EXTENSION(attribute_deprecated_with_message) && !defined(JSON_HEDLEY_IAR_VERSION)) || \
1350 JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
1351 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1352 JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
1353 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,13,0) || \
1354 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1355 JSON_HEDLEY_TI_VERSION_CHECK(18,1,0) || \
1356 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(18,1,0) || \
1357 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,3,0) || \
1358 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1359 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,3,0) || \
1360 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1361 #define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__("Since " #since)))
1362 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__("Since " #since "; use " #replacement)))
1363 #elif defined(__cplusplus) && (__cplusplus >= 201402L)
1364 #define JSON_HEDLEY_DEPRECATED(since) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[deprecated("Since " #since)]])
1365 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[deprecated("Since " #since "; use " #replacement)]])
1366 #elif \
1367 JSON_HEDLEY_HAS_ATTRIBUTE(deprecated) || \
1368 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1369 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1370 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1371 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1372 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1373 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1374 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1375 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1376 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1377 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1378 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1379 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1380 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1381 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10) || \
1382 JSON_HEDLEY_IAR_VERSION_CHECK(8,10,0)
1383 #define JSON_HEDLEY_DEPRECATED(since) __attribute__((__deprecated__))
1384 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __attribute__((__deprecated__))
1385 #elif \
1386 JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
1387 JSON_HEDLEY_PELLES_VERSION_CHECK(6,50,0) || \
1388 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1389 #define JSON_HEDLEY_DEPRECATED(since) __declspec(deprecated)
1390 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) __declspec(deprecated)
1391 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1392 #define JSON_HEDLEY_DEPRECATED(since) _Pragma("deprecated")
1393 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement) _Pragma("deprecated")
1394 #else
1395 #define JSON_HEDLEY_DEPRECATED(since)
1396 #define JSON_HEDLEY_DEPRECATED_FOR(since, replacement)
1397 #endif
1398
1399 #if defined(JSON_HEDLEY_UNAVAILABLE)
1400 #undef JSON_HEDLEY_UNAVAILABLE
1401 #endif
1402 #if \
1403 JSON_HEDLEY_HAS_ATTRIBUTE(warning) || \
1404 JSON_HEDLEY_GCC_VERSION_CHECK(4,3,0) || \
1405 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1406 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1407 #define JSON_HEDLEY_UNAVAILABLE(available_since) __attribute__((__warning__("Not available until " #available_since)))
1408 #else
1409 #define JSON_HEDLEY_UNAVAILABLE(available_since)
1410 #endif
1411
1412 #if defined(JSON_HEDLEY_WARN_UNUSED_RESULT)
1413 #undef JSON_HEDLEY_WARN_UNUSED_RESULT
1414 #endif
1415 #if defined(JSON_HEDLEY_WARN_UNUSED_RESULT_MSG)
1416 #undef JSON_HEDLEY_WARN_UNUSED_RESULT_MSG
1417 #endif
1418 #if \
1419 JSON_HEDLEY_HAS_ATTRIBUTE(warn_unused_result) || \
1420 JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
1421 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1422 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1423 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1424 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1425 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1426 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1427 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1428 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1429 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1430 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1431 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1432 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1433 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
1434 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1435 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1436 #define JSON_HEDLEY_WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))
1437 #define JSON_HEDLEY_WARN_UNUSED_RESULT_MSG(msg) __attribute__((__warn_unused_result__))
1438 #elif (JSON_HEDLEY_HAS_CPP_ATTRIBUTE(nodiscard) >= 201907L)
1439 #define JSON_HEDLEY_WARN_UNUSED_RESULT JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[nodiscard]])
1440 #define JSON_HEDLEY_WARN_UNUSED_RESULT_MSG(msg) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[nodiscard(msg)]])
1441 #elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE(nodiscard)
1442 #define JSON_HEDLEY_WARN_UNUSED_RESULT JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[nodiscard]])
1443 #define JSON_HEDLEY_WARN_UNUSED_RESULT_MSG(msg) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[nodiscard]])
1444 #elif defined(_Check_return_) /* SAL */
1445 #define JSON_HEDLEY_WARN_UNUSED_RESULT _Check_return_
1446 #define JSON_HEDLEY_WARN_UNUSED_RESULT_MSG(msg) _Check_return_
1447 #else
1448 #define JSON_HEDLEY_WARN_UNUSED_RESULT
1449 #define JSON_HEDLEY_WARN_UNUSED_RESULT_MSG(msg)
1450 #endif
1451
1452 #if defined(JSON_HEDLEY_SENTINEL)
1453 #undef JSON_HEDLEY_SENTINEL
1454 #endif
1455 #if \
1456 JSON_HEDLEY_HAS_ATTRIBUTE(sentinel) || \
1457 JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1458 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1459 JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0) || \
1460 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1461 #define JSON_HEDLEY_SENTINEL(position) __attribute__((__sentinel__(position)))
1462 #else
1463 #define JSON_HEDLEY_SENTINEL(position)
1464 #endif
1465
1466 #if defined(JSON_HEDLEY_NO_RETURN)
1467 #undef JSON_HEDLEY_NO_RETURN
1468 #endif
1469 #if JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1470 #define JSON_HEDLEY_NO_RETURN __noreturn
1471 #elif \
1472 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1473 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1474 #define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
1475 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
1476 #define JSON_HEDLEY_NO_RETURN _Noreturn
1477 #elif defined(__cplusplus) && (__cplusplus >= 201103L)
1478 #define JSON_HEDLEY_NO_RETURN JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[noreturn]])
1479 #elif \
1480 JSON_HEDLEY_HAS_ATTRIBUTE(noreturn) || \
1481 JSON_HEDLEY_GCC_VERSION_CHECK(3,2,0) || \
1482 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1483 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1484 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1485 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1486 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1487 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1488 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1489 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1490 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1491 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1492 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1493 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1494 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1495 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1496 JSON_HEDLEY_IAR_VERSION_CHECK(8,10,0)
1497 #define JSON_HEDLEY_NO_RETURN __attribute__((__noreturn__))
1498 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1499 #define JSON_HEDLEY_NO_RETURN _Pragma("does_not_return")
1500 #elif \
1501 JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
1502 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1503 #define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
1504 #elif JSON_HEDLEY_TI_CL6X_VERSION_CHECK(6,0,0) && defined(__cplusplus)
1505 #define JSON_HEDLEY_NO_RETURN _Pragma("FUNC_NEVER_RETURNS;")
1506 #elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
1507 #define JSON_HEDLEY_NO_RETURN __attribute((noreturn))
1508 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
1509 #define JSON_HEDLEY_NO_RETURN __declspec(noreturn)
1510 #else
1511 #define JSON_HEDLEY_NO_RETURN
1512 #endif
1513
1514 #if defined(JSON_HEDLEY_NO_ESCAPE)
1515 #undef JSON_HEDLEY_NO_ESCAPE
1516 #endif
1517 #if JSON_HEDLEY_HAS_ATTRIBUTE(noescape)
1518 #define JSON_HEDLEY_NO_ESCAPE __attribute__((__noescape__))
1519 #else
1520 #define JSON_HEDLEY_NO_ESCAPE
1521 #endif
1522
1523 #if defined(JSON_HEDLEY_UNREACHABLE)
1524 #undef JSON_HEDLEY_UNREACHABLE
1525 #endif
1526 #if defined(JSON_HEDLEY_UNREACHABLE_RETURN)
1527 #undef JSON_HEDLEY_UNREACHABLE_RETURN
1528 #endif
1529 #if defined(JSON_HEDLEY_ASSUME)
1530 #undef JSON_HEDLEY_ASSUME
1531 #endif
1532 #if \
1533 JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
1534 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1535 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1536 #define JSON_HEDLEY_ASSUME(expr) __assume(expr)
1537 #elif JSON_HEDLEY_HAS_BUILTIN(__builtin_assume)
1538 #define JSON_HEDLEY_ASSUME(expr) __builtin_assume(expr)
1539 #elif \
1540 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,2,0) || \
1541 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(4,0,0)
1542 #if defined(__cplusplus)
1543 #define JSON_HEDLEY_ASSUME(expr) std::_nassert(expr)
1544 #else
1545 #define JSON_HEDLEY_ASSUME(expr) _nassert(expr)
1546 #endif
1547 #endif
1548 #if \
1549 (JSON_HEDLEY_HAS_BUILTIN(__builtin_unreachable) && (!defined(JSON_HEDLEY_ARM_VERSION))) || \
1550 JSON_HEDLEY_GCC_VERSION_CHECK(4,5,0) || \
1551 JSON_HEDLEY_PGI_VERSION_CHECK(18,10,0) || \
1552 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1553 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,5) || \
1554 JSON_HEDLEY_CRAY_VERSION_CHECK(10,0,0) || \
1555 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1556 #define JSON_HEDLEY_UNREACHABLE() __builtin_unreachable()
1557 #elif defined(JSON_HEDLEY_ASSUME)
1558 #define JSON_HEDLEY_UNREACHABLE() JSON_HEDLEY_ASSUME(0)
1559 #endif
1560 #if !defined(JSON_HEDLEY_ASSUME)
1561 #if defined(JSON_HEDLEY_UNREACHABLE)
1562 #define JSON_HEDLEY_ASSUME(expr) JSON_HEDLEY_STATIC_CAST(void, ((expr) ? 1 : (JSON_HEDLEY_UNREACHABLE(), 1)))
1563 #else
1564 #define JSON_HEDLEY_ASSUME(expr) JSON_HEDLEY_STATIC_CAST(void, expr)
1565 #endif
1566 #endif
1567 #if defined(JSON_HEDLEY_UNREACHABLE)
1568 #if \
1569 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,2,0) || \
1570 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(4,0,0)
1571 #define JSON_HEDLEY_UNREACHABLE_RETURN(value) return (JSON_HEDLEY_STATIC_CAST(void, JSON_HEDLEY_ASSUME(0)), (value))
1572 #else
1573 #define JSON_HEDLEY_UNREACHABLE_RETURN(value) JSON_HEDLEY_UNREACHABLE()
1574 #endif
1575 #else
1576 #define JSON_HEDLEY_UNREACHABLE_RETURN(value) return (value)
1577 #endif
1578 #if !defined(JSON_HEDLEY_UNREACHABLE)
1579 #define JSON_HEDLEY_UNREACHABLE() JSON_HEDLEY_ASSUME(0)
1580 #endif
1581
1582 JSON_HEDLEY_DIAGNOSTIC_PUSH
1583 #if JSON_HEDLEY_HAS_WARNING("-Wpedantic")
1584 #pragma clang diagnostic ignored "-Wpedantic"
1585 #endif
1586 #if JSON_HEDLEY_HAS_WARNING("-Wc++98-compat-pedantic") && defined(__cplusplus)
1587 #pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
1588 #endif
1589 #if JSON_HEDLEY_GCC_HAS_WARNING("-Wvariadic-macros",4,0,0)
1590 #if defined(__clang__)
1591 #pragma clang diagnostic ignored "-Wvariadic-macros"
1592 #elif defined(JSON_HEDLEY_GCC_VERSION)
1593 #pragma GCC diagnostic ignored "-Wvariadic-macros"
1594 #endif
1595 #endif
1596 #if defined(JSON_HEDLEY_NON_NULL)
1597 #undef JSON_HEDLEY_NON_NULL
1598 #endif
1599 #if \
1600 JSON_HEDLEY_HAS_ATTRIBUTE(nonnull) || \
1601 JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1602 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1603 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
1604 #define JSON_HEDLEY_NON_NULL(...) __attribute__((__nonnull__(__VA_ARGS__)))
1605 #else
1606 #define JSON_HEDLEY_NON_NULL(...)
1607 #endif
1608 JSON_HEDLEY_DIAGNOSTIC_POP
1609
1610 #if defined(JSON_HEDLEY_PRINTF_FORMAT)
1611 #undef JSON_HEDLEY_PRINTF_FORMAT
1612 #endif
1613 #if defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && !defined(__USE_MINGW_ANSI_STDIO)
1614 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(ms_printf, string_idx, first_to_check)))
1615 #elif defined(__MINGW32__) && JSON_HEDLEY_GCC_HAS_ATTRIBUTE(format,4,4,0) && defined(__USE_MINGW_ANSI_STDIO)
1616 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(gnu_printf, string_idx, first_to_check)))
1617 #elif \
1618 JSON_HEDLEY_HAS_ATTRIBUTE(format) || \
1619 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1620 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1621 JSON_HEDLEY_ARM_VERSION_CHECK(5,6,0) || \
1622 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1623 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1624 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1625 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1626 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1627 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1628 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1629 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1630 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1631 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1632 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1633 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1634 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1635 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __attribute__((__format__(__printf__, string_idx, first_to_check)))
1636 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(6,0,0)
1637 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check) __declspec(vaformat(printf,string_idx,first_to_check))
1638 #else
1639 #define JSON_HEDLEY_PRINTF_FORMAT(string_idx,first_to_check)
1640 #endif
1641
1642 #if defined(JSON_HEDLEY_CONSTEXPR)
1643 #undef JSON_HEDLEY_CONSTEXPR
1644 #endif
1645 #if defined(__cplusplus)
1646 #if __cplusplus >= 201103L
1647 #define JSON_HEDLEY_CONSTEXPR JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(constexpr)
1648 #endif
1649 #endif
1650 #if !defined(JSON_HEDLEY_CONSTEXPR)
1651 #define JSON_HEDLEY_CONSTEXPR
1652 #endif
1653
1654 #if defined(JSON_HEDLEY_PREDICT)
1655 #undef JSON_HEDLEY_PREDICT
1656 #endif
1657 #if defined(JSON_HEDLEY_LIKELY)
1658 #undef JSON_HEDLEY_LIKELY
1659 #endif
1660 #if defined(JSON_HEDLEY_UNLIKELY)
1661 #undef JSON_HEDLEY_UNLIKELY
1662 #endif
1663 #if defined(JSON_HEDLEY_UNPREDICTABLE)
1664 #undef JSON_HEDLEY_UNPREDICTABLE
1665 #endif
1666 #if JSON_HEDLEY_HAS_BUILTIN(__builtin_unpredictable)
1667 #define JSON_HEDLEY_UNPREDICTABLE(expr) __builtin_unpredictable((expr))
1668 #endif
1669 #if \
1670 (JSON_HEDLEY_HAS_BUILTIN(__builtin_expect_with_probability) && !defined(JSON_HEDLEY_PGI_VERSION)) || \
1671 JSON_HEDLEY_GCC_VERSION_CHECK(9,0,0) || \
1672 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1673 # define JSON_HEDLEY_PREDICT(expr, value, probability) __builtin_expect_with_probability( (expr), (value), (probability))
1674 # define JSON_HEDLEY_PREDICT_TRUE(expr, probability) __builtin_expect_with_probability(!!(expr), 1 , (probability))
1675 # define JSON_HEDLEY_PREDICT_FALSE(expr, probability) __builtin_expect_with_probability(!!(expr), 0 , (probability))
1676 # define JSON_HEDLEY_LIKELY(expr) __builtin_expect (!!(expr), 1 )
1677 # define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect (!!(expr), 0 )
1678 #elif \
1679 (JSON_HEDLEY_HAS_BUILTIN(__builtin_expect) && !defined(JSON_HEDLEY_INTEL_CL_VERSION)) || \
1680 JSON_HEDLEY_GCC_VERSION_CHECK(3,0,0) || \
1681 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1682 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,15,0) && defined(__cplusplus)) || \
1683 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1684 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1685 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1686 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,7,0) || \
1687 JSON_HEDLEY_TI_CL430_VERSION_CHECK(3,1,0) || \
1688 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,1,0) || \
1689 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(6,1,0) || \
1690 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1691 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1692 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,27) || \
1693 JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0) || \
1694 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1695 # define JSON_HEDLEY_PREDICT(expr, expected, probability) \
1696 (((probability) >= 0.9) ? __builtin_expect((expr), (expected)) : (JSON_HEDLEY_STATIC_CAST(void, expected), (expr)))
1697 # define JSON_HEDLEY_PREDICT_TRUE(expr, probability) \
1698 (__extension__ ({ \
1699 double hedley_probability_ = (probability); \
1700 ((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 1) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 0) : !!(expr))); \
1701 }))
1702 # define JSON_HEDLEY_PREDICT_FALSE(expr, probability) \
1703 (__extension__ ({ \
1704 double hedley_probability_ = (probability); \
1705 ((hedley_probability_ >= 0.9) ? __builtin_expect(!!(expr), 0) : ((hedley_probability_ <= 0.1) ? __builtin_expect(!!(expr), 1) : !!(expr))); \
1706 }))
1707 # define JSON_HEDLEY_LIKELY(expr) __builtin_expect(!!(expr), 1)
1708 # define JSON_HEDLEY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
1709 #else
1710 # define JSON_HEDLEY_PREDICT(expr, expected, probability) (JSON_HEDLEY_STATIC_CAST(void, expected), (expr))
1711 # define JSON_HEDLEY_PREDICT_TRUE(expr, probability) (!!(expr))
1712 # define JSON_HEDLEY_PREDICT_FALSE(expr, probability) (!!(expr))
1713 # define JSON_HEDLEY_LIKELY(expr) (!!(expr))
1714 # define JSON_HEDLEY_UNLIKELY(expr) (!!(expr))
1715 #endif
1716 #if !defined(JSON_HEDLEY_UNPREDICTABLE)
1717 #define JSON_HEDLEY_UNPREDICTABLE(expr) JSON_HEDLEY_PREDICT(expr, 1, 0.5)
1718 #endif
1719
1720 #if defined(JSON_HEDLEY_MALLOC)
1721 #undef JSON_HEDLEY_MALLOC
1722 #endif
1723 #if \
1724 JSON_HEDLEY_HAS_ATTRIBUTE(malloc) || \
1725 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1726 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1727 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1728 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1729 JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
1730 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1731 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1732 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1733 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1734 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1735 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1736 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1737 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1738 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1739 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1740 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1741 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1742 #define JSON_HEDLEY_MALLOC __attribute__((__malloc__))
1743 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1744 #define JSON_HEDLEY_MALLOC _Pragma("returns_new_memory")
1745 #elif \
1746 JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0) || \
1747 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1748 #define JSON_HEDLEY_MALLOC __declspec(restrict)
1749 #else
1750 #define JSON_HEDLEY_MALLOC
1751 #endif
1752
1753 #if defined(JSON_HEDLEY_PURE)
1754 #undef JSON_HEDLEY_PURE
1755 #endif
1756 #if \
1757 JSON_HEDLEY_HAS_ATTRIBUTE(pure) || \
1758 JSON_HEDLEY_GCC_VERSION_CHECK(2,96,0) || \
1759 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1760 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1761 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1762 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1763 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1764 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1765 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1766 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1767 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1768 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1769 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1770 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1771 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1772 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1773 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1774 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1775 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1776 # define JSON_HEDLEY_PURE __attribute__((__pure__))
1777 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1778 # define JSON_HEDLEY_PURE _Pragma("does_not_write_global_data")
1779 #elif defined(__cplusplus) && \
1780 ( \
1781 JSON_HEDLEY_TI_CL430_VERSION_CHECK(2,0,1) || \
1782 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(4,0,0) || \
1783 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) \
1784 )
1785 # define JSON_HEDLEY_PURE _Pragma("FUNC_IS_PURE;")
1786 #else
1787 # define JSON_HEDLEY_PURE
1788 #endif
1789
1790 #if defined(JSON_HEDLEY_CONST)
1791 #undef JSON_HEDLEY_CONST
1792 #endif
1793 #if \
1794 JSON_HEDLEY_HAS_ATTRIBUTE(const) || \
1795 JSON_HEDLEY_GCC_VERSION_CHECK(2,5,0) || \
1796 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1797 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1798 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1799 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1800 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1801 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1802 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1803 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1804 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1805 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1806 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1807 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1808 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1809 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1810 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1811 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1812 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1813 #define JSON_HEDLEY_CONST __attribute__((__const__))
1814 #elif \
1815 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0)
1816 #define JSON_HEDLEY_CONST _Pragma("no_side_effect")
1817 #else
1818 #define JSON_HEDLEY_CONST JSON_HEDLEY_PURE
1819 #endif
1820
1821 #if defined(JSON_HEDLEY_RESTRICT)
1822 #undef JSON_HEDLEY_RESTRICT
1823 #endif
1824 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && !defined(__cplusplus)
1825 #define JSON_HEDLEY_RESTRICT restrict
1826 #elif \
1827 JSON_HEDLEY_GCC_VERSION_CHECK(3,1,0) || \
1828 JSON_HEDLEY_MSVC_VERSION_CHECK(14,0,0) || \
1829 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1830 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0) || \
1831 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1832 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1833 JSON_HEDLEY_PGI_VERSION_CHECK(17,10,0) || \
1834 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1835 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,2,4) || \
1836 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,1,0) || \
1837 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1838 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,14,0) && defined(__cplusplus)) || \
1839 JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0) || \
1840 defined(__clang__) || \
1841 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1842 #define JSON_HEDLEY_RESTRICT __restrict
1843 #elif JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,3,0) && !defined(__cplusplus)
1844 #define JSON_HEDLEY_RESTRICT _Restrict
1845 #else
1846 #define JSON_HEDLEY_RESTRICT
1847 #endif
1848
1849 #if defined(JSON_HEDLEY_INLINE)
1850 #undef JSON_HEDLEY_INLINE
1851 #endif
1852 #if \
1853 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) || \
1854 (defined(__cplusplus) && (__cplusplus >= 199711L))
1855 #define JSON_HEDLEY_INLINE inline
1856 #elif \
1857 defined(JSON_HEDLEY_GCC_VERSION) || \
1858 JSON_HEDLEY_ARM_VERSION_CHECK(6,2,0)
1859 #define JSON_HEDLEY_INLINE __inline__
1860 #elif \
1861 JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0) || \
1862 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0) || \
1863 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1864 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,1,0) || \
1865 JSON_HEDLEY_TI_CL430_VERSION_CHECK(3,1,0) || \
1866 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,2,0) || \
1867 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(8,0,0) || \
1868 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1869 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1870 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1871 #define JSON_HEDLEY_INLINE __inline
1872 #else
1873 #define JSON_HEDLEY_INLINE
1874 #endif
1875
1876 #if defined(JSON_HEDLEY_ALWAYS_INLINE)
1877 #undef JSON_HEDLEY_ALWAYS_INLINE
1878 #endif
1879 #if \
1880 JSON_HEDLEY_HAS_ATTRIBUTE(always_inline) || \
1881 JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1882 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1883 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1884 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1885 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1886 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1887 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1888 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1889 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1890 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1891 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1892 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1893 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1894 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1895 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1896 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1897 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10) || \
1898 JSON_HEDLEY_IAR_VERSION_CHECK(8,10,0)
1899 # define JSON_HEDLEY_ALWAYS_INLINE __attribute__((__always_inline__)) JSON_HEDLEY_INLINE
1900 #elif \
1901 JSON_HEDLEY_MSVC_VERSION_CHECK(12,0,0) || \
1902 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1903 # define JSON_HEDLEY_ALWAYS_INLINE __forceinline
1904 #elif defined(__cplusplus) && \
1905 ( \
1906 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1907 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1908 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1909 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(6,1,0) || \
1910 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1911 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) \
1912 )
1913 # define JSON_HEDLEY_ALWAYS_INLINE _Pragma("FUNC_ALWAYS_INLINE;")
1914 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1915 # define JSON_HEDLEY_ALWAYS_INLINE _Pragma("inline=forced")
1916 #else
1917 # define JSON_HEDLEY_ALWAYS_INLINE JSON_HEDLEY_INLINE
1918 #endif
1919
1920 #if defined(JSON_HEDLEY_NEVER_INLINE)
1921 #undef JSON_HEDLEY_NEVER_INLINE
1922 #endif
1923 #if \
1924 JSON_HEDLEY_HAS_ATTRIBUTE(noinline) || \
1925 JSON_HEDLEY_GCC_VERSION_CHECK(4,0,0) || \
1926 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1927 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1928 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1929 JSON_HEDLEY_IBM_VERSION_CHECK(10,1,0) || \
1930 JSON_HEDLEY_TI_VERSION_CHECK(15,12,0) || \
1931 (JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(4,8,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1932 JSON_HEDLEY_TI_ARMCL_VERSION_CHECK(5,2,0) || \
1933 (JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1934 JSON_HEDLEY_TI_CL2000_VERSION_CHECK(6,4,0) || \
1935 (JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,0,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1936 JSON_HEDLEY_TI_CL430_VERSION_CHECK(4,3,0) || \
1937 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1938 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) || \
1939 JSON_HEDLEY_TI_CL7X_VERSION_CHECK(1,2,0) || \
1940 JSON_HEDLEY_TI_CLPRU_VERSION_CHECK(2,1,0) || \
1941 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10) || \
1942 JSON_HEDLEY_IAR_VERSION_CHECK(8,10,0)
1943 #define JSON_HEDLEY_NEVER_INLINE __attribute__((__noinline__))
1944 #elif \
1945 JSON_HEDLEY_MSVC_VERSION_CHECK(13,10,0) || \
1946 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
1947 #define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
1948 #elif JSON_HEDLEY_PGI_VERSION_CHECK(10,2,0)
1949 #define JSON_HEDLEY_NEVER_INLINE _Pragma("noinline")
1950 #elif JSON_HEDLEY_TI_CL6X_VERSION_CHECK(6,0,0) && defined(__cplusplus)
1951 #define JSON_HEDLEY_NEVER_INLINE _Pragma("FUNC_CANNOT_INLINE;")
1952 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
1953 #define JSON_HEDLEY_NEVER_INLINE _Pragma("inline=never")
1954 #elif JSON_HEDLEY_COMPCERT_VERSION_CHECK(3,2,0)
1955 #define JSON_HEDLEY_NEVER_INLINE __attribute((noinline))
1956 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(9,0,0)
1957 #define JSON_HEDLEY_NEVER_INLINE __declspec(noinline)
1958 #else
1959 #define JSON_HEDLEY_NEVER_INLINE
1960 #endif
1961
1962 #if defined(JSON_HEDLEY_PRIVATE)
1963 #undef JSON_HEDLEY_PRIVATE
1964 #endif
1965 #if defined(JSON_HEDLEY_PUBLIC)
1966 #undef JSON_HEDLEY_PUBLIC
1967 #endif
1968 #if defined(JSON_HEDLEY_IMPORT)
1969 #undef JSON_HEDLEY_IMPORT
1970 #endif
1971 #if defined(_WIN32) || defined(__CYGWIN__)
1972 # define JSON_HEDLEY_PRIVATE
1973 # define JSON_HEDLEY_PUBLIC __declspec(dllexport)
1974 # define JSON_HEDLEY_IMPORT __declspec(dllimport)
1975 #else
1976 # if \
1977 JSON_HEDLEY_HAS_ATTRIBUTE(visibility) || \
1978 JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
1979 JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,11,0) || \
1980 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
1981 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
1982 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
1983 ( \
1984 defined(__TI_EABI__) && \
1985 ( \
1986 (JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,2,0) && defined(__TI_GNU_ATTRIBUTE_SUPPORT__)) || \
1987 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(7,5,0) \
1988 ) \
1989 ) || \
1990 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
1991 # define JSON_HEDLEY_PRIVATE __attribute__((__visibility__("hidden")))
1992 # define JSON_HEDLEY_PUBLIC __attribute__((__visibility__("default")))
1993 # else
1994 # define JSON_HEDLEY_PRIVATE
1995 # define JSON_HEDLEY_PUBLIC
1996 # endif
1997 # define JSON_HEDLEY_IMPORT extern
1998 #endif
1999
2000 #if defined(JSON_HEDLEY_NO_THROW)
2001 #undef JSON_HEDLEY_NO_THROW
2002 #endif
2003 #if \
2004 JSON_HEDLEY_HAS_ATTRIBUTE(nothrow) || \
2005 JSON_HEDLEY_GCC_VERSION_CHECK(3,3,0) || \
2006 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
2007 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
2008 #define JSON_HEDLEY_NO_THROW __attribute__((__nothrow__))
2009 #elif \
2010 JSON_HEDLEY_MSVC_VERSION_CHECK(13,1,0) || \
2011 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0) || \
2012 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0)
2013 #define JSON_HEDLEY_NO_THROW __declspec(nothrow)
2014 #else
2015 #define JSON_HEDLEY_NO_THROW
2016 #endif
2017
2018 #if defined(JSON_HEDLEY_FALL_THROUGH)
2019 #undef JSON_HEDLEY_FALL_THROUGH
2020 #endif
2021 #if \
2022 JSON_HEDLEY_HAS_ATTRIBUTE(fallthrough) || \
2023 JSON_HEDLEY_GCC_VERSION_CHECK(7,0,0) || \
2024 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
2025 #define JSON_HEDLEY_FALL_THROUGH __attribute__((__fallthrough__))
2026 #elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS(clang,fallthrough)
2027 #define JSON_HEDLEY_FALL_THROUGH JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[clang::fallthrough]])
2028 #elif JSON_HEDLEY_HAS_CPP_ATTRIBUTE(fallthrough)
2029 #define JSON_HEDLEY_FALL_THROUGH JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_([[fallthrough]])
2030 #elif defined(__fallthrough) /* SAL */
2031 #define JSON_HEDLEY_FALL_THROUGH __fallthrough
2032 #else
2033 #define JSON_HEDLEY_FALL_THROUGH
2034 #endif
2035
2036 #if defined(JSON_HEDLEY_RETURNS_NON_NULL)
2037 #undef JSON_HEDLEY_RETURNS_NON_NULL
2038 #endif
2039 #if \
2040 JSON_HEDLEY_HAS_ATTRIBUTE(returns_nonnull) || \
2041 JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0) || \
2042 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
2043 #define JSON_HEDLEY_RETURNS_NON_NULL __attribute__((__returns_nonnull__))
2044 #elif defined(_Ret_notnull_) /* SAL */
2045 #define JSON_HEDLEY_RETURNS_NON_NULL _Ret_notnull_
2046 #else
2047 #define JSON_HEDLEY_RETURNS_NON_NULL
2048 #endif
2049
2050 #if defined(JSON_HEDLEY_ARRAY_PARAM)
2051 #undef JSON_HEDLEY_ARRAY_PARAM
2052 #endif
2053 #if \
2054 defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
2055 !defined(__STDC_NO_VLA__) && \
2056 !defined(__cplusplus) && \
2057 !defined(JSON_HEDLEY_PGI_VERSION) && \
2058 !defined(JSON_HEDLEY_TINYC_VERSION)
2059 #define JSON_HEDLEY_ARRAY_PARAM(name) (name)
2060 #else
2061 #define JSON_HEDLEY_ARRAY_PARAM(name)
2062 #endif
2063
2064 #if defined(JSON_HEDLEY_IS_CONSTANT)
2065 #undef JSON_HEDLEY_IS_CONSTANT
2066 #endif
2067 #if defined(JSON_HEDLEY_REQUIRE_CONSTEXPR)
2068 #undef JSON_HEDLEY_REQUIRE_CONSTEXPR
2069 #endif
2070 /* JSON_HEDLEY_IS_CONSTEXPR_ is for
2071 HEDLEY INTERNAL USE ONLY. API subject to change without notice. */
2072 #if defined(JSON_HEDLEY_IS_CONSTEXPR_)
2073 #undef JSON_HEDLEY_IS_CONSTEXPR_
2074 #endif
2075 #if \
2076 JSON_HEDLEY_HAS_BUILTIN(__builtin_constant_p) || \
2077 JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
2078 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
2079 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,19) || \
2080 JSON_HEDLEY_ARM_VERSION_CHECK(4,1,0) || \
2081 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
2082 JSON_HEDLEY_TI_CL6X_VERSION_CHECK(6,1,0) || \
2083 (JSON_HEDLEY_SUNPRO_VERSION_CHECK(5,10,0) && !defined(__cplusplus)) || \
2084 JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0) || \
2085 JSON_HEDLEY_MCST_LCC_VERSION_CHECK(1,25,10)
2086 #define JSON_HEDLEY_IS_CONSTANT(expr) __builtin_constant_p(expr)
2087 #endif
2088 #if !defined(__cplusplus)
2089 # if \
2090 JSON_HEDLEY_HAS_BUILTIN(__builtin_types_compatible_p) || \
2091 JSON_HEDLEY_GCC_VERSION_CHECK(3,4,0) || \
2092 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
2093 JSON_HEDLEY_IBM_VERSION_CHECK(13,1,0) || \
2094 JSON_HEDLEY_CRAY_VERSION_CHECK(8,1,0) || \
2095 JSON_HEDLEY_ARM_VERSION_CHECK(5,4,0) || \
2096 JSON_HEDLEY_TINYC_VERSION_CHECK(0,9,24)
2097 #if defined(__INTPTR_TYPE__)
2098 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0)), int*)
2099 #else
2100 #include <stdint.h>
2101 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) __builtin_types_compatible_p(__typeof__((1 ? (void*) ((intptr_t) ((expr) * 0)) : (int*) 0)), int*)
2102 #endif
2103 # elif \
2104 ( \
2105 defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \
2106 !defined(JSON_HEDLEY_SUNPRO_VERSION) && \
2107 !defined(JSON_HEDLEY_PGI_VERSION) && \
2108 !defined(JSON_HEDLEY_IAR_VERSION)) || \
2109 (JSON_HEDLEY_HAS_EXTENSION(c_generic_selections) && !defined(JSON_HEDLEY_IAR_VERSION)) || \
2110 JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0) || \
2111 JSON_HEDLEY_INTEL_VERSION_CHECK(17,0,0) || \
2112 JSON_HEDLEY_IBM_VERSION_CHECK(12,1,0) || \
2113 JSON_HEDLEY_ARM_VERSION_CHECK(5,3,0)
2114 #if defined(__INTPTR_TYPE__)
2115 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) _Generic((1 ? (void*) ((__INTPTR_TYPE__) ((expr) * 0)) : (int*) 0), int*: 1, void*: 0)
2116 #else
2117 #include <stdint.h>
2118 #define JSON_HEDLEY_IS_CONSTEXPR_(expr) _Generic((1 ? (void*) ((intptr_t) * 0) : (int*) 0), int*: 1, void*: 0)
2119 #endif
2120 # elif \
2121 defined(JSON_HEDLEY_GCC_VERSION) || \
2122 defined(JSON_HEDLEY_INTEL_VERSION) || \
2123 defined(JSON_HEDLEY_TINYC_VERSION) || \
2124 defined(JSON_HEDLEY_TI_ARMCL_VERSION) || \
2125 JSON_HEDLEY_TI_CL430_VERSION_CHECK(18,12,0) || \
2126 defined(JSON_HEDLEY_TI_CL2000_VERSION) || \
2127 defined(JSON_HEDLEY_TI_CL6X_VERSION) || \
2128 defined(JSON_HEDLEY_TI_CL7X_VERSION) || \
2129 defined(JSON_HEDLEY_TI_CLPRU_VERSION) || \
2130 defined(__clang__)
2131 # define JSON_HEDLEY_IS_CONSTEXPR_(expr) ( \
2132 sizeof(void) != \
2133 sizeof(*( \
2134 1 ? \
2135 ((void*) ((expr) * 0L) ) : \
2136 ((struct { char v[sizeof(void) * 2]; } *) 1) \
2137 ) \
2138 ) \
2139 )
2140 # endif
2141 #endif
2142 #if defined(JSON_HEDLEY_IS_CONSTEXPR_)
2143 #if !defined(JSON_HEDLEY_IS_CONSTANT)
2144 #define JSON_HEDLEY_IS_CONSTANT(expr) JSON_HEDLEY_IS_CONSTEXPR_(expr)
2145 #endif
2146 #define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (JSON_HEDLEY_IS_CONSTEXPR_(expr) ? (expr) : (-1))
2147 #else
2148 #if !defined(JSON_HEDLEY_IS_CONSTANT)
2149 #define JSON_HEDLEY_IS_CONSTANT(expr) (0)
2150 #endif
2151 #define JSON_HEDLEY_REQUIRE_CONSTEXPR(expr) (expr)
2152 #endif
2153
2154 #if defined(JSON_HEDLEY_BEGIN_C_DECLS)
2155 #undef JSON_HEDLEY_BEGIN_C_DECLS
2156 #endif
2157 #if defined(JSON_HEDLEY_END_C_DECLS)
2158 #undef JSON_HEDLEY_END_C_DECLS
2159 #endif
2160 #if defined(JSON_HEDLEY_C_DECL)
2161 #undef JSON_HEDLEY_C_DECL
2162 #endif
2163 #if defined(__cplusplus)
2164 #define JSON_HEDLEY_BEGIN_C_DECLS extern "C" {
2165 #define JSON_HEDLEY_END_C_DECLS }
2166 #define JSON_HEDLEY_C_DECL extern "C"
2167 #else
2168 #define JSON_HEDLEY_BEGIN_C_DECLS
2169 #define JSON_HEDLEY_END_C_DECLS
2170 #define JSON_HEDLEY_C_DECL
2171 #endif
2172
2173 #if defined(JSON_HEDLEY_STATIC_ASSERT)
2174 #undef JSON_HEDLEY_STATIC_ASSERT
2175 #endif
2176 #if \
2177 !defined(__cplusplus) && ( \
2178 (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) || \
2179 (JSON_HEDLEY_HAS_FEATURE(c_static_assert) && !defined(JSON_HEDLEY_INTEL_CL_VERSION)) || \
2180 JSON_HEDLEY_GCC_VERSION_CHECK(6,0,0) || \
2181 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0) || \
2182 defined(_Static_assert) \
2183 )
2184 # define JSON_HEDLEY_STATIC_ASSERT(expr, message) _Static_assert(expr, message)
2185 #elif \
2186 (defined(__cplusplus) && (__cplusplus >= 201103L)) || \
2187 JSON_HEDLEY_MSVC_VERSION_CHECK(16,0,0) || \
2188 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
2189 # define JSON_HEDLEY_STATIC_ASSERT(expr, message) JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(static_assert(expr, message))
2190 #else
2191 # define JSON_HEDLEY_STATIC_ASSERT(expr, message)
2192 #endif
2193
2194 #if defined(JSON_HEDLEY_NULL)
2195 #undef JSON_HEDLEY_NULL
2196 #endif
2197 #if defined(__cplusplus)
2198 #if __cplusplus >= 201103L
2199 #define JSON_HEDLEY_NULL JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_(nullptr)
2200 #elif defined(NULL)
2201 #define JSON_HEDLEY_NULL NULL
2202 #else
2203 #define JSON_HEDLEY_NULL JSON_HEDLEY_STATIC_CAST(void*, 0)
2204 #endif
2205 #elif defined(NULL)
2206 #define JSON_HEDLEY_NULL NULL
2207 #else
2208 #define JSON_HEDLEY_NULL ((void*) 0)
2209 #endif
2210
2211 #if defined(JSON_HEDLEY_MESSAGE)
2212 #undef JSON_HEDLEY_MESSAGE
2213 #endif
2214 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
2215 # define JSON_HEDLEY_MESSAGE(msg) \
2216 JSON_HEDLEY_DIAGNOSTIC_PUSH \
2217 JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
2218 JSON_HEDLEY_PRAGMA(message msg) \
2219 JSON_HEDLEY_DIAGNOSTIC_POP
2220 #elif \
2221 JSON_HEDLEY_GCC_VERSION_CHECK(4,4,0) || \
2222 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
2223 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message msg)
2224 #elif JSON_HEDLEY_CRAY_VERSION_CHECK(5,0,0)
2225 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(_CRI message msg)
2226 #elif JSON_HEDLEY_IAR_VERSION_CHECK(8,0,0)
2227 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
2228 #elif JSON_HEDLEY_PELLES_VERSION_CHECK(2,0,0)
2229 # define JSON_HEDLEY_MESSAGE(msg) JSON_HEDLEY_PRAGMA(message(msg))
2230 #else
2231 # define JSON_HEDLEY_MESSAGE(msg)
2232 #endif
2233
2234 #if defined(JSON_HEDLEY_WARNING)
2235 #undef JSON_HEDLEY_WARNING
2236 #endif
2237 #if JSON_HEDLEY_HAS_WARNING("-Wunknown-pragmas")
2238 # define JSON_HEDLEY_WARNING(msg) \
2239 JSON_HEDLEY_DIAGNOSTIC_PUSH \
2240 JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS \
2241 JSON_HEDLEY_PRAGMA(clang warning msg) \
2242 JSON_HEDLEY_DIAGNOSTIC_POP
2243 #elif \
2244 JSON_HEDLEY_GCC_VERSION_CHECK(4,8,0) || \
2245 JSON_HEDLEY_PGI_VERSION_CHECK(18,4,0) || \
2246 JSON_HEDLEY_INTEL_VERSION_CHECK(13,0,0)
2247 # define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(GCC warning msg)
2248 #elif \
2249 JSON_HEDLEY_MSVC_VERSION_CHECK(15,0,0) || \
2250 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
2251 # define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_PRAGMA(message(msg))
2252 #else
2253 # define JSON_HEDLEY_WARNING(msg) JSON_HEDLEY_MESSAGE(msg)
2254 #endif
2255
2256 #if defined(JSON_HEDLEY_REQUIRE)
2257 #undef JSON_HEDLEY_REQUIRE
2258 #endif
2259 #if defined(JSON_HEDLEY_REQUIRE_MSG)
2260 #undef JSON_HEDLEY_REQUIRE_MSG
2261 #endif
2262 #if JSON_HEDLEY_HAS_ATTRIBUTE(diagnose_if)
2263 # if JSON_HEDLEY_HAS_WARNING("-Wgcc-compat")
2264 # define JSON_HEDLEY_REQUIRE(expr) \
2265 JSON_HEDLEY_DIAGNOSTIC_PUSH \
2266 _Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
2267 __attribute__((diagnose_if(!(expr), #expr, "error"))) \
2268 JSON_HEDLEY_DIAGNOSTIC_POP
2269 # define JSON_HEDLEY_REQUIRE_MSG(expr,msg) \
2270 JSON_HEDLEY_DIAGNOSTIC_PUSH \
2271 _Pragma("clang diagnostic ignored \"-Wgcc-compat\"") \
2272 __attribute__((diagnose_if(!(expr), msg, "error"))) \
2273 JSON_HEDLEY_DIAGNOSTIC_POP
2274 # else
2275 # define JSON_HEDLEY_REQUIRE(expr) __attribute__((diagnose_if(!(expr), #expr, "error")))
2276 # define JSON_HEDLEY_REQUIRE_MSG(expr,msg) __attribute__((diagnose_if(!(expr), msg, "error")))
2277 # endif
2278 #else
2279 # define JSON_HEDLEY_REQUIRE(expr)
2280 # define JSON_HEDLEY_REQUIRE_MSG(expr,msg)
2281 #endif
2282
2283 #if defined(JSON_HEDLEY_FLAGS)
2284 #undef JSON_HEDLEY_FLAGS
2285 #endif
2286 #if JSON_HEDLEY_HAS_ATTRIBUTE(flag_enum) && (!defined(__cplusplus) || JSON_HEDLEY_HAS_WARNING("-Wbitfield-enum-conversion"))
2287 #define JSON_HEDLEY_FLAGS __attribute__((__flag_enum__))
2288 #else
2289 #define JSON_HEDLEY_FLAGS
2290 #endif
2291
2292 #if defined(JSON_HEDLEY_FLAGS_CAST)
2293 #undef JSON_HEDLEY_FLAGS_CAST
2294 #endif
2295 #if JSON_HEDLEY_INTEL_VERSION_CHECK(19,0,0)
2296 # define JSON_HEDLEY_FLAGS_CAST(T, expr) (__extension__ ({ \
2297 JSON_HEDLEY_DIAGNOSTIC_PUSH \
2298 _Pragma("warning(disable:188)") \
2299 ((T) (expr)); \
2300 JSON_HEDLEY_DIAGNOSTIC_POP \
2301 }))
2302 #else
2303 # define JSON_HEDLEY_FLAGS_CAST(T, expr) JSON_HEDLEY_STATIC_CAST(T, expr)
2304 #endif
2305
2306 #if defined(JSON_HEDLEY_EMPTY_BASES)
2307 #undef JSON_HEDLEY_EMPTY_BASES
2308 #endif
2309 #if \
2310 (JSON_HEDLEY_MSVC_VERSION_CHECK(19,0,23918) && !JSON_HEDLEY_MSVC_VERSION_CHECK(20,0,0)) || \
2311 JSON_HEDLEY_INTEL_CL_VERSION_CHECK(2021,1,0)
2312 #define JSON_HEDLEY_EMPTY_BASES __declspec(empty_bases)
2313 #else
2314 #define JSON_HEDLEY_EMPTY_BASES
2315 #endif
2316
2317 /* Remaining macros are deprecated. */
2318
2319 #if defined(JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK)
2320 #undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
2321 #endif
2322 #if defined(__clang__)
2323 #define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) (0)
2324 #else
2325 #define JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK(major,minor,patch) JSON_HEDLEY_GCC_VERSION_CHECK(major,minor,patch)
2326 #endif
2327
2328 #if defined(JSON_HEDLEY_CLANG_HAS_ATTRIBUTE)
2329 #undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
2330 #endif
2331 #define JSON_HEDLEY_CLANG_HAS_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_ATTRIBUTE(attribute)
2332
2333 #if defined(JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE)
2334 #undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
2335 #endif
2336 #define JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_CPP_ATTRIBUTE(attribute)
2337
2338 #if defined(JSON_HEDLEY_CLANG_HAS_BUILTIN)
2339 #undef JSON_HEDLEY_CLANG_HAS_BUILTIN
2340 #endif
2341 #define JSON_HEDLEY_CLANG_HAS_BUILTIN(builtin) JSON_HEDLEY_HAS_BUILTIN(builtin)
2342
2343 #if defined(JSON_HEDLEY_CLANG_HAS_FEATURE)
2344 #undef JSON_HEDLEY_CLANG_HAS_FEATURE
2345 #endif
2346 #define JSON_HEDLEY_CLANG_HAS_FEATURE(feature) JSON_HEDLEY_HAS_FEATURE(feature)
2347
2348 #if defined(JSON_HEDLEY_CLANG_HAS_EXTENSION)
2349 #undef JSON_HEDLEY_CLANG_HAS_EXTENSION
2350 #endif
2351 #define JSON_HEDLEY_CLANG_HAS_EXTENSION(extension) JSON_HEDLEY_HAS_EXTENSION(extension)
2352
2353 #if defined(JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE)
2354 #undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
2355 #endif
2356 #define JSON_HEDLEY_CLANG_HAS_DECLSPEC_ATTRIBUTE(attribute) JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE(attribute)
2357
2358 #if defined(JSON_HEDLEY_CLANG_HAS_WARNING)
2359 #undef JSON_HEDLEY_CLANG_HAS_WARNING
2360 #endif
2361 #define JSON_HEDLEY_CLANG_HAS_WARNING(warning) JSON_HEDLEY_HAS_WARNING(warning)
2362
2363 #endif /* !defined(JSON_HEDLEY_VERSION) || (JSON_HEDLEY_VERSION < X) */
2364
2365
2366 // This file contains all internal macro definitions (except those affecting ABI)
2367 // You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
2368
2369 // #include <nlohmann/detail/abi_macros.hpp>
2370
2371
2372 // exclude unsupported compilers
2373 #if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
2374 #if defined(__clang__)
2375 #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
2376 #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
2377 #endif
2378 #elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
2379 #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
2380 #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
2381 #endif
2382 #endif
2383 #endif
2384
2385 // C++ language standard detection
2386 // if the user manually specified the used c++ version this is skipped
2387 #if !defined(JSON_HAS_CPP_20) && !defined(JSON_HAS_CPP_17) && !defined(JSON_HAS_CPP_14) && !defined(JSON_HAS_CPP_11)
2388 #if (defined(__cplusplus) && __cplusplus >= 202002L) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
2389 #define JSON_HAS_CPP_20
2390 #define JSON_HAS_CPP_17
2391 #define JSON_HAS_CPP_14
2392 #elif (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
2393 #define JSON_HAS_CPP_17
2394 #define JSON_HAS_CPP_14
2395 #elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
2396 #define JSON_HAS_CPP_14
2397 #endif
2398 // the cpp 11 flag is always specified because it is the minimal required version
2399 #define JSON_HAS_CPP_11
2400 #endif
2401
2402 #ifdef __has_include
2403 #if __has_include(<version>)
2404 #include <version>
2405 #endif
2406 #endif
2407
2408 #if !defined(JSON_HAS_FILESYSTEM) && !defined(JSON_HAS_EXPERIMENTAL_FILESYSTEM)
2409 #ifdef JSON_HAS_CPP_17
2410 #if defined(__cpp_lib_filesystem)
2411 #define JSON_HAS_FILESYSTEM 1
2412 #elif defined(__cpp_lib_experimental_filesystem)
2413 #define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
2414 #elif !defined(__has_include)
2415 #define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
2416 #elif __has_include(<filesystem>)
2417 #define JSON_HAS_FILESYSTEM 1
2418 #elif __has_include(<experimental/filesystem>)
2419 #define JSON_HAS_EXPERIMENTAL_FILESYSTEM 1
2420 #endif
2421
2422 // std::filesystem does not work on MinGW GCC 8: https://sourceforge.net/p/mingw-w64/bugs/737/
2423 #if defined(__MINGW32__) && defined(__GNUC__) && __GNUC__ == 8
2424 #undef JSON_HAS_FILESYSTEM
2425 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2426 #endif
2427
2428 // no filesystem support before GCC 8: https://en.cppreference.com/w/cpp/compiler_support
2429 #if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 8
2430 #undef JSON_HAS_FILESYSTEM
2431 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2432 #endif
2433
2434 // no filesystem support before Clang 7: https://en.cppreference.com/w/cpp/compiler_support
2435 #if defined(__clang_major__) && __clang_major__ < 7
2436 #undef JSON_HAS_FILESYSTEM
2437 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2438 #endif
2439
2440 // no filesystem support before MSVC 19.14: https://en.cppreference.com/w/cpp/compiler_support
2441 #if defined(_MSC_VER) && _MSC_VER < 1914
2442 #undef JSON_HAS_FILESYSTEM
2443 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2444 #endif
2445
2446 // no filesystem support before iOS 13
2447 #if defined(__IPHONE_OS_VERSION_MIN_REQUIRED) && __IPHONE_OS_VERSION_MIN_REQUIRED < 130000
2448 #undef JSON_HAS_FILESYSTEM
2449 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2450 #endif
2451
2452 // no filesystem support before macOS Catalina
2453 #if defined(__MAC_OS_X_VERSION_MIN_REQUIRED) && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500
2454 #undef JSON_HAS_FILESYSTEM
2455 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2456 #endif
2457 #endif
2458 #endif
2459
2460 #ifndef JSON_HAS_EXPERIMENTAL_FILESYSTEM
2461 #define JSON_HAS_EXPERIMENTAL_FILESYSTEM 0
2462 #endif
2463
2464 #ifndef JSON_HAS_FILESYSTEM
2465 #define JSON_HAS_FILESYSTEM 0
2466 #endif
2467
2468 #ifndef JSON_HAS_THREE_WAY_COMPARISON
2469 #if defined(__cpp_impl_three_way_comparison) && __cpp_impl_three_way_comparison >= 201907L \
2470 && defined(__cpp_lib_three_way_comparison) && __cpp_lib_three_way_comparison >= 201907L
2471 #define JSON_HAS_THREE_WAY_COMPARISON 1
2472 #else
2473 #define JSON_HAS_THREE_WAY_COMPARISON 0
2474 #endif
2475 #endif
2476
2477 #ifndef JSON_HAS_RANGES
2478 // ranges header shipping in GCC 11.1.0 (released 2021-04-27) has syntax error
2479 #if defined(__GLIBCXX__) && __GLIBCXX__ == 20210427
2480 #define JSON_HAS_RANGES 0
2481 #elif defined(__cpp_lib_ranges)
2482 #define JSON_HAS_RANGES 1
2483 #else
2484 #define JSON_HAS_RANGES 0
2485 #endif
2486 #endif
2487
2488 #ifndef JSON_HAS_STATIC_RTTI
2489 #if !defined(_HAS_STATIC_RTTI) || _HAS_STATIC_RTTI != 0
2490 #define JSON_HAS_STATIC_RTTI 1
2491 #else
2492 #define JSON_HAS_STATIC_RTTI 0
2493 #endif
2494 #endif
2495
2496 #ifdef JSON_HAS_CPP_17
2497 #define JSON_INLINE_VARIABLE inline
2498 #else
2499 #define JSON_INLINE_VARIABLE
2500 #endif
2501
2502 #if JSON_HEDLEY_HAS_ATTRIBUTE(no_unique_address)
2503 #define JSON_NO_UNIQUE_ADDRESS [[no_unique_address]]
2504 #else
2505 #define JSON_NO_UNIQUE_ADDRESS
2506 #endif
2507
2508 // disable documentation warnings on clang
2509 #if defined(__clang__)
2510 #pragma clang diagnostic push
2511 #pragma clang diagnostic ignored "-Wdocumentation"
2512 #pragma clang diagnostic ignored "-Wdocumentation-unknown-command"
2513 #endif
2514
2515 // allow disabling exceptions
2516 #if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
2517 #define JSON_THROW(exception) throw exception
2518 #define JSON_TRY try
2519 #define JSON_CATCH(exception) catch(exception)
2520 #define JSON_INTERNAL_CATCH(exception) catch(exception)
2521 #else
2522 #include <cstdlib>
2523 #define JSON_THROW(exception) std::abort()
2524 #define JSON_TRY if(true)
2525 #define JSON_CATCH(exception) if(false)
2526 #define JSON_INTERNAL_CATCH(exception) if(false)
2527 #endif
2528
2529 // override exception macros
2530 #if defined(JSON_THROW_USER)
2531 #undef JSON_THROW
2532 #define JSON_THROW JSON_THROW_USER
2533 #endif
2534 #if defined(JSON_TRY_USER)
2535 #undef JSON_TRY
2536 #define JSON_TRY JSON_TRY_USER
2537 #endif
2538 #if defined(JSON_CATCH_USER)
2539 #undef JSON_CATCH
2540 #define JSON_CATCH JSON_CATCH_USER
2541 #undef JSON_INTERNAL_CATCH
2542 #define JSON_INTERNAL_CATCH JSON_CATCH_USER
2543 #endif
2544 #if defined(JSON_INTERNAL_CATCH_USER)
2545 #undef JSON_INTERNAL_CATCH
2546 #define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
2547 #endif
2548
2549 // allow overriding assert
2550 #if !defined(JSON_ASSERT)
2551 #include <cassert> // assert
2552 #define JSON_ASSERT(x) assert(x)
2553 #endif
2554
2555 // allow to access some private functions (needed by the test suite)
2556 #if defined(JSON_TESTS_PRIVATE)
2557 #define JSON_PRIVATE_UNLESS_TESTED public
2558 #else
2559 #define JSON_PRIVATE_UNLESS_TESTED private
2560 #endif
2561
2562 /*!
2563 @brief macro to briefly define a mapping between an enum and JSON
2564 @def NLOHMANN_JSON_SERIALIZE_ENUM
2565 @since version 3.4.0
2566 */
2567 #define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
2568 template<typename BasicJsonType> \
2569 inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
2570 { \
2571 static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
2572 static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
2573 auto it = std::find_if(std::begin(m), std::end(m), \
2574 [e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
2575 { \
2576 return ej_pair.first == e; \
2577 }); \
2578 j = ((it != std::end(m)) ? it : std::begin(m))->second; \
2579 } \
2580 template<typename BasicJsonType> \
2581 inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
2582 { \
2583 static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
2584 static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
2585 auto it = std::find_if(std::begin(m), std::end(m), \
2586 [&j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
2587 { \
2588 return ej_pair.second == j; \
2589 }); \
2590 e = ((it != std::end(m)) ? it : std::begin(m))->first; \
2591 }
2592
2593 // Ugly macros to avoid uglier copy-paste when specializing basic_json. They
2594 // may be removed in the future once the class is split.
2595
2596 #define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
2597 template<template<typename, typename, typename...> class ObjectType, \
2598 template<typename, typename...> class ArrayType, \
2599 class StringType, class BooleanType, class NumberIntegerType, \
2600 class NumberUnsignedType, class NumberFloatType, \
2601 template<typename> class AllocatorType, \
2602 template<typename, typename = void> class JSONSerializer, \
2603 class BinaryType, \
2604 class CustomBaseClass>
2605
2606 #define NLOHMANN_BASIC_JSON_TPL \
2607 basic_json<ObjectType, ArrayType, StringType, BooleanType, \
2608 NumberIntegerType, NumberUnsignedType, NumberFloatType, \
2609 AllocatorType, JSONSerializer, BinaryType, CustomBaseClass>
2610
2611 // Macros to simplify conversion from/to types
2612
2613 #define NLOHMANN_JSON_EXPAND( x ) x
2614 #define NLOHMANN_JSON_GET_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, _61, _62, _63, _64, NAME,...) NAME
2615 #define NLOHMANN_JSON_PASTE(...) NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_GET_MACRO(__VA_ARGS__, \
2616 NLOHMANN_JSON_PASTE64, \
2617 NLOHMANN_JSON_PASTE63, \
2618 NLOHMANN_JSON_PASTE62, \
2619 NLOHMANN_JSON_PASTE61, \
2620 NLOHMANN_JSON_PASTE60, \
2621 NLOHMANN_JSON_PASTE59, \
2622 NLOHMANN_JSON_PASTE58, \
2623 NLOHMANN_JSON_PASTE57, \
2624 NLOHMANN_JSON_PASTE56, \
2625 NLOHMANN_JSON_PASTE55, \
2626 NLOHMANN_JSON_PASTE54, \
2627 NLOHMANN_JSON_PASTE53, \
2628 NLOHMANN_JSON_PASTE52, \
2629 NLOHMANN_JSON_PASTE51, \
2630 NLOHMANN_JSON_PASTE50, \
2631 NLOHMANN_JSON_PASTE49, \
2632 NLOHMANN_JSON_PASTE48, \
2633 NLOHMANN_JSON_PASTE47, \
2634 NLOHMANN_JSON_PASTE46, \
2635 NLOHMANN_JSON_PASTE45, \
2636 NLOHMANN_JSON_PASTE44, \
2637 NLOHMANN_JSON_PASTE43, \
2638 NLOHMANN_JSON_PASTE42, \
2639 NLOHMANN_JSON_PASTE41, \
2640 NLOHMANN_JSON_PASTE40, \
2641 NLOHMANN_JSON_PASTE39, \
2642 NLOHMANN_JSON_PASTE38, \
2643 NLOHMANN_JSON_PASTE37, \
2644 NLOHMANN_JSON_PASTE36, \
2645 NLOHMANN_JSON_PASTE35, \
2646 NLOHMANN_JSON_PASTE34, \
2647 NLOHMANN_JSON_PASTE33, \
2648 NLOHMANN_JSON_PASTE32, \
2649 NLOHMANN_JSON_PASTE31, \
2650 NLOHMANN_JSON_PASTE30, \
2651 NLOHMANN_JSON_PASTE29, \
2652 NLOHMANN_JSON_PASTE28, \
2653 NLOHMANN_JSON_PASTE27, \
2654 NLOHMANN_JSON_PASTE26, \
2655 NLOHMANN_JSON_PASTE25, \
2656 NLOHMANN_JSON_PASTE24, \
2657 NLOHMANN_JSON_PASTE23, \
2658 NLOHMANN_JSON_PASTE22, \
2659 NLOHMANN_JSON_PASTE21, \
2660 NLOHMANN_JSON_PASTE20, \
2661 NLOHMANN_JSON_PASTE19, \
2662 NLOHMANN_JSON_PASTE18, \
2663 NLOHMANN_JSON_PASTE17, \
2664 NLOHMANN_JSON_PASTE16, \
2665 NLOHMANN_JSON_PASTE15, \
2666 NLOHMANN_JSON_PASTE14, \
2667 NLOHMANN_JSON_PASTE13, \
2668 NLOHMANN_JSON_PASTE12, \
2669 NLOHMANN_JSON_PASTE11, \
2670 NLOHMANN_JSON_PASTE10, \
2671 NLOHMANN_JSON_PASTE9, \
2672 NLOHMANN_JSON_PASTE8, \
2673 NLOHMANN_JSON_PASTE7, \
2674 NLOHMANN_JSON_PASTE6, \
2675 NLOHMANN_JSON_PASTE5, \
2676 NLOHMANN_JSON_PASTE4, \
2677 NLOHMANN_JSON_PASTE3, \
2678 NLOHMANN_JSON_PASTE2, \
2679 NLOHMANN_JSON_PASTE1)(__VA_ARGS__))
2680 #define NLOHMANN_JSON_PASTE2(func, v1) func(v1)
2681 #define NLOHMANN_JSON_PASTE3(func, v1, v2) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE2(func, v2)
2682 #define NLOHMANN_JSON_PASTE4(func, v1, v2, v3) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE3(func, v2, v3)
2683 #define NLOHMANN_JSON_PASTE5(func, v1, v2, v3, v4) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE4(func, v2, v3, v4)
2684 #define NLOHMANN_JSON_PASTE6(func, v1, v2, v3, v4, v5) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE5(func, v2, v3, v4, v5)
2685 #define NLOHMANN_JSON_PASTE7(func, v1, v2, v3, v4, v5, v6) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE6(func, v2, v3, v4, v5, v6)
2686 #define NLOHMANN_JSON_PASTE8(func, v1, v2, v3, v4, v5, v6, v7) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE7(func, v2, v3, v4, v5, v6, v7)
2687 #define NLOHMANN_JSON_PASTE9(func, v1, v2, v3, v4, v5, v6, v7, v8) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE8(func, v2, v3, v4, v5, v6, v7, v8)
2688 #define NLOHMANN_JSON_PASTE10(func, v1, v2, v3, v4, v5, v6, v7, v8, v9) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE9(func, v2, v3, v4, v5, v6, v7, v8, v9)
2689 #define NLOHMANN_JSON_PASTE11(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE10(func, v2, v3, v4, v5, v6, v7, v8, v9, v10)
2690 #define NLOHMANN_JSON_PASTE12(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE11(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11)
2691 #define NLOHMANN_JSON_PASTE13(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE12(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12)
2692 #define NLOHMANN_JSON_PASTE14(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE13(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13)
2693 #define NLOHMANN_JSON_PASTE15(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE14(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14)
2694 #define NLOHMANN_JSON_PASTE16(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE15(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15)
2695 #define NLOHMANN_JSON_PASTE17(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE16(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16)
2696 #define NLOHMANN_JSON_PASTE18(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE17(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17)
2697 #define NLOHMANN_JSON_PASTE19(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE18(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18)
2698 #define NLOHMANN_JSON_PASTE20(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE19(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19)
2699 #define NLOHMANN_JSON_PASTE21(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE20(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20)
2700 #define NLOHMANN_JSON_PASTE22(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE21(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21)
2701 #define NLOHMANN_JSON_PASTE23(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE22(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22)
2702 #define NLOHMANN_JSON_PASTE24(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE23(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23)
2703 #define NLOHMANN_JSON_PASTE25(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE24(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24)
2704 #define NLOHMANN_JSON_PASTE26(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE25(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25)
2705 #define NLOHMANN_JSON_PASTE27(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE26(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26)
2706 #define NLOHMANN_JSON_PASTE28(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE27(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27)
2707 #define NLOHMANN_JSON_PASTE29(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE28(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28)
2708 #define NLOHMANN_JSON_PASTE30(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE29(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29)
2709 #define NLOHMANN_JSON_PASTE31(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE30(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30)
2710 #define NLOHMANN_JSON_PASTE32(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE31(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31)
2711 #define NLOHMANN_JSON_PASTE33(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE32(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32)
2712 #define NLOHMANN_JSON_PASTE34(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE33(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33)
2713 #define NLOHMANN_JSON_PASTE35(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE34(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34)
2714 #define NLOHMANN_JSON_PASTE36(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE35(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35)
2715 #define NLOHMANN_JSON_PASTE37(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE36(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36)
2716 #define NLOHMANN_JSON_PASTE38(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE37(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37)
2717 #define NLOHMANN_JSON_PASTE39(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE38(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38)
2718 #define NLOHMANN_JSON_PASTE40(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE39(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39)
2719 #define NLOHMANN_JSON_PASTE41(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE40(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40)
2720 #define NLOHMANN_JSON_PASTE42(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE41(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41)
2721 #define NLOHMANN_JSON_PASTE43(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE42(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42)
2722 #define NLOHMANN_JSON_PASTE44(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE43(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43)
2723 #define NLOHMANN_JSON_PASTE45(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE44(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44)
2724 #define NLOHMANN_JSON_PASTE46(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE45(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45)
2725 #define NLOHMANN_JSON_PASTE47(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE46(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46)
2726 #define NLOHMANN_JSON_PASTE48(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE47(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47)
2727 #define NLOHMANN_JSON_PASTE49(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE48(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48)
2728 #define NLOHMANN_JSON_PASTE50(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE49(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49)
2729 #define NLOHMANN_JSON_PASTE51(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE50(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50)
2730 #define NLOHMANN_JSON_PASTE52(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE51(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51)
2731 #define NLOHMANN_JSON_PASTE53(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE52(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52)
2732 #define NLOHMANN_JSON_PASTE54(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE53(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53)
2733 #define NLOHMANN_JSON_PASTE55(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE54(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54)
2734 #define NLOHMANN_JSON_PASTE56(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE55(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55)
2735 #define NLOHMANN_JSON_PASTE57(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE56(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56)
2736 #define NLOHMANN_JSON_PASTE58(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE57(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57)
2737 #define NLOHMANN_JSON_PASTE59(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE58(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58)
2738 #define NLOHMANN_JSON_PASTE60(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE59(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59)
2739 #define NLOHMANN_JSON_PASTE61(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE60(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60)
2740 #define NLOHMANN_JSON_PASTE62(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE61(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61)
2741 #define NLOHMANN_JSON_PASTE63(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE62(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62)
2742 #define NLOHMANN_JSON_PASTE64(func, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62, v63) NLOHMANN_JSON_PASTE2(func, v1) NLOHMANN_JSON_PASTE63(func, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v55, v56, v57, v58, v59, v60, v61, v62, v63)
2743
2744 #define NLOHMANN_JSON_TO(v1) nlohmann_json_j[#v1] = nlohmann_json_t.v1;
2745 #define NLOHMANN_JSON_FROM(v1) nlohmann_json_j.at(#v1).get_to(nlohmann_json_t.v1);
2746 #define NLOHMANN_JSON_FROM_WITH_DEFAULT(v1) nlohmann_json_t.v1 = nlohmann_json_j.value(#v1, nlohmann_json_default_obj.v1);
2747
2748 /*!
2749 @brief macro
2750 @def NLOHMANN_DEFINE_TYPE_INTRUSIVE
2751 @since version 3.9.0
2752 */
2753 #define NLOHMANN_DEFINE_TYPE_INTRUSIVE(Type, ...) \
2754 friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
2755 friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) }
2756
2757 #define NLOHMANN_DEFINE_TYPE_INTRUSIVE_WITH_DEFAULT(Type, ...) \
2758 friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
2759 friend void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) }
2760
2761 #define NLOHMANN_DEFINE_TYPE_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \
2762 friend void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) }
2763
2764 /*!
2765 @brief macro
2766 @def NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE
2767 @since version 3.9.0
2768 */
2769 #define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE(Type, ...) \
2770 inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
2771 inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM, __VA_ARGS__)) }
2772
2773 #define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_ONLY_SERIALIZE(Type, ...) \
2774 inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) }
2775
2776 #define NLOHMANN_DEFINE_TYPE_NON_INTRUSIVE_WITH_DEFAULT(Type, ...) \
2777 inline void to_json(nlohmann::json& nlohmann_json_j, const Type& nlohmann_json_t) { NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_TO, __VA_ARGS__)) } \
2778 inline void from_json(const nlohmann::json& nlohmann_json_j, Type& nlohmann_json_t) { const Type nlohmann_json_default_obj{}; NLOHMANN_JSON_EXPAND(NLOHMANN_JSON_PASTE(NLOHMANN_JSON_FROM_WITH_DEFAULT, __VA_ARGS__)) }
2779
2780 // inspired from https://stackoverflow.com/a/26745591
2781 // allows to call any std function as if (e.g. with begin):
2782 // using std::begin; begin(x);
2783 //
2784 // it allows using the detected idiom to retrieve the return type
2785 // of such an expression
2786 #define NLOHMANN_CAN_CALL_STD_FUNC_IMPL(std_name) \
2787 namespace detail { \
2788 using std::std_name; \
2789 \
2790 template<typename... T> \
2791 using result_of_##std_name = decltype(std_name(std::declval<T>()...)); \
2792 } \
2793 \
2794 namespace detail2 { \
2795 struct std_name##_tag \
2796 { \
2797 }; \
2798 \
2799 template<typename... T> \
2800 std_name##_tag std_name(T&&...); \
2801 \
2802 template<typename... T> \
2803 using result_of_##std_name = decltype(std_name(std::declval<T>()...)); \
2804 \
2805 template<typename... T> \
2806 struct would_call_std_##std_name \
2807 { \
2808 static constexpr auto const value = ::nlohmann::detail:: \
2809 is_detected_exact<std_name##_tag, result_of_##std_name, T...>::value; \
2810 }; \
2811 } /* namespace detail2 */ \
2812 \
2813 template<typename... T> \
2814 struct would_call_std_##std_name : detail2::would_call_std_##std_name<T...> \
2815 { \
2816 }
2817
2818 #ifndef JSON_USE_IMPLICIT_CONVERSIONS
2819 #define JSON_USE_IMPLICIT_CONVERSIONS 1
2820 #endif
2821
2822 #if JSON_USE_IMPLICIT_CONVERSIONS
2823 #define JSON_EXPLICIT
2824 #else
2825 #define JSON_EXPLICIT explicit
2826 #endif
2827
2828 #ifndef JSON_DISABLE_ENUM_SERIALIZATION
2829 #define JSON_DISABLE_ENUM_SERIALIZATION 0
2830 #endif
2831
2832 #ifndef JSON_USE_GLOBAL_UDLS
2833 #define JSON_USE_GLOBAL_UDLS 1
2834 #endif
2835
2836 #if JSON_HAS_THREE_WAY_COMPARISON
2837 #include <compare> // partial_ordering
2838 #endif
2839
2840 NLOHMANN_JSON_NAMESPACE_BEGIN
2841 namespace detail
2842 {
2843
2844 ///////////////////////////
2845 // JSON type enumeration //
2846 ///////////////////////////
2847
2848 /*!
2849 @brief the JSON type enumeration
2850
2851 This enumeration collects the different JSON types. It is internally used to
2852 distinguish the stored values, and the functions @ref basic_json::is_null(),
2853 @ref basic_json::is_object(), @ref basic_json::is_array(),
2854 @ref basic_json::is_string(), @ref basic_json::is_boolean(),
2855 @ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
2856 @ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
2857 @ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
2858 @ref basic_json::is_structured() rely on it.
2859
2860 @note There are three enumeration entries (number_integer, number_unsigned, and
2861 number_float), because the library distinguishes these three types for numbers:
2862 @ref basic_json::number_unsigned_t is used for unsigned integers,
2863 @ref basic_json::number_integer_t is used for signed integers, and
2864 @ref basic_json::number_float_t is used for floating-point numbers or to
2865 approximate integers which do not fit in the limits of their respective type.
2866
2867 @sa see @ref basic_json::basic_json(const value_t value_type) -- create a JSON
2868 value with the default value for a given type
2869
2870 @since version 1.0.0
2871 */
2872 enum class value_t : std::uint8_t
2873 {
2874 null, ///< null value
2875 object, ///< object (unordered set of name/value pairs)
2876 array, ///< array (ordered collection of values)
2877 string, ///< string value
2878 boolean, ///< boolean value
2879 number_integer, ///< number value (signed integer)
2880 number_unsigned, ///< number value (unsigned integer)
2881 number_float, ///< number value (floating-point)
2882 binary, ///< binary array (ordered collection of bytes)
2883 discarded ///< discarded by the parser callback function
2884 };
2885
2886 /*!
2887 @brief comparison operator for JSON types
2888
2889 Returns an ordering that is similar to Python:
2890 - order: null < boolean < number < object < array < string < binary
2891 - furthermore, each type is not smaller than itself
2892 - discarded values are not comparable
2893 - binary is represented as a b"" string in python and directly comparable to a
2894 string; however, making a binary array directly comparable with a string would
2895 be surprising behavior in a JSON file.
2896
2897 @since version 1.0.0
2898 */
2899 #if JSON_HAS_THREE_WAY_COMPARISON
2900 inline std::partial_ordering operator<=>(const value_t lhs, const value_t rhs) noexcept // *NOPAD*
2901 #else
2902 inline bool operator<(const value_t lhs, const value_t rhs) noexcept
2903 #endif
2904 {
2905 static constexpr std::array<std::uint8_t, 9> order = {{
2906 0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */,
2907 1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */,
2908 6 /* binary */
2909 }
2910 };
2911
2912 const auto l_index = static_cast<std::size_t>(lhs);
2913 const auto r_index = static_cast<std::size_t>(rhs);
2914 #if JSON_HAS_THREE_WAY_COMPARISON
2915 if (l_index < order.size() && r_index < order.size())
2916 {
2917 return order[l_index] <=> order[r_index]; // *NOPAD*
2918 }
2919 return std::partial_ordering::unordered;
2920 #else
2921 return l_index < order.size() && r_index < order.size() && order[l_index] < order[r_index];
2922 #endif
2923 }
2924
2925 // GCC selects the built-in operator< over an operator rewritten from
2926 // a user-defined spaceship operator
2927 // Clang, MSVC, and ICC select the rewritten candidate
2928 // (see GCC bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105200)
2929 #if JSON_HAS_THREE_WAY_COMPARISON && defined(__GNUC__)
2930 inline bool operator<(const value_t lhs, const value_t rhs) noexcept
2931 {
2932 return std::is_lt(lhs <=> rhs); // *NOPAD*
2933 }
2934 #endif
2935
2936 } // namespace detail
2937 NLOHMANN_JSON_NAMESPACE_END
2938
2939 // #include <nlohmann/detail/string_escape.hpp>
2940 // __ _____ _____ _____
2941 // __| | __| | | | JSON for Modern C++
2942 // | | |__ | | | | | | version 3.11.3
2943 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
2944 //
2945 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
2946 // SPDX-License-Identifier: MIT
2947
2948
2949
2950 // #include <nlohmann/detail/abi_macros.hpp>
2951
2952
2953 NLOHMANN_JSON_NAMESPACE_BEGIN
2954 namespace detail
2955 {
2956
2957 /*!
2958 @brief replace all occurrences of a substring by another string
2959
2960 @param[in,out] s the string to manipulate; changed so that all
2961 occurrences of @a f are replaced with @a t
2962 @param[in] f the substring to replace with @a t
2963 @param[in] t the string to replace @a f
2964
2965 @pre The search string @a f must not be empty. **This precondition is
2966 enforced with an assertion.**
2967
2968 @since version 2.0.0
2969 */
2970 template<typename StringType>
2971 inline void replace_substring(StringType& s, const StringType& f,
2972 const StringType& t)
2973 {
2974 JSON_ASSERT(!f.empty());
2975 for (auto pos = s.find(f); // find first occurrence of f
2976 pos != StringType::npos; // make sure f was found
2977 s.replace(pos, f.size(), t), // replace with t, and
2978 pos = s.find(f, pos + t.size())) // find next occurrence of f
2979 {}
2980 }
2981
2982 /*!
2983 * @brief string escaping as described in RFC 6901 (Sect. 4)
2984 * @param[in] s string to escape
2985 * @return escaped string
2986 *
2987 * Note the order of escaping "~" to "~0" and "/" to "~1" is important.
2988 */
2989 template<typename StringType>
2990 inline StringType escape(StringType s)
2991 {
2992 replace_substring(s, StringType{"~"}, StringType{"~0"});
2993 replace_substring(s, StringType{"/"}, StringType{"~1"});
2994 return s;
2995 }
2996
2997 /*!
2998 * @brief string unescaping as described in RFC 6901 (Sect. 4)
2999 * @param[in] s string to unescape
3000 * @return unescaped string
3001 *
3002 * Note the order of escaping "~1" to "/" and "~0" to "~" is important.
3003 */
3004 template<typename StringType>
3005 static void unescape(StringType& s)
3006 {
3007 replace_substring(s, StringType{"~1"}, StringType{"/"});
3008 replace_substring(s, StringType{"~0"}, StringType{"~"});
3009 }
3010
3011 } // namespace detail
3012 NLOHMANN_JSON_NAMESPACE_END
3013
3014 // #include <nlohmann/detail/input/position_t.hpp>
3015 // __ _____ _____ _____
3016 // __| | __| | | | JSON for Modern C++
3017 // | | |__ | | | | | | version 3.11.3
3018 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3019 //
3020 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3021 // SPDX-License-Identifier: MIT
3022
3023
3024
3025 #include <cstddef> // size_t
3026
3027 // #include <nlohmann/detail/abi_macros.hpp>
3028
3029
3030 NLOHMANN_JSON_NAMESPACE_BEGIN
3031 namespace detail
3032 {
3033
3034 /// struct to capture the start position of the current token
3035 struct position_t
3036 {
3037 /// the total number of characters read
3038 std::size_t chars_read_total = 0;
3039 /// the number of characters read in the current line
3040 std::size_t chars_read_current_line = 0;
3041 /// the number of lines read
3042 std::size_t lines_read = 0;
3043
3044 /// conversion to size_t to preserve SAX interface
3045 constexpr operator size_t() const
3046 {
3047 return chars_read_total;
3048 }
3049 };
3050
3051 } // namespace detail
3052 NLOHMANN_JSON_NAMESPACE_END
3053
3054 // #include <nlohmann/detail/macro_scope.hpp>
3055
3056 // #include <nlohmann/detail/meta/cpp_future.hpp>
3057 // __ _____ _____ _____
3058 // __| | __| | | | JSON for Modern C++
3059 // | | |__ | | | | | | version 3.11.3
3060 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3061 //
3062 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3063 // SPDX-FileCopyrightText: 2018 The Abseil Authors
3064 // SPDX-License-Identifier: MIT
3065
3066
3067
3068 #include <array> // array
3069 #include <cstddef> // size_t
3070 #include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
3071 #include <utility> // index_sequence, make_index_sequence, index_sequence_for
3072
3073 // #include <nlohmann/detail/macro_scope.hpp>
3074
3075
3076 NLOHMANN_JSON_NAMESPACE_BEGIN
3077 namespace detail
3078 {
3079
3080 template<typename T>
3081 using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
3082
3083 #ifdef JSON_HAS_CPP_14
3084
3085 // the following utilities are natively available in C++14
3086 using std::enable_if_t;
3087 using std::index_sequence;
3088 using std::make_index_sequence;
3089 using std::index_sequence_for;
3090
3091 #else
3092
3093 // alias templates to reduce boilerplate
3094 template<bool B, typename T = void>
3095 using enable_if_t = typename std::enable_if<B, T>::type;
3096
3097 // The following code is taken from https://github.com/abseil/abseil-cpp/blob/10cb35e459f5ecca5b2ff107635da0bfa41011b4/absl/utility/utility.h
3098 // which is part of Google Abseil (https://github.com/abseil/abseil-cpp), licensed under the Apache License 2.0.
3099
3100 //// START OF CODE FROM GOOGLE ABSEIL
3101
3102 // integer_sequence
3103 //
3104 // Class template representing a compile-time integer sequence. An instantiation
3105 // of `integer_sequence<T, Ints...>` has a sequence of integers encoded in its
3106 // type through its template arguments (which is a common need when
3107 // working with C++11 variadic templates). `absl::integer_sequence` is designed
3108 // to be a drop-in replacement for C++14's `std::integer_sequence`.
3109 //
3110 // Example:
3111 //
3112 // template< class T, T... Ints >
3113 // void user_function(integer_sequence<T, Ints...>);
3114 //
3115 // int main()
3116 // {
3117 // // user_function's `T` will be deduced to `int` and `Ints...`
3118 // // will be deduced to `0, 1, 2, 3, 4`.
3119 // user_function(make_integer_sequence<int, 5>());
3120 // }
3121 template <typename T, T... Ints>
3122 struct integer_sequence
3123 {
3124 using value_type = T;
3125 static constexpr std::size_t size() noexcept
3126 {
3127 return sizeof...(Ints);
3128 }
3129 };
3130
3131 // index_sequence
3132 //
3133 // A helper template for an `integer_sequence` of `size_t`,
3134 // `absl::index_sequence` is designed to be a drop-in replacement for C++14's
3135 // `std::index_sequence`.
3136 template <size_t... Ints>
3137 using index_sequence = integer_sequence<size_t, Ints...>;
3138
3139 namespace utility_internal
3140 {
3141
3142 template <typename Seq, size_t SeqSize, size_t Rem>
3143 struct Extend;
3144
3145 // Note that SeqSize == sizeof...(Ints). It's passed explicitly for efficiency.
3146 template <typename T, T... Ints, size_t SeqSize>
3147 struct Extend<integer_sequence<T, Ints...>, SeqSize, 0>
3148 {
3149 using type = integer_sequence < T, Ints..., (Ints + SeqSize)... >;
3150 };
3151
3152 template <typename T, T... Ints, size_t SeqSize>
3153 struct Extend<integer_sequence<T, Ints...>, SeqSize, 1>
3154 {
3155 using type = integer_sequence < T, Ints..., (Ints + SeqSize)..., 2 * SeqSize >;
3156 };
3157
3158 // Recursion helper for 'make_integer_sequence<T, N>'.
3159 // 'Gen<T, N>::type' is an alias for 'integer_sequence<T, 0, 1, ... N-1>'.
3160 template <typename T, size_t N>
3161 struct Gen
3162 {
3163 using type =
3164 typename Extend < typename Gen < T, N / 2 >::type, N / 2, N % 2 >::type;
3165 };
3166
3167 template <typename T>
3168 struct Gen<T, 0>
3169 {
3170 using type = integer_sequence<T>;
3171 };
3172
3173 } // namespace utility_internal
3174
3175 // Compile-time sequences of integers
3176
3177 // make_integer_sequence
3178 //
3179 // This template alias is equivalent to
3180 // `integer_sequence<int, 0, 1, ..., N-1>`, and is designed to be a drop-in
3181 // replacement for C++14's `std::make_integer_sequence`.
3182 template <typename T, T N>
3183 using make_integer_sequence = typename utility_internal::Gen<T, N>::type;
3184
3185 // make_index_sequence
3186 //
3187 // This template alias is equivalent to `index_sequence<0, 1, ..., N-1>`,
3188 // and is designed to be a drop-in replacement for C++14's
3189 // `std::make_index_sequence`.
3190 template <size_t N>
3191 using make_index_sequence = make_integer_sequence<size_t, N>;
3192
3193 // index_sequence_for
3194 //
3195 // Converts a typename pack into an index sequence of the same length, and
3196 // is designed to be a drop-in replacement for C++14's
3197 // `std::index_sequence_for()`
3198 template <typename... Ts>
3199 using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
3200
3201 //// END OF CODE FROM GOOGLE ABSEIL
3202
3203 #endif
3204
3205 // dispatch utility (taken from ranges-v3)
3206 template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
3207 template<> struct priority_tag<0> {};
3208
3209 // taken from ranges-v3
3210 template<typename T>
3211 struct static_const
3212 {
3213 static JSON_INLINE_VARIABLE constexpr T value{};
3214 };
3215
3216 #ifndef JSON_HAS_CPP_17
3217 template<typename T>
3218 constexpr T static_const<T>::value;
3219 #endif
3220
3221 template<typename T, typename... Args>
3222 inline constexpr std::array<T, sizeof...(Args)> make_array(Args&& ... args)
3223 {
3224 return std::array<T, sizeof...(Args)> {{static_cast<T>(std::forward<Args>(args))...}};
3225 }
3226
3227 } // namespace detail
3228 NLOHMANN_JSON_NAMESPACE_END
3229
3230 // #include <nlohmann/detail/meta/type_traits.hpp>
3231 // __ _____ _____ _____
3232 // __| | __| | | | JSON for Modern C++
3233 // | | |__ | | | | | | version 3.11.3
3234 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3235 //
3236 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3237 // SPDX-License-Identifier: MIT
3238
3239
3240
3241 #include <limits> // numeric_limits
3242 #include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
3243 #include <utility> // declval
3244 #include <tuple> // tuple
3245 #include <string> // char_traits
3246
3247 // #include <nlohmann/detail/iterators/iterator_traits.hpp>
3248 // __ _____ _____ _____
3249 // __| | __| | | | JSON for Modern C++
3250 // | | |__ | | | | | | version 3.11.3
3251 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3252 //
3253 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3254 // SPDX-License-Identifier: MIT
3255
3256
3257
3258 #include <iterator> // random_access_iterator_tag
3259
3260 // #include <nlohmann/detail/abi_macros.hpp>
3261
3262 // #include <nlohmann/detail/meta/void_t.hpp>
3263
3264 // #include <nlohmann/detail/meta/cpp_future.hpp>
3265
3266
3267 NLOHMANN_JSON_NAMESPACE_BEGIN
3268 namespace detail
3269 {
3270
3271 template<typename It, typename = void>
3272 struct iterator_types {};
3273
3274 template<typename It>
3275 struct iterator_types <
3276 It,
3277 void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
3278 typename It::reference, typename It::iterator_category >>
3279 {
3280 using difference_type = typename It::difference_type;
3281 using value_type = typename It::value_type;
3282 using pointer = typename It::pointer;
3283 using reference = typename It::reference;
3284 using iterator_category = typename It::iterator_category;
3285 };
3286
3287 // This is required as some compilers implement std::iterator_traits in a way that
3288 // doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
3289 template<typename T, typename = void>
3290 struct iterator_traits
3291 {
3292 };
3293
3294 template<typename T>
3295 struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
3296 : iterator_types<T>
3297 {
3298 };
3299
3300 template<typename T>
3301 struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
3302 {
3303 using iterator_category = std::random_access_iterator_tag;
3304 using value_type = T;
3305 using difference_type = ptrdiff_t;
3306 using pointer = T*;
3307 using reference = T&;
3308 };
3309
3310 } // namespace detail
3311 NLOHMANN_JSON_NAMESPACE_END
3312
3313 // #include <nlohmann/detail/macro_scope.hpp>
3314
3315 // #include <nlohmann/detail/meta/call_std/begin.hpp>
3316 // __ _____ _____ _____
3317 // __| | __| | | | JSON for Modern C++
3318 // | | |__ | | | | | | version 3.11.3
3319 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3320 //
3321 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3322 // SPDX-License-Identifier: MIT
3323
3324
3325
3326 // #include <nlohmann/detail/macro_scope.hpp>
3327
3328
3329 NLOHMANN_JSON_NAMESPACE_BEGIN
3330
3331 NLOHMANN_CAN_CALL_STD_FUNC_IMPL(begin);
3332
3333 NLOHMANN_JSON_NAMESPACE_END
3334
3335 // #include <nlohmann/detail/meta/call_std/end.hpp>
3336 // __ _____ _____ _____
3337 // __| | __| | | | JSON for Modern C++
3338 // | | |__ | | | | | | version 3.11.3
3339 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3340 //
3341 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3342 // SPDX-License-Identifier: MIT
3343
3344
3345
3346 // #include <nlohmann/detail/macro_scope.hpp>
3347
3348
3349 NLOHMANN_JSON_NAMESPACE_BEGIN
3350
3351 NLOHMANN_CAN_CALL_STD_FUNC_IMPL(end);
3352
3353 NLOHMANN_JSON_NAMESPACE_END
3354
3355 // #include <nlohmann/detail/meta/cpp_future.hpp>
3356
3357 // #include <nlohmann/detail/meta/detected.hpp>
3358
3359 // #include <nlohmann/json_fwd.hpp>
3360 // __ _____ _____ _____
3361 // __| | __| | | | JSON for Modern C++
3362 // | | |__ | | | | | | version 3.11.3
3363 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
3364 //
3365 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
3366 // SPDX-License-Identifier: MIT
3367
3368 #ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_
3369 #define INCLUDE_NLOHMANN_JSON_FWD_HPP_
3370
3371 #include <cstdint> // int64_t, uint64_t
3372 #include <map> // map
3373 #include <memory> // allocator
3374 #include <string> // string
3375 #include <vector> // vector
3376
3377 // #include <nlohmann/detail/abi_macros.hpp>
3378
3379
3380 /*!
3381 @brief namespace for Niels Lohmann
3382 @see https://github.com/nlohmann
3383 @since version 1.0.0
3384 */
3385 NLOHMANN_JSON_NAMESPACE_BEGIN
3386
3387 /*!
3388 @brief default JSONSerializer template argument
3389
3390 This serializer ignores the template arguments and uses ADL
3391 ([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
3392 for serialization.
3393 */
3394 template<typename T = void, typename SFINAE = void>
3395 struct adl_serializer;
3396
3397 /// a class to store JSON values
3398 /// @sa https://json.nlohmann.me/api/basic_json/
3399 template<template<typename U, typename V, typename... Args> class ObjectType =
3400 std::map,
3401 template<typename U, typename... Args> class ArrayType = std::vector,
3402 class StringType = std::string, class BooleanType = bool,
3403 class NumberIntegerType = std::int64_t,
3404 class NumberUnsignedType = std::uint64_t,
3405 class NumberFloatType = double,
3406 template<typename U> class AllocatorType = std::allocator,
3407 template<typename T, typename SFINAE = void> class JSONSerializer =
3408 adl_serializer,
3409 class BinaryType = std::vector<std::uint8_t>, // cppcheck-suppress syntaxError
3410 class CustomBaseClass = void>
3411 class basic_json;
3412
3413 /// @brief JSON Pointer defines a string syntax for identifying a specific value within a JSON document
3414 /// @sa https://json.nlohmann.me/api/json_pointer/
3415 template<typename RefStringType>
3416 class json_pointer;
3417
3418 /*!
3419 @brief default specialization
3420 @sa https://json.nlohmann.me/api/json/
3421 */
3422 using json = basic_json<>;
3423
3424 /// @brief a minimal map-like container that preserves insertion order
3425 /// @sa https://json.nlohmann.me/api/ordered_map/
3426 template<class Key, class T, class IgnoredLess, class Allocator>
3427 struct ordered_map;
3428
3429 /// @brief specialization that maintains the insertion order of object keys
3430 /// @sa https://json.nlohmann.me/api/ordered_json/
3431 using ordered_json = basic_json<nlohmann::ordered_map>;
3432
3433 NLOHMANN_JSON_NAMESPACE_END
3434
3435 #endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_
3436
3437
3438 NLOHMANN_JSON_NAMESPACE_BEGIN
3439 /*!
3440 @brief detail namespace with internal helper functions
3441
3442 This namespace collects functions that should not be exposed,
3443 implementations of some @ref basic_json methods, and meta-programming helpers.
3444
3445 @since version 2.1.0
3446 */
3447 namespace detail
3448 {
3449
3450 /////////////
3451 // helpers //
3452 /////////////
3453
3454 // Note to maintainers:
3455 //
3456 // Every trait in this file expects a non CV-qualified type.
3457 // The only exceptions are in the 'aliases for detected' section
3458 // (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
3459 //
3460 // In this case, T has to be properly CV-qualified to constraint the function arguments
3461 // (e.g. to_json(BasicJsonType&, const T&))
3462
3463 template<typename> struct is_basic_json : std::false_type {};
3464
3465 NLOHMANN_BASIC_JSON_TPL_DECLARATION
3466 struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
3467
3468 // used by exceptions create() member functions
3469 // true_type for pointer to possibly cv-qualified basic_json or std::nullptr_t
3470 // false_type otherwise
3471 template<typename BasicJsonContext>
3472 struct is_basic_json_context :
3473 std::integral_constant < bool,
3474 is_basic_json<typename std::remove_cv<typename std::remove_pointer<BasicJsonContext>::type>::type>::value
3475 || std::is_same<BasicJsonContext, std::nullptr_t>::value >
3476 {};
3477
3478 //////////////////////
3479 // json_ref helpers //
3480 //////////////////////
3481
3482 template<typename>
3483 class json_ref;
3484
3485 template<typename>
3486 struct is_json_ref : std::false_type {};
3487
3488 template<typename T>
3489 struct is_json_ref<json_ref<T>> : std::true_type {};
3490
3491 //////////////////////////
3492 // aliases for detected //
3493 //////////////////////////
3494
3495 template<typename T>
3496 using mapped_type_t = typename T::mapped_type;
3497
3498 template<typename T>
3499 using key_type_t = typename T::key_type;
3500
3501 template<typename T>
3502 using value_type_t = typename T::value_type;
3503
3504 template<typename T>
3505 using difference_type_t = typename T::difference_type;
3506
3507 template<typename T>
3508 using pointer_t = typename T::pointer;
3509
3510 template<typename T>
3511 using reference_t = typename T::reference;
3512
3513 template<typename T>
3514 using iterator_category_t = typename T::iterator_category;
3515
3516 template<typename T, typename... Args>
3517 using to_json_function = decltype(T::to_json(std::declval<Args>()...));
3518
3519 template<typename T, typename... Args>
3520 using from_json_function = decltype(T::from_json(std::declval<Args>()...));
3521
3522 template<typename T, typename U>
3523 using get_template_function = decltype(std::declval<T>().template get<U>());
3524
3525 // trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
3526 template<typename BasicJsonType, typename T, typename = void>
3527 struct has_from_json : std::false_type {};
3528
3529 // trait checking if j.get<T> is valid
3530 // use this trait instead of std::is_constructible or std::is_convertible,
3531 // both rely on, or make use of implicit conversions, and thus fail when T
3532 // has several constructors/operator= (see https://github.com/nlohmann/json/issues/958)
3533 template <typename BasicJsonType, typename T>
3534 struct is_getable
3535 {
3536 static constexpr bool value = is_detected<get_template_function, const BasicJsonType&, T>::value;
3537 };
3538
3539 template<typename BasicJsonType, typename T>
3540 struct has_from_json < BasicJsonType, T, enable_if_t < !is_basic_json<T>::value >>
3541 {
3542 using serializer = typename BasicJsonType::template json_serializer<T, void>;
3543
3544 static constexpr bool value =
3545 is_detected_exact<void, from_json_function, serializer,
3546 const BasicJsonType&, T&>::value;
3547 };
3548
3549 // This trait checks if JSONSerializer<T>::from_json(json const&) exists
3550 // this overload is used for non-default-constructible user-defined-types
3551 template<typename BasicJsonType, typename T, typename = void>
3552 struct has_non_default_from_json : std::false_type {};
3553
3554 template<typename BasicJsonType, typename T>
3555 struct has_non_default_from_json < BasicJsonType, T, enable_if_t < !is_basic_json<T>::value >>
3556 {
3557 using serializer = typename BasicJsonType::template json_serializer<T, void>;
3558
3559 static constexpr bool value =
3560 is_detected_exact<T, from_json_function, serializer,
3561 const BasicJsonType&>::value;
3562 };
3563
3564 // This trait checks if BasicJsonType::json_serializer<T>::to_json exists
3565 // Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
3566 template<typename BasicJsonType, typename T, typename = void>
3567 struct has_to_json : std::false_type {};
3568
3569 template<typename BasicJsonType, typename T>
3570 struct has_to_json < BasicJsonType, T, enable_if_t < !is_basic_json<T>::value >>
3571 {
3572 using serializer = typename BasicJsonType::template json_serializer<T, void>;
3573
3574 static constexpr bool value =
3575 is_detected_exact<void, to_json_function, serializer, BasicJsonType&,
3576 T>::value;
3577 };
3578
3579 template<typename T>
3580 using detect_key_compare = typename T::key_compare;
3581
3582 template<typename T>
3583 struct has_key_compare : std::integral_constant<bool, is_detected<detect_key_compare, T>::value> {};
3584
3585 // obtains the actual object key comparator
3586 template<typename BasicJsonType>
3587 struct actual_object_comparator
3588 {
3589 using object_t = typename BasicJsonType::object_t;
3590 using object_comparator_t = typename BasicJsonType::default_object_comparator_t;
3591 using type = typename std::conditional < has_key_compare<object_t>::value,
3592 typename object_t::key_compare, object_comparator_t>::type;
3593 };
3594
3595 template<typename BasicJsonType>
3596 using actual_object_comparator_t = typename actual_object_comparator<BasicJsonType>::type;
3597
3598 /////////////////
3599 // char_traits //
3600 /////////////////
3601
3602 // Primary template of char_traits calls std char_traits
3603 template<typename T>
3604 struct char_traits : std::char_traits<T>
3605 {};
3606
3607 // Explicitly define char traits for unsigned char since it is not standard
3608 template<>
3609 struct char_traits<unsigned char> : std::char_traits<char>
3610 {
3611 using char_type = unsigned char;
3612 using int_type = uint64_t;
3613
3614 // Redefine to_int_type function
3615 static int_type to_int_type(char_type c) noexcept
3616 {
3617 return static_cast<int_type>(c);
3618 }
3619
3620 static char_type to_char_type(int_type i) noexcept
3621 {
3622 return static_cast<char_type>(i);
3623 }
3624
3625 static constexpr int_type eof() noexcept
3626 {
3627 return static_cast<int_type>(EOF);
3628 }
3629 };
3630
3631 // Explicitly define char traits for signed char since it is not standard
3632 template<>
3633 struct char_traits<signed char> : std::char_traits<char>
3634 {
3635 using char_type = signed char;
3636 using int_type = uint64_t;
3637
3638 // Redefine to_int_type function
3639 static int_type to_int_type(char_type c) noexcept
3640 {
3641 return static_cast<int_type>(c);
3642 }
3643
3644 static char_type to_char_type(int_type i) noexcept
3645 {
3646 return static_cast<char_type>(i);
3647 }
3648
3649 static constexpr int_type eof() noexcept
3650 {
3651 return static_cast<int_type>(EOF);
3652 }
3653 };
3654
3655 ///////////////////
3656 // is_ functions //
3657 ///////////////////
3658
3659 // https://en.cppreference.com/w/cpp/types/conjunction
3660 template<class...> struct conjunction : std::true_type { };
3661 template<class B> struct conjunction<B> : B { };
3662 template<class B, class... Bn>
3663 struct conjunction<B, Bn...>
3664 : std::conditional<static_cast<bool>(B::value), conjunction<Bn...>, B>::type {};
3665
3666 // https://en.cppreference.com/w/cpp/types/negation
3667 template<class B> struct negation : std::integral_constant < bool, !B::value > { };
3668
3669 // Reimplementation of is_constructible and is_default_constructible, due to them being broken for
3670 // std::pair and std::tuple until LWG 2367 fix (see https://cplusplus.github.io/LWG/lwg-defects.html#2367).
3671 // This causes compile errors in e.g. clang 3.5 or gcc 4.9.
3672 template <typename T>
3673 struct is_default_constructible : std::is_default_constructible<T> {};
3674
3675 template <typename T1, typename T2>
3676 struct is_default_constructible<std::pair<T1, T2>>
3677 : conjunction<is_default_constructible<T1>, is_default_constructible<T2>> {};
3678
3679 template <typename T1, typename T2>
3680 struct is_default_constructible<const std::pair<T1, T2>>
3681 : conjunction<is_default_constructible<T1>, is_default_constructible<T2>> {};
3682
3683 template <typename... Ts>
3684 struct is_default_constructible<std::tuple<Ts...>>
3685 : conjunction<is_default_constructible<Ts>...> {};
3686
3687 template <typename... Ts>
3688 struct is_default_constructible<const std::tuple<Ts...>>
3689 : conjunction<is_default_constructible<Ts>...> {};
3690
3691 template <typename T, typename... Args>
3692 struct is_constructible : std::is_constructible<T, Args...> {};
3693
3694 template <typename T1, typename T2>
3695 struct is_constructible<std::pair<T1, T2>> : is_default_constructible<std::pair<T1, T2>> {};
3696
3697 template <typename T1, typename T2>
3698 struct is_constructible<const std::pair<T1, T2>> : is_default_constructible<const std::pair<T1, T2>> {};
3699
3700 template <typename... Ts>
3701 struct is_constructible<std::tuple<Ts...>> : is_default_constructible<std::tuple<Ts...>> {};
3702
3703 template <typename... Ts>
3704 struct is_constructible<const std::tuple<Ts...>> : is_default_constructible<const std::tuple<Ts...>> {};
3705
3706 template<typename T, typename = void>
3707 struct is_iterator_traits : std::false_type {};
3708
3709 template<typename T>
3710 struct is_iterator_traits<iterator_traits<T>>
3711 {
3712 private:
3713 using traits = iterator_traits<T>;
3714
3715 public:
3716 static constexpr auto value =
3717 is_detected<value_type_t, traits>::value &&
3718 is_detected<difference_type_t, traits>::value &&
3719 is_detected<pointer_t, traits>::value &&
3720 is_detected<iterator_category_t, traits>::value &&
3721 is_detected<reference_t, traits>::value;
3722 };
3723
3724 template<typename T>
3725 struct is_range
3726 {
3727 private:
3728 using t_ref = typename std::add_lvalue_reference<T>::type;
3729
3730 using iterator = detected_t<result_of_begin, t_ref>;
3731 using sentinel = detected_t<result_of_end, t_ref>;
3732
3733 // to be 100% correct, it should use https://en.cppreference.com/w/cpp/iterator/input_or_output_iterator
3734 // and https://en.cppreference.com/w/cpp/iterator/sentinel_for
3735 // but reimplementing these would be too much work, as a lot of other concepts are used underneath
3736 static constexpr auto is_iterator_begin =
3737 is_iterator_traits<iterator_traits<iterator>>::value;
3738
3739 public:
3740 static constexpr bool value = !std::is_same<iterator, nonesuch>::value && !std::is_same<sentinel, nonesuch>::value && is_iterator_begin;
3741 };
3742
3743 template<typename R>
3744 using iterator_t = enable_if_t<is_range<R>::value, result_of_begin<decltype(std::declval<R&>())>>;
3745
3746 template<typename T>
3747 using range_value_t = value_type_t<iterator_traits<iterator_t<T>>>;
3748
3749 // The following implementation of is_complete_type is taken from
3750 // https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/
3751 // and is written by Xiang Fan who agreed to using it in this library.
3752
3753 template<typename T, typename = void>
3754 struct is_complete_type : std::false_type {};
3755
3756 template<typename T>
3757 struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
3758
3759 template<typename BasicJsonType, typename CompatibleObjectType,
3760 typename = void>
3761 struct is_compatible_object_type_impl : std::false_type {};
3762
3763 template<typename BasicJsonType, typename CompatibleObjectType>
3764 struct is_compatible_object_type_impl <
3765 BasicJsonType, CompatibleObjectType,
3766 enable_if_t < is_detected<mapped_type_t, CompatibleObjectType>::value&&
3767 is_detected<key_type_t, CompatibleObjectType>::value >>
3768 {
3769 using object_t = typename BasicJsonType::object_t;
3770
3771 // macOS's is_constructible does not play well with nonesuch...
3772 static constexpr bool value =
3773 is_constructible<typename object_t::key_type,
3774 typename CompatibleObjectType::key_type>::value &&
3775 is_constructible<typename object_t::mapped_type,
3776 typename CompatibleObjectType::mapped_type>::value;
3777 };
3778
3779 template<typename BasicJsonType, typename CompatibleObjectType>
3780 struct is_compatible_object_type
3781 : is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
3782
3783 template<typename BasicJsonType, typename ConstructibleObjectType,
3784 typename = void>
3785 struct is_constructible_object_type_impl : std::false_type {};
3786
3787 template<typename BasicJsonType, typename ConstructibleObjectType>
3788 struct is_constructible_object_type_impl <
3789 BasicJsonType, ConstructibleObjectType,
3790 enable_if_t < is_detected<mapped_type_t, ConstructibleObjectType>::value&&
3791 is_detected<key_type_t, ConstructibleObjectType>::value >>
3792 {
3793 using object_t = typename BasicJsonType::object_t;
3794
3795 static constexpr bool value =
3796 (is_default_constructible<ConstructibleObjectType>::value &&
3797 (std::is_move_assignable<ConstructibleObjectType>::value ||
3798 std::is_copy_assignable<ConstructibleObjectType>::value) &&
3799 (is_constructible<typename ConstructibleObjectType::key_type,
3800 typename object_t::key_type>::value &&
3801 std::is_same <
3802 typename object_t::mapped_type,
3803 typename ConstructibleObjectType::mapped_type >::value)) ||
3804 (has_from_json<BasicJsonType,
3805 typename ConstructibleObjectType::mapped_type>::value ||
3806 has_non_default_from_json <
3807 BasicJsonType,
3808 typename ConstructibleObjectType::mapped_type >::value);
3809 };
3810
3811 template<typename BasicJsonType, typename ConstructibleObjectType>
3812 struct is_constructible_object_type
3813 : is_constructible_object_type_impl<BasicJsonType,
3814 ConstructibleObjectType> {};
3815
3816 template<typename BasicJsonType, typename CompatibleStringType>
3817 struct is_compatible_string_type
3818 {
3819 static constexpr auto value =
3820 is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value;
3821 };
3822
3823 template<typename BasicJsonType, typename ConstructibleStringType>
3824 struct is_constructible_string_type
3825 {
3826 // launder type through decltype() to fix compilation failure on ICPC
3827 #ifdef __INTEL_COMPILER
3828 using laundered_type = decltype(std::declval<ConstructibleStringType>());
3829 #else
3830 using laundered_type = ConstructibleStringType;
3831 #endif
3832
3833 static constexpr auto value =
3834 conjunction <
3835 is_constructible<laundered_type, typename BasicJsonType::string_t>,
3836 is_detected_exact<typename BasicJsonType::string_t::value_type,
3837 value_type_t, laundered_type >>::value;
3838 };
3839
3840 template<typename BasicJsonType, typename CompatibleArrayType, typename = void>
3841 struct is_compatible_array_type_impl : std::false_type {};
3842
3843 template<typename BasicJsonType, typename CompatibleArrayType>
3844 struct is_compatible_array_type_impl <
3845 BasicJsonType, CompatibleArrayType,
3846 enable_if_t <
3847 is_detected<iterator_t, CompatibleArrayType>::value&&
3848 is_iterator_traits<iterator_traits<detected_t<iterator_t, CompatibleArrayType>>>::value&&
3849 // special case for types like std::filesystem::path whose iterator's value_type are themselves
3850 // c.f. https://github.com/nlohmann/json/pull/3073
3851 !std::is_same<CompatibleArrayType, detected_t<range_value_t, CompatibleArrayType>>::value >>
3852 {
3853 static constexpr bool value =
3854 is_constructible<BasicJsonType,
3855 range_value_t<CompatibleArrayType>>::value;
3856 };
3857
3858 template<typename BasicJsonType, typename CompatibleArrayType>
3859 struct is_compatible_array_type
3860 : is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
3861
3862 template<typename BasicJsonType, typename ConstructibleArrayType, typename = void>
3863 struct is_constructible_array_type_impl : std::false_type {};
3864
3865 template<typename BasicJsonType, typename ConstructibleArrayType>
3866 struct is_constructible_array_type_impl <
3867 BasicJsonType, ConstructibleArrayType,
3868 enable_if_t<std::is_same<ConstructibleArrayType,
3869 typename BasicJsonType::value_type>::value >>
3870 : std::true_type {};
3871
3872 template<typename BasicJsonType, typename ConstructibleArrayType>
3873 struct is_constructible_array_type_impl <
3874 BasicJsonType, ConstructibleArrayType,
3875 enable_if_t < !std::is_same<ConstructibleArrayType,
3876 typename BasicJsonType::value_type>::value&&
3877 !is_compatible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
3878 is_default_constructible<ConstructibleArrayType>::value&&
3879 (std::is_move_assignable<ConstructibleArrayType>::value ||
3880 std::is_copy_assignable<ConstructibleArrayType>::value)&&
3881 is_detected<iterator_t, ConstructibleArrayType>::value&&
3882 is_iterator_traits<iterator_traits<detected_t<iterator_t, ConstructibleArrayType>>>::value&&
3883 is_detected<range_value_t, ConstructibleArrayType>::value&&
3884 // special case for types like std::filesystem::path whose iterator's value_type are themselves
3885 // c.f. https://github.com/nlohmann/json/pull/3073
3886 !std::is_same<ConstructibleArrayType, detected_t<range_value_t, ConstructibleArrayType>>::value&&
3887 is_complete_type <
3888 detected_t<range_value_t, ConstructibleArrayType >>::value >>
3889 {
3890 using value_type = range_value_t<ConstructibleArrayType>;
3891
3892 static constexpr bool value =
3893 std::is_same<value_type,
3894 typename BasicJsonType::array_t::value_type>::value ||
3895 has_from_json<BasicJsonType,
3896 value_type>::value ||
3897 has_non_default_from_json <
3898 BasicJsonType,
3899 value_type >::value;
3900 };
3901
3902 template<typename BasicJsonType, typename ConstructibleArrayType>
3903 struct is_constructible_array_type
3904 : is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
3905
3906 template<typename RealIntegerType, typename CompatibleNumberIntegerType,
3907 typename = void>
3908 struct is_compatible_integer_type_impl : std::false_type {};
3909
3910 template<typename RealIntegerType, typename CompatibleNumberIntegerType>
3911 struct is_compatible_integer_type_impl <
3912 RealIntegerType, CompatibleNumberIntegerType,
3913 enable_if_t < std::is_integral<RealIntegerType>::value&&
3914 std::is_integral<CompatibleNumberIntegerType>::value&&
3915 !std::is_same<bool, CompatibleNumberIntegerType>::value >>
3916 {
3917 // is there an assert somewhere on overflows?
3918 using RealLimits = std::numeric_limits<RealIntegerType>;
3919 using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
3920
3921 static constexpr auto value =
3922 is_constructible<RealIntegerType,
3923 CompatibleNumberIntegerType>::value &&
3924 CompatibleLimits::is_integer &&
3925 RealLimits::is_signed == CompatibleLimits::is_signed;
3926 };
3927
3928 template<typename RealIntegerType, typename CompatibleNumberIntegerType>
3929 struct is_compatible_integer_type
3930 : is_compatible_integer_type_impl<RealIntegerType,
3931 CompatibleNumberIntegerType> {};
3932
3933 template<typename BasicJsonType, typename CompatibleType, typename = void>
3934 struct is_compatible_type_impl: std::false_type {};
3935
3936 template<typename BasicJsonType, typename CompatibleType>
3937 struct is_compatible_type_impl <
3938 BasicJsonType, CompatibleType,
3939 enable_if_t<is_complete_type<CompatibleType>::value >>
3940 {
3941 static constexpr bool value =
3942 has_to_json<BasicJsonType, CompatibleType>::value;
3943 };
3944
3945 template<typename BasicJsonType, typename CompatibleType>
3946 struct is_compatible_type
3947 : is_compatible_type_impl<BasicJsonType, CompatibleType> {};
3948
3949 template<typename T1, typename T2>
3950 struct is_constructible_tuple : std::false_type {};
3951
3952 template<typename T1, typename... Args>
3953 struct is_constructible_tuple<T1, std::tuple<Args...>> : conjunction<is_constructible<T1, Args>...> {};
3954
3955 template<typename BasicJsonType, typename T>
3956 struct is_json_iterator_of : std::false_type {};
3957
3958 template<typename BasicJsonType>
3959 struct is_json_iterator_of<BasicJsonType, typename BasicJsonType::iterator> : std::true_type {};
3960
3961 template<typename BasicJsonType>
3962 struct is_json_iterator_of<BasicJsonType, typename BasicJsonType::const_iterator> : std::true_type
3963 {};
3964
3965 // checks if a given type T is a template specialization of Primary
3966 template<template <typename...> class Primary, typename T>
3967 struct is_specialization_of : std::false_type {};
3968
3969 template<template <typename...> class Primary, typename... Args>
3970 struct is_specialization_of<Primary, Primary<Args...>> : std::true_type {};
3971
3972 template<typename T>
3973 using is_json_pointer = is_specialization_of<::nlohmann::json_pointer, uncvref_t<T>>;
3974
3975 // checks if A and B are comparable using Compare functor
3976 template<typename Compare, typename A, typename B, typename = void>
3977 struct is_comparable : std::false_type {};
3978
3979 template<typename Compare, typename A, typename B>
3980 struct is_comparable<Compare, A, B, void_t<
3981 decltype(std::declval<Compare>()(std::declval<A>(), std::declval<B>())),
3982 decltype(std::declval<Compare>()(std::declval<B>(), std::declval<A>()))
3983 >> : std::true_type {};
3984
3985 template<typename T>
3986 using detect_is_transparent = typename T::is_transparent;
3987
3988 // type trait to check if KeyType can be used as object key (without a BasicJsonType)
3989 // see is_usable_as_basic_json_key_type below
3990 template<typename Comparator, typename ObjectKeyType, typename KeyTypeCVRef, bool RequireTransparentComparator = true,
3991 bool ExcludeObjectKeyType = RequireTransparentComparator, typename KeyType = uncvref_t<KeyTypeCVRef>>
3992 using is_usable_as_key_type = typename std::conditional <
3993 is_comparable<Comparator, ObjectKeyType, KeyTypeCVRef>::value
3994 && !(ExcludeObjectKeyType && std::is_same<KeyType,
3995 ObjectKeyType>::value)
3996 && (!RequireTransparentComparator
3997 || is_detected <detect_is_transparent, Comparator>::value)
3998 && !is_json_pointer<KeyType>::value,
3999 std::true_type,
4000 std::false_type >::type;
4001
4002 // type trait to check if KeyType can be used as object key
4003 // true if:
4004 // - KeyType is comparable with BasicJsonType::object_t::key_type
4005 // - if ExcludeObjectKeyType is true, KeyType is not BasicJsonType::object_t::key_type
4006 // - the comparator is transparent or RequireTransparentComparator is false
4007 // - KeyType is not a JSON iterator or json_pointer
4008 template<typename BasicJsonType, typename KeyTypeCVRef, bool RequireTransparentComparator = true,
4009 bool ExcludeObjectKeyType = RequireTransparentComparator, typename KeyType = uncvref_t<KeyTypeCVRef>>
4010 using is_usable_as_basic_json_key_type = typename std::conditional <
4011 is_usable_as_key_type<typename BasicJsonType::object_comparator_t,
4012 typename BasicJsonType::object_t::key_type, KeyTypeCVRef,
4013 RequireTransparentComparator, ExcludeObjectKeyType>::value
4014 && !is_json_iterator_of<BasicJsonType, KeyType>::value,
4015 std::true_type,
4016 std::false_type >::type;
4017
4018 template<typename ObjectType, typename KeyType>
4019 using detect_erase_with_key_type = decltype(std::declval<ObjectType&>().erase(std::declval<KeyType>()));
4020
4021 // type trait to check if object_t has an erase() member functions accepting KeyType
4022 template<typename BasicJsonType, typename KeyType>
4023 using has_erase_with_key_type = typename std::conditional <
4024 is_detected <
4025 detect_erase_with_key_type,
4026 typename BasicJsonType::object_t, KeyType >::value,
4027 std::true_type,
4028 std::false_type >::type;
4029
4030 // a naive helper to check if a type is an ordered_map (exploits the fact that
4031 // ordered_map inherits capacity() from std::vector)
4032 template <typename T>
4033 struct is_ordered_map
4034 {
4035 using one = char;
4036
4037 struct two
4038 {
4039 char x[2]; // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
4040 };
4041
4042 template <typename C> static one test( decltype(&C::capacity) ) ;
4043 template <typename C> static two test(...);
4044
4045 enum { value = sizeof(test<T>(nullptr)) == sizeof(char) }; // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
4046 };
4047
4048 // to avoid useless casts (see https://github.com/nlohmann/json/issues/2893#issuecomment-889152324)
4049 template < typename T, typename U, enable_if_t < !std::is_same<T, U>::value, int > = 0 >
4050 T conditional_static_cast(U value)
4051 {
4052 return static_cast<T>(value);
4053 }
4054
4055 template<typename T, typename U, enable_if_t<std::is_same<T, U>::value, int> = 0>
4056 T conditional_static_cast(U value)
4057 {
4058 return value;
4059 }
4060
4061 template<typename... Types>
4062 using all_integral = conjunction<std::is_integral<Types>...>;
4063
4064 template<typename... Types>
4065 using all_signed = conjunction<std::is_signed<Types>...>;
4066
4067 template<typename... Types>
4068 using all_unsigned = conjunction<std::is_unsigned<Types>...>;
4069
4070 // there's a disjunction trait in another PR; replace when merged
4071 template<typename... Types>
4072 using same_sign = std::integral_constant < bool,
4073 all_signed<Types...>::value || all_unsigned<Types...>::value >;
4074
4075 template<typename OfType, typename T>
4076 using never_out_of_range = std::integral_constant < bool,
4077 (std::is_signed<OfType>::value && (sizeof(T) < sizeof(OfType)))
4078 || (same_sign<OfType, T>::value && sizeof(OfType) == sizeof(T)) >;
4079
4080 template<typename OfType, typename T,
4081 bool OfTypeSigned = std::is_signed<OfType>::value,
4082 bool TSigned = std::is_signed<T>::value>
4083 struct value_in_range_of_impl2;
4084
4085 template<typename OfType, typename T>
4086 struct value_in_range_of_impl2<OfType, T, false, false>
4087 {
4088 static constexpr bool test(T val)
4089 {
4090 using CommonType = typename std::common_type<OfType, T>::type;
4091 return static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
4092 }
4093 };
4094
4095 template<typename OfType, typename T>
4096 struct value_in_range_of_impl2<OfType, T, true, false>
4097 {
4098 static constexpr bool test(T val)
4099 {
4100 using CommonType = typename std::common_type<OfType, T>::type;
4101 return static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
4102 }
4103 };
4104
4105 template<typename OfType, typename T>
4106 struct value_in_range_of_impl2<OfType, T, false, true>
4107 {
4108 static constexpr bool test(T val)
4109 {
4110 using CommonType = typename std::common_type<OfType, T>::type;
4111 return val >= 0 && static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
4112 }
4113 };
4114
4115 template<typename OfType, typename T>
4116 struct value_in_range_of_impl2<OfType, T, true, true>
4117 {
4118 static constexpr bool test(T val)
4119 {
4120 using CommonType = typename std::common_type<OfType, T>::type;
4121 return static_cast<CommonType>(val) >= static_cast<CommonType>((std::numeric_limits<OfType>::min)())
4122 && static_cast<CommonType>(val) <= static_cast<CommonType>((std::numeric_limits<OfType>::max)());
4123 }
4124 };
4125
4126 template<typename OfType, typename T,
4127 bool NeverOutOfRange = never_out_of_range<OfType, T>::value,
4128 typename = detail::enable_if_t<all_integral<OfType, T>::value>>
4129 struct value_in_range_of_impl1;
4130
4131 template<typename OfType, typename T>
4132 struct value_in_range_of_impl1<OfType, T, false>
4133 {
4134 static constexpr bool test(T val)
4135 {
4136 return value_in_range_of_impl2<OfType, T>::test(val);
4137 }
4138 };
4139
4140 template<typename OfType, typename T>
4141 struct value_in_range_of_impl1<OfType, T, true>
4142 {
4143 static constexpr bool test(T /*val*/)
4144 {
4145 return true;
4146 }
4147 };
4148
4149 template<typename OfType, typename T>
4150 inline constexpr bool value_in_range_of(T val)
4151 {
4152 return value_in_range_of_impl1<OfType, T>::test(val);
4153 }
4154
4155 template<bool Value>
4156 using bool_constant = std::integral_constant<bool, Value>;
4157
4158 ///////////////////////////////////////////////////////////////////////////////
4159 // is_c_string
4160 ///////////////////////////////////////////////////////////////////////////////
4161
4162 namespace impl
4163 {
4164
4165 template<typename T>
4166 inline constexpr bool is_c_string()
4167 {
4168 using TUnExt = typename std::remove_extent<T>::type;
4169 using TUnCVExt = typename std::remove_cv<TUnExt>::type;
4170 using TUnPtr = typename std::remove_pointer<T>::type;
4171 using TUnCVPtr = typename std::remove_cv<TUnPtr>::type;
4172 return
4173 (std::is_array<T>::value && std::is_same<TUnCVExt, char>::value)
4174 || (std::is_pointer<T>::value && std::is_same<TUnCVPtr, char>::value);
4175 }
4176
4177 } // namespace impl
4178
4179 // checks whether T is a [cv] char */[cv] char[] C string
4180 template<typename T>
4181 struct is_c_string : bool_constant<impl::is_c_string<T>()> {};
4182
4183 template<typename T>
4184 using is_c_string_uncvref = is_c_string<uncvref_t<T>>;
4185
4186 ///////////////////////////////////////////////////////////////////////////////
4187 // is_transparent
4188 ///////////////////////////////////////////////////////////////////////////////
4189
4190 namespace impl
4191 {
4192
4193 template<typename T>
4194 inline constexpr bool is_transparent()
4195 {
4196 return is_detected<detect_is_transparent, T>::value;
4197 }
4198
4199 } // namespace impl
4200
4201 // checks whether T has a member named is_transparent
4202 template<typename T>
4203 struct is_transparent : bool_constant<impl::is_transparent<T>()> {};
4204
4205 ///////////////////////////////////////////////////////////////////////////////
4206
4207 } // namespace detail
4208 NLOHMANN_JSON_NAMESPACE_END
4209
4210 // #include <nlohmann/detail/string_concat.hpp>
4211 // __ _____ _____ _____
4212 // __| | __| | | | JSON for Modern C++
4213 // | | |__ | | | | | | version 3.11.3
4214 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
4215 //
4216 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
4217 // SPDX-License-Identifier: MIT
4218
4219
4220
4221 #include <cstring> // strlen
4222 #include <string> // string
4223 #include <utility> // forward
4224
4225 // #include <nlohmann/detail/meta/cpp_future.hpp>
4226
4227 // #include <nlohmann/detail/meta/detected.hpp>
4228
4229
4230 NLOHMANN_JSON_NAMESPACE_BEGIN
4231 namespace detail
4232 {
4233
4234 inline std::size_t concat_length()
4235 {
4236 return 0;
4237 }
4238
4239 template<typename... Args>
4240 inline std::size_t concat_length(const char* cstr, const Args& ... rest);
4241
4242 template<typename StringType, typename... Args>
4243 inline std::size_t concat_length(const StringType& str, const Args& ... rest);
4244
4245 template<typename... Args>
4246 inline std::size_t concat_length(const char /*c*/, const Args& ... rest)
4247 {
4248 return 1 + concat_length(rest...);
4249 }
4250
4251 template<typename... Args>
4252 inline std::size_t concat_length(const char* cstr, const Args& ... rest)
4253 {
4254 // cppcheck-suppress ignoredReturnValue
4255 return ::strlen(cstr) + concat_length(rest...);
4256 }
4257
4258 template<typename StringType, typename... Args>
4259 inline std::size_t concat_length(const StringType& str, const Args& ... rest)
4260 {
4261 return str.size() + concat_length(rest...);
4262 }
4263
4264 template<typename OutStringType>
4265 inline void concat_into(OutStringType& /*out*/)
4266 {}
4267
4268 template<typename StringType, typename Arg>
4269 using string_can_append = decltype(std::declval<StringType&>().append(std::declval < Arg && > ()));
4270
4271 template<typename StringType, typename Arg>
4272 using detect_string_can_append = is_detected<string_can_append, StringType, Arg>;
4273
4274 template<typename StringType, typename Arg>
4275 using string_can_append_op = decltype(std::declval<StringType&>() += std::declval < Arg && > ());
4276
4277 template<typename StringType, typename Arg>
4278 using detect_string_can_append_op = is_detected<string_can_append_op, StringType, Arg>;
4279
4280 template<typename StringType, typename Arg>
4281 using string_can_append_iter = decltype(std::declval<StringType&>().append(std::declval<const Arg&>().begin(), std::declval<const Arg&>().end()));
4282
4283 template<typename StringType, typename Arg>
4284 using detect_string_can_append_iter = is_detected<string_can_append_iter, StringType, Arg>;
4285
4286 template<typename StringType, typename Arg>
4287 using string_can_append_data = decltype(std::declval<StringType&>().append(std::declval<const Arg&>().data(), std::declval<const Arg&>().size()));
4288
4289 template<typename StringType, typename Arg>
4290 using detect_string_can_append_data = is_detected<string_can_append_data, StringType, Arg>;
4291
4292 template < typename OutStringType, typename Arg, typename... Args,
4293 enable_if_t < !detect_string_can_append<OutStringType, Arg>::value
4294 && detect_string_can_append_op<OutStringType, Arg>::value, int > = 0 >
4295 inline void concat_into(OutStringType& out, Arg && arg, Args && ... rest);
4296
4297 template < typename OutStringType, typename Arg, typename... Args,
4298 enable_if_t < !detect_string_can_append<OutStringType, Arg>::value
4299 && !detect_string_can_append_op<OutStringType, Arg>::value
4300 && detect_string_can_append_iter<OutStringType, Arg>::value, int > = 0 >
4301 inline void concat_into(OutStringType& out, const Arg& arg, Args && ... rest);
4302
4303 template < typename OutStringType, typename Arg, typename... Args,
4304 enable_if_t < !detect_string_can_append<OutStringType, Arg>::value
4305 && !detect_string_can_append_op<OutStringType, Arg>::value
4306 && !detect_string_can_append_iter<OutStringType, Arg>::value
4307 && detect_string_can_append_data<OutStringType, Arg>::value, int > = 0 >
4308 inline void concat_into(OutStringType& out, const Arg& arg, Args && ... rest);
4309
4310 template<typename OutStringType, typename Arg, typename... Args,
4311 enable_if_t<detect_string_can_append<OutStringType, Arg>::value, int> = 0>
4312 inline void concat_into(OutStringType& out, Arg && arg, Args && ... rest)
4313 {
4314 out.append(std::forward<Arg>(arg));
4315 concat_into(out, std::forward<Args>(rest)...);
4316 }
4317
4318 template < typename OutStringType, typename Arg, typename... Args,
4319 enable_if_t < !detect_string_can_append<OutStringType, Arg>::value
4320 && detect_string_can_append_op<OutStringType, Arg>::value, int > >
4321 inline void concat_into(OutStringType& out, Arg&& arg, Args&& ... rest)
4322 {
4323 out += std::forward<Arg>(arg);
4324 concat_into(out, std::forward<Args>(rest)...);
4325 }
4326
4327 template < typename OutStringType, typename Arg, typename... Args,
4328 enable_if_t < !detect_string_can_append<OutStringType, Arg>::value
4329 && !detect_string_can_append_op<OutStringType, Arg>::value
4330 && detect_string_can_append_iter<OutStringType, Arg>::value, int > >
4331 inline void concat_into(OutStringType& out, const Arg& arg, Args&& ... rest)
4332 {
4333 out.append(arg.begin(), arg.end());
4334 concat_into(out, std::forward<Args>(rest)...);
4335 }
4336
4337 template < typename OutStringType, typename Arg, typename... Args,
4338 enable_if_t < !detect_string_can_append<OutStringType, Arg>::value
4339 && !detect_string_can_append_op<OutStringType, Arg>::value
4340 && !detect_string_can_append_iter<OutStringType, Arg>::value
4341 && detect_string_can_append_data<OutStringType, Arg>::value, int > >
4342 inline void concat_into(OutStringType& out, const Arg& arg, Args&& ... rest)
4343 {
4344 out.append(arg.data(), arg.size());
4345 concat_into(out, std::forward<Args>(rest)...);
4346 }
4347
4348 template<typename OutStringType = std::string, typename... Args>
4349 inline OutStringType concat(Args && ... args)
4350 {
4351 OutStringType str;
4352 str.reserve(concat_length(args...));
4353 concat_into(str, std::forward<Args>(args)...);
4354 return str;
4355 }
4356
4357 } // namespace detail
4358 NLOHMANN_JSON_NAMESPACE_END
4359
4360
4361 NLOHMANN_JSON_NAMESPACE_BEGIN
4362 namespace detail
4363 {
4364
4365 ////////////////
4366 // exceptions //
4367 ////////////////
4368
4369 /// @brief general exception of the @ref basic_json class
4370 /// @sa https://json.nlohmann.me/api/basic_json/exception/
4371 class exception : public std::exception
4372 {
4373 public:
4374 /// returns the explanatory string
4375 const char* what() const noexcept override
4376 {
4377 return m.what();
4378 }
4379
4380 /// the id of the exception
4381 const int id; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
4382
4383 protected:
4384 JSON_HEDLEY_NON_NULL(3)
4385 exception(int id_, const char* what_arg) : id(id_), m(what_arg) {} // NOLINT(bugprone-throw-keyword-missing)
4386
4387 static std::string name(const std::string& ename, int id_)
4388 {
4389 return concat("[json.exception.", ename, '.', std::to_string(id_), "] ");
4390 }
4391
4392 static std::string diagnostics(std::nullptr_t /*leaf_element*/)
4393 {
4394 return "";
4395 }
4396
4397 template<typename BasicJsonType>
4398 static std::string diagnostics(const BasicJsonType* leaf_element)
4399 {
4400 #if JSON_DIAGNOSTICS
4401 std::vector<std::string> tokens;
4402 for (const auto* current = leaf_element; current != nullptr && current->m_parent != nullptr; current = current->m_parent)
4403 {
4404 switch (current->m_parent->type())
4405 {
4406 case value_t::array:
4407 {
4408 for (std::size_t i = 0; i < current->m_parent->m_data.m_value.array->size(); ++i)
4409 {
4410 if (&current->m_parent->m_data.m_value.array->operator[](i) == current)
4411 {
4412 tokens.emplace_back(std::to_string(i));
4413 break;
4414 }
4415 }
4416 break;
4417 }
4418
4419 case value_t::object:
4420 {
4421 for (const auto& element : *current->m_parent->m_data.m_value.object)
4422 {
4423 if (&element.second == current)
4424 {
4425 tokens.emplace_back(element.first.c_str());
4426 break;
4427 }
4428 }
4429 break;
4430 }
4431
4432 case value_t::null: // LCOV_EXCL_LINE
4433 case value_t::string: // LCOV_EXCL_LINE
4434 case value_t::boolean: // LCOV_EXCL_LINE
4435 case value_t::number_integer: // LCOV_EXCL_LINE
4436 case value_t::number_unsigned: // LCOV_EXCL_LINE
4437 case value_t::number_float: // LCOV_EXCL_LINE
4438 case value_t::binary: // LCOV_EXCL_LINE
4439 case value_t::discarded: // LCOV_EXCL_LINE
4440 default: // LCOV_EXCL_LINE
4441 break; // LCOV_EXCL_LINE
4442 }
4443 }
4444
4445 if (tokens.empty())
4446 {
4447 return "";
4448 }
4449
4450 auto str = std::accumulate(tokens.rbegin(), tokens.rend(), std::string{},
4451 [](const std::string & a, const std::string & b)
4452 {
4453 return concat(a, '/', detail::escape(b));
4454 });
4455 return concat('(', str, ") ");
4456 #else
4457 static_cast<void>(leaf_element);
4458 return "";
4459 #endif
4460 }
4461
4462 private:
4463 /// an exception object as storage for error messages
4464 std::runtime_error m;
4465 };
4466
4467 /// @brief exception indicating a parse error
4468 /// @sa https://json.nlohmann.me/api/basic_json/parse_error/
4469 class parse_error : public exception
4470 {
4471 public:
4472 /*!
4473 @brief create a parse error exception
4474 @param[in] id_ the id of the exception
4475 @param[in] pos the position where the error occurred (or with
4476 chars_read_total=0 if the position cannot be
4477 determined)
4478 @param[in] what_arg the explanatory string
4479 @return parse_error object
4480 */
4481 template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
4482 static parse_error create(int id_, const position_t& pos, const std::string& what_arg, BasicJsonContext context)
4483 {
4484 const std::string w = concat(exception::name("parse_error", id_), "parse error",
4485 position_string(pos), ": ", exception::diagnostics(context), what_arg);
4486 return {id_, pos.chars_read_total, w.c_str()};
4487 }
4488
4489 template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
4490 static parse_error create(int id_, std::size_t byte_, const std::string& what_arg, BasicJsonContext context)
4491 {
4492 const std::string w = concat(exception::name("parse_error", id_), "parse error",
4493 (byte_ != 0 ? (concat(" at byte ", std::to_string(byte_))) : ""),
4494 ": ", exception::diagnostics(context), what_arg);
4495 return {id_, byte_, w.c_str()};
4496 }
4497
4498 /*!
4499 @brief byte index of the parse error
4500
4501 The byte index of the last read character in the input file.
4502
4503 @note For an input with n bytes, 1 is the index of the first character and
4504 n+1 is the index of the terminating null byte or the end of file.
4505 This also holds true when reading a byte vector (CBOR or MessagePack).
4506 */
4507 const std::size_t byte;
4508
4509 private:
4510 parse_error(int id_, std::size_t byte_, const char* what_arg)
4511 : exception(id_, what_arg), byte(byte_) {}
4512
4513 static std::string position_string(const position_t& pos)
4514 {
4515 return concat(" at line ", std::to_string(pos.lines_read + 1),
4516 ", column ", std::to_string(pos.chars_read_current_line));
4517 }
4518 };
4519
4520 /// @brief exception indicating errors with iterators
4521 /// @sa https://json.nlohmann.me/api/basic_json/invalid_iterator/
4522 class invalid_iterator : public exception
4523 {
4524 public:
4525 template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
4526 static invalid_iterator create(int id_, const std::string& what_arg, BasicJsonContext context)
4527 {
4528 const std::string w = concat(exception::name("invalid_iterator", id_), exception::diagnostics(context), what_arg);
4529 return {id_, w.c_str()};
4530 }
4531
4532 private:
4533 JSON_HEDLEY_NON_NULL(3)
4534 invalid_iterator(int id_, const char* what_arg)
4535 : exception(id_, what_arg) {}
4536 };
4537
4538 /// @brief exception indicating executing a member function with a wrong type
4539 /// @sa https://json.nlohmann.me/api/basic_json/type_error/
4540 class type_error : public exception
4541 {
4542 public:
4543 template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
4544 static type_error create(int id_, const std::string& what_arg, BasicJsonContext context)
4545 {
4546 const std::string w = concat(exception::name("type_error", id_), exception::diagnostics(context), what_arg);
4547 return {id_, w.c_str()};
4548 }
4549
4550 private:
4551 JSON_HEDLEY_NON_NULL(3)
4552 type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
4553 };
4554
4555 /// @brief exception indicating access out of the defined range
4556 /// @sa https://json.nlohmann.me/api/basic_json/out_of_range/
4557 class out_of_range : public exception
4558 {
4559 public:
4560 template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
4561 static out_of_range create(int id_, const std::string& what_arg, BasicJsonContext context)
4562 {
4563 const std::string w = concat(exception::name("out_of_range", id_), exception::diagnostics(context), what_arg);
4564 return {id_, w.c_str()};
4565 }
4566
4567 private:
4568 JSON_HEDLEY_NON_NULL(3)
4569 out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
4570 };
4571
4572 /// @brief exception indicating other library errors
4573 /// @sa https://json.nlohmann.me/api/basic_json/other_error/
4574 class other_error : public exception
4575 {
4576 public:
4577 template<typename BasicJsonContext, enable_if_t<is_basic_json_context<BasicJsonContext>::value, int> = 0>
4578 static other_error create(int id_, const std::string& what_arg, BasicJsonContext context)
4579 {
4580 const std::string w = concat(exception::name("other_error", id_), exception::diagnostics(context), what_arg);
4581 return {id_, w.c_str()};
4582 }
4583
4584 private:
4585 JSON_HEDLEY_NON_NULL(3)
4586 other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
4587 };
4588
4589 } // namespace detail
4590 NLOHMANN_JSON_NAMESPACE_END
4591
4592 // #include <nlohmann/detail/macro_scope.hpp>
4593
4594 // #include <nlohmann/detail/meta/cpp_future.hpp>
4595
4596 // #include <nlohmann/detail/meta/identity_tag.hpp>
4597 // __ _____ _____ _____
4598 // __| | __| | | | JSON for Modern C++
4599 // | | |__ | | | | | | version 3.11.3
4600 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
4601 //
4602 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
4603 // SPDX-License-Identifier: MIT
4604
4605
4606
4607 // #include <nlohmann/detail/abi_macros.hpp>
4608
4609
4610 NLOHMANN_JSON_NAMESPACE_BEGIN
4611 namespace detail
4612 {
4613
4614 // dispatching helper struct
4615 template <class T> struct identity_tag {};
4616
4617 } // namespace detail
4618 NLOHMANN_JSON_NAMESPACE_END
4619
4620 // #include <nlohmann/detail/meta/std_fs.hpp>
4621 // __ _____ _____ _____
4622 // __| | __| | | | JSON for Modern C++
4623 // | | |__ | | | | | | version 3.11.3
4624 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
4625 //
4626 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
4627 // SPDX-License-Identifier: MIT
4628
4629
4630
4631 // #include <nlohmann/detail/macro_scope.hpp>
4632
4633
4634 #if JSON_HAS_EXPERIMENTAL_FILESYSTEM
4635 #include <experimental/filesystem>
4636 NLOHMANN_JSON_NAMESPACE_BEGIN
4637 namespace detail
4638 {
4639 namespace std_fs = std::experimental::filesystem;
4640 } // namespace detail
4641 NLOHMANN_JSON_NAMESPACE_END
4642 #elif JSON_HAS_FILESYSTEM
4643 #include <filesystem>
4644 NLOHMANN_JSON_NAMESPACE_BEGIN
4645 namespace detail
4646 {
4647 namespace std_fs = std::filesystem;
4648 } // namespace detail
4649 NLOHMANN_JSON_NAMESPACE_END
4650 #endif
4651
4652 // #include <nlohmann/detail/meta/type_traits.hpp>
4653
4654 // #include <nlohmann/detail/string_concat.hpp>
4655
4656 // #include <nlohmann/detail/value_t.hpp>
4657
4658
4659 NLOHMANN_JSON_NAMESPACE_BEGIN
4660 namespace detail
4661 {
4662
4663 template<typename BasicJsonType>
4664 inline void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
4665 {
4666 if (JSON_HEDLEY_UNLIKELY(!j.is_null()))
4667 {
4668 JSON_THROW(type_error::create(302, concat("type must be null, but is ", j.type_name()), &j));
4669 }
4670 n = nullptr;
4671 }
4672
4673 // overloads for basic_json template parameters
4674 template < typename BasicJsonType, typename ArithmeticType,
4675 enable_if_t < std::is_arithmetic<ArithmeticType>::value&&
4676 !std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
4677 int > = 0 >
4678 void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
4679 {
4680 switch (static_cast<value_t>(j))
4681 {
4682 case value_t::number_unsigned:
4683 {
4684 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
4685 break;
4686 }
4687 case value_t::number_integer:
4688 {
4689 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
4690 break;
4691 }
4692 case value_t::number_float:
4693 {
4694 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
4695 break;
4696 }
4697
4698 case value_t::null:
4699 case value_t::object:
4700 case value_t::array:
4701 case value_t::string:
4702 case value_t::boolean:
4703 case value_t::binary:
4704 case value_t::discarded:
4705 default:
4706 JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
4707 }
4708 }
4709
4710 template<typename BasicJsonType>
4711 inline void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
4712 {
4713 if (JSON_HEDLEY_UNLIKELY(!j.is_boolean()))
4714 {
4715 JSON_THROW(type_error::create(302, concat("type must be boolean, but is ", j.type_name()), &j));
4716 }
4717 b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
4718 }
4719
4720 template<typename BasicJsonType>
4721 inline void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
4722 {
4723 if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
4724 {
4725 JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
4726 }
4727 s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
4728 }
4729
4730 template <
4731 typename BasicJsonType, typename StringType,
4732 enable_if_t <
4733 std::is_assignable<StringType&, const typename BasicJsonType::string_t>::value
4734 && is_detected_exact<typename BasicJsonType::string_t::value_type, value_type_t, StringType>::value
4735 && !std::is_same<typename BasicJsonType::string_t, StringType>::value
4736 && !is_json_ref<StringType>::value, int > = 0 >
4737 inline void from_json(const BasicJsonType& j, StringType& s)
4738 {
4739 if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
4740 {
4741 JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
4742 }
4743
4744 s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
4745 }
4746
4747 template<typename BasicJsonType>
4748 inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
4749 {
4750 get_arithmetic_value(j, val);
4751 }
4752
4753 template<typename BasicJsonType>
4754 inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
4755 {
4756 get_arithmetic_value(j, val);
4757 }
4758
4759 template<typename BasicJsonType>
4760 inline void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
4761 {
4762 get_arithmetic_value(j, val);
4763 }
4764
4765 #if !JSON_DISABLE_ENUM_SERIALIZATION
4766 template<typename BasicJsonType, typename EnumType,
4767 enable_if_t<std::is_enum<EnumType>::value, int> = 0>
4768 inline void from_json(const BasicJsonType& j, EnumType& e)
4769 {
4770 typename std::underlying_type<EnumType>::type val;
4771 get_arithmetic_value(j, val);
4772 e = static_cast<EnumType>(val);
4773 }
4774 #endif // JSON_DISABLE_ENUM_SERIALIZATION
4775
4776 // forward_list doesn't have an insert method
4777 template<typename BasicJsonType, typename T, typename Allocator,
4778 enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
4779 inline void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
4780 {
4781 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
4782 {
4783 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
4784 }
4785 l.clear();
4786 std::transform(j.rbegin(), j.rend(),
4787 std::front_inserter(l), [](const BasicJsonType & i)
4788 {
4789 return i.template get<T>();
4790 });
4791 }
4792
4793 // valarray doesn't have an insert method
4794 template<typename BasicJsonType, typename T,
4795 enable_if_t<is_getable<BasicJsonType, T>::value, int> = 0>
4796 inline void from_json(const BasicJsonType& j, std::valarray<T>& l)
4797 {
4798 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
4799 {
4800 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
4801 }
4802 l.resize(j.size());
4803 std::transform(j.begin(), j.end(), std::begin(l),
4804 [](const BasicJsonType & elem)
4805 {
4806 return elem.template get<T>();
4807 });
4808 }
4809
4810 template<typename BasicJsonType, typename T, std::size_t N>
4811 auto from_json(const BasicJsonType& j, T (&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
4812 -> decltype(j.template get<T>(), void())
4813 {
4814 for (std::size_t i = 0; i < N; ++i)
4815 {
4816 arr[i] = j.at(i).template get<T>();
4817 }
4818 }
4819
4820 template<typename BasicJsonType>
4821 inline void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
4822 {
4823 arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
4824 }
4825
4826 template<typename BasicJsonType, typename T, std::size_t N>
4827 auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
4828 priority_tag<2> /*unused*/)
4829 -> decltype(j.template get<T>(), void())
4830 {
4831 for (std::size_t i = 0; i < N; ++i)
4832 {
4833 arr[i] = j.at(i).template get<T>();
4834 }
4835 }
4836
4837 template<typename BasicJsonType, typename ConstructibleArrayType,
4838 enable_if_t<
4839 std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
4840 int> = 0>
4841 auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
4842 -> decltype(
4843 arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
4844 j.template get<typename ConstructibleArrayType::value_type>(),
4845 void())
4846 {
4847 using std::end;
4848
4849 ConstructibleArrayType ret;
4850 ret.reserve(j.size());
4851 std::transform(j.begin(), j.end(),
4852 std::inserter(ret, end(ret)), [](const BasicJsonType & i)
4853 {
4854 // get<BasicJsonType>() returns *this, this won't call a from_json
4855 // method when value_type is BasicJsonType
4856 return i.template get<typename ConstructibleArrayType::value_type>();
4857 });
4858 arr = std::move(ret);
4859 }
4860
4861 template<typename BasicJsonType, typename ConstructibleArrayType,
4862 enable_if_t<
4863 std::is_assignable<ConstructibleArrayType&, ConstructibleArrayType>::value,
4864 int> = 0>
4865 inline void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
4866 priority_tag<0> /*unused*/)
4867 {
4868 using std::end;
4869
4870 ConstructibleArrayType ret;
4871 std::transform(
4872 j.begin(), j.end(), std::inserter(ret, end(ret)),
4873 [](const BasicJsonType & i)
4874 {
4875 // get<BasicJsonType>() returns *this, this won't call a from_json
4876 // method when value_type is BasicJsonType
4877 return i.template get<typename ConstructibleArrayType::value_type>();
4878 });
4879 arr = std::move(ret);
4880 }
4881
4882 template < typename BasicJsonType, typename ConstructibleArrayType,
4883 enable_if_t <
4884 is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value&&
4885 !is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value&&
4886 !is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value&&
4887 !std::is_same<ConstructibleArrayType, typename BasicJsonType::binary_t>::value&&
4888 !is_basic_json<ConstructibleArrayType>::value,
4889 int > = 0 >
4890 auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
4891 -> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
4892 j.template get<typename ConstructibleArrayType::value_type>(),
4893 void())
4894 {
4895 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
4896 {
4897 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
4898 }
4899
4900 from_json_array_impl(j, arr, priority_tag<3> {});
4901 }
4902
4903 template < typename BasicJsonType, typename T, std::size_t... Idx >
4904 std::array<T, sizeof...(Idx)> from_json_inplace_array_impl(BasicJsonType&& j,
4905 identity_tag<std::array<T, sizeof...(Idx)>> /*unused*/, index_sequence<Idx...> /*unused*/)
4906 {
4907 return { { std::forward<BasicJsonType>(j).at(Idx).template get<T>()... } };
4908 }
4909
4910 template < typename BasicJsonType, typename T, std::size_t N >
4911 auto from_json(BasicJsonType&& j, identity_tag<std::array<T, N>> tag)
4912 -> decltype(from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {}))
4913 {
4914 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
4915 {
4916 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
4917 }
4918
4919 return from_json_inplace_array_impl(std::forward<BasicJsonType>(j), tag, make_index_sequence<N> {});
4920 }
4921
4922 template<typename BasicJsonType>
4923 inline void from_json(const BasicJsonType& j, typename BasicJsonType::binary_t& bin)
4924 {
4925 if (JSON_HEDLEY_UNLIKELY(!j.is_binary()))
4926 {
4927 JSON_THROW(type_error::create(302, concat("type must be binary, but is ", j.type_name()), &j));
4928 }
4929
4930 bin = *j.template get_ptr<const typename BasicJsonType::binary_t*>();
4931 }
4932
4933 template<typename BasicJsonType, typename ConstructibleObjectType,
4934 enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
4935 inline void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
4936 {
4937 if (JSON_HEDLEY_UNLIKELY(!j.is_object()))
4938 {
4939 JSON_THROW(type_error::create(302, concat("type must be object, but is ", j.type_name()), &j));
4940 }
4941
4942 ConstructibleObjectType ret;
4943 const auto* inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
4944 using value_type = typename ConstructibleObjectType::value_type;
4945 std::transform(
4946 inner_object->begin(), inner_object->end(),
4947 std::inserter(ret, ret.begin()),
4948 [](typename BasicJsonType::object_t::value_type const & p)
4949 {
4950 return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
4951 });
4952 obj = std::move(ret);
4953 }
4954
4955 // overload for arithmetic types, not chosen for basic_json template arguments
4956 // (BooleanType, etc..); note: Is it really necessary to provide explicit
4957 // overloads for boolean_t etc. in case of a custom BooleanType which is not
4958 // an arithmetic type?
4959 template < typename BasicJsonType, typename ArithmeticType,
4960 enable_if_t <
4961 std::is_arithmetic<ArithmeticType>::value&&
4962 !std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value&&
4963 !std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value&&
4964 !std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value&&
4965 !std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
4966 int > = 0 >
4967 inline void from_json(const BasicJsonType& j, ArithmeticType& val)
4968 {
4969 switch (static_cast<value_t>(j))
4970 {
4971 case value_t::number_unsigned:
4972 {
4973 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
4974 break;
4975 }
4976 case value_t::number_integer:
4977 {
4978 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
4979 break;
4980 }
4981 case value_t::number_float:
4982 {
4983 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
4984 break;
4985 }
4986 case value_t::boolean:
4987 {
4988 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
4989 break;
4990 }
4991
4992 case value_t::null:
4993 case value_t::object:
4994 case value_t::array:
4995 case value_t::string:
4996 case value_t::binary:
4997 case value_t::discarded:
4998 default:
4999 JSON_THROW(type_error::create(302, concat("type must be number, but is ", j.type_name()), &j));
5000 }
5001 }
5002
5003 template<typename BasicJsonType, typename... Args, std::size_t... Idx>
5004 std::tuple<Args...> from_json_tuple_impl_base(BasicJsonType&& j, index_sequence<Idx...> /*unused*/)
5005 {
5006 return std::make_tuple(std::forward<BasicJsonType>(j).at(Idx).template get<Args>()...);
5007 }
5008
5009 template < typename BasicJsonType, class A1, class A2 >
5010 std::pair<A1, A2> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::pair<A1, A2>> /*unused*/, priority_tag<0> /*unused*/)
5011 {
5012 return {std::forward<BasicJsonType>(j).at(0).template get<A1>(),
5013 std::forward<BasicJsonType>(j).at(1).template get<A2>()};
5014 }
5015
5016 template<typename BasicJsonType, typename A1, typename A2>
5017 inline void from_json_tuple_impl(BasicJsonType&& j, std::pair<A1, A2>& p, priority_tag<1> /*unused*/)
5018 {
5019 p = from_json_tuple_impl(std::forward<BasicJsonType>(j), identity_tag<std::pair<A1, A2>> {}, priority_tag<0> {});
5020 }
5021
5022 template<typename BasicJsonType, typename... Args>
5023 std::tuple<Args...> from_json_tuple_impl(BasicJsonType&& j, identity_tag<std::tuple<Args...>> /*unused*/, priority_tag<2> /*unused*/)
5024 {
5025 return from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
5026 }
5027
5028 template<typename BasicJsonType, typename... Args>
5029 inline void from_json_tuple_impl(BasicJsonType&& j, std::tuple<Args...>& t, priority_tag<3> /*unused*/)
5030 {
5031 t = from_json_tuple_impl_base<BasicJsonType, Args...>(std::forward<BasicJsonType>(j), index_sequence_for<Args...> {});
5032 }
5033
5034 template<typename BasicJsonType, typename TupleRelated>
5035 auto from_json(BasicJsonType&& j, TupleRelated&& t)
5036 -> decltype(from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {}))
5037 {
5038 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
5039 {
5040 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
5041 }
5042
5043 return from_json_tuple_impl(std::forward<BasicJsonType>(j), std::forward<TupleRelated>(t), priority_tag<3> {});
5044 }
5045
5046 template < typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
5047 typename = enable_if_t < !std::is_constructible <
5048 typename BasicJsonType::string_t, Key >::value >>
5049 inline void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
5050 {
5051 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
5052 {
5053 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
5054 }
5055 m.clear();
5056 for (const auto& p : j)
5057 {
5058 if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
5059 {
5060 JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
5061 }
5062 m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
5063 }
5064 }
5065
5066 template < typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
5067 typename = enable_if_t < !std::is_constructible <
5068 typename BasicJsonType::string_t, Key >::value >>
5069 inline void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
5070 {
5071 if (JSON_HEDLEY_UNLIKELY(!j.is_array()))
5072 {
5073 JSON_THROW(type_error::create(302, concat("type must be array, but is ", j.type_name()), &j));
5074 }
5075 m.clear();
5076 for (const auto& p : j)
5077 {
5078 if (JSON_HEDLEY_UNLIKELY(!p.is_array()))
5079 {
5080 JSON_THROW(type_error::create(302, concat("type must be array, but is ", p.type_name()), &j));
5081 }
5082 m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
5083 }
5084 }
5085
5086 #if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
5087 template<typename BasicJsonType>
5088 inline void from_json(const BasicJsonType& j, std_fs::path& p)
5089 {
5090 if (JSON_HEDLEY_UNLIKELY(!j.is_string()))
5091 {
5092 JSON_THROW(type_error::create(302, concat("type must be string, but is ", j.type_name()), &j));
5093 }
5094 p = *j.template get_ptr<const typename BasicJsonType::string_t*>();
5095 }
5096 #endif
5097
5098 struct from_json_fn
5099 {
5100 template<typename BasicJsonType, typename T>
5101 auto operator()(const BasicJsonType& j, T&& val) const
5102 noexcept(noexcept(from_json(j, std::forward<T>(val))))
5103 -> decltype(from_json(j, std::forward<T>(val)))
5104 {
5105 return from_json(j, std::forward<T>(val));
5106 }
5107 };
5108
5109 } // namespace detail
5110
5111 #ifndef JSON_HAS_CPP_17
5112 /// namespace to hold default `from_json` function
5113 /// to see why this is required:
5114 /// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
5115 namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
5116 {
5117 #endif
5118 JSON_INLINE_VARIABLE constexpr const auto& from_json = // NOLINT(misc-definitions-in-headers)
5119 detail::static_const<detail::from_json_fn>::value;
5120 #ifndef JSON_HAS_CPP_17
5121 } // namespace
5122 #endif
5123
5124 NLOHMANN_JSON_NAMESPACE_END
5125
5126 // #include <nlohmann/detail/conversions/to_json.hpp>
5127 // __ _____ _____ _____
5128 // __| | __| | | | JSON for Modern C++
5129 // | | |__ | | | | | | version 3.11.3
5130 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
5131 //
5132 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
5133 // SPDX-License-Identifier: MIT
5134
5135
5136
5137 #include <algorithm> // copy
5138 #include <iterator> // begin, end
5139 #include <string> // string
5140 #include <tuple> // tuple, get
5141 #include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
5142 #include <utility> // move, forward, declval, pair
5143 #include <valarray> // valarray
5144 #include <vector> // vector
5145
5146 // #include <nlohmann/detail/iterators/iteration_proxy.hpp>
5147 // __ _____ _____ _____
5148 // __| | __| | | | JSON for Modern C++
5149 // | | |__ | | | | | | version 3.11.3
5150 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
5151 //
5152 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
5153 // SPDX-License-Identifier: MIT
5154
5155
5156
5157 #include <cstddef> // size_t
5158 #include <iterator> // input_iterator_tag
5159 #include <string> // string, to_string
5160 #include <tuple> // tuple_size, get, tuple_element
5161 #include <utility> // move
5162
5163 #if JSON_HAS_RANGES
5164 #include <ranges> // enable_borrowed_range
5165 #endif
5166
5167 // #include <nlohmann/detail/abi_macros.hpp>
5168
5169 // #include <nlohmann/detail/meta/type_traits.hpp>
5170
5171 // #include <nlohmann/detail/value_t.hpp>
5172
5173
5174 NLOHMANN_JSON_NAMESPACE_BEGIN
5175 namespace detail
5176 {
5177
5178 template<typename string_type>
5179 void int_to_string( string_type& target, std::size_t value )
5180 {
5181 // For ADL
5182 using std::to_string;
5183 target = to_string(value);
5184 }
5185 template<typename IteratorType> class iteration_proxy_value
5186 {
5187 public:
5188 using difference_type = std::ptrdiff_t;
5189 using value_type = iteration_proxy_value;
5190 using pointer = value_type *;
5191 using reference = value_type &;
5192 using iterator_category = std::input_iterator_tag;
5193 using string_type = typename std::remove_cv< typename std::remove_reference<decltype( std::declval<IteratorType>().key() ) >::type >::type;
5194
5195 private:
5196 /// the iterator
5197 IteratorType anchor{};
5198 /// an index for arrays (used to create key names)
5199 std::size_t array_index = 0;
5200 /// last stringified array index
5201 mutable std::size_t array_index_last = 0;
5202 /// a string representation of the array index
5203 mutable string_type array_index_str = "0";
5204 /// an empty string (to return a reference for primitive values)
5205 string_type empty_str{};
5206
5207 public:
5208 explicit iteration_proxy_value() = default;
5209 explicit iteration_proxy_value(IteratorType it, std::size_t array_index_ = 0)
5210 noexcept(std::is_nothrow_move_constructible<IteratorType>::value
5211 && std::is_nothrow_default_constructible<string_type>::value)
5212 : anchor(std::move(it))
5213 , array_index(array_index_)
5214 {}
5215
5216 iteration_proxy_value(iteration_proxy_value const&) = default;
5217 iteration_proxy_value& operator=(iteration_proxy_value const&) = default;
5218 // older GCCs are a bit fussy and require explicit noexcept specifiers on defaulted functions
5219 iteration_proxy_value(iteration_proxy_value&&)
5220 noexcept(std::is_nothrow_move_constructible<IteratorType>::value
5221 && std::is_nothrow_move_constructible<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
5222 iteration_proxy_value& operator=(iteration_proxy_value&&)
5223 noexcept(std::is_nothrow_move_assignable<IteratorType>::value
5224 && std::is_nothrow_move_assignable<string_type>::value) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor,cppcoreguidelines-noexcept-move-operations)
5225 ~iteration_proxy_value() = default;
5226
5227 /// dereference operator (needed for range-based for)
5228 const iteration_proxy_value& operator*() const
5229 {
5230 return *this;
5231 }
5232
5233 /// increment operator (needed for range-based for)
5234 iteration_proxy_value& operator++()
5235 {
5236 ++anchor;
5237 ++array_index;
5238
5239 return *this;
5240 }
5241
5242 iteration_proxy_value operator++(int)& // NOLINT(cert-dcl21-cpp)
5243 {
5244 auto tmp = iteration_proxy_value(anchor, array_index);
5245 ++anchor;
5246 ++array_index;
5247 return tmp;
5248 }
5249
5250 /// equality operator (needed for InputIterator)
5251 bool operator==(const iteration_proxy_value& o) const
5252 {
5253 return anchor == o.anchor;
5254 }
5255
5256 /// inequality operator (needed for range-based for)
5257 bool operator!=(const iteration_proxy_value& o) const
5258 {
5259 return anchor != o.anchor;
5260 }
5261
5262 /// return key of the iterator
5263 const string_type& key() const
5264 {
5265 JSON_ASSERT(anchor.m_object != nullptr);
5266
5267 switch (anchor.m_object->type())
5268 {
5269 // use integer array index as key
5270 case value_t::array:
5271 {
5272 if (array_index != array_index_last)
5273 {
5274 int_to_string( array_index_str, array_index );
5275 array_index_last = array_index;
5276 }
5277 return array_index_str;
5278 }
5279
5280 // use key from the object
5281 case value_t::object:
5282 return anchor.key();
5283
5284 // use an empty key for all primitive types
5285 case value_t::null:
5286 case value_t::string:
5287 case value_t::boolean:
5288 case value_t::number_integer:
5289 case value_t::number_unsigned:
5290 case value_t::number_float:
5291 case value_t::binary:
5292 case value_t::discarded:
5293 default:
5294 return empty_str;
5295 }
5296 }
5297
5298 /// return value of the iterator
5299 typename IteratorType::reference value() const
5300 {
5301 return anchor.value();
5302 }
5303 };
5304
5305 /// proxy class for the items() function
5306 template<typename IteratorType> class iteration_proxy
5307 {
5308 private:
5309 /// the container to iterate
5310 typename IteratorType::pointer container = nullptr;
5311
5312 public:
5313 explicit iteration_proxy() = default;
5314
5315 /// construct iteration proxy from a container
5316 explicit iteration_proxy(typename IteratorType::reference cont) noexcept
5317 : container(&cont) {}
5318
5319 iteration_proxy(iteration_proxy const&) = default;
5320 iteration_proxy& operator=(iteration_proxy const&) = default;
5321 iteration_proxy(iteration_proxy&&) noexcept = default;
5322 iteration_proxy& operator=(iteration_proxy&&) noexcept = default;
5323 ~iteration_proxy() = default;
5324
5325 /// return iterator begin (needed for range-based for)
5326 iteration_proxy_value<IteratorType> begin() const noexcept
5327 {
5328 return iteration_proxy_value<IteratorType>(container->begin());
5329 }
5330
5331 /// return iterator end (needed for range-based for)
5332 iteration_proxy_value<IteratorType> end() const noexcept
5333 {
5334 return iteration_proxy_value<IteratorType>(container->end());
5335 }
5336 };
5337
5338 // Structured Bindings Support
5339 // For further reference see https://blog.tartanllama.xyz/structured-bindings/
5340 // And see https://github.com/nlohmann/json/pull/1391
5341 template<std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
5342 auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
5343 {
5344 return i.key();
5345 }
5346 // Structured Bindings Support
5347 // For further reference see https://blog.tartanllama.xyz/structured-bindings/
5348 // And see https://github.com/nlohmann/json/pull/1391
5349 template<std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
5350 auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
5351 {
5352 return i.value();
5353 }
5354
5355 } // namespace detail
5356 NLOHMANN_JSON_NAMESPACE_END
5357
5358 // The Addition to the STD Namespace is required to add
5359 // Structured Bindings Support to the iteration_proxy_value class
5360 // For further reference see https://blog.tartanllama.xyz/structured-bindings/
5361 // And see https://github.com/nlohmann/json/pull/1391
5362 namespace std
5363 {
5364
5365 #if defined(__clang__)
5366 // Fix: https://github.com/nlohmann/json/issues/1401
5367 #pragma clang diagnostic push
5368 #pragma clang diagnostic ignored "-Wmismatched-tags"
5369 #endif
5370 template<typename IteratorType>
5371 class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>> // NOLINT(cert-dcl58-cpp)
5372 : public std::integral_constant<std::size_t, 2> {};
5373
5374 template<std::size_t N, typename IteratorType>
5375 class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >> // NOLINT(cert-dcl58-cpp)
5376 {
5377 public:
5378 using type = decltype(
5379 get<N>(std::declval <
5380 ::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
5381 };
5382 #if defined(__clang__)
5383 #pragma clang diagnostic pop
5384 #endif
5385
5386 } // namespace std
5387
5388 #if JSON_HAS_RANGES
5389 template <typename IteratorType>
5390 inline constexpr bool ::std::ranges::enable_borrowed_range<::nlohmann::detail::iteration_proxy<IteratorType>> = true;
5391 #endif
5392
5393 // #include <nlohmann/detail/macro_scope.hpp>
5394
5395 // #include <nlohmann/detail/meta/cpp_future.hpp>
5396
5397 // #include <nlohmann/detail/meta/std_fs.hpp>
5398
5399 // #include <nlohmann/detail/meta/type_traits.hpp>
5400
5401 // #include <nlohmann/detail/value_t.hpp>
5402
5403
5404 NLOHMANN_JSON_NAMESPACE_BEGIN
5405 namespace detail
5406 {
5407
5408 //////////////////
5409 // constructors //
5410 //////////////////
5411
5412 /*
5413 * Note all external_constructor<>::construct functions need to call
5414 * j.m_data.m_value.destroy(j.m_data.m_type) to avoid a memory leak in case j contains an
5415 * allocated value (e.g., a string). See bug issue
5416 * https://github.com/nlohmann/json/issues/2865 for more information.
5417 */
5418
5419 template<value_t> struct external_constructor;
5420
5421 template<>
5422 struct external_constructor<value_t::boolean>
5423 {
5424 template<typename BasicJsonType>
5425 static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
5426 {
5427 j.m_data.m_value.destroy(j.m_data.m_type);
5428 j.m_data.m_type = value_t::boolean;
5429 j.m_data.m_value = b;
5430 j.assert_invariant();
5431 }
5432 };
5433
5434 template<>
5435 struct external_constructor<value_t::string>
5436 {
5437 template<typename BasicJsonType>
5438 static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
5439 {
5440 j.m_data.m_value.destroy(j.m_data.m_type);
5441 j.m_data.m_type = value_t::string;
5442 j.m_data.m_value = s;
5443 j.assert_invariant();
5444 }
5445
5446 template<typename BasicJsonType>
5447 static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
5448 {
5449 j.m_data.m_value.destroy(j.m_data.m_type);
5450 j.m_data.m_type = value_t::string;
5451 j.m_data.m_value = std::move(s);
5452 j.assert_invariant();
5453 }
5454
5455 template < typename BasicJsonType, typename CompatibleStringType,
5456 enable_if_t < !std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
5457 int > = 0 >
5458 static void construct(BasicJsonType& j, const CompatibleStringType& str)
5459 {
5460 j.m_data.m_value.destroy(j.m_data.m_type);
5461 j.m_data.m_type = value_t::string;
5462 j.m_data.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
5463 j.assert_invariant();
5464 }
5465 };
5466
5467 template<>
5468 struct external_constructor<value_t::binary>
5469 {
5470 template<typename BasicJsonType>
5471 static void construct(BasicJsonType& j, const typename BasicJsonType::binary_t& b)
5472 {
5473 j.m_data.m_value.destroy(j.m_data.m_type);
5474 j.m_data.m_type = value_t::binary;
5475 j.m_data.m_value = typename BasicJsonType::binary_t(b);
5476 j.assert_invariant();
5477 }
5478
5479 template<typename BasicJsonType>
5480 static void construct(BasicJsonType& j, typename BasicJsonType::binary_t&& b)
5481 {
5482 j.m_data.m_value.destroy(j.m_data.m_type);
5483 j.m_data.m_type = value_t::binary;
5484 j.m_data.m_value = typename BasicJsonType::binary_t(std::move(b));
5485 j.assert_invariant();
5486 }
5487 };
5488
5489 template<>
5490 struct external_constructor<value_t::number_float>
5491 {
5492 template<typename BasicJsonType>
5493 static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
5494 {
5495 j.m_data.m_value.destroy(j.m_data.m_type);
5496 j.m_data.m_type = value_t::number_float;
5497 j.m_data.m_value = val;
5498 j.assert_invariant();
5499 }
5500 };
5501
5502 template<>
5503 struct external_constructor<value_t::number_unsigned>
5504 {
5505 template<typename BasicJsonType>
5506 static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
5507 {
5508 j.m_data.m_value.destroy(j.m_data.m_type);
5509 j.m_data.m_type = value_t::number_unsigned;
5510 j.m_data.m_value = val;
5511 j.assert_invariant();
5512 }
5513 };
5514
5515 template<>
5516 struct external_constructor<value_t::number_integer>
5517 {
5518 template<typename BasicJsonType>
5519 static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
5520 {
5521 j.m_data.m_value.destroy(j.m_data.m_type);
5522 j.m_data.m_type = value_t::number_integer;
5523 j.m_data.m_value = val;
5524 j.assert_invariant();
5525 }
5526 };
5527
5528 template<>
5529 struct external_constructor<value_t::array>
5530 {
5531 template<typename BasicJsonType>
5532 static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
5533 {
5534 j.m_data.m_value.destroy(j.m_data.m_type);
5535 j.m_data.m_type = value_t::array;
5536 j.m_data.m_value = arr;
5537 j.set_parents();
5538 j.assert_invariant();
5539 }
5540
5541 template<typename BasicJsonType>
5542 static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
5543 {
5544 j.m_data.m_value.destroy(j.m_data.m_type);
5545 j.m_data.m_type = value_t::array;
5546 j.m_data.m_value = std::move(arr);
5547 j.set_parents();
5548 j.assert_invariant();
5549 }
5550
5551 template < typename BasicJsonType, typename CompatibleArrayType,
5552 enable_if_t < !std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
5553 int > = 0 >
5554 static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
5555 {
5556 using std::begin;
5557 using std::end;
5558
5559 j.m_data.m_value.destroy(j.m_data.m_type);
5560 j.m_data.m_type = value_t::array;
5561 j.m_data.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
5562 j.set_parents();
5563 j.assert_invariant();
5564 }
5565
5566 template<typename BasicJsonType>
5567 static void construct(BasicJsonType& j, const std::vector<bool>& arr)
5568 {
5569 j.m_data.m_value.destroy(j.m_data.m_type);
5570 j.m_data.m_type = value_t::array;
5571 j.m_data.m_value = value_t::array;
5572 j.m_data.m_value.array->reserve(arr.size());
5573 for (const bool x : arr)
5574 {
5575 j.m_data.m_value.array->push_back(x);
5576 j.set_parent(j.m_data.m_value.array->back());
5577 }
5578 j.assert_invariant();
5579 }
5580
5581 template<typename BasicJsonType, typename T,
5582 enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
5583 static void construct(BasicJsonType& j, const std::valarray<T>& arr)
5584 {
5585 j.m_data.m_value.destroy(j.m_data.m_type);
5586 j.m_data.m_type = value_t::array;
5587 j.m_data.m_value = value_t::array;
5588 j.m_data.m_value.array->resize(arr.size());
5589 if (arr.size() > 0)
5590 {
5591 std::copy(std::begin(arr), std::end(arr), j.m_data.m_value.array->begin());
5592 }
5593 j.set_parents();
5594 j.assert_invariant();
5595 }
5596 };
5597
5598 template<>
5599 struct external_constructor<value_t::object>
5600 {
5601 template<typename BasicJsonType>
5602 static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
5603 {
5604 j.m_data.m_value.destroy(j.m_data.m_type);
5605 j.m_data.m_type = value_t::object;
5606 j.m_data.m_value = obj;
5607 j.set_parents();
5608 j.assert_invariant();
5609 }
5610
5611 template<typename BasicJsonType>
5612 static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
5613 {
5614 j.m_data.m_value.destroy(j.m_data.m_type);
5615 j.m_data.m_type = value_t::object;
5616 j.m_data.m_value = std::move(obj);
5617 j.set_parents();
5618 j.assert_invariant();
5619 }
5620
5621 template < typename BasicJsonType, typename CompatibleObjectType,
5622 enable_if_t < !std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int > = 0 >
5623 static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
5624 {
5625 using std::begin;
5626 using std::end;
5627
5628 j.m_data.m_value.destroy(j.m_data.m_type);
5629 j.m_data.m_type = value_t::object;
5630 j.m_data.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
5631 j.set_parents();
5632 j.assert_invariant();
5633 }
5634 };
5635
5636 /////////////
5637 // to_json //
5638 /////////////
5639
5640 template<typename BasicJsonType, typename T,
5641 enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
5642 inline void to_json(BasicJsonType& j, T b) noexcept
5643 {
5644 external_constructor<value_t::boolean>::construct(j, b);
5645 }
5646
5647 template < typename BasicJsonType, typename BoolRef,
5648 enable_if_t <
5649 ((std::is_same<std::vector<bool>::reference, BoolRef>::value
5650 && !std::is_same <std::vector<bool>::reference, typename BasicJsonType::boolean_t&>::value)
5651 || (std::is_same<std::vector<bool>::const_reference, BoolRef>::value
5652 && !std::is_same <detail::uncvref_t<std::vector<bool>::const_reference>,
5653 typename BasicJsonType::boolean_t >::value))
5654 && std::is_convertible<const BoolRef&, typename BasicJsonType::boolean_t>::value, int > = 0 >
5655 inline void to_json(BasicJsonType& j, const BoolRef& b) noexcept
5656 {
5657 external_constructor<value_t::boolean>::construct(j, static_cast<typename BasicJsonType::boolean_t>(b));
5658 }
5659
5660 template<typename BasicJsonType, typename CompatibleString,
5661 enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
5662 inline void to_json(BasicJsonType& j, const CompatibleString& s)
5663 {
5664 external_constructor<value_t::string>::construct(j, s);
5665 }
5666
5667 template<typename BasicJsonType>
5668 inline void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
5669 {
5670 external_constructor<value_t::string>::construct(j, std::move(s));
5671 }
5672
5673 template<typename BasicJsonType, typename FloatType,
5674 enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
5675 inline void to_json(BasicJsonType& j, FloatType val) noexcept
5676 {
5677 external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
5678 }
5679
5680 template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
5681 enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
5682 inline void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
5683 {
5684 external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
5685 }
5686
5687 template<typename BasicJsonType, typename CompatibleNumberIntegerType,
5688 enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
5689 inline void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
5690 {
5691 external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
5692 }
5693
5694 #if !JSON_DISABLE_ENUM_SERIALIZATION
5695 template<typename BasicJsonType, typename EnumType,
5696 enable_if_t<std::is_enum<EnumType>::value, int> = 0>
5697 inline void to_json(BasicJsonType& j, EnumType e) noexcept
5698 {
5699 using underlying_type = typename std::underlying_type<EnumType>::type;
5700 external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
5701 }
5702 #endif // JSON_DISABLE_ENUM_SERIALIZATION
5703
5704 template<typename BasicJsonType>
5705 inline void to_json(BasicJsonType& j, const std::vector<bool>& e)
5706 {
5707 external_constructor<value_t::array>::construct(j, e);
5708 }
5709
5710 template < typename BasicJsonType, typename CompatibleArrayType,
5711 enable_if_t < is_compatible_array_type<BasicJsonType,
5712 CompatibleArrayType>::value&&
5713 !is_compatible_object_type<BasicJsonType, CompatibleArrayType>::value&&
5714 !is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value&&
5715 !std::is_same<typename BasicJsonType::binary_t, CompatibleArrayType>::value&&
5716 !is_basic_json<CompatibleArrayType>::value,
5717 int > = 0 >
5718 inline void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
5719 {
5720 external_constructor<value_t::array>::construct(j, arr);
5721 }
5722
5723 template<typename BasicJsonType>
5724 inline void to_json(BasicJsonType& j, const typename BasicJsonType::binary_t& bin)
5725 {
5726 external_constructor<value_t::binary>::construct(j, bin);
5727 }
5728
5729 template<typename BasicJsonType, typename T,
5730 enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
5731 inline void to_json(BasicJsonType& j, const std::valarray<T>& arr)
5732 {
5733 external_constructor<value_t::array>::construct(j, std::move(arr));
5734 }
5735
5736 template<typename BasicJsonType>
5737 inline void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
5738 {
5739 external_constructor<value_t::array>::construct(j, std::move(arr));
5740 }
5741
5742 template < typename BasicJsonType, typename CompatibleObjectType,
5743 enable_if_t < is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value&& !is_basic_json<CompatibleObjectType>::value, int > = 0 >
5744 inline void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
5745 {
5746 external_constructor<value_t::object>::construct(j, obj);
5747 }
5748
5749 template<typename BasicJsonType>
5750 inline void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
5751 {
5752 external_constructor<value_t::object>::construct(j, std::move(obj));
5753 }
5754
5755 template <
5756 typename BasicJsonType, typename T, std::size_t N,
5757 enable_if_t < !std::is_constructible<typename BasicJsonType::string_t,
5758 const T(&)[N]>::value, // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
5759 int > = 0 >
5760 inline void to_json(BasicJsonType& j, const T(&arr)[N]) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
5761 {
5762 external_constructor<value_t::array>::construct(j, arr);
5763 }
5764
5765 template < typename BasicJsonType, typename T1, typename T2, enable_if_t < std::is_constructible<BasicJsonType, T1>::value&& std::is_constructible<BasicJsonType, T2>::value, int > = 0 >
5766 inline void to_json(BasicJsonType& j, const std::pair<T1, T2>& p)
5767 {
5768 j = { p.first, p.second };
5769 }
5770
5771 // for https://github.com/nlohmann/json/pull/1134
5772 template<typename BasicJsonType, typename T,
5773 enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
5774 inline void to_json(BasicJsonType& j, const T& b)
5775 {
5776 j = { {b.key(), b.value()} };
5777 }
5778
5779 template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
5780 inline void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
5781 {
5782 j = { std::get<Idx>(t)... };
5783 }
5784
5785 template<typename BasicJsonType, typename T, enable_if_t<is_constructible_tuple<BasicJsonType, T>::value, int > = 0>
5786 inline void to_json(BasicJsonType& j, const T& t)
5787 {
5788 to_json_tuple_impl(j, t, make_index_sequence<std::tuple_size<T>::value> {});
5789 }
5790
5791 #if JSON_HAS_FILESYSTEM || JSON_HAS_EXPERIMENTAL_FILESYSTEM
5792 template<typename BasicJsonType>
5793 inline void to_json(BasicJsonType& j, const std_fs::path& p)
5794 {
5795 j = p.string();
5796 }
5797 #endif
5798
5799 struct to_json_fn
5800 {
5801 template<typename BasicJsonType, typename T>
5802 auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
5803 -> decltype(to_json(j, std::forward<T>(val)), void())
5804 {
5805 return to_json(j, std::forward<T>(val));
5806 }
5807 };
5808 } // namespace detail
5809
5810 #ifndef JSON_HAS_CPP_17
5811 /// namespace to hold default `to_json` function
5812 /// to see why this is required:
5813 /// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
5814 namespace // NOLINT(cert-dcl59-cpp,fuchsia-header-anon-namespaces,google-build-namespaces)
5815 {
5816 #endif
5817 JSON_INLINE_VARIABLE constexpr const auto& to_json = // NOLINT(misc-definitions-in-headers)
5818 detail::static_const<detail::to_json_fn>::value;
5819 #ifndef JSON_HAS_CPP_17
5820 } // namespace
5821 #endif
5822
5823 NLOHMANN_JSON_NAMESPACE_END
5824
5825 // #include <nlohmann/detail/meta/identity_tag.hpp>
5826
5827
5828 NLOHMANN_JSON_NAMESPACE_BEGIN
5829
5830 /// @sa https://json.nlohmann.me/api/adl_serializer/
5831 template<typename ValueType, typename>
5832 struct adl_serializer
5833 {
5834 /// @brief convert a JSON value to any value type
5835 /// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
5836 template<typename BasicJsonType, typename TargetType = ValueType>
5837 static auto from_json(BasicJsonType && j, TargetType& val) noexcept(
5838 noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
5839 -> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
5840 {
5841 ::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
5842 }
5843
5844 /// @brief convert a JSON value to any value type
5845 /// @sa https://json.nlohmann.me/api/adl_serializer/from_json/
5846 template<typename BasicJsonType, typename TargetType = ValueType>
5847 static auto from_json(BasicJsonType && j) noexcept(
5848 noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {})))
5849 -> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {}))
5850 {
5851 return ::nlohmann::from_json(std::forward<BasicJsonType>(j), detail::identity_tag<TargetType> {});
5852 }
5853
5854 /// @brief convert any value type to a JSON value
5855 /// @sa https://json.nlohmann.me/api/adl_serializer/to_json/
5856 template<typename BasicJsonType, typename TargetType = ValueType>
5857 static auto to_json(BasicJsonType& j, TargetType && val) noexcept(
5858 noexcept(::nlohmann::to_json(j, std::forward<TargetType>(val))))
5859 -> decltype(::nlohmann::to_json(j, std::forward<TargetType>(val)), void())
5860 {
5861 ::nlohmann::to_json(j, std::forward<TargetType>(val));
5862 }
5863 };
5864
5865 NLOHMANN_JSON_NAMESPACE_END
5866
5867 // #include <nlohmann/byte_container_with_subtype.hpp>
5868 // __ _____ _____ _____
5869 // __| | __| | | | JSON for Modern C++
5870 // | | |__ | | | | | | version 3.11.3
5871 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
5872 //
5873 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
5874 // SPDX-License-Identifier: MIT
5875
5876
5877
5878 #include <cstdint> // uint8_t, uint64_t
5879 #include <tuple> // tie
5880 #include <utility> // move
5881
5882 // #include <nlohmann/detail/abi_macros.hpp>
5883
5884
5885 NLOHMANN_JSON_NAMESPACE_BEGIN
5886
5887 /// @brief an internal type for a backed binary type
5888 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/
5889 template<typename BinaryType>
5890 class byte_container_with_subtype : public BinaryType
5891 {
5892 public:
5893 using container_type = BinaryType;
5894 using subtype_type = std::uint64_t;
5895
5896 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
5897 byte_container_with_subtype() noexcept(noexcept(container_type()))
5898 : container_type()
5899 {}
5900
5901 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
5902 byte_container_with_subtype(const container_type& b) noexcept(noexcept(container_type(b)))
5903 : container_type(b)
5904 {}
5905
5906 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
5907 byte_container_with_subtype(container_type&& b) noexcept(noexcept(container_type(std::move(b))))
5908 : container_type(std::move(b))
5909 {}
5910
5911 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
5912 byte_container_with_subtype(const container_type& b, subtype_type subtype_) noexcept(noexcept(container_type(b)))
5913 : container_type(b)
5914 , m_subtype(subtype_)
5915 , m_has_subtype(true)
5916 {}
5917
5918 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/byte_container_with_subtype/
5919 byte_container_with_subtype(container_type&& b, subtype_type subtype_) noexcept(noexcept(container_type(std::move(b))))
5920 : container_type(std::move(b))
5921 , m_subtype(subtype_)
5922 , m_has_subtype(true)
5923 {}
5924
5925 bool operator==(const byte_container_with_subtype& rhs) const
5926 {
5927 return std::tie(static_cast<const BinaryType&>(*this), m_subtype, m_has_subtype) ==
5928 std::tie(static_cast<const BinaryType&>(rhs), rhs.m_subtype, rhs.m_has_subtype);
5929 }
5930
5931 bool operator!=(const byte_container_with_subtype& rhs) const
5932 {
5933 return !(rhs == *this);
5934 }
5935
5936 /// @brief sets the binary subtype
5937 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/set_subtype/
5938 void set_subtype(subtype_type subtype_) noexcept
5939 {
5940 m_subtype = subtype_;
5941 m_has_subtype = true;
5942 }
5943
5944 /// @brief return the binary subtype
5945 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/subtype/
5946 constexpr subtype_type subtype() const noexcept
5947 {
5948 return m_has_subtype ? m_subtype : static_cast<subtype_type>(-1);
5949 }
5950
5951 /// @brief return whether the value has a subtype
5952 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/has_subtype/
5953 constexpr bool has_subtype() const noexcept
5954 {
5955 return m_has_subtype;
5956 }
5957
5958 /// @brief clears the binary subtype
5959 /// @sa https://json.nlohmann.me/api/byte_container_with_subtype/clear_subtype/
5960 void clear_subtype() noexcept
5961 {
5962 m_subtype = 0;
5963 m_has_subtype = false;
5964 }
5965
5966 private:
5967 subtype_type m_subtype = 0;
5968 bool m_has_subtype = false;
5969 };
5970
5971 NLOHMANN_JSON_NAMESPACE_END
5972
5973 // #include <nlohmann/detail/conversions/from_json.hpp>
5974
5975 // #include <nlohmann/detail/conversions/to_json.hpp>
5976
5977 // #include <nlohmann/detail/exceptions.hpp>
5978
5979 // #include <nlohmann/detail/hash.hpp>
5980 // __ _____ _____ _____
5981 // __| | __| | | | JSON for Modern C++
5982 // | | |__ | | | | | | version 3.11.3
5983 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
5984 //
5985 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
5986 // SPDX-License-Identifier: MIT
5987
5988
5989
5990 #include <cstdint> // uint8_t
5991 #include <cstddef> // size_t
5992 #include <functional> // hash
5993
5994 // #include <nlohmann/detail/abi_macros.hpp>
5995
5996 // #include <nlohmann/detail/value_t.hpp>
5997
5998
5999 NLOHMANN_JSON_NAMESPACE_BEGIN
6000 namespace detail
6001 {
6002
6003 // boost::hash_combine
6004 inline std::size_t combine(std::size_t seed, std::size_t h) noexcept
6005 {
6006 seed ^= h + 0x9e3779b9 + (seed << 6U) + (seed >> 2U);
6007 return seed;
6008 }
6009
6010 /*!
6011 @brief hash a JSON value
6012
6013 The hash function tries to rely on std::hash where possible. Furthermore, the
6014 type of the JSON value is taken into account to have different hash values for
6015 null, 0, 0U, and false, etc.
6016
6017 @tparam BasicJsonType basic_json specialization
6018 @param j JSON value to hash
6019 @return hash value of j
6020 */
6021 template<typename BasicJsonType>
6022 std::size_t hash(const BasicJsonType& j)
6023 {
6024 using string_t = typename BasicJsonType::string_t;
6025 using number_integer_t = typename BasicJsonType::number_integer_t;
6026 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
6027 using number_float_t = typename BasicJsonType::number_float_t;
6028
6029 const auto type = static_cast<std::size_t>(j.type());
6030 switch (j.type())
6031 {
6032 case BasicJsonType::value_t::null:
6033 case BasicJsonType::value_t::discarded:
6034 {
6035 return combine(type, 0);
6036 }
6037
6038 case BasicJsonType::value_t::object:
6039 {
6040 auto seed = combine(type, j.size());
6041 for (const auto& element : j.items())
6042 {
6043 const auto h = std::hash<string_t> {}(element.key());
6044 seed = combine(seed, h);
6045 seed = combine(seed, hash(element.value()));
6046 }
6047 return seed;
6048 }
6049
6050 case BasicJsonType::value_t::array:
6051 {
6052 auto seed = combine(type, j.size());
6053 for (const auto& element : j)
6054 {
6055 seed = combine(seed, hash(element));
6056 }
6057 return seed;
6058 }
6059
6060 case BasicJsonType::value_t::string:
6061 {
6062 const auto h = std::hash<string_t> {}(j.template get_ref<const string_t&>());
6063 return combine(type, h);
6064 }
6065
6066 case BasicJsonType::value_t::boolean:
6067 {
6068 const auto h = std::hash<bool> {}(j.template get<bool>());
6069 return combine(type, h);
6070 }
6071
6072 case BasicJsonType::value_t::number_integer:
6073 {
6074 const auto h = std::hash<number_integer_t> {}(j.template get<number_integer_t>());
6075 return combine(type, h);
6076 }
6077
6078 case BasicJsonType::value_t::number_unsigned:
6079 {
6080 const auto h = std::hash<number_unsigned_t> {}(j.template get<number_unsigned_t>());
6081 return combine(type, h);
6082 }
6083
6084 case BasicJsonType::value_t::number_float:
6085 {
6086 const auto h = std::hash<number_float_t> {}(j.template get<number_float_t>());
6087 return combine(type, h);
6088 }
6089
6090 case BasicJsonType::value_t::binary:
6091 {
6092 auto seed = combine(type, j.get_binary().size());
6093 const auto h = std::hash<bool> {}(j.get_binary().has_subtype());
6094 seed = combine(seed, h);
6095 seed = combine(seed, static_cast<std::size_t>(j.get_binary().subtype()));
6096 for (const auto byte : j.get_binary())
6097 {
6098 seed = combine(seed, std::hash<std::uint8_t> {}(byte));
6099 }
6100 return seed;
6101 }
6102
6103 default: // LCOV_EXCL_LINE
6104 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
6105 return 0; // LCOV_EXCL_LINE
6106 }
6107 }
6108
6109 } // namespace detail
6110 NLOHMANN_JSON_NAMESPACE_END
6111
6112 // #include <nlohmann/detail/input/binary_reader.hpp>
6113 // __ _____ _____ _____
6114 // __| | __| | | | JSON for Modern C++
6115 // | | |__ | | | | | | version 3.11.3
6116 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
6117 //
6118 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
6119 // SPDX-License-Identifier: MIT
6120
6121
6122
6123 #include <algorithm> // generate_n
6124 #include <array> // array
6125 #include <cmath> // ldexp
6126 #include <cstddef> // size_t
6127 #include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
6128 #include <cstdio> // snprintf
6129 #include <cstring> // memcpy
6130 #include <iterator> // back_inserter
6131 #include <limits> // numeric_limits
6132 #include <string> // char_traits, string
6133 #include <utility> // make_pair, move
6134 #include <vector> // vector
6135
6136 // #include <nlohmann/detail/exceptions.hpp>
6137
6138 // #include <nlohmann/detail/input/input_adapters.hpp>
6139 // __ _____ _____ _____
6140 // __| | __| | | | JSON for Modern C++
6141 // | | |__ | | | | | | version 3.11.3
6142 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
6143 //
6144 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
6145 // SPDX-License-Identifier: MIT
6146
6147
6148
6149 #include <array> // array
6150 #include <cstddef> // size_t
6151 #include <cstring> // strlen
6152 #include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
6153 #include <memory> // shared_ptr, make_shared, addressof
6154 #include <numeric> // accumulate
6155 #include <string> // string, char_traits
6156 #include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
6157 #include <utility> // pair, declval
6158
6159 #ifndef JSON_NO_IO
6160 #include <cstdio> // FILE *
6161 #include <istream> // istream
6162 #endif // JSON_NO_IO
6163
6164 // #include <nlohmann/detail/iterators/iterator_traits.hpp>
6165
6166 // #include <nlohmann/detail/macro_scope.hpp>
6167
6168 // #include <nlohmann/detail/meta/type_traits.hpp>
6169
6170
6171 NLOHMANN_JSON_NAMESPACE_BEGIN
6172 namespace detail
6173 {
6174
6175 /// the supported input formats
6176 enum class input_format_t { json, cbor, msgpack, ubjson, bson, bjdata };
6177
6178 ////////////////////
6179 // input adapters //
6180 ////////////////////
6181
6182 #ifndef JSON_NO_IO
6183 /*!
6184 Input adapter for stdio file access. This adapter read only 1 byte and do not use any
6185 buffer. This adapter is a very low level adapter.
6186 */
6187 class file_input_adapter
6188 {
6189 public:
6190 using char_type = char;
6191
6192 JSON_HEDLEY_NON_NULL(2)
6193 explicit file_input_adapter(std::FILE* f) noexcept
6194 : m_file(f)
6195 {
6196 JSON_ASSERT(m_file != nullptr);
6197 }
6198
6199 // make class move-only
6200 file_input_adapter(const file_input_adapter&) = delete;
6201 file_input_adapter(file_input_adapter&&) noexcept = default;
6202 file_input_adapter& operator=(const file_input_adapter&) = delete;
6203 file_input_adapter& operator=(file_input_adapter&&) = delete;
6204 ~file_input_adapter() = default;
6205
6206 std::char_traits<char>::int_type get_character() noexcept
6207 {
6208 return std::fgetc(m_file);
6209 }
6210
6211 private:
6212 /// the file pointer to read from
6213 std::FILE* m_file;
6214 };
6215
6216 /*!
6217 Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
6218 beginning of input. Does not support changing the underlying std::streambuf
6219 in mid-input. Maintains underlying std::istream and std::streambuf to support
6220 subsequent use of standard std::istream operations to process any input
6221 characters following those used in parsing the JSON input. Clears the
6222 std::istream flags; any input errors (e.g., EOF) will be detected by the first
6223 subsequent call for input from the std::istream.
6224 */
6225 class input_stream_adapter
6226 {
6227 public:
6228 using char_type = char;
6229
6230 ~input_stream_adapter()
6231 {
6232 // clear stream flags; we use underlying streambuf I/O, do not
6233 // maintain ifstream flags, except eof
6234 if (is != nullptr)
6235 {
6236 is->clear(is->rdstate() & std::ios::eofbit);
6237 }
6238 }
6239
6240 explicit input_stream_adapter(std::istream& i)
6241 : is(&i), sb(i.rdbuf())
6242 {}
6243
6244 // delete because of pointer members
6245 input_stream_adapter(const input_stream_adapter&) = delete;
6246 input_stream_adapter& operator=(input_stream_adapter&) = delete;
6247 input_stream_adapter& operator=(input_stream_adapter&&) = delete;
6248
6249 input_stream_adapter(input_stream_adapter&& rhs) noexcept
6250 : is(rhs.is), sb(rhs.sb)
6251 {
6252 rhs.is = nullptr;
6253 rhs.sb = nullptr;
6254 }
6255
6256 // std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
6257 // ensure that std::char_traits<char>::eof() and the character 0xFF do not
6258 // end up as the same value, e.g. 0xFFFFFFFF.
6259 std::char_traits<char>::int_type get_character()
6260 {
6261 auto res = sb->sbumpc();
6262 // set eof manually, as we don't use the istream interface.
6263 if (JSON_HEDLEY_UNLIKELY(res == std::char_traits<char>::eof()))
6264 {
6265 is->clear(is->rdstate() | std::ios::eofbit);
6266 }
6267 return res;
6268 }
6269
6270 private:
6271 /// the associated input stream
6272 std::istream* is = nullptr;
6273 std::streambuf* sb = nullptr;
6274 };
6275 #endif // JSON_NO_IO
6276
6277 // General-purpose iterator-based adapter. It might not be as fast as
6278 // theoretically possible for some containers, but it is extremely versatile.
6279 template<typename IteratorType>
6280 class iterator_input_adapter
6281 {
6282 public:
6283 using char_type = typename std::iterator_traits<IteratorType>::value_type;
6284
6285 iterator_input_adapter(IteratorType first, IteratorType last)
6286 : current(std::move(first)), end(std::move(last))
6287 {}
6288
6289 typename char_traits<char_type>::int_type get_character()
6290 {
6291 if (JSON_HEDLEY_LIKELY(current != end))
6292 {
6293 auto result = char_traits<char_type>::to_int_type(*current);
6294 std::advance(current, 1);
6295 return result;
6296 }
6297
6298 return char_traits<char_type>::eof();
6299 }
6300
6301 private:
6302 IteratorType current;
6303 IteratorType end;
6304
6305 template<typename BaseInputAdapter, size_t T>
6306 friend struct wide_string_input_helper;
6307
6308 bool empty() const
6309 {
6310 return current == end;
6311 }
6312 };
6313
6314 template<typename BaseInputAdapter, size_t T>
6315 struct wide_string_input_helper;
6316
6317 template<typename BaseInputAdapter>
6318 struct wide_string_input_helper<BaseInputAdapter, 4>
6319 {
6320 // UTF-32
6321 static void fill_buffer(BaseInputAdapter& input,
6322 std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
6323 size_t& utf8_bytes_index,
6324 size_t& utf8_bytes_filled)
6325 {
6326 utf8_bytes_index = 0;
6327
6328 if (JSON_HEDLEY_UNLIKELY(input.empty()))
6329 {
6330 utf8_bytes[0] = std::char_traits<char>::eof();
6331 utf8_bytes_filled = 1;
6332 }
6333 else
6334 {
6335 // get the current character
6336 const auto wc = input.get_character();
6337
6338 // UTF-32 to UTF-8 encoding
6339 if (wc < 0x80)
6340 {
6341 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
6342 utf8_bytes_filled = 1;
6343 }
6344 else if (wc <= 0x7FF)
6345 {
6346 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u) & 0x1Fu));
6347 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
6348 utf8_bytes_filled = 2;
6349 }
6350 else if (wc <= 0xFFFF)
6351 {
6352 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u) & 0x0Fu));
6353 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
6354 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
6355 utf8_bytes_filled = 3;
6356 }
6357 else if (wc <= 0x10FFFF)
6358 {
6359 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | ((static_cast<unsigned int>(wc) >> 18u) & 0x07u));
6360 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 12u) & 0x3Fu));
6361 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
6362 utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
6363 utf8_bytes_filled = 4;
6364 }
6365 else
6366 {
6367 // unknown character
6368 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
6369 utf8_bytes_filled = 1;
6370 }
6371 }
6372 }
6373 };
6374
6375 template<typename BaseInputAdapter>
6376 struct wide_string_input_helper<BaseInputAdapter, 2>
6377 {
6378 // UTF-16
6379 static void fill_buffer(BaseInputAdapter& input,
6380 std::array<std::char_traits<char>::int_type, 4>& utf8_bytes,
6381 size_t& utf8_bytes_index,
6382 size_t& utf8_bytes_filled)
6383 {
6384 utf8_bytes_index = 0;
6385
6386 if (JSON_HEDLEY_UNLIKELY(input.empty()))
6387 {
6388 utf8_bytes[0] = std::char_traits<char>::eof();
6389 utf8_bytes_filled = 1;
6390 }
6391 else
6392 {
6393 // get the current character
6394 const auto wc = input.get_character();
6395
6396 // UTF-16 to UTF-8 encoding
6397 if (wc < 0x80)
6398 {
6399 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
6400 utf8_bytes_filled = 1;
6401 }
6402 else if (wc <= 0x7FF)
6403 {
6404 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xC0u | ((static_cast<unsigned int>(wc) >> 6u)));
6405 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
6406 utf8_bytes_filled = 2;
6407 }
6408 else if (0xD800 > wc || wc >= 0xE000)
6409 {
6410 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xE0u | ((static_cast<unsigned int>(wc) >> 12u)));
6411 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((static_cast<unsigned int>(wc) >> 6u) & 0x3Fu));
6412 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | (static_cast<unsigned int>(wc) & 0x3Fu));
6413 utf8_bytes_filled = 3;
6414 }
6415 else
6416 {
6417 if (JSON_HEDLEY_UNLIKELY(!input.empty()))
6418 {
6419 const auto wc2 = static_cast<unsigned int>(input.get_character());
6420 const auto charcode = 0x10000u + (((static_cast<unsigned int>(wc) & 0x3FFu) << 10u) | (wc2 & 0x3FFu));
6421 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(0xF0u | (charcode >> 18u));
6422 utf8_bytes[1] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 12u) & 0x3Fu));
6423 utf8_bytes[2] = static_cast<std::char_traits<char>::int_type>(0x80u | ((charcode >> 6u) & 0x3Fu));
6424 utf8_bytes[3] = static_cast<std::char_traits<char>::int_type>(0x80u | (charcode & 0x3Fu));
6425 utf8_bytes_filled = 4;
6426 }
6427 else
6428 {
6429 utf8_bytes[0] = static_cast<std::char_traits<char>::int_type>(wc);
6430 utf8_bytes_filled = 1;
6431 }
6432 }
6433 }
6434 }
6435 };
6436
6437 // Wraps another input adapter to convert wide character types into individual bytes.
6438 template<typename BaseInputAdapter, typename WideCharType>
6439 class wide_string_input_adapter
6440 {
6441 public:
6442 using char_type = char;
6443
6444 wide_string_input_adapter(BaseInputAdapter base)
6445 : base_adapter(base) {}
6446
6447 typename std::char_traits<char>::int_type get_character() noexcept
6448 {
6449 // check if buffer needs to be filled
6450 if (utf8_bytes_index == utf8_bytes_filled)
6451 {
6452 fill_buffer<sizeof(WideCharType)>();
6453
6454 JSON_ASSERT(utf8_bytes_filled > 0);
6455 JSON_ASSERT(utf8_bytes_index == 0);
6456 }
6457
6458 // use buffer
6459 JSON_ASSERT(utf8_bytes_filled > 0);
6460 JSON_ASSERT(utf8_bytes_index < utf8_bytes_filled);
6461 return utf8_bytes[utf8_bytes_index++];
6462 }
6463
6464 private:
6465 BaseInputAdapter base_adapter;
6466
6467 template<size_t T>
6468 void fill_buffer()
6469 {
6470 wide_string_input_helper<BaseInputAdapter, T>::fill_buffer(base_adapter, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
6471 }
6472
6473 /// a buffer for UTF-8 bytes
6474 std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
6475
6476 /// index to the utf8_codes array for the next valid byte
6477 std::size_t utf8_bytes_index = 0;
6478 /// number of valid bytes in the utf8_codes array
6479 std::size_t utf8_bytes_filled = 0;
6480 };
6481
6482 template<typename IteratorType, typename Enable = void>
6483 struct iterator_input_adapter_factory
6484 {
6485 using iterator_type = IteratorType;
6486 using char_type = typename std::iterator_traits<iterator_type>::value_type;
6487 using adapter_type = iterator_input_adapter<iterator_type>;
6488
6489 static adapter_type create(IteratorType first, IteratorType last)
6490 {
6491 return adapter_type(std::move(first), std::move(last));
6492 }
6493 };
6494
6495 template<typename T>
6496 struct is_iterator_of_multibyte
6497 {
6498 using value_type = typename std::iterator_traits<T>::value_type;
6499 enum
6500 {
6501 value = sizeof(value_type) > 1
6502 };
6503 };
6504
6505 template<typename IteratorType>
6506 struct iterator_input_adapter_factory<IteratorType, enable_if_t<is_iterator_of_multibyte<IteratorType>::value>>
6507 {
6508 using iterator_type = IteratorType;
6509 using char_type = typename std::iterator_traits<iterator_type>::value_type;
6510 using base_adapter_type = iterator_input_adapter<iterator_type>;
6511 using adapter_type = wide_string_input_adapter<base_adapter_type, char_type>;
6512
6513 static adapter_type create(IteratorType first, IteratorType last)
6514 {
6515 return adapter_type(base_adapter_type(std::move(first), std::move(last)));
6516 }
6517 };
6518
6519 // General purpose iterator-based input
6520 template<typename IteratorType>
6521 typename iterator_input_adapter_factory<IteratorType>::adapter_type input_adapter(IteratorType first, IteratorType last)
6522 {
6523 using factory_type = iterator_input_adapter_factory<IteratorType>;
6524 return factory_type::create(first, last);
6525 }
6526
6527 // Convenience shorthand from container to iterator
6528 // Enables ADL on begin(container) and end(container)
6529 // Encloses the using declarations in namespace for not to leak them to outside scope
6530
6531 namespace container_input_adapter_factory_impl
6532 {
6533
6534 using std::begin;
6535 using std::end;
6536
6537 template<typename ContainerType, typename Enable = void>
6538 struct container_input_adapter_factory {};
6539
6540 template<typename ContainerType>
6541 struct container_input_adapter_factory< ContainerType,
6542 void_t<decltype(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>()))>>
6543 {
6544 using adapter_type = decltype(input_adapter(begin(std::declval<ContainerType>()), end(std::declval<ContainerType>())));
6545
6546 static adapter_type create(const ContainerType& container)
6547 {
6548 return input_adapter(begin(container), end(container));
6549 }
6550 };
6551
6552 } // namespace container_input_adapter_factory_impl
6553
6554 template<typename ContainerType>
6555 typename container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::adapter_type input_adapter(const ContainerType& container)
6556 {
6557 return container_input_adapter_factory_impl::container_input_adapter_factory<ContainerType>::create(container);
6558 }
6559
6560 #ifndef JSON_NO_IO
6561 // Special cases with fast paths
6562 inline file_input_adapter input_adapter(std::FILE* file)
6563 {
6564 return file_input_adapter(file);
6565 }
6566
6567 inline input_stream_adapter input_adapter(std::istream& stream)
6568 {
6569 return input_stream_adapter(stream);
6570 }
6571
6572 inline input_stream_adapter input_adapter(std::istream&& stream)
6573 {
6574 return input_stream_adapter(stream);
6575 }
6576 #endif // JSON_NO_IO
6577
6578 using contiguous_bytes_input_adapter = decltype(input_adapter(std::declval<const char*>(), std::declval<const char*>()));
6579
6580 // Null-delimited strings, and the like.
6581 template < typename CharT,
6582 typename std::enable_if <
6583 std::is_pointer<CharT>::value&&
6584 !std::is_array<CharT>::value&&
6585 std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
6586 sizeof(typename std::remove_pointer<CharT>::type) == 1,
6587 int >::type = 0 >
6588 contiguous_bytes_input_adapter input_adapter(CharT b)
6589 {
6590 auto length = std::strlen(reinterpret_cast<const char*>(b));
6591 const auto* ptr = reinterpret_cast<const char*>(b);
6592 return input_adapter(ptr, ptr + length);
6593 }
6594
6595 template<typename T, std::size_t N>
6596 auto input_adapter(T (&array)[N]) -> decltype(input_adapter(array, array + N)) // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
6597 {
6598 return input_adapter(array, array + N);
6599 }
6600
6601 // This class only handles inputs of input_buffer_adapter type.
6602 // It's required so that expressions like {ptr, len} can be implicitly cast
6603 // to the correct adapter.
6604 class span_input_adapter
6605 {
6606 public:
6607 template < typename CharT,
6608 typename std::enable_if <
6609 std::is_pointer<CharT>::value&&
6610 std::is_integral<typename std::remove_pointer<CharT>::type>::value&&
6611 sizeof(typename std::remove_pointer<CharT>::type) == 1,
6612 int >::type = 0 >
6613 span_input_adapter(CharT b, std::size_t l)
6614 : ia(reinterpret_cast<const char*>(b), reinterpret_cast<const char*>(b) + l) {}
6615
6616 template<class IteratorType,
6617 typename std::enable_if<
6618 std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
6619 int>::type = 0>
6620 span_input_adapter(IteratorType first, IteratorType last)
6621 : ia(input_adapter(first, last)) {}
6622
6623 contiguous_bytes_input_adapter&& get()
6624 {
6625 return std::move(ia); // NOLINT(hicpp-move-const-arg,performance-move-const-arg)
6626 }
6627
6628 private:
6629 contiguous_bytes_input_adapter ia;
6630 };
6631
6632 } // namespace detail
6633 NLOHMANN_JSON_NAMESPACE_END
6634
6635 // #include <nlohmann/detail/input/json_sax.hpp>
6636 // __ _____ _____ _____
6637 // __| | __| | | | JSON for Modern C++
6638 // | | |__ | | | | | | version 3.11.3
6639 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
6640 //
6641 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
6642 // SPDX-License-Identifier: MIT
6643
6644
6645
6646 #include <cstddef>
6647 #include <string> // string
6648 #include <utility> // move
6649 #include <vector> // vector
6650
6651 // #include <nlohmann/detail/exceptions.hpp>
6652
6653 // #include <nlohmann/detail/macro_scope.hpp>
6654
6655 // #include <nlohmann/detail/string_concat.hpp>
6656
6657
6658 NLOHMANN_JSON_NAMESPACE_BEGIN
6659
6660 /*!
6661 @brief SAX interface
6662
6663 This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
6664 Each function is called in different situations while the input is parsed. The
6665 boolean return value informs the parser whether to continue processing the
6666 input.
6667 */
6668 template<typename BasicJsonType>
6669 struct json_sax
6670 {
6671 using number_integer_t = typename BasicJsonType::number_integer_t;
6672 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
6673 using number_float_t = typename BasicJsonType::number_float_t;
6674 using string_t = typename BasicJsonType::string_t;
6675 using binary_t = typename BasicJsonType::binary_t;
6676
6677 /*!
6678 @brief a null value was read
6679 @return whether parsing should proceed
6680 */
6681 virtual bool null() = 0;
6682
6683 /*!
6684 @brief a boolean value was read
6685 @param[in] val boolean value
6686 @return whether parsing should proceed
6687 */
6688 virtual bool boolean(bool val) = 0;
6689
6690 /*!
6691 @brief an integer number was read
6692 @param[in] val integer value
6693 @return whether parsing should proceed
6694 */
6695 virtual bool number_integer(number_integer_t val) = 0;
6696
6697 /*!
6698 @brief an unsigned integer number was read
6699 @param[in] val unsigned integer value
6700 @return whether parsing should proceed
6701 */
6702 virtual bool number_unsigned(number_unsigned_t val) = 0;
6703
6704 /*!
6705 @brief a floating-point number was read
6706 @param[in] val floating-point value
6707 @param[in] s raw token value
6708 @return whether parsing should proceed
6709 */
6710 virtual bool number_float(number_float_t val, const string_t& s) = 0;
6711
6712 /*!
6713 @brief a string value was read
6714 @param[in] val string value
6715 @return whether parsing should proceed
6716 @note It is safe to move the passed string value.
6717 */
6718 virtual bool string(string_t& val) = 0;
6719
6720 /*!
6721 @brief a binary value was read
6722 @param[in] val binary value
6723 @return whether parsing should proceed
6724 @note It is safe to move the passed binary value.
6725 */
6726 virtual bool binary(binary_t& val) = 0;
6727
6728 /*!
6729 @brief the beginning of an object was read
6730 @param[in] elements number of object elements or -1 if unknown
6731 @return whether parsing should proceed
6732 @note binary formats may report the number of elements
6733 */
6734 virtual bool start_object(std::size_t elements) = 0;
6735
6736 /*!
6737 @brief an object key was read
6738 @param[in] val object key
6739 @return whether parsing should proceed
6740 @note It is safe to move the passed string.
6741 */
6742 virtual bool key(string_t& val) = 0;
6743
6744 /*!
6745 @brief the end of an object was read
6746 @return whether parsing should proceed
6747 */
6748 virtual bool end_object() = 0;
6749
6750 /*!
6751 @brief the beginning of an array was read
6752 @param[in] elements number of array elements or -1 if unknown
6753 @return whether parsing should proceed
6754 @note binary formats may report the number of elements
6755 */
6756 virtual bool start_array(std::size_t elements) = 0;
6757
6758 /*!
6759 @brief the end of an array was read
6760 @return whether parsing should proceed
6761 */
6762 virtual bool end_array() = 0;
6763
6764 /*!
6765 @brief a parse error occurred
6766 @param[in] position the position in the input where the error occurs
6767 @param[in] last_token the last read token
6768 @param[in] ex an exception object describing the error
6769 @return whether parsing should proceed (must return false)
6770 */
6771 virtual bool parse_error(std::size_t position,
6772 const std::string& last_token,
6773 const detail::exception& ex) = 0;
6774
6775 json_sax() = default;
6776 json_sax(const json_sax&) = default;
6777 json_sax(json_sax&&) noexcept = default;
6778 json_sax& operator=(const json_sax&) = default;
6779 json_sax& operator=(json_sax&&) noexcept = default;
6780 virtual ~json_sax() = default;
6781 };
6782
6783 namespace detail
6784 {
6785 /*!
6786 @brief SAX implementation to create a JSON value from SAX events
6787
6788 This class implements the @ref json_sax interface and processes the SAX events
6789 to create a JSON value which makes it basically a DOM parser. The structure or
6790 hierarchy of the JSON value is managed by the stack `ref_stack` which contains
6791 a pointer to the respective array or object for each recursion depth.
6792
6793 After successful parsing, the value that is passed by reference to the
6794 constructor contains the parsed value.
6795
6796 @tparam BasicJsonType the JSON type
6797 */
6798 template<typename BasicJsonType>
6799 class json_sax_dom_parser
6800 {
6801 public:
6802 using number_integer_t = typename BasicJsonType::number_integer_t;
6803 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
6804 using number_float_t = typename BasicJsonType::number_float_t;
6805 using string_t = typename BasicJsonType::string_t;
6806 using binary_t = typename BasicJsonType::binary_t;
6807
6808 /*!
6809 @param[in,out] r reference to a JSON value that is manipulated while
6810 parsing
6811 @param[in] allow_exceptions_ whether parse errors yield exceptions
6812 */
6813 explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
6814 : root(r), allow_exceptions(allow_exceptions_)
6815 {}
6816
6817 // make class move-only
6818 json_sax_dom_parser(const json_sax_dom_parser&) = delete;
6819 json_sax_dom_parser(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
6820 json_sax_dom_parser& operator=(const json_sax_dom_parser&) = delete;
6821 json_sax_dom_parser& operator=(json_sax_dom_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
6822 ~json_sax_dom_parser() = default;
6823
6824 bool null()
6825 {
6826 handle_value(nullptr);
6827 return true;
6828 }
6829
6830 bool boolean(bool val)
6831 {
6832 handle_value(val);
6833 return true;
6834 }
6835
6836 bool number_integer(number_integer_t val)
6837 {
6838 handle_value(val);
6839 return true;
6840 }
6841
6842 bool number_unsigned(number_unsigned_t val)
6843 {
6844 handle_value(val);
6845 return true;
6846 }
6847
6848 bool number_float(number_float_t val, const string_t& /*unused*/)
6849 {
6850 handle_value(val);
6851 return true;
6852 }
6853
6854 bool string(string_t& val)
6855 {
6856 handle_value(val);
6857 return true;
6858 }
6859
6860 bool binary(binary_t& val)
6861 {
6862 handle_value(std::move(val));
6863 return true;
6864 }
6865
6866 bool start_object(std::size_t len)
6867 {
6868 ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
6869
6870 if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
6871 {
6872 JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
6873 }
6874
6875 return true;
6876 }
6877
6878 bool key(string_t& val)
6879 {
6880 JSON_ASSERT(!ref_stack.empty());
6881 JSON_ASSERT(ref_stack.back()->is_object());
6882
6883 // add null at given key and store the reference for later
6884 object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val));
6885 return true;
6886 }
6887
6888 bool end_object()
6889 {
6890 JSON_ASSERT(!ref_stack.empty());
6891 JSON_ASSERT(ref_stack.back()->is_object());
6892
6893 ref_stack.back()->set_parents();
6894 ref_stack.pop_back();
6895 return true;
6896 }
6897
6898 bool start_array(std::size_t len)
6899 {
6900 ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
6901
6902 if (JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
6903 {
6904 JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
6905 }
6906
6907 return true;
6908 }
6909
6910 bool end_array()
6911 {
6912 JSON_ASSERT(!ref_stack.empty());
6913 JSON_ASSERT(ref_stack.back()->is_array());
6914
6915 ref_stack.back()->set_parents();
6916 ref_stack.pop_back();
6917 return true;
6918 }
6919
6920 template<class Exception>
6921 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
6922 const Exception& ex)
6923 {
6924 errored = true;
6925 static_cast<void>(ex);
6926 if (allow_exceptions)
6927 {
6928 JSON_THROW(ex);
6929 }
6930 return false;
6931 }
6932
6933 constexpr bool is_errored() const
6934 {
6935 return errored;
6936 }
6937
6938 private:
6939 /*!
6940 @invariant If the ref stack is empty, then the passed value will be the new
6941 root.
6942 @invariant If the ref stack contains a value, then it is an array or an
6943 object to which we can add elements
6944 */
6945 template<typename Value>
6946 JSON_HEDLEY_RETURNS_NON_NULL
6947 BasicJsonType* handle_value(Value&& v)
6948 {
6949 if (ref_stack.empty())
6950 {
6951 root = BasicJsonType(std::forward<Value>(v));
6952 return &root;
6953 }
6954
6955 JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
6956
6957 if (ref_stack.back()->is_array())
6958 {
6959 ref_stack.back()->m_data.m_value.array->emplace_back(std::forward<Value>(v));
6960 return &(ref_stack.back()->m_data.m_value.array->back());
6961 }
6962
6963 JSON_ASSERT(ref_stack.back()->is_object());
6964 JSON_ASSERT(object_element);
6965 *object_element = BasicJsonType(std::forward<Value>(v));
6966 return object_element;
6967 }
6968
6969 /// the parsed JSON value
6970 BasicJsonType& root;
6971 /// stack to model hierarchy of values
6972 std::vector<BasicJsonType*> ref_stack {};
6973 /// helper to hold the reference for the next object element
6974 BasicJsonType* object_element = nullptr;
6975 /// whether a syntax error occurred
6976 bool errored = false;
6977 /// whether to throw exceptions in case of errors
6978 const bool allow_exceptions = true;
6979 };
6980
6981 template<typename BasicJsonType>
6982 class json_sax_dom_callback_parser
6983 {
6984 public:
6985 using number_integer_t = typename BasicJsonType::number_integer_t;
6986 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
6987 using number_float_t = typename BasicJsonType::number_float_t;
6988 using string_t = typename BasicJsonType::string_t;
6989 using binary_t = typename BasicJsonType::binary_t;
6990 using parser_callback_t = typename BasicJsonType::parser_callback_t;
6991 using parse_event_t = typename BasicJsonType::parse_event_t;
6992
6993 json_sax_dom_callback_parser(BasicJsonType& r,
6994 const parser_callback_t cb,
6995 const bool allow_exceptions_ = true)
6996 : root(r), callback(cb), allow_exceptions(allow_exceptions_)
6997 {
6998 keep_stack.push_back(true);
6999 }
7000
7001 // make class move-only
7002 json_sax_dom_callback_parser(const json_sax_dom_callback_parser&) = delete;
7003 json_sax_dom_callback_parser(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
7004 json_sax_dom_callback_parser& operator=(const json_sax_dom_callback_parser&) = delete;
7005 json_sax_dom_callback_parser& operator=(json_sax_dom_callback_parser&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
7006 ~json_sax_dom_callback_parser() = default;
7007
7008 bool null()
7009 {
7010 handle_value(nullptr);
7011 return true;
7012 }
7013
7014 bool boolean(bool val)
7015 {
7016 handle_value(val);
7017 return true;
7018 }
7019
7020 bool number_integer(number_integer_t val)
7021 {
7022 handle_value(val);
7023 return true;
7024 }
7025
7026 bool number_unsigned(number_unsigned_t val)
7027 {
7028 handle_value(val);
7029 return true;
7030 }
7031
7032 bool number_float(number_float_t val, const string_t& /*unused*/)
7033 {
7034 handle_value(val);
7035 return true;
7036 }
7037
7038 bool string(string_t& val)
7039 {
7040 handle_value(val);
7041 return true;
7042 }
7043
7044 bool binary(binary_t& val)
7045 {
7046 handle_value(std::move(val));
7047 return true;
7048 }
7049
7050 bool start_object(std::size_t len)
7051 {
7052 // check callback for object start
7053 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
7054 keep_stack.push_back(keep);
7055
7056 auto val = handle_value(BasicJsonType::value_t::object, true);
7057 ref_stack.push_back(val.second);
7058
7059 // check object limit
7060 if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
7061 {
7062 JSON_THROW(out_of_range::create(408, concat("excessive object size: ", std::to_string(len)), ref_stack.back()));
7063 }
7064
7065 return true;
7066 }
7067
7068 bool key(string_t& val)
7069 {
7070 BasicJsonType k = BasicJsonType(val);
7071
7072 // check callback for key
7073 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
7074 key_keep_stack.push_back(keep);
7075
7076 // add discarded value at given key and store the reference for later
7077 if (keep && ref_stack.back())
7078 {
7079 object_element = &(ref_stack.back()->m_data.m_value.object->operator[](val) = discarded);
7080 }
7081
7082 return true;
7083 }
7084
7085 bool end_object()
7086 {
7087 if (ref_stack.back())
7088 {
7089 if (!callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
7090 {
7091 // discard object
7092 *ref_stack.back() = discarded;
7093 }
7094 else
7095 {
7096 ref_stack.back()->set_parents();
7097 }
7098 }
7099
7100 JSON_ASSERT(!ref_stack.empty());
7101 JSON_ASSERT(!keep_stack.empty());
7102 ref_stack.pop_back();
7103 keep_stack.pop_back();
7104
7105 if (!ref_stack.empty() && ref_stack.back() && ref_stack.back()->is_structured())
7106 {
7107 // remove discarded value
7108 for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
7109 {
7110 if (it->is_discarded())
7111 {
7112 ref_stack.back()->erase(it);
7113 break;
7114 }
7115 }
7116 }
7117
7118 return true;
7119 }
7120
7121 bool start_array(std::size_t len)
7122 {
7123 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
7124 keep_stack.push_back(keep);
7125
7126 auto val = handle_value(BasicJsonType::value_t::array, true);
7127 ref_stack.push_back(val.second);
7128
7129 // check array limit
7130 if (ref_stack.back() && JSON_HEDLEY_UNLIKELY(len != static_cast<std::size_t>(-1) && len > ref_stack.back()->max_size()))
7131 {
7132 JSON_THROW(out_of_range::create(408, concat("excessive array size: ", std::to_string(len)), ref_stack.back()));
7133 }
7134
7135 return true;
7136 }
7137
7138 bool end_array()
7139 {
7140 bool keep = true;
7141
7142 if (ref_stack.back())
7143 {
7144 keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
7145 if (keep)
7146 {
7147 ref_stack.back()->set_parents();
7148 }
7149 else
7150 {
7151 // discard array
7152 *ref_stack.back() = discarded;
7153 }
7154 }
7155
7156 JSON_ASSERT(!ref_stack.empty());
7157 JSON_ASSERT(!keep_stack.empty());
7158 ref_stack.pop_back();
7159 keep_stack.pop_back();
7160
7161 // remove discarded value
7162 if (!keep && !ref_stack.empty() && ref_stack.back()->is_array())
7163 {
7164 ref_stack.back()->m_data.m_value.array->pop_back();
7165 }
7166
7167 return true;
7168 }
7169
7170 template<class Exception>
7171 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
7172 const Exception& ex)
7173 {
7174 errored = true;
7175 static_cast<void>(ex);
7176 if (allow_exceptions)
7177 {
7178 JSON_THROW(ex);
7179 }
7180 return false;
7181 }
7182
7183 constexpr bool is_errored() const
7184 {
7185 return errored;
7186 }
7187
7188 private:
7189 /*!
7190 @param[in] v value to add to the JSON value we build during parsing
7191 @param[in] skip_callback whether we should skip calling the callback
7192 function; this is required after start_array() and
7193 start_object() SAX events, because otherwise we would call the
7194 callback function with an empty array or object, respectively.
7195
7196 @invariant If the ref stack is empty, then the passed value will be the new
7197 root.
7198 @invariant If the ref stack contains a value, then it is an array or an
7199 object to which we can add elements
7200
7201 @return pair of boolean (whether value should be kept) and pointer (to the
7202 passed value in the ref_stack hierarchy; nullptr if not kept)
7203 */
7204 template<typename Value>
7205 std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
7206 {
7207 JSON_ASSERT(!keep_stack.empty());
7208
7209 // do not handle this value if we know it would be added to a discarded
7210 // container
7211 if (!keep_stack.back())
7212 {
7213 return {false, nullptr};
7214 }
7215
7216 // create value
7217 auto value = BasicJsonType(std::forward<Value>(v));
7218
7219 // check callback
7220 const bool keep = skip_callback || callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
7221
7222 // do not handle this value if we just learnt it shall be discarded
7223 if (!keep)
7224 {
7225 return {false, nullptr};
7226 }
7227
7228 if (ref_stack.empty())
7229 {
7230 root = std::move(value);
7231 return {true, & root};
7232 }
7233
7234 // skip this value if we already decided to skip the parent
7235 // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
7236 if (!ref_stack.back())
7237 {
7238 return {false, nullptr};
7239 }
7240
7241 // we now only expect arrays and objects
7242 JSON_ASSERT(ref_stack.back()->is_array() || ref_stack.back()->is_object());
7243
7244 // array
7245 if (ref_stack.back()->is_array())
7246 {
7247 ref_stack.back()->m_data.m_value.array->emplace_back(std::move(value));
7248 return {true, & (ref_stack.back()->m_data.m_value.array->back())};
7249 }
7250
7251 // object
7252 JSON_ASSERT(ref_stack.back()->is_object());
7253 // check if we should store an element for the current key
7254 JSON_ASSERT(!key_keep_stack.empty());
7255 const bool store_element = key_keep_stack.back();
7256 key_keep_stack.pop_back();
7257
7258 if (!store_element)
7259 {
7260 return {false, nullptr};
7261 }
7262
7263 JSON_ASSERT(object_element);
7264 *object_element = std::move(value);
7265 return {true, object_element};
7266 }
7267
7268 /// the parsed JSON value
7269 BasicJsonType& root;
7270 /// stack to model hierarchy of values
7271 std::vector<BasicJsonType*> ref_stack {};
7272 /// stack to manage which values to keep
7273 std::vector<bool> keep_stack {};
7274 /// stack to manage which object keys to keep
7275 std::vector<bool> key_keep_stack {};
7276 /// helper to hold the reference for the next object element
7277 BasicJsonType* object_element = nullptr;
7278 /// whether a syntax error occurred
7279 bool errored = false;
7280 /// callback function
7281 const parser_callback_t callback = nullptr;
7282 /// whether to throw exceptions in case of errors
7283 const bool allow_exceptions = true;
7284 /// a discarded value for the callback
7285 BasicJsonType discarded = BasicJsonType::value_t::discarded;
7286 };
7287
7288 template<typename BasicJsonType>
7289 class json_sax_acceptor
7290 {
7291 public:
7292 using number_integer_t = typename BasicJsonType::number_integer_t;
7293 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
7294 using number_float_t = typename BasicJsonType::number_float_t;
7295 using string_t = typename BasicJsonType::string_t;
7296 using binary_t = typename BasicJsonType::binary_t;
7297
7298 bool null()
7299 {
7300 return true;
7301 }
7302
7303 bool boolean(bool /*unused*/)
7304 {
7305 return true;
7306 }
7307
7308 bool number_integer(number_integer_t /*unused*/)
7309 {
7310 return true;
7311 }
7312
7313 bool number_unsigned(number_unsigned_t /*unused*/)
7314 {
7315 return true;
7316 }
7317
7318 bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
7319 {
7320 return true;
7321 }
7322
7323 bool string(string_t& /*unused*/)
7324 {
7325 return true;
7326 }
7327
7328 bool binary(binary_t& /*unused*/)
7329 {
7330 return true;
7331 }
7332
7333 bool start_object(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
7334 {
7335 return true;
7336 }
7337
7338 bool key(string_t& /*unused*/)
7339 {
7340 return true;
7341 }
7342
7343 bool end_object()
7344 {
7345 return true;
7346 }
7347
7348 bool start_array(std::size_t /*unused*/ = static_cast<std::size_t>(-1))
7349 {
7350 return true;
7351 }
7352
7353 bool end_array()
7354 {
7355 return true;
7356 }
7357
7358 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
7359 {
7360 return false;
7361 }
7362 };
7363
7364 } // namespace detail
7365 NLOHMANN_JSON_NAMESPACE_END
7366
7367 // #include <nlohmann/detail/input/lexer.hpp>
7368 // __ _____ _____ _____
7369 // __| | __| | | | JSON for Modern C++
7370 // | | |__ | | | | | | version 3.11.3
7371 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
7372 //
7373 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
7374 // SPDX-License-Identifier: MIT
7375
7376
7377
7378 #include <array> // array
7379 #include <clocale> // localeconv
7380 #include <cstddef> // size_t
7381 #include <cstdio> // snprintf
7382 #include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
7383 #include <initializer_list> // initializer_list
7384 #include <string> // char_traits, string
7385 #include <utility> // move
7386 #include <vector> // vector
7387
7388 // #include <nlohmann/detail/input/input_adapters.hpp>
7389
7390 // #include <nlohmann/detail/input/position_t.hpp>
7391
7392 // #include <nlohmann/detail/macro_scope.hpp>
7393
7394 // #include <nlohmann/detail/meta/type_traits.hpp>
7395
7396
7397 NLOHMANN_JSON_NAMESPACE_BEGIN
7398 namespace detail
7399 {
7400
7401 ///////////
7402 // lexer //
7403 ///////////
7404
7405 template<typename BasicJsonType>
7406 class lexer_base
7407 {
7408 public:
7409 /// token types for the parser
7410 enum class token_type
7411 {
7412 uninitialized, ///< indicating the scanner is uninitialized
7413 literal_true, ///< the `true` literal
7414 literal_false, ///< the `false` literal
7415 literal_null, ///< the `null` literal
7416 value_string, ///< a string -- use get_string() for actual value
7417 value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value
7418 value_integer, ///< a signed integer -- use get_number_integer() for actual value
7419 value_float, ///< an floating point number -- use get_number_float() for actual value
7420 begin_array, ///< the character for array begin `[`
7421 begin_object, ///< the character for object begin `{`
7422 end_array, ///< the character for array end `]`
7423 end_object, ///< the character for object end `}`
7424 name_separator, ///< the name separator `:`
7425 value_separator, ///< the value separator `,`
7426 parse_error, ///< indicating a parse error
7427 end_of_input, ///< indicating the end of the input buffer
7428 literal_or_value ///< a literal or the begin of a value (only for diagnostics)
7429 };
7430
7431 /// return name of values of type token_type (only used for errors)
7432 JSON_HEDLEY_RETURNS_NON_NULL
7433 JSON_HEDLEY_CONST
7434 static const char* token_type_name(const token_type t) noexcept
7435 {
7436 switch (t)
7437 {
7438 case token_type::uninitialized:
7439 return "<uninitialized>";
7440 case token_type::literal_true:
7441 return "true literal";
7442 case token_type::literal_false:
7443 return "false literal";
7444 case token_type::literal_null:
7445 return "null literal";
7446 case token_type::value_string:
7447 return "string literal";
7448 case token_type::value_unsigned:
7449 case token_type::value_integer:
7450 case token_type::value_float:
7451 return "number literal";
7452 case token_type::begin_array:
7453 return "'['";
7454 case token_type::begin_object:
7455 return "'{'";
7456 case token_type::end_array:
7457 return "']'";
7458 case token_type::end_object:
7459 return "'}'";
7460 case token_type::name_separator:
7461 return "':'";
7462 case token_type::value_separator:
7463 return "','";
7464 case token_type::parse_error:
7465 return "<parse error>";
7466 case token_type::end_of_input:
7467 return "end of input";
7468 case token_type::literal_or_value:
7469 return "'[', '{', or a literal";
7470 // LCOV_EXCL_START
7471 default: // catch non-enum values
7472 return "unknown token";
7473 // LCOV_EXCL_STOP
7474 }
7475 }
7476 };
7477 /*!
7478 @brief lexical analysis
7479
7480 This class organizes the lexical analysis during JSON deserialization.
7481 */
7482 template<typename BasicJsonType, typename InputAdapterType>
7483 class lexer : public lexer_base<BasicJsonType>
7484 {
7485 using number_integer_t = typename BasicJsonType::number_integer_t;
7486 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
7487 using number_float_t = typename BasicJsonType::number_float_t;
7488 using string_t = typename BasicJsonType::string_t;
7489 using char_type = typename InputAdapterType::char_type;
7490 using char_int_type = typename char_traits<char_type>::int_type;
7491
7492 public:
7493 using token_type = typename lexer_base<BasicJsonType>::token_type;
7494
7495 explicit lexer(InputAdapterType&& adapter, bool ignore_comments_ = false) noexcept
7496 : ia(std::move(adapter))
7497 , ignore_comments(ignore_comments_)
7498 , decimal_point_char(static_cast<char_int_type>(get_decimal_point()))
7499 {}
7500
7501 // delete because of pointer members
7502 lexer(const lexer&) = delete;
7503 lexer(lexer&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
7504 lexer& operator=(lexer&) = delete;
7505 lexer& operator=(lexer&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
7506 ~lexer() = default;
7507
7508 private:
7509 /////////////////////
7510 // locales
7511 /////////////////////
7512
7513 /// return the locale-dependent decimal point
7514 JSON_HEDLEY_PURE
7515 static char get_decimal_point() noexcept
7516 {
7517 const auto* loc = localeconv();
7518 JSON_ASSERT(loc != nullptr);
7519 return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
7520 }
7521
7522 /////////////////////
7523 // scan functions
7524 /////////////////////
7525
7526 /*!
7527 @brief get codepoint from 4 hex characters following `\u`
7528
7529 For input "\u c1 c2 c3 c4" the codepoint is:
7530 (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
7531 = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
7532
7533 Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
7534 must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
7535 conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
7536 between the ASCII value of the character and the desired integer value.
7537
7538 @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
7539 non-hex character)
7540 */
7541 int get_codepoint()
7542 {
7543 // this function only makes sense after reading `\u`
7544 JSON_ASSERT(current == 'u');
7545 int codepoint = 0;
7546
7547 const auto factors = { 12u, 8u, 4u, 0u };
7548 for (const auto factor : factors)
7549 {
7550 get();
7551
7552 if (current >= '0' && current <= '9')
7553 {
7554 codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x30u) << factor);
7555 }
7556 else if (current >= 'A' && current <= 'F')
7557 {
7558 codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x37u) << factor);
7559 }
7560 else if (current >= 'a' && current <= 'f')
7561 {
7562 codepoint += static_cast<int>((static_cast<unsigned int>(current) - 0x57u) << factor);
7563 }
7564 else
7565 {
7566 return -1;
7567 }
7568 }
7569
7570 JSON_ASSERT(0x0000 <= codepoint && codepoint <= 0xFFFF);
7571 return codepoint;
7572 }
7573
7574 /*!
7575 @brief check if the next byte(s) are inside a given range
7576
7577 Adds the current byte and, for each passed range, reads a new byte and
7578 checks if it is inside the range. If a violation was detected, set up an
7579 error message and return false. Otherwise, return true.
7580
7581 @param[in] ranges list of integers; interpreted as list of pairs of
7582 inclusive lower and upper bound, respectively
7583
7584 @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
7585 1, 2, or 3 pairs. This precondition is enforced by an assertion.
7586
7587 @return true if and only if no range violation was detected
7588 */
7589 bool next_byte_in_range(std::initializer_list<char_int_type> ranges)
7590 {
7591 JSON_ASSERT(ranges.size() == 2 || ranges.size() == 4 || ranges.size() == 6);
7592 add(current);
7593
7594 for (auto range = ranges.begin(); range != ranges.end(); ++range)
7595 {
7596 get();
7597 if (JSON_HEDLEY_LIKELY(*range <= current && current <= *(++range))) // NOLINT(bugprone-inc-dec-in-conditions)
7598 {
7599 add(current);
7600 }
7601 else
7602 {
7603 error_message = "invalid string: ill-formed UTF-8 byte";
7604 return false;
7605 }
7606 }
7607
7608 return true;
7609 }
7610
7611 /*!
7612 @brief scan a string literal
7613
7614 This function scans a string according to Sect. 7 of RFC 8259. While
7615 scanning, bytes are escaped and copied into buffer token_buffer. Then the
7616 function returns successfully, token_buffer is *not* null-terminated (as it
7617 may contain \0 bytes), and token_buffer.size() is the number of bytes in the
7618 string.
7619
7620 @return token_type::value_string if string could be successfully scanned,
7621 token_type::parse_error otherwise
7622
7623 @note In case of errors, variable error_message contains a textual
7624 description.
7625 */
7626 token_type scan_string()
7627 {
7628 // reset token_buffer (ignore opening quote)
7629 reset();
7630
7631 // we entered the function by reading an open quote
7632 JSON_ASSERT(current == '\"');
7633
7634 while (true)
7635 {
7636 // get next character
7637 switch (get())
7638 {
7639 // end of file while parsing string
7640 case char_traits<char_type>::eof():
7641 {
7642 error_message = "invalid string: missing closing quote";
7643 return token_type::parse_error;
7644 }
7645
7646 // closing quote
7647 case '\"':
7648 {
7649 return token_type::value_string;
7650 }
7651
7652 // escapes
7653 case '\\':
7654 {
7655 switch (get())
7656 {
7657 // quotation mark
7658 case '\"':
7659 add('\"');
7660 break;
7661 // reverse solidus
7662 case '\\':
7663 add('\\');
7664 break;
7665 // solidus
7666 case '/':
7667 add('/');
7668 break;
7669 // backspace
7670 case 'b':
7671 add('\b');
7672 break;
7673 // form feed
7674 case 'f':
7675 add('\f');
7676 break;
7677 // line feed
7678 case 'n':
7679 add('\n');
7680 break;
7681 // carriage return
7682 case 'r':
7683 add('\r');
7684 break;
7685 // tab
7686 case 't':
7687 add('\t');
7688 break;
7689
7690 // unicode escapes
7691 case 'u':
7692 {
7693 const int codepoint1 = get_codepoint();
7694 int codepoint = codepoint1; // start with codepoint1
7695
7696 if (JSON_HEDLEY_UNLIKELY(codepoint1 == -1))
7697 {
7698 error_message = "invalid string: '\\u' must be followed by 4 hex digits";
7699 return token_type::parse_error;
7700 }
7701
7702 // check if code point is a high surrogate
7703 if (0xD800 <= codepoint1 && codepoint1 <= 0xDBFF)
7704 {
7705 // expect next \uxxxx entry
7706 if (JSON_HEDLEY_LIKELY(get() == '\\' && get() == 'u'))
7707 {
7708 const int codepoint2 = get_codepoint();
7709
7710 if (JSON_HEDLEY_UNLIKELY(codepoint2 == -1))
7711 {
7712 error_message = "invalid string: '\\u' must be followed by 4 hex digits";
7713 return token_type::parse_error;
7714 }
7715
7716 // check if codepoint2 is a low surrogate
7717 if (JSON_HEDLEY_LIKELY(0xDC00 <= codepoint2 && codepoint2 <= 0xDFFF))
7718 {
7719 // overwrite codepoint
7720 codepoint = static_cast<int>(
7721 // high surrogate occupies the most significant 22 bits
7722 (static_cast<unsigned int>(codepoint1) << 10u)
7723 // low surrogate occupies the least significant 15 bits
7724 + static_cast<unsigned int>(codepoint2)
7725 // there is still the 0xD800, 0xDC00 and 0x10000 noise
7726 // in the result, so we have to subtract with:
7727 // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
7728 - 0x35FDC00u);
7729 }
7730 else
7731 {
7732 error_message = "invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF";
7733 return token_type::parse_error;
7734 }
7735 }
7736 else
7737 {
7738 error_message = "invalid string: surrogate U+D800..U+DBFF must be followed by U+DC00..U+DFFF";
7739 return token_type::parse_error;
7740 }
7741 }
7742 else
7743 {
7744 if (JSON_HEDLEY_UNLIKELY(0xDC00 <= codepoint1 && codepoint1 <= 0xDFFF))
7745 {
7746 error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
7747 return token_type::parse_error;
7748 }
7749 }
7750
7751 // result of the above calculation yields a proper codepoint
7752 JSON_ASSERT(0x00 <= codepoint && codepoint <= 0x10FFFF);
7753
7754 // translate codepoint into bytes
7755 if (codepoint < 0x80)
7756 {
7757 // 1-byte characters: 0xxxxxxx (ASCII)
7758 add(static_cast<char_int_type>(codepoint));
7759 }
7760 else if (codepoint <= 0x7FF)
7761 {
7762 // 2-byte characters: 110xxxxx 10xxxxxx
7763 add(static_cast<char_int_type>(0xC0u | (static_cast<unsigned int>(codepoint) >> 6u)));
7764 add(static_cast<char_int_type>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7765 }
7766 else if (codepoint <= 0xFFFF)
7767 {
7768 // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
7769 add(static_cast<char_int_type>(0xE0u | (static_cast<unsigned int>(codepoint) >> 12u)));
7770 add(static_cast<char_int_type>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
7771 add(static_cast<char_int_type>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7772 }
7773 else
7774 {
7775 // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
7776 add(static_cast<char_int_type>(0xF0u | (static_cast<unsigned int>(codepoint) >> 18u)));
7777 add(static_cast<char_int_type>(0x80u | ((static_cast<unsigned int>(codepoint) >> 12u) & 0x3Fu)));
7778 add(static_cast<char_int_type>(0x80u | ((static_cast<unsigned int>(codepoint) >> 6u) & 0x3Fu)));
7779 add(static_cast<char_int_type>(0x80u | (static_cast<unsigned int>(codepoint) & 0x3Fu)));
7780 }
7781
7782 break;
7783 }
7784
7785 // other characters after escape
7786 default:
7787 error_message = "invalid string: forbidden character after backslash";
7788 return token_type::parse_error;
7789 }
7790
7791 break;
7792 }
7793
7794 // invalid control characters
7795 case 0x00:
7796 {
7797 error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000";
7798 return token_type::parse_error;
7799 }
7800
7801 case 0x01:
7802 {
7803 error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001";
7804 return token_type::parse_error;
7805 }
7806
7807 case 0x02:
7808 {
7809 error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002";
7810 return token_type::parse_error;
7811 }
7812
7813 case 0x03:
7814 {
7815 error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003";
7816 return token_type::parse_error;
7817 }
7818
7819 case 0x04:
7820 {
7821 error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004";
7822 return token_type::parse_error;
7823 }
7824
7825 case 0x05:
7826 {
7827 error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005";
7828 return token_type::parse_error;
7829 }
7830
7831 case 0x06:
7832 {
7833 error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006";
7834 return token_type::parse_error;
7835 }
7836
7837 case 0x07:
7838 {
7839 error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007";
7840 return token_type::parse_error;
7841 }
7842
7843 case 0x08:
7844 {
7845 error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b";
7846 return token_type::parse_error;
7847 }
7848
7849 case 0x09:
7850 {
7851 error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t";
7852 return token_type::parse_error;
7853 }
7854
7855 case 0x0A:
7856 {
7857 error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n";
7858 return token_type::parse_error;
7859 }
7860
7861 case 0x0B:
7862 {
7863 error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B";
7864 return token_type::parse_error;
7865 }
7866
7867 case 0x0C:
7868 {
7869 error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f";
7870 return token_type::parse_error;
7871 }
7872
7873 case 0x0D:
7874 {
7875 error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r";
7876 return token_type::parse_error;
7877 }
7878
7879 case 0x0E:
7880 {
7881 error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E";
7882 return token_type::parse_error;
7883 }
7884
7885 case 0x0F:
7886 {
7887 error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F";
7888 return token_type::parse_error;
7889 }
7890
7891 case 0x10:
7892 {
7893 error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010";
7894 return token_type::parse_error;
7895 }
7896
7897 case 0x11:
7898 {
7899 error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011";
7900 return token_type::parse_error;
7901 }
7902
7903 case 0x12:
7904 {
7905 error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012";
7906 return token_type::parse_error;
7907 }
7908
7909 case 0x13:
7910 {
7911 error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013";
7912 return token_type::parse_error;
7913 }
7914
7915 case 0x14:
7916 {
7917 error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014";
7918 return token_type::parse_error;
7919 }
7920
7921 case 0x15:
7922 {
7923 error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015";
7924 return token_type::parse_error;
7925 }
7926
7927 case 0x16:
7928 {
7929 error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016";
7930 return token_type::parse_error;
7931 }
7932
7933 case 0x17:
7934 {
7935 error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017";
7936 return token_type::parse_error;
7937 }
7938
7939 case 0x18:
7940 {
7941 error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018";
7942 return token_type::parse_error;
7943 }
7944
7945 case 0x19:
7946 {
7947 error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019";
7948 return token_type::parse_error;
7949 }
7950
7951 case 0x1A:
7952 {
7953 error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A";
7954 return token_type::parse_error;
7955 }
7956
7957 case 0x1B:
7958 {
7959 error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B";
7960 return token_type::parse_error;
7961 }
7962
7963 case 0x1C:
7964 {
7965 error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C";
7966 return token_type::parse_error;
7967 }
7968
7969 case 0x1D:
7970 {
7971 error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D";
7972 return token_type::parse_error;
7973 }
7974
7975 case 0x1E:
7976 {
7977 error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E";
7978 return token_type::parse_error;
7979 }
7980
7981 case 0x1F:
7982 {
7983 error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F";
7984 return token_type::parse_error;
7985 }
7986
7987 // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
7988 case 0x20:
7989 case 0x21:
7990 case 0x23:
7991 case 0x24:
7992 case 0x25:
7993 case 0x26:
7994 case 0x27:
7995 case 0x28:
7996 case 0x29:
7997 case 0x2A:
7998 case 0x2B:
7999 case 0x2C:
8000 case 0x2D:
8001 case 0x2E:
8002 case 0x2F:
8003 case 0x30:
8004 case 0x31:
8005 case 0x32:
8006 case 0x33:
8007 case 0x34:
8008 case 0x35:
8009 case 0x36:
8010 case 0x37:
8011 case 0x38:
8012 case 0x39:
8013 case 0x3A:
8014 case 0x3B:
8015 case 0x3C:
8016 case 0x3D:
8017 case 0x3E:
8018 case 0x3F:
8019 case 0x40:
8020 case 0x41:
8021 case 0x42:
8022 case 0x43:
8023 case 0x44:
8024 case 0x45:
8025 case 0x46:
8026 case 0x47:
8027 case 0x48:
8028 case 0x49:
8029 case 0x4A:
8030 case 0x4B:
8031 case 0x4C:
8032 case 0x4D:
8033 case 0x4E:
8034 case 0x4F:
8035 case 0x50:
8036 case 0x51:
8037 case 0x52:
8038 case 0x53:
8039 case 0x54:
8040 case 0x55:
8041 case 0x56:
8042 case 0x57:
8043 case 0x58:
8044 case 0x59:
8045 case 0x5A:
8046 case 0x5B:
8047 case 0x5D:
8048 case 0x5E:
8049 case 0x5F:
8050 case 0x60:
8051 case 0x61:
8052 case 0x62:
8053 case 0x63:
8054 case 0x64:
8055 case 0x65:
8056 case 0x66:
8057 case 0x67:
8058 case 0x68:
8059 case 0x69:
8060 case 0x6A:
8061 case 0x6B:
8062 case 0x6C:
8063 case 0x6D:
8064 case 0x6E:
8065 case 0x6F:
8066 case 0x70:
8067 case 0x71:
8068 case 0x72:
8069 case 0x73:
8070 case 0x74:
8071 case 0x75:
8072 case 0x76:
8073 case 0x77:
8074 case 0x78:
8075 case 0x79:
8076 case 0x7A:
8077 case 0x7B:
8078 case 0x7C:
8079 case 0x7D:
8080 case 0x7E:
8081 case 0x7F:
8082 {
8083 add(current);
8084 break;
8085 }
8086
8087 // U+0080..U+07FF: bytes C2..DF 80..BF
8088 case 0xC2:
8089 case 0xC3:
8090 case 0xC4:
8091 case 0xC5:
8092 case 0xC6:
8093 case 0xC7:
8094 case 0xC8:
8095 case 0xC9:
8096 case 0xCA:
8097 case 0xCB:
8098 case 0xCC:
8099 case 0xCD:
8100 case 0xCE:
8101 case 0xCF:
8102 case 0xD0:
8103 case 0xD1:
8104 case 0xD2:
8105 case 0xD3:
8106 case 0xD4:
8107 case 0xD5:
8108 case 0xD6:
8109 case 0xD7:
8110 case 0xD8:
8111 case 0xD9:
8112 case 0xDA:
8113 case 0xDB:
8114 case 0xDC:
8115 case 0xDD:
8116 case 0xDE:
8117 case 0xDF:
8118 {
8119 if (JSON_HEDLEY_UNLIKELY(!next_byte_in_range({0x80, 0xBF})))
8120 {
8121 return token_type::parse_error;
8122 }
8123 break;
8124 }
8125
8126 // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
8127 case 0xE0:
8128 {
8129 if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
8130 {
8131 return token_type::parse_error;
8132 }
8133 break;
8134 }
8135
8136 // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
8137 // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
8138 case 0xE1:
8139 case 0xE2:
8140 case 0xE3:
8141 case 0xE4:
8142 case 0xE5:
8143 case 0xE6:
8144 case 0xE7:
8145 case 0xE8:
8146 case 0xE9:
8147 case 0xEA:
8148 case 0xEB:
8149 case 0xEC:
8150 case 0xEE:
8151 case 0xEF:
8152 {
8153 if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
8154 {
8155 return token_type::parse_error;
8156 }
8157 break;
8158 }
8159
8160 // U+D000..U+D7FF: bytes ED 80..9F 80..BF
8161 case 0xED:
8162 {
8163 if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
8164 {
8165 return token_type::parse_error;
8166 }
8167 break;
8168 }
8169
8170 // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
8171 case 0xF0:
8172 {
8173 if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
8174 {
8175 return token_type::parse_error;
8176 }
8177 break;
8178 }
8179
8180 // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
8181 case 0xF1:
8182 case 0xF2:
8183 case 0xF3:
8184 {
8185 if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
8186 {
8187 return token_type::parse_error;
8188 }
8189 break;
8190 }
8191
8192 // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
8193 case 0xF4:
8194 {
8195 if (JSON_HEDLEY_UNLIKELY(!(next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
8196 {
8197 return token_type::parse_error;
8198 }
8199 break;
8200 }
8201
8202 // remaining bytes (80..C1 and F5..FF) are ill-formed
8203 default:
8204 {
8205 error_message = "invalid string: ill-formed UTF-8 byte";
8206 return token_type::parse_error;
8207 }
8208 }
8209 }
8210 }
8211
8212 /*!
8213 * @brief scan a comment
8214 * @return whether comment could be scanned successfully
8215 */
8216 bool scan_comment()
8217 {
8218 switch (get())
8219 {
8220 // single-line comments skip input until a newline or EOF is read
8221 case '/':
8222 {
8223 while (true)
8224 {
8225 switch (get())
8226 {
8227 case '\n':
8228 case '\r':
8229 case char_traits<char_type>::eof():
8230 case '\0':
8231 return true;
8232
8233 default:
8234 break;
8235 }
8236 }
8237 }
8238
8239 // multi-line comments skip input until */ is read
8240 case '*':
8241 {
8242 while (true)
8243 {
8244 switch (get())
8245 {
8246 case char_traits<char_type>::eof():
8247 case '\0':
8248 {
8249 error_message = "invalid comment; missing closing '*/'";
8250 return false;
8251 }
8252
8253 case '*':
8254 {
8255 switch (get())
8256 {
8257 case '/':
8258 return true;
8259
8260 default:
8261 {
8262 unget();
8263 continue;
8264 }
8265 }
8266 }
8267
8268 default:
8269 continue;
8270 }
8271 }
8272 }
8273
8274 // unexpected character after reading '/'
8275 default:
8276 {
8277 error_message = "invalid comment; expecting '/' or '*' after '/'";
8278 return false;
8279 }
8280 }
8281 }
8282
8283 JSON_HEDLEY_NON_NULL(2)
8284 static void strtof(float& f, const char* str, char** endptr) noexcept
8285 {
8286 f = std::strtof(str, endptr);
8287 }
8288
8289 JSON_HEDLEY_NON_NULL(2)
8290 static void strtof(double& f, const char* str, char** endptr) noexcept
8291 {
8292 f = std::strtod(str, endptr);
8293 }
8294
8295 JSON_HEDLEY_NON_NULL(2)
8296 static void strtof(long double& f, const char* str, char** endptr) noexcept
8297 {
8298 f = std::strtold(str, endptr);
8299 }
8300
8301 /*!
8302 @brief scan a number literal
8303
8304 This function scans a string according to Sect. 6 of RFC 8259.
8305
8306 The function is realized with a deterministic finite state machine derived
8307 from the grammar described in RFC 8259. Starting in state "init", the
8308 input is read and used to determined the next state. Only state "done"
8309 accepts the number. State "error" is a trap state to model errors. In the
8310 table below, "anything" means any character but the ones listed before.
8311
8312 state | 0 | 1-9 | e E | + | - | . | anything
8313 ---------|----------|----------|----------|---------|---------|----------|-----------
8314 init | zero | any1 | [error] | [error] | minus | [error] | [error]
8315 minus | zero | any1 | [error] | [error] | [error] | [error] | [error]
8316 zero | done | done | exponent | done | done | decimal1 | done
8317 any1 | any1 | any1 | exponent | done | done | decimal1 | done
8318 decimal1 | decimal2 | decimal2 | [error] | [error] | [error] | [error] | [error]
8319 decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
8320 exponent | any2 | any2 | [error] | sign | sign | [error] | [error]
8321 sign | any2 | any2 | [error] | [error] | [error] | [error] | [error]
8322 any2 | any2 | any2 | done | done | done | done | done
8323
8324 The state machine is realized with one label per state (prefixed with
8325 "scan_number_") and `goto` statements between them. The state machine
8326 contains cycles, but any cycle can be left when EOF is read. Therefore,
8327 the function is guaranteed to terminate.
8328
8329 During scanning, the read bytes are stored in token_buffer. This string is
8330 then converted to a signed integer, an unsigned integer, or a
8331 floating-point number.
8332
8333 @return token_type::value_unsigned, token_type::value_integer, or
8334 token_type::value_float if number could be successfully scanned,
8335 token_type::parse_error otherwise
8336
8337 @note The scanner is independent of the current locale. Internally, the
8338 locale's decimal point is used instead of `.` to work with the
8339 locale-dependent converters.
8340 */
8341 token_type scan_number() // lgtm [cpp/use-of-goto]
8342 {
8343 // reset token_buffer to store the number's bytes
8344 reset();
8345
8346 // the type of the parsed number; initially set to unsigned; will be
8347 // changed if minus sign, decimal point or exponent is read
8348 token_type number_type = token_type::value_unsigned;
8349
8350 // state (init): we just found out we need to scan a number
8351 switch (current)
8352 {
8353 case '-':
8354 {
8355 add(current);
8356 goto scan_number_minus;
8357 }
8358
8359 case '0':
8360 {
8361 add(current);
8362 goto scan_number_zero;
8363 }
8364
8365 case '1':
8366 case '2':
8367 case '3':
8368 case '4':
8369 case '5':
8370 case '6':
8371 case '7':
8372 case '8':
8373 case '9':
8374 {
8375 add(current);
8376 goto scan_number_any1;
8377 }
8378
8379 // all other characters are rejected outside scan_number()
8380 default: // LCOV_EXCL_LINE
8381 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
8382 }
8383
8384 scan_number_minus:
8385 // state: we just parsed a leading minus sign
8386 number_type = token_type::value_integer;
8387 switch (get())
8388 {
8389 case '0':
8390 {
8391 add(current);
8392 goto scan_number_zero;
8393 }
8394
8395 case '1':
8396 case '2':
8397 case '3':
8398 case '4':
8399 case '5':
8400 case '6':
8401 case '7':
8402 case '8':
8403 case '9':
8404 {
8405 add(current);
8406 goto scan_number_any1;
8407 }
8408
8409 default:
8410 {
8411 error_message = "invalid number; expected digit after '-'";
8412 return token_type::parse_error;
8413 }
8414 }
8415
8416 scan_number_zero:
8417 // state: we just parse a zero (maybe with a leading minus sign)
8418 switch (get())
8419 {
8420 case '.':
8421 {
8422 add(decimal_point_char);
8423 goto scan_number_decimal1;
8424 }
8425
8426 case 'e':
8427 case 'E':
8428 {
8429 add(current);
8430 goto scan_number_exponent;
8431 }
8432
8433 default:
8434 goto scan_number_done;
8435 }
8436
8437 scan_number_any1:
8438 // state: we just parsed a number 0-9 (maybe with a leading minus sign)
8439 switch (get())
8440 {
8441 case '0':
8442 case '1':
8443 case '2':
8444 case '3':
8445 case '4':
8446 case '5':
8447 case '6':
8448 case '7':
8449 case '8':
8450 case '9':
8451 {
8452 add(current);
8453 goto scan_number_any1;
8454 }
8455
8456 case '.':
8457 {
8458 add(decimal_point_char);
8459 goto scan_number_decimal1;
8460 }
8461
8462 case 'e':
8463 case 'E':
8464 {
8465 add(current);
8466 goto scan_number_exponent;
8467 }
8468
8469 default:
8470 goto scan_number_done;
8471 }
8472
8473 scan_number_decimal1:
8474 // state: we just parsed a decimal point
8475 number_type = token_type::value_float;
8476 switch (get())
8477 {
8478 case '0':
8479 case '1':
8480 case '2':
8481 case '3':
8482 case '4':
8483 case '5':
8484 case '6':
8485 case '7':
8486 case '8':
8487 case '9':
8488 {
8489 add(current);
8490 goto scan_number_decimal2;
8491 }
8492
8493 default:
8494 {
8495 error_message = "invalid number; expected digit after '.'";
8496 return token_type::parse_error;
8497 }
8498 }
8499
8500 scan_number_decimal2:
8501 // we just parsed at least one number after a decimal point
8502 switch (get())
8503 {
8504 case '0':
8505 case '1':
8506 case '2':
8507 case '3':
8508 case '4':
8509 case '5':
8510 case '6':
8511 case '7':
8512 case '8':
8513 case '9':
8514 {
8515 add(current);
8516 goto scan_number_decimal2;
8517 }
8518
8519 case 'e':
8520 case 'E':
8521 {
8522 add(current);
8523 goto scan_number_exponent;
8524 }
8525
8526 default:
8527 goto scan_number_done;
8528 }
8529
8530 scan_number_exponent:
8531 // we just parsed an exponent
8532 number_type = token_type::value_float;
8533 switch (get())
8534 {
8535 case '+':
8536 case '-':
8537 {
8538 add(current);
8539 goto scan_number_sign;
8540 }
8541
8542 case '0':
8543 case '1':
8544 case '2':
8545 case '3':
8546 case '4':
8547 case '5':
8548 case '6':
8549 case '7':
8550 case '8':
8551 case '9':
8552 {
8553 add(current);
8554 goto scan_number_any2;
8555 }
8556
8557 default:
8558 {
8559 error_message =
8560 "invalid number; expected '+', '-', or digit after exponent";
8561 return token_type::parse_error;
8562 }
8563 }
8564
8565 scan_number_sign:
8566 // we just parsed an exponent sign
8567 switch (get())
8568 {
8569 case '0':
8570 case '1':
8571 case '2':
8572 case '3':
8573 case '4':
8574 case '5':
8575 case '6':
8576 case '7':
8577 case '8':
8578 case '9':
8579 {
8580 add(current);
8581 goto scan_number_any2;
8582 }
8583
8584 default:
8585 {
8586 error_message = "invalid number; expected digit after exponent sign";
8587 return token_type::parse_error;
8588 }
8589 }
8590
8591 scan_number_any2:
8592 // we just parsed a number after the exponent or exponent sign
8593 switch (get())
8594 {
8595 case '0':
8596 case '1':
8597 case '2':
8598 case '3':
8599 case '4':
8600 case '5':
8601 case '6':
8602 case '7':
8603 case '8':
8604 case '9':
8605 {
8606 add(current);
8607 goto scan_number_any2;
8608 }
8609
8610 default:
8611 goto scan_number_done;
8612 }
8613
8614 scan_number_done:
8615 // unget the character after the number (we only read it to know that
8616 // we are done scanning a number)
8617 unget();
8618
8619 char* endptr = nullptr; // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
8620 errno = 0;
8621
8622 // try to parse integers first and fall back to floats
8623 if (number_type == token_type::value_unsigned)
8624 {
8625 const auto x = std::strtoull(token_buffer.data(), &endptr, 10);
8626
8627 // we checked the number format before
8628 JSON_ASSERT(endptr == token_buffer.data() + token_buffer.size());
8629
8630 if (errno == 0)
8631 {
8632 value_unsigned = static_cast<number_unsigned_t>(x);
8633 if (value_unsigned == x)
8634 {
8635 return token_type::value_unsigned;
8636 }
8637 }
8638 }
8639 else if (number_type == token_type::value_integer)
8640 {
8641 const auto x = std::strtoll(token_buffer.data(), &endptr, 10);
8642
8643 // we checked the number format before
8644 JSON_ASSERT(endptr == token_buffer.data() + token_buffer.size());
8645
8646 if (errno == 0)
8647 {
8648 value_integer = static_cast<number_integer_t>(x);
8649 if (value_integer == x)
8650 {
8651 return token_type::value_integer;
8652 }
8653 }
8654 }
8655
8656 // this code is reached if we parse a floating-point number or if an
8657 // integer conversion above failed
8658 strtof(value_float, token_buffer.data(), &endptr);
8659
8660 // we checked the number format before
8661 JSON_ASSERT(endptr == token_buffer.data() + token_buffer.size());
8662
8663 return token_type::value_float;
8664 }
8665
8666 /*!
8667 @param[in] literal_text the literal text to expect
8668 @param[in] length the length of the passed literal text
8669 @param[in] return_type the token type to return on success
8670 */
8671 JSON_HEDLEY_NON_NULL(2)
8672 token_type scan_literal(const char_type* literal_text, const std::size_t length,
8673 token_type return_type)
8674 {
8675 JSON_ASSERT(char_traits<char_type>::to_char_type(current) == literal_text[0]);
8676 for (std::size_t i = 1; i < length; ++i)
8677 {
8678 if (JSON_HEDLEY_UNLIKELY(char_traits<char_type>::to_char_type(get()) != literal_text[i]))
8679 {
8680 error_message = "invalid literal";
8681 return token_type::parse_error;
8682 }
8683 }
8684 return return_type;
8685 }
8686
8687 /////////////////////
8688 // input management
8689 /////////////////////
8690
8691 /// reset token_buffer; current character is beginning of token
8692 void reset() noexcept
8693 {
8694 token_buffer.clear();
8695 token_string.clear();
8696 token_string.push_back(char_traits<char_type>::to_char_type(current));
8697 }
8698
8699 /*
8700 @brief get next character from the input
8701
8702 This function provides the interface to the used input adapter. It does
8703 not throw in case the input reached EOF, but returns a
8704 `char_traits<char>::eof()` in that case. Stores the scanned characters
8705 for use in error messages.
8706
8707 @return character read from the input
8708 */
8709 char_int_type get()
8710 {
8711 ++position.chars_read_total;
8712 ++position.chars_read_current_line;
8713
8714 if (next_unget)
8715 {
8716 // just reset the next_unget variable and work with current
8717 next_unget = false;
8718 }
8719 else
8720 {
8721 current = ia.get_character();
8722 }
8723
8724 if (JSON_HEDLEY_LIKELY(current != char_traits<char_type>::eof()))
8725 {
8726 token_string.push_back(char_traits<char_type>::to_char_type(current));
8727 }
8728
8729 if (current == '\n')
8730 {
8731 ++position.lines_read;
8732 position.chars_read_current_line = 0;
8733 }
8734
8735 return current;
8736 }
8737
8738 /*!
8739 @brief unget current character (read it again on next get)
8740
8741 We implement unget by setting variable next_unget to true. The input is not
8742 changed - we just simulate ungetting by modifying chars_read_total,
8743 chars_read_current_line, and token_string. The next call to get() will
8744 behave as if the unget character is read again.
8745 */
8746 void unget()
8747 {
8748 next_unget = true;
8749
8750 --position.chars_read_total;
8751
8752 // in case we "unget" a newline, we have to also decrement the lines_read
8753 if (position.chars_read_current_line == 0)
8754 {
8755 if (position.lines_read > 0)
8756 {
8757 --position.lines_read;
8758 }
8759 }
8760 else
8761 {
8762 --position.chars_read_current_line;
8763 }
8764
8765 if (JSON_HEDLEY_LIKELY(current != char_traits<char_type>::eof()))
8766 {
8767 JSON_ASSERT(!token_string.empty());
8768 token_string.pop_back();
8769 }
8770 }
8771
8772 /// add a character to token_buffer
8773 void add(char_int_type c)
8774 {
8775 token_buffer.push_back(static_cast<typename string_t::value_type>(c));
8776 }
8777
8778 public:
8779 /////////////////////
8780 // value getters
8781 /////////////////////
8782
8783 /// return integer value
8784 constexpr number_integer_t get_number_integer() const noexcept
8785 {
8786 return value_integer;
8787 }
8788
8789 /// return unsigned integer value
8790 constexpr number_unsigned_t get_number_unsigned() const noexcept
8791 {
8792 return value_unsigned;
8793 }
8794
8795 /// return floating-point value
8796 constexpr number_float_t get_number_float() const noexcept
8797 {
8798 return value_float;
8799 }
8800
8801 /// return current string value (implicitly resets the token; useful only once)
8802 string_t& get_string()
8803 {
8804 return token_buffer;
8805 }
8806
8807 /////////////////////
8808 // diagnostics
8809 /////////////////////
8810
8811 /// return position of last read token
8812 constexpr position_t get_position() const noexcept
8813 {
8814 return position;
8815 }
8816
8817 /// return the last read token (for errors only). Will never contain EOF
8818 /// (an arbitrary value that is not a valid char value, often -1), because
8819 /// 255 may legitimately occur. May contain NUL, which should be escaped.
8820 std::string get_token_string() const
8821 {
8822 // escape control characters
8823 std::string result;
8824 for (const auto c : token_string)
8825 {
8826 if (static_cast<unsigned char>(c) <= '\x1F')
8827 {
8828 // escape control characters
8829 std::array<char, 9> cs{{}};
8830 static_cast<void>((std::snprintf)(cs.data(), cs.size(), "<U+%.4X>", static_cast<unsigned char>(c))); // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
8831 result += cs.data();
8832 }
8833 else
8834 {
8835 // add character as is
8836 result.push_back(static_cast<std::string::value_type>(c));
8837 }
8838 }
8839
8840 return result;
8841 }
8842
8843 /// return syntax error message
8844 JSON_HEDLEY_RETURNS_NON_NULL
8845 constexpr const char* get_error_message() const noexcept
8846 {
8847 return error_message;
8848 }
8849
8850 /////////////////////
8851 // actual scanner
8852 /////////////////////
8853
8854 /*!
8855 @brief skip the UTF-8 byte order mark
8856 @return true iff there is no BOM or the correct BOM has been skipped
8857 */
8858 bool skip_bom()
8859 {
8860 if (get() == 0xEF)
8861 {
8862 // check if we completely parse the BOM
8863 return get() == 0xBB && get() == 0xBF;
8864 }
8865
8866 // the first character is not the beginning of the BOM; unget it to
8867 // process is later
8868 unget();
8869 return true;
8870 }
8871
8872 void skip_whitespace()
8873 {
8874 do
8875 {
8876 get();
8877 }
8878 while (current == ' ' || current == '\t' || current == '\n' || current == '\r');
8879 }
8880
8881 token_type scan()
8882 {
8883 // initially, skip the BOM
8884 if (position.chars_read_total == 0 && !skip_bom())
8885 {
8886 error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given";
8887 return token_type::parse_error;
8888 }
8889
8890 // read next character and ignore whitespace
8891 skip_whitespace();
8892
8893 // ignore comments
8894 while (ignore_comments && current == '/')
8895 {
8896 if (!scan_comment())
8897 {
8898 return token_type::parse_error;
8899 }
8900
8901 // skip following whitespace
8902 skip_whitespace();
8903 }
8904
8905 switch (current)
8906 {
8907 // structural characters
8908 case '[':
8909 return token_type::begin_array;
8910 case ']':
8911 return token_type::end_array;
8912 case '{':
8913 return token_type::begin_object;
8914 case '}':
8915 return token_type::end_object;
8916 case ':':
8917 return token_type::name_separator;
8918 case ',':
8919 return token_type::value_separator;
8920
8921 // literals
8922 case 't':
8923 {
8924 std::array<char_type, 4> true_literal = {{static_cast<char_type>('t'), static_cast<char_type>('r'), static_cast<char_type>('u'), static_cast<char_type>('e')}};
8925 return scan_literal(true_literal.data(), true_literal.size(), token_type::literal_true);
8926 }
8927 case 'f':
8928 {
8929 std::array<char_type, 5> false_literal = {{static_cast<char_type>('f'), static_cast<char_type>('a'), static_cast<char_type>('l'), static_cast<char_type>('s'), static_cast<char_type>('e')}};
8930 return scan_literal(false_literal.data(), false_literal.size(), token_type::literal_false);
8931 }
8932 case 'n':
8933 {
8934 std::array<char_type, 4> null_literal = {{static_cast<char_type>('n'), static_cast<char_type>('u'), static_cast<char_type>('l'), static_cast<char_type>('l')}};
8935 return scan_literal(null_literal.data(), null_literal.size(), token_type::literal_null);
8936 }
8937
8938 // string
8939 case '\"':
8940 return scan_string();
8941
8942 // number
8943 case '-':
8944 case '0':
8945 case '1':
8946 case '2':
8947 case '3':
8948 case '4':
8949 case '5':
8950 case '6':
8951 case '7':
8952 case '8':
8953 case '9':
8954 return scan_number();
8955
8956 // end of input (the null byte is needed when parsing from
8957 // string literals)
8958 case '\0':
8959 case char_traits<char_type>::eof():
8960 return token_type::end_of_input;
8961
8962 // error
8963 default:
8964 error_message = "invalid literal";
8965 return token_type::parse_error;
8966 }
8967 }
8968
8969 private:
8970 /// input adapter
8971 InputAdapterType ia;
8972
8973 /// whether comments should be ignored (true) or signaled as errors (false)
8974 const bool ignore_comments = false;
8975
8976 /// the current character
8977 char_int_type current = char_traits<char_type>::eof();
8978
8979 /// whether the next get() call should just return current
8980 bool next_unget = false;
8981
8982 /// the start position of the current token
8983 position_t position {};
8984
8985 /// raw input token string (for error messages)
8986 std::vector<char_type> token_string {};
8987
8988 /// buffer for variable-length tokens (numbers, strings)
8989 string_t token_buffer {};
8990
8991 /// a description of occurred lexer errors
8992 const char* error_message = "";
8993
8994 // number values
8995 number_integer_t value_integer = 0;
8996 number_unsigned_t value_unsigned = 0;
8997 number_float_t value_float = 0;
8998
8999 /// the decimal point
9000 const char_int_type decimal_point_char = '.';
9001 };
9002
9003 } // namespace detail
9004 NLOHMANN_JSON_NAMESPACE_END
9005
9006 // #include <nlohmann/detail/macro_scope.hpp>
9007
9008 // #include <nlohmann/detail/meta/is_sax.hpp>
9009 // __ _____ _____ _____
9010 // __| | __| | | | JSON for Modern C++
9011 // | | |__ | | | | | | version 3.11.3
9012 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
9013 //
9014 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
9015 // SPDX-License-Identifier: MIT
9016
9017
9018
9019 #include <cstdint> // size_t
9020 #include <utility> // declval
9021 #include <string> // string
9022
9023 // #include <nlohmann/detail/abi_macros.hpp>
9024
9025 // #include <nlohmann/detail/meta/detected.hpp>
9026
9027 // #include <nlohmann/detail/meta/type_traits.hpp>
9028
9029
9030 NLOHMANN_JSON_NAMESPACE_BEGIN
9031 namespace detail
9032 {
9033
9034 template<typename T>
9035 using null_function_t = decltype(std::declval<T&>().null());
9036
9037 template<typename T>
9038 using boolean_function_t =
9039 decltype(std::declval<T&>().boolean(std::declval<bool>()));
9040
9041 template<typename T, typename Integer>
9042 using number_integer_function_t =
9043 decltype(std::declval<T&>().number_integer(std::declval<Integer>()));
9044
9045 template<typename T, typename Unsigned>
9046 using number_unsigned_function_t =
9047 decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>()));
9048
9049 template<typename T, typename Float, typename String>
9050 using number_float_function_t = decltype(std::declval<T&>().number_float(
9051 std::declval<Float>(), std::declval<const String&>()));
9052
9053 template<typename T, typename String>
9054 using string_function_t =
9055 decltype(std::declval<T&>().string(std::declval<String&>()));
9056
9057 template<typename T, typename Binary>
9058 using binary_function_t =
9059 decltype(std::declval<T&>().binary(std::declval<Binary&>()));
9060
9061 template<typename T>
9062 using start_object_function_t =
9063 decltype(std::declval<T&>().start_object(std::declval<std::size_t>()));
9064
9065 template<typename T, typename String>
9066 using key_function_t =
9067 decltype(std::declval<T&>().key(std::declval<String&>()));
9068
9069 template<typename T>
9070 using end_object_function_t = decltype(std::declval<T&>().end_object());
9071
9072 template<typename T>
9073 using start_array_function_t =
9074 decltype(std::declval<T&>().start_array(std::declval<std::size_t>()));
9075
9076 template<typename T>
9077 using end_array_function_t = decltype(std::declval<T&>().end_array());
9078
9079 template<typename T, typename Exception>
9080 using parse_error_function_t = decltype(std::declval<T&>().parse_error(
9081 std::declval<std::size_t>(), std::declval<const std::string&>(),
9082 std::declval<const Exception&>()));
9083
9084 template<typename SAX, typename BasicJsonType>
9085 struct is_sax
9086 {
9087 private:
9088 static_assert(is_basic_json<BasicJsonType>::value,
9089 "BasicJsonType must be of type basic_json<...>");
9090
9091 using number_integer_t = typename BasicJsonType::number_integer_t;
9092 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
9093 using number_float_t = typename BasicJsonType::number_float_t;
9094 using string_t = typename BasicJsonType::string_t;
9095 using binary_t = typename BasicJsonType::binary_t;
9096 using exception_t = typename BasicJsonType::exception;
9097
9098 public:
9099 static constexpr bool value =
9100 is_detected_exact<bool, null_function_t, SAX>::value &&
9101 is_detected_exact<bool, boolean_function_t, SAX>::value &&
9102 is_detected_exact<bool, number_integer_function_t, SAX, number_integer_t>::value &&
9103 is_detected_exact<bool, number_unsigned_function_t, SAX, number_unsigned_t>::value &&
9104 is_detected_exact<bool, number_float_function_t, SAX, number_float_t, string_t>::value &&
9105 is_detected_exact<bool, string_function_t, SAX, string_t>::value &&
9106 is_detected_exact<bool, binary_function_t, SAX, binary_t>::value &&
9107 is_detected_exact<bool, start_object_function_t, SAX>::value &&
9108 is_detected_exact<bool, key_function_t, SAX, string_t>::value &&
9109 is_detected_exact<bool, end_object_function_t, SAX>::value &&
9110 is_detected_exact<bool, start_array_function_t, SAX>::value &&
9111 is_detected_exact<bool, end_array_function_t, SAX>::value &&
9112 is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value;
9113 };
9114
9115 template<typename SAX, typename BasicJsonType>
9116 struct is_sax_static_asserts
9117 {
9118 private:
9119 static_assert(is_basic_json<BasicJsonType>::value,
9120 "BasicJsonType must be of type basic_json<...>");
9121
9122 using number_integer_t = typename BasicJsonType::number_integer_t;
9123 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
9124 using number_float_t = typename BasicJsonType::number_float_t;
9125 using string_t = typename BasicJsonType::string_t;
9126 using binary_t = typename BasicJsonType::binary_t;
9127 using exception_t = typename BasicJsonType::exception;
9128
9129 public:
9130 static_assert(is_detected_exact<bool, null_function_t, SAX>::value,
9131 "Missing/invalid function: bool null()");
9132 static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
9133 "Missing/invalid function: bool boolean(bool)");
9134 static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
9135 "Missing/invalid function: bool boolean(bool)");
9136 static_assert(
9137 is_detected_exact<bool, number_integer_function_t, SAX,
9138 number_integer_t>::value,
9139 "Missing/invalid function: bool number_integer(number_integer_t)");
9140 static_assert(
9141 is_detected_exact<bool, number_unsigned_function_t, SAX,
9142 number_unsigned_t>::value,
9143 "Missing/invalid function: bool number_unsigned(number_unsigned_t)");
9144 static_assert(is_detected_exact<bool, number_float_function_t, SAX,
9145 number_float_t, string_t>::value,
9146 "Missing/invalid function: bool number_float(number_float_t, const string_t&)");
9147 static_assert(
9148 is_detected_exact<bool, string_function_t, SAX, string_t>::value,
9149 "Missing/invalid function: bool string(string_t&)");
9150 static_assert(
9151 is_detected_exact<bool, binary_function_t, SAX, binary_t>::value,
9152 "Missing/invalid function: bool binary(binary_t&)");
9153 static_assert(is_detected_exact<bool, start_object_function_t, SAX>::value,
9154 "Missing/invalid function: bool start_object(std::size_t)");
9155 static_assert(is_detected_exact<bool, key_function_t, SAX, string_t>::value,
9156 "Missing/invalid function: bool key(string_t&)");
9157 static_assert(is_detected_exact<bool, end_object_function_t, SAX>::value,
9158 "Missing/invalid function: bool end_object()");
9159 static_assert(is_detected_exact<bool, start_array_function_t, SAX>::value,
9160 "Missing/invalid function: bool start_array(std::size_t)");
9161 static_assert(is_detected_exact<bool, end_array_function_t, SAX>::value,
9162 "Missing/invalid function: bool end_array()");
9163 static_assert(
9164 is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value,
9165 "Missing/invalid function: bool parse_error(std::size_t, const "
9166 "std::string&, const exception&)");
9167 };
9168
9169 } // namespace detail
9170 NLOHMANN_JSON_NAMESPACE_END
9171
9172 // #include <nlohmann/detail/meta/type_traits.hpp>
9173
9174 // #include <nlohmann/detail/string_concat.hpp>
9175
9176 // #include <nlohmann/detail/value_t.hpp>
9177
9178
9179 NLOHMANN_JSON_NAMESPACE_BEGIN
9180 namespace detail
9181 {
9182
9183 /// how to treat CBOR tags
9184 enum class cbor_tag_handler_t
9185 {
9186 error, ///< throw a parse_error exception in case of a tag
9187 ignore, ///< ignore tags
9188 store ///< store tags as binary type
9189 };
9190
9191 /*!
9192 @brief determine system byte order
9193
9194 @return true if and only if system's byte order is little endian
9195
9196 @note from https://stackoverflow.com/a/1001328/266378
9197 */
9198 static inline bool little_endianness(int num = 1) noexcept
9199 {
9200 return *reinterpret_cast<char*>(&num) == 1;
9201 }
9202
9203 ///////////////////
9204 // binary reader //
9205 ///////////////////
9206
9207 /*!
9208 @brief deserialization of CBOR, MessagePack, and UBJSON values
9209 */
9210 template<typename BasicJsonType, typename InputAdapterType, typename SAX = json_sax_dom_parser<BasicJsonType>>
9211 class binary_reader
9212 {
9213 using number_integer_t = typename BasicJsonType::number_integer_t;
9214 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
9215 using number_float_t = typename BasicJsonType::number_float_t;
9216 using string_t = typename BasicJsonType::string_t;
9217 using binary_t = typename BasicJsonType::binary_t;
9218 using json_sax_t = SAX;
9219 using char_type = typename InputAdapterType::char_type;
9220 using char_int_type = typename char_traits<char_type>::int_type;
9221
9222 public:
9223 /*!
9224 @brief create a binary reader
9225
9226 @param[in] adapter input adapter to read from
9227 */
9228 explicit binary_reader(InputAdapterType&& adapter, const input_format_t format = input_format_t::json) noexcept : ia(std::move(adapter)), input_format(format)
9229 {
9230 (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
9231 }
9232
9233 // make class move-only
9234 binary_reader(const binary_reader&) = delete;
9235 binary_reader(binary_reader&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
9236 binary_reader& operator=(const binary_reader&) = delete;
9237 binary_reader& operator=(binary_reader&&) = default; // NOLINT(hicpp-noexcept-move,performance-noexcept-move-constructor)
9238 ~binary_reader() = default;
9239
9240 /*!
9241 @param[in] format the binary format to parse
9242 @param[in] sax_ a SAX event processor
9243 @param[in] strict whether to expect the input to be consumed completed
9244 @param[in] tag_handler how to treat CBOR tags
9245
9246 @return whether parsing was successful
9247 */
9248 JSON_HEDLEY_NON_NULL(3)
9249 bool sax_parse(const input_format_t format,
9250 json_sax_t* sax_,
9251 const bool strict = true,
9252 const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error)
9253 {
9254 sax = sax_;
9255 bool result = false;
9256
9257 switch (format)
9258 {
9259 case input_format_t::bson:
9260 result = parse_bson_internal();
9261 break;
9262
9263 case input_format_t::cbor:
9264 result = parse_cbor_internal(true, tag_handler);
9265 break;
9266
9267 case input_format_t::msgpack:
9268 result = parse_msgpack_internal();
9269 break;
9270
9271 case input_format_t::ubjson:
9272 case input_format_t::bjdata:
9273 result = parse_ubjson_internal();
9274 break;
9275
9276 case input_format_t::json: // LCOV_EXCL_LINE
9277 default: // LCOV_EXCL_LINE
9278 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
9279 }
9280
9281 // strict mode: next byte must be EOF
9282 if (result && strict)
9283 {
9284 if (input_format == input_format_t::ubjson || input_format == input_format_t::bjdata)
9285 {
9286 get_ignore_noop();
9287 }
9288 else
9289 {
9290 get();
9291 }
9292
9293 if (JSON_HEDLEY_UNLIKELY(current != char_traits<char_type>::eof()))
9294 {
9295 return sax->parse_error(chars_read, get_token_string(), parse_error::create(110, chars_read,
9296 exception_message(input_format, concat("expected end of input; last byte: 0x", get_token_string()), "value"), nullptr));
9297 }
9298 }
9299
9300 return result;
9301 }
9302
9303 private:
9304 //////////
9305 // BSON //
9306 //////////
9307
9308 /*!
9309 @brief Reads in a BSON-object and passes it to the SAX-parser.
9310 @return whether a valid BSON-value was passed to the SAX parser
9311 */
9312 bool parse_bson_internal()
9313 {
9314 std::int32_t document_size{};
9315 get_number<std::int32_t, true>(input_format_t::bson, document_size);
9316
9317 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
9318 {
9319 return false;
9320 }
9321
9322 if (JSON_HEDLEY_UNLIKELY(!parse_bson_element_list(/*is_array*/false)))
9323 {
9324 return false;
9325 }
9326
9327 return sax->end_object();
9328 }
9329
9330 /*!
9331 @brief Parses a C-style string from the BSON input.
9332 @param[in,out] result A reference to the string variable where the read
9333 string is to be stored.
9334 @return `true` if the \x00-byte indicating the end of the string was
9335 encountered before the EOF; false` indicates an unexpected EOF.
9336 */
9337 bool get_bson_cstr(string_t& result)
9338 {
9339 auto out = std::back_inserter(result);
9340 while (true)
9341 {
9342 get();
9343 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::bson, "cstring")))
9344 {
9345 return false;
9346 }
9347 if (current == 0x00)
9348 {
9349 return true;
9350 }
9351 *out++ = static_cast<typename string_t::value_type>(current);
9352 }
9353 }
9354
9355 /*!
9356 @brief Parses a zero-terminated string of length @a len from the BSON
9357 input.
9358 @param[in] len The length (including the zero-byte at the end) of the
9359 string to be read.
9360 @param[in,out] result A reference to the string variable where the read
9361 string is to be stored.
9362 @tparam NumberType The type of the length @a len
9363 @pre len >= 1
9364 @return `true` if the string was successfully parsed
9365 */
9366 template<typename NumberType>
9367 bool get_bson_string(const NumberType len, string_t& result)
9368 {
9369 if (JSON_HEDLEY_UNLIKELY(len < 1))
9370 {
9371 auto last_token = get_token_string();
9372 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
9373 exception_message(input_format_t::bson, concat("string length must be at least 1, is ", std::to_string(len)), "string"), nullptr));
9374 }
9375
9376 return get_string(input_format_t::bson, len - static_cast<NumberType>(1), result) && get() != char_traits<char_type>::eof();
9377 }
9378
9379 /*!
9380 @brief Parses a byte array input of length @a len from the BSON input.
9381 @param[in] len The length of the byte array to be read.
9382 @param[in,out] result A reference to the binary variable where the read
9383 array is to be stored.
9384 @tparam NumberType The type of the length @a len
9385 @pre len >= 0
9386 @return `true` if the byte array was successfully parsed
9387 */
9388 template<typename NumberType>
9389 bool get_bson_binary(const NumberType len, binary_t& result)
9390 {
9391 if (JSON_HEDLEY_UNLIKELY(len < 0))
9392 {
9393 auto last_token = get_token_string();
9394 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
9395 exception_message(input_format_t::bson, concat("byte array length cannot be negative, is ", std::to_string(len)), "binary"), nullptr));
9396 }
9397
9398 // All BSON binary values have a subtype
9399 std::uint8_t subtype{};
9400 get_number<std::uint8_t>(input_format_t::bson, subtype);
9401 result.set_subtype(subtype);
9402
9403 return get_binary(input_format_t::bson, len, result);
9404 }
9405
9406 /*!
9407 @brief Read a BSON document element of the given @a element_type.
9408 @param[in] element_type The BSON element type, c.f. http://bsonspec.org/spec.html
9409 @param[in] element_type_parse_position The position in the input stream,
9410 where the `element_type` was read.
9411 @warning Not all BSON element types are supported yet. An unsupported
9412 @a element_type will give rise to a parse_error.114:
9413 Unsupported BSON record type 0x...
9414 @return whether a valid BSON-object/array was passed to the SAX parser
9415 */
9416 bool parse_bson_element_internal(const char_int_type element_type,
9417 const std::size_t element_type_parse_position)
9418 {
9419 switch (element_type)
9420 {
9421 case 0x01: // double
9422 {
9423 double number{};
9424 return get_number<double, true>(input_format_t::bson, number) && sax->number_float(static_cast<number_float_t>(number), "");
9425 }
9426
9427 case 0x02: // string
9428 {
9429 std::int32_t len{};
9430 string_t value;
9431 return get_number<std::int32_t, true>(input_format_t::bson, len) && get_bson_string(len, value) && sax->string(value);
9432 }
9433
9434 case 0x03: // object
9435 {
9436 return parse_bson_internal();
9437 }
9438
9439 case 0x04: // array
9440 {
9441 return parse_bson_array();
9442 }
9443
9444 case 0x05: // binary
9445 {
9446 std::int32_t len{};
9447 binary_t value;
9448 return get_number<std::int32_t, true>(input_format_t::bson, len) && get_bson_binary(len, value) && sax->binary(value);
9449 }
9450
9451 case 0x08: // boolean
9452 {
9453 return sax->boolean(get() != 0);
9454 }
9455
9456 case 0x0A: // null
9457 {
9458 return sax->null();
9459 }
9460
9461 case 0x10: // int32
9462 {
9463 std::int32_t value{};
9464 return get_number<std::int32_t, true>(input_format_t::bson, value) && sax->number_integer(value);
9465 }
9466
9467 case 0x12: // int64
9468 {
9469 std::int64_t value{};
9470 return get_number<std::int64_t, true>(input_format_t::bson, value) && sax->number_integer(value);
9471 }
9472
9473 default: // anything else not supported (yet)
9474 {
9475 std::array<char, 3> cr{{}};
9476 static_cast<void>((std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(element_type))); // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
9477 const std::string cr_str{cr.data()};
9478 return sax->parse_error(element_type_parse_position, cr_str,
9479 parse_error::create(114, element_type_parse_position, concat("Unsupported BSON record type 0x", cr_str), nullptr));
9480 }
9481 }
9482 }
9483
9484 /*!
9485 @brief Read a BSON element list (as specified in the BSON-spec)
9486
9487 The same binary layout is used for objects and arrays, hence it must be
9488 indicated with the argument @a is_array which one is expected
9489 (true --> array, false --> object).
9490
9491 @param[in] is_array Determines if the element list being read is to be
9492 treated as an object (@a is_array == false), or as an
9493 array (@a is_array == true).
9494 @return whether a valid BSON-object/array was passed to the SAX parser
9495 */
9496 bool parse_bson_element_list(const bool is_array)
9497 {
9498 string_t key;
9499
9500 while (auto element_type = get())
9501 {
9502 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::bson, "element list")))
9503 {
9504 return false;
9505 }
9506
9507 const std::size_t element_type_parse_position = chars_read;
9508 if (JSON_HEDLEY_UNLIKELY(!get_bson_cstr(key)))
9509 {
9510 return false;
9511 }
9512
9513 if (!is_array && !sax->key(key))
9514 {
9515 return false;
9516 }
9517
9518 if (JSON_HEDLEY_UNLIKELY(!parse_bson_element_internal(element_type, element_type_parse_position)))
9519 {
9520 return false;
9521 }
9522
9523 // get_bson_cstr only appends
9524 key.clear();
9525 }
9526
9527 return true;
9528 }
9529
9530 /*!
9531 @brief Reads an array from the BSON input and passes it to the SAX-parser.
9532 @return whether a valid BSON-array was passed to the SAX parser
9533 */
9534 bool parse_bson_array()
9535 {
9536 std::int32_t document_size{};
9537 get_number<std::int32_t, true>(input_format_t::bson, document_size);
9538
9539 if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
9540 {
9541 return false;
9542 }
9543
9544 if (JSON_HEDLEY_UNLIKELY(!parse_bson_element_list(/*is_array*/true)))
9545 {
9546 return false;
9547 }
9548
9549 return sax->end_array();
9550 }
9551
9552 //////////
9553 // CBOR //
9554 //////////
9555
9556 /*!
9557 @param[in] get_char whether a new character should be retrieved from the
9558 input (true) or whether the last read character should
9559 be considered instead (false)
9560 @param[in] tag_handler how CBOR tags should be treated
9561
9562 @return whether a valid CBOR value was passed to the SAX parser
9563 */
9564 bool parse_cbor_internal(const bool get_char,
9565 const cbor_tag_handler_t tag_handler)
9566 {
9567 switch (get_char ? get() : current)
9568 {
9569 // EOF
9570 case char_traits<char_type>::eof():
9571 return unexpect_eof(input_format_t::cbor, "value");
9572
9573 // Integer 0x00..0x17 (0..23)
9574 case 0x00:
9575 case 0x01:
9576 case 0x02:
9577 case 0x03:
9578 case 0x04:
9579 case 0x05:
9580 case 0x06:
9581 case 0x07:
9582 case 0x08:
9583 case 0x09:
9584 case 0x0A:
9585 case 0x0B:
9586 case 0x0C:
9587 case 0x0D:
9588 case 0x0E:
9589 case 0x0F:
9590 case 0x10:
9591 case 0x11:
9592 case 0x12:
9593 case 0x13:
9594 case 0x14:
9595 case 0x15:
9596 case 0x16:
9597 case 0x17:
9598 return sax->number_unsigned(static_cast<number_unsigned_t>(current));
9599
9600 case 0x18: // Unsigned integer (one-byte uint8_t follows)
9601 {
9602 std::uint8_t number{};
9603 return get_number(input_format_t::cbor, number) && sax->number_unsigned(number);
9604 }
9605
9606 case 0x19: // Unsigned integer (two-byte uint16_t follows)
9607 {
9608 std::uint16_t number{};
9609 return get_number(input_format_t::cbor, number) && sax->number_unsigned(number);
9610 }
9611
9612 case 0x1A: // Unsigned integer (four-byte uint32_t follows)
9613 {
9614 std::uint32_t number{};
9615 return get_number(input_format_t::cbor, number) && sax->number_unsigned(number);
9616 }
9617
9618 case 0x1B: // Unsigned integer (eight-byte uint64_t follows)
9619 {
9620 std::uint64_t number{};
9621 return get_number(input_format_t::cbor, number) && sax->number_unsigned(number);
9622 }
9623
9624 // Negative integer -1-0x00..-1-0x17 (-1..-24)
9625 case 0x20:
9626 case 0x21:
9627 case 0x22:
9628 case 0x23:
9629 case 0x24:
9630 case 0x25:
9631 case 0x26:
9632 case 0x27:
9633 case 0x28:
9634 case 0x29:
9635 case 0x2A:
9636 case 0x2B:
9637 case 0x2C:
9638 case 0x2D:
9639 case 0x2E:
9640 case 0x2F:
9641 case 0x30:
9642 case 0x31:
9643 case 0x32:
9644 case 0x33:
9645 case 0x34:
9646 case 0x35:
9647 case 0x36:
9648 case 0x37:
9649 return sax->number_integer(static_cast<std::int8_t>(0x20 - 1 - current));
9650
9651 case 0x38: // Negative integer (one-byte uint8_t follows)
9652 {
9653 std::uint8_t number{};
9654 return get_number(input_format_t::cbor, number) && sax->number_integer(static_cast<number_integer_t>(-1) - number);
9655 }
9656
9657 case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
9658 {
9659 std::uint16_t number{};
9660 return get_number(input_format_t::cbor, number) && sax->number_integer(static_cast<number_integer_t>(-1) - number);
9661 }
9662
9663 case 0x3A: // Negative integer -1-n (four-byte uint32_t follows)
9664 {
9665 std::uint32_t number{};
9666 return get_number(input_format_t::cbor, number) && sax->number_integer(static_cast<number_integer_t>(-1) - number);
9667 }
9668
9669 case 0x3B: // Negative integer -1-n (eight-byte uint64_t follows)
9670 {
9671 std::uint64_t number{};
9672 return get_number(input_format_t::cbor, number) && sax->number_integer(static_cast<number_integer_t>(-1)
9673 - static_cast<number_integer_t>(number));
9674 }
9675
9676 // Binary data (0x00..0x17 bytes follow)
9677 case 0x40:
9678 case 0x41:
9679 case 0x42:
9680 case 0x43:
9681 case 0x44:
9682 case 0x45:
9683 case 0x46:
9684 case 0x47:
9685 case 0x48:
9686 case 0x49:
9687 case 0x4A:
9688 case 0x4B:
9689 case 0x4C:
9690 case 0x4D:
9691 case 0x4E:
9692 case 0x4F:
9693 case 0x50:
9694 case 0x51:
9695 case 0x52:
9696 case 0x53:
9697 case 0x54:
9698 case 0x55:
9699 case 0x56:
9700 case 0x57:
9701 case 0x58: // Binary data (one-byte uint8_t for n follows)
9702 case 0x59: // Binary data (two-byte uint16_t for n follow)
9703 case 0x5A: // Binary data (four-byte uint32_t for n follow)
9704 case 0x5B: // Binary data (eight-byte uint64_t for n follow)
9705 case 0x5F: // Binary data (indefinite length)
9706 {
9707 binary_t b;
9708 return get_cbor_binary(b) && sax->binary(b);
9709 }
9710
9711 // UTF-8 string (0x00..0x17 bytes follow)
9712 case 0x60:
9713 case 0x61:
9714 case 0x62:
9715 case 0x63:
9716 case 0x64:
9717 case 0x65:
9718 case 0x66:
9719 case 0x67:
9720 case 0x68:
9721 case 0x69:
9722 case 0x6A:
9723 case 0x6B:
9724 case 0x6C:
9725 case 0x6D:
9726 case 0x6E:
9727 case 0x6F:
9728 case 0x70:
9729 case 0x71:
9730 case 0x72:
9731 case 0x73:
9732 case 0x74:
9733 case 0x75:
9734 case 0x76:
9735 case 0x77:
9736 case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
9737 case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
9738 case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
9739 case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
9740 case 0x7F: // UTF-8 string (indefinite length)
9741 {
9742 string_t s;
9743 return get_cbor_string(s) && sax->string(s);
9744 }
9745
9746 // array (0x00..0x17 data items follow)
9747 case 0x80:
9748 case 0x81:
9749 case 0x82:
9750 case 0x83:
9751 case 0x84:
9752 case 0x85:
9753 case 0x86:
9754 case 0x87:
9755 case 0x88:
9756 case 0x89:
9757 case 0x8A:
9758 case 0x8B:
9759 case 0x8C:
9760 case 0x8D:
9761 case 0x8E:
9762 case 0x8F:
9763 case 0x90:
9764 case 0x91:
9765 case 0x92:
9766 case 0x93:
9767 case 0x94:
9768 case 0x95:
9769 case 0x96:
9770 case 0x97:
9771 return get_cbor_array(
9772 conditional_static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu), tag_handler);
9773
9774 case 0x98: // array (one-byte uint8_t for n follows)
9775 {
9776 std::uint8_t len{};
9777 return get_number(input_format_t::cbor, len) && get_cbor_array(static_cast<std::size_t>(len), tag_handler);
9778 }
9779
9780 case 0x99: // array (two-byte uint16_t for n follow)
9781 {
9782 std::uint16_t len{};
9783 return get_number(input_format_t::cbor, len) && get_cbor_array(static_cast<std::size_t>(len), tag_handler);
9784 }
9785
9786 case 0x9A: // array (four-byte uint32_t for n follow)
9787 {
9788 std::uint32_t len{};
9789 return get_number(input_format_t::cbor, len) && get_cbor_array(conditional_static_cast<std::size_t>(len), tag_handler);
9790 }
9791
9792 case 0x9B: // array (eight-byte uint64_t for n follow)
9793 {
9794 std::uint64_t len{};
9795 return get_number(input_format_t::cbor, len) && get_cbor_array(conditional_static_cast<std::size_t>(len), tag_handler);
9796 }
9797
9798 case 0x9F: // array (indefinite length)
9799 return get_cbor_array(static_cast<std::size_t>(-1), tag_handler);
9800
9801 // map (0x00..0x17 pairs of data items follow)
9802 case 0xA0:
9803 case 0xA1:
9804 case 0xA2:
9805 case 0xA3:
9806 case 0xA4:
9807 case 0xA5:
9808 case 0xA6:
9809 case 0xA7:
9810 case 0xA8:
9811 case 0xA9:
9812 case 0xAA:
9813 case 0xAB:
9814 case 0xAC:
9815 case 0xAD:
9816 case 0xAE:
9817 case 0xAF:
9818 case 0xB0:
9819 case 0xB1:
9820 case 0xB2:
9821 case 0xB3:
9822 case 0xB4:
9823 case 0xB5:
9824 case 0xB6:
9825 case 0xB7:
9826 return get_cbor_object(conditional_static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x1Fu), tag_handler);
9827
9828 case 0xB8: // map (one-byte uint8_t for n follows)
9829 {
9830 std::uint8_t len{};
9831 return get_number(input_format_t::cbor, len) && get_cbor_object(static_cast<std::size_t>(len), tag_handler);
9832 }
9833
9834 case 0xB9: // map (two-byte uint16_t for n follow)
9835 {
9836 std::uint16_t len{};
9837 return get_number(input_format_t::cbor, len) && get_cbor_object(static_cast<std::size_t>(len), tag_handler);
9838 }
9839
9840 case 0xBA: // map (four-byte uint32_t for n follow)
9841 {
9842 std::uint32_t len{};
9843 return get_number(input_format_t::cbor, len) && get_cbor_object(conditional_static_cast<std::size_t>(len), tag_handler);
9844 }
9845
9846 case 0xBB: // map (eight-byte uint64_t for n follow)
9847 {
9848 std::uint64_t len{};
9849 return get_number(input_format_t::cbor, len) && get_cbor_object(conditional_static_cast<std::size_t>(len), tag_handler);
9850 }
9851
9852 case 0xBF: // map (indefinite length)
9853 return get_cbor_object(static_cast<std::size_t>(-1), tag_handler);
9854
9855 case 0xC6: // tagged item
9856 case 0xC7:
9857 case 0xC8:
9858 case 0xC9:
9859 case 0xCA:
9860 case 0xCB:
9861 case 0xCC:
9862 case 0xCD:
9863 case 0xCE:
9864 case 0xCF:
9865 case 0xD0:
9866 case 0xD1:
9867 case 0xD2:
9868 case 0xD3:
9869 case 0xD4:
9870 case 0xD8: // tagged item (1 bytes follow)
9871 case 0xD9: // tagged item (2 bytes follow)
9872 case 0xDA: // tagged item (4 bytes follow)
9873 case 0xDB: // tagged item (8 bytes follow)
9874 {
9875 switch (tag_handler)
9876 {
9877 case cbor_tag_handler_t::error:
9878 {
9879 auto last_token = get_token_string();
9880 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
9881 exception_message(input_format_t::cbor, concat("invalid byte: 0x", last_token), "value"), nullptr));
9882 }
9883
9884 case cbor_tag_handler_t::ignore:
9885 {
9886 // ignore binary subtype
9887 switch (current)
9888 {
9889 case 0xD8:
9890 {
9891 std::uint8_t subtype_to_ignore{};
9892 get_number(input_format_t::cbor, subtype_to_ignore);
9893 break;
9894 }
9895 case 0xD9:
9896 {
9897 std::uint16_t subtype_to_ignore{};
9898 get_number(input_format_t::cbor, subtype_to_ignore);
9899 break;
9900 }
9901 case 0xDA:
9902 {
9903 std::uint32_t subtype_to_ignore{};
9904 get_number(input_format_t::cbor, subtype_to_ignore);
9905 break;
9906 }
9907 case 0xDB:
9908 {
9909 std::uint64_t subtype_to_ignore{};
9910 get_number(input_format_t::cbor, subtype_to_ignore);
9911 break;
9912 }
9913 default:
9914 break;
9915 }
9916 return parse_cbor_internal(true, tag_handler);
9917 }
9918
9919 case cbor_tag_handler_t::store:
9920 {
9921 binary_t b;
9922 // use binary subtype and store in binary container
9923 switch (current)
9924 {
9925 case 0xD8:
9926 {
9927 std::uint8_t subtype{};
9928 get_number(input_format_t::cbor, subtype);
9929 b.set_subtype(detail::conditional_static_cast<typename binary_t::subtype_type>(subtype));
9930 break;
9931 }
9932 case 0xD9:
9933 {
9934 std::uint16_t subtype{};
9935 get_number(input_format_t::cbor, subtype);
9936 b.set_subtype(detail::conditional_static_cast<typename binary_t::subtype_type>(subtype));
9937 break;
9938 }
9939 case 0xDA:
9940 {
9941 std::uint32_t subtype{};
9942 get_number(input_format_t::cbor, subtype);
9943 b.set_subtype(detail::conditional_static_cast<typename binary_t::subtype_type>(subtype));
9944 break;
9945 }
9946 case 0xDB:
9947 {
9948 std::uint64_t subtype{};
9949 get_number(input_format_t::cbor, subtype);
9950 b.set_subtype(detail::conditional_static_cast<typename binary_t::subtype_type>(subtype));
9951 break;
9952 }
9953 default:
9954 return parse_cbor_internal(true, tag_handler);
9955 }
9956 get();
9957 return get_cbor_binary(b) && sax->binary(b);
9958 }
9959
9960 default: // LCOV_EXCL_LINE
9961 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
9962 return false; // LCOV_EXCL_LINE
9963 }
9964 }
9965
9966 case 0xF4: // false
9967 return sax->boolean(false);
9968
9969 case 0xF5: // true
9970 return sax->boolean(true);
9971
9972 case 0xF6: // null
9973 return sax->null();
9974
9975 case 0xF9: // Half-Precision Float (two-byte IEEE 754)
9976 {
9977 const auto byte1_raw = get();
9978 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::cbor, "number")))
9979 {
9980 return false;
9981 }
9982 const auto byte2_raw = get();
9983 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::cbor, "number")))
9984 {
9985 return false;
9986 }
9987
9988 const auto byte1 = static_cast<unsigned char>(byte1_raw);
9989 const auto byte2 = static_cast<unsigned char>(byte2_raw);
9990
9991 // code from RFC 7049, Appendix D, Figure 3:
9992 // As half-precision floating-point numbers were only added
9993 // to IEEE 754 in 2008, today's programming platforms often
9994 // still only have limited support for them. It is very
9995 // easy to include at least decoding support for them even
9996 // without such support. An example of a small decoder for
9997 // half-precision floating-point numbers in the C language
9998 // is shown in Fig. 3.
9999 const auto half = static_cast<unsigned int>((byte1 << 8u) + byte2);
10000 const double val = [&half]
10001 {
10002 const int exp = (half >> 10u) & 0x1Fu;
10003 const unsigned int mant = half & 0x3FFu;
10004 JSON_ASSERT(0 <= exp&& exp <= 32);
10005 JSON_ASSERT(mant <= 1024);
10006 switch (exp)
10007 {
10008 case 0:
10009 return std::ldexp(mant, -24);
10010 case 31:
10011 return (mant == 0)
10012 ? std::numeric_limits<double>::infinity()
10013 : std::numeric_limits<double>::quiet_NaN();
10014 default:
10015 return std::ldexp(mant + 1024, exp - 25);
10016 }
10017 }();
10018 return sax->number_float((half & 0x8000u) != 0
10019 ? static_cast<number_float_t>(-val)
10020 : static_cast<number_float_t>(val), "");
10021 }
10022
10023 case 0xFA: // Single-Precision Float (four-byte IEEE 754)
10024 {
10025 float number{};
10026 return get_number(input_format_t::cbor, number) && sax->number_float(static_cast<number_float_t>(number), "");
10027 }
10028
10029 case 0xFB: // Double-Precision Float (eight-byte IEEE 754)
10030 {
10031 double number{};
10032 return get_number(input_format_t::cbor, number) && sax->number_float(static_cast<number_float_t>(number), "");
10033 }
10034
10035 default: // anything else (0xFF is handled inside the other types)
10036 {
10037 auto last_token = get_token_string();
10038 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
10039 exception_message(input_format_t::cbor, concat("invalid byte: 0x", last_token), "value"), nullptr));
10040 }
10041 }
10042 }
10043
10044 /*!
10045 @brief reads a CBOR string
10046
10047 This function first reads starting bytes to determine the expected
10048 string length and then copies this number of bytes into a string.
10049 Additionally, CBOR's strings with indefinite lengths are supported.
10050
10051 @param[out] result created string
10052
10053 @return whether string creation completed
10054 */
10055 bool get_cbor_string(string_t& result)
10056 {
10057 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::cbor, "string")))
10058 {
10059 return false;
10060 }
10061
10062 switch (current)
10063 {
10064 // UTF-8 string (0x00..0x17 bytes follow)
10065 case 0x60:
10066 case 0x61:
10067 case 0x62:
10068 case 0x63:
10069 case 0x64:
10070 case 0x65:
10071 case 0x66:
10072 case 0x67:
10073 case 0x68:
10074 case 0x69:
10075 case 0x6A:
10076 case 0x6B:
10077 case 0x6C:
10078 case 0x6D:
10079 case 0x6E:
10080 case 0x6F:
10081 case 0x70:
10082 case 0x71:
10083 case 0x72:
10084 case 0x73:
10085 case 0x74:
10086 case 0x75:
10087 case 0x76:
10088 case 0x77:
10089 {
10090 return get_string(input_format_t::cbor, static_cast<unsigned int>(current) & 0x1Fu, result);
10091 }
10092
10093 case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
10094 {
10095 std::uint8_t len{};
10096 return get_number(input_format_t::cbor, len) && get_string(input_format_t::cbor, len, result);
10097 }
10098
10099 case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
10100 {
10101 std::uint16_t len{};
10102 return get_number(input_format_t::cbor, len) && get_string(input_format_t::cbor, len, result);
10103 }
10104
10105 case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
10106 {
10107 std::uint32_t len{};
10108 return get_number(input_format_t::cbor, len) && get_string(input_format_t::cbor, len, result);
10109 }
10110
10111 case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
10112 {
10113 std::uint64_t len{};
10114 return get_number(input_format_t::cbor, len) && get_string(input_format_t::cbor, len, result);
10115 }
10116
10117 case 0x7F: // UTF-8 string (indefinite length)
10118 {
10119 while (get() != 0xFF)
10120 {
10121 string_t chunk;
10122 if (!get_cbor_string(chunk))
10123 {
10124 return false;
10125 }
10126 result.append(chunk);
10127 }
10128 return true;
10129 }
10130
10131 default:
10132 {
10133 auto last_token = get_token_string();
10134 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read,
10135 exception_message(input_format_t::cbor, concat("expected length specification (0x60-0x7B) or indefinite string type (0x7F); last byte: 0x", last_token), "string"), nullptr));
10136 }
10137 }
10138 }
10139
10140 /*!
10141 @brief reads a CBOR byte array
10142
10143 This function first reads starting bytes to determine the expected
10144 byte array length and then copies this number of bytes into the byte array.
10145 Additionally, CBOR's byte arrays with indefinite lengths are supported.
10146
10147 @param[out] result created byte array
10148
10149 @return whether byte array creation completed
10150 */
10151 bool get_cbor_binary(binary_t& result)
10152 {
10153 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::cbor, "binary")))
10154 {
10155 return false;
10156 }
10157
10158 switch (current)
10159 {
10160 // Binary data (0x00..0x17 bytes follow)
10161 case 0x40:
10162 case 0x41:
10163 case 0x42:
10164 case 0x43:
10165 case 0x44:
10166 case 0x45:
10167 case 0x46:
10168 case 0x47:
10169 case 0x48:
10170 case 0x49:
10171 case 0x4A:
10172 case 0x4B:
10173 case 0x4C:
10174 case 0x4D:
10175 case 0x4E:
10176 case 0x4F:
10177 case 0x50:
10178 case 0x51:
10179 case 0x52:
10180 case 0x53:
10181 case 0x54:
10182 case 0x55:
10183 case 0x56:
10184 case 0x57:
10185 {
10186 return get_binary(input_format_t::cbor, static_cast<unsigned int>(current) & 0x1Fu, result);
10187 }
10188
10189 case 0x58: // Binary data (one-byte uint8_t for n follows)
10190 {
10191 std::uint8_t len{};
10192 return get_number(input_format_t::cbor, len) &&
10193 get_binary(input_format_t::cbor, len, result);
10194 }
10195
10196 case 0x59: // Binary data (two-byte uint16_t for n follow)
10197 {
10198 std::uint16_t len{};
10199 return get_number(input_format_t::cbor, len) &&
10200 get_binary(input_format_t::cbor, len, result);
10201 }
10202
10203 case 0x5A: // Binary data (four-byte uint32_t for n follow)
10204 {
10205 std::uint32_t len{};
10206 return get_number(input_format_t::cbor, len) &&
10207 get_binary(input_format_t::cbor, len, result);
10208 }
10209
10210 case 0x5B: // Binary data (eight-byte uint64_t for n follow)
10211 {
10212 std::uint64_t len{};
10213 return get_number(input_format_t::cbor, len) &&
10214 get_binary(input_format_t::cbor, len, result);
10215 }
10216
10217 case 0x5F: // Binary data (indefinite length)
10218 {
10219 while (get() != 0xFF)
10220 {
10221 binary_t chunk;
10222 if (!get_cbor_binary(chunk))
10223 {
10224 return false;
10225 }
10226 result.insert(result.end(), chunk.begin(), chunk.end());
10227 }
10228 return true;
10229 }
10230
10231 default:
10232 {
10233 auto last_token = get_token_string();
10234 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read,
10235 exception_message(input_format_t::cbor, concat("expected length specification (0x40-0x5B) or indefinite binary array type (0x5F); last byte: 0x", last_token), "binary"), nullptr));
10236 }
10237 }
10238 }
10239
10240 /*!
10241 @param[in] len the length of the array or static_cast<std::size_t>(-1) for an
10242 array of indefinite size
10243 @param[in] tag_handler how CBOR tags should be treated
10244 @return whether array creation completed
10245 */
10246 bool get_cbor_array(const std::size_t len,
10247 const cbor_tag_handler_t tag_handler)
10248 {
10249 if (JSON_HEDLEY_UNLIKELY(!sax->start_array(len)))
10250 {
10251 return false;
10252 }
10253
10254 if (len != static_cast<std::size_t>(-1))
10255 {
10256 for (std::size_t i = 0; i < len; ++i)
10257 {
10258 if (JSON_HEDLEY_UNLIKELY(!parse_cbor_internal(true, tag_handler)))
10259 {
10260 return false;
10261 }
10262 }
10263 }
10264 else
10265 {
10266 while (get() != 0xFF)
10267 {
10268 if (JSON_HEDLEY_UNLIKELY(!parse_cbor_internal(false, tag_handler)))
10269 {
10270 return false;
10271 }
10272 }
10273 }
10274
10275 return sax->end_array();
10276 }
10277
10278 /*!
10279 @param[in] len the length of the object or static_cast<std::size_t>(-1) for an
10280 object of indefinite size
10281 @param[in] tag_handler how CBOR tags should be treated
10282 @return whether object creation completed
10283 */
10284 bool get_cbor_object(const std::size_t len,
10285 const cbor_tag_handler_t tag_handler)
10286 {
10287 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(len)))
10288 {
10289 return false;
10290 }
10291
10292 if (len != 0)
10293 {
10294 string_t key;
10295 if (len != static_cast<std::size_t>(-1))
10296 {
10297 for (std::size_t i = 0; i < len; ++i)
10298 {
10299 get();
10300 if (JSON_HEDLEY_UNLIKELY(!get_cbor_string(key) || !sax->key(key)))
10301 {
10302 return false;
10303 }
10304
10305 if (JSON_HEDLEY_UNLIKELY(!parse_cbor_internal(true, tag_handler)))
10306 {
10307 return false;
10308 }
10309 key.clear();
10310 }
10311 }
10312 else
10313 {
10314 while (get() != 0xFF)
10315 {
10316 if (JSON_HEDLEY_UNLIKELY(!get_cbor_string(key) || !sax->key(key)))
10317 {
10318 return false;
10319 }
10320
10321 if (JSON_HEDLEY_UNLIKELY(!parse_cbor_internal(true, tag_handler)))
10322 {
10323 return false;
10324 }
10325 key.clear();
10326 }
10327 }
10328 }
10329
10330 return sax->end_object();
10331 }
10332
10333 /////////////
10334 // MsgPack //
10335 /////////////
10336
10337 /*!
10338 @return whether a valid MessagePack value was passed to the SAX parser
10339 */
10340 bool parse_msgpack_internal()
10341 {
10342 switch (get())
10343 {
10344 // EOF
10345 case char_traits<char_type>::eof():
10346 return unexpect_eof(input_format_t::msgpack, "value");
10347
10348 // positive fixint
10349 case 0x00:
10350 case 0x01:
10351 case 0x02:
10352 case 0x03:
10353 case 0x04:
10354 case 0x05:
10355 case 0x06:
10356 case 0x07:
10357 case 0x08:
10358 case 0x09:
10359 case 0x0A:
10360 case 0x0B:
10361 case 0x0C:
10362 case 0x0D:
10363 case 0x0E:
10364 case 0x0F:
10365 case 0x10:
10366 case 0x11:
10367 case 0x12:
10368 case 0x13:
10369 case 0x14:
10370 case 0x15:
10371 case 0x16:
10372 case 0x17:
10373 case 0x18:
10374 case 0x19:
10375 case 0x1A:
10376 case 0x1B:
10377 case 0x1C:
10378 case 0x1D:
10379 case 0x1E:
10380 case 0x1F:
10381 case 0x20:
10382 case 0x21:
10383 case 0x22:
10384 case 0x23:
10385 case 0x24:
10386 case 0x25:
10387 case 0x26:
10388 case 0x27:
10389 case 0x28:
10390 case 0x29:
10391 case 0x2A:
10392 case 0x2B:
10393 case 0x2C:
10394 case 0x2D:
10395 case 0x2E:
10396 case 0x2F:
10397 case 0x30:
10398 case 0x31:
10399 case 0x32:
10400 case 0x33:
10401 case 0x34:
10402 case 0x35:
10403 case 0x36:
10404 case 0x37:
10405 case 0x38:
10406 case 0x39:
10407 case 0x3A:
10408 case 0x3B:
10409 case 0x3C:
10410 case 0x3D:
10411 case 0x3E:
10412 case 0x3F:
10413 case 0x40:
10414 case 0x41:
10415 case 0x42:
10416 case 0x43:
10417 case 0x44:
10418 case 0x45:
10419 case 0x46:
10420 case 0x47:
10421 case 0x48:
10422 case 0x49:
10423 case 0x4A:
10424 case 0x4B:
10425 case 0x4C:
10426 case 0x4D:
10427 case 0x4E:
10428 case 0x4F:
10429 case 0x50:
10430 case 0x51:
10431 case 0x52:
10432 case 0x53:
10433 case 0x54:
10434 case 0x55:
10435 case 0x56:
10436 case 0x57:
10437 case 0x58:
10438 case 0x59:
10439 case 0x5A:
10440 case 0x5B:
10441 case 0x5C:
10442 case 0x5D:
10443 case 0x5E:
10444 case 0x5F:
10445 case 0x60:
10446 case 0x61:
10447 case 0x62:
10448 case 0x63:
10449 case 0x64:
10450 case 0x65:
10451 case 0x66:
10452 case 0x67:
10453 case 0x68:
10454 case 0x69:
10455 case 0x6A:
10456 case 0x6B:
10457 case 0x6C:
10458 case 0x6D:
10459 case 0x6E:
10460 case 0x6F:
10461 case 0x70:
10462 case 0x71:
10463 case 0x72:
10464 case 0x73:
10465 case 0x74:
10466 case 0x75:
10467 case 0x76:
10468 case 0x77:
10469 case 0x78:
10470 case 0x79:
10471 case 0x7A:
10472 case 0x7B:
10473 case 0x7C:
10474 case 0x7D:
10475 case 0x7E:
10476 case 0x7F:
10477 return sax->number_unsigned(static_cast<number_unsigned_t>(current));
10478
10479 // fixmap
10480 case 0x80:
10481 case 0x81:
10482 case 0x82:
10483 case 0x83:
10484 case 0x84:
10485 case 0x85:
10486 case 0x86:
10487 case 0x87:
10488 case 0x88:
10489 case 0x89:
10490 case 0x8A:
10491 case 0x8B:
10492 case 0x8C:
10493 case 0x8D:
10494 case 0x8E:
10495 case 0x8F:
10496 return get_msgpack_object(conditional_static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
10497
10498 // fixarray
10499 case 0x90:
10500 case 0x91:
10501 case 0x92:
10502 case 0x93:
10503 case 0x94:
10504 case 0x95:
10505 case 0x96:
10506 case 0x97:
10507 case 0x98:
10508 case 0x99:
10509 case 0x9A:
10510 case 0x9B:
10511 case 0x9C:
10512 case 0x9D:
10513 case 0x9E:
10514 case 0x9F:
10515 return get_msgpack_array(conditional_static_cast<std::size_t>(static_cast<unsigned int>(current) & 0x0Fu));
10516
10517 // fixstr
10518 case 0xA0:
10519 case 0xA1:
10520 case 0xA2:
10521 case 0xA3:
10522 case 0xA4:
10523 case 0xA5:
10524 case 0xA6:
10525 case 0xA7:
10526 case 0xA8:
10527 case 0xA9:
10528 case 0xAA:
10529 case 0xAB:
10530 case 0xAC:
10531 case 0xAD:
10532 case 0xAE:
10533 case 0xAF:
10534 case 0xB0:
10535 case 0xB1:
10536 case 0xB2:
10537 case 0xB3:
10538 case 0xB4:
10539 case 0xB5:
10540 case 0xB6:
10541 case 0xB7:
10542 case 0xB8:
10543 case 0xB9:
10544 case 0xBA:
10545 case 0xBB:
10546 case 0xBC:
10547 case 0xBD:
10548 case 0xBE:
10549 case 0xBF:
10550 case 0xD9: // str 8
10551 case 0xDA: // str 16
10552 case 0xDB: // str 32
10553 {
10554 string_t s;
10555 return get_msgpack_string(s) && sax->string(s);
10556 }
10557
10558 case 0xC0: // nil
10559 return sax->null();
10560
10561 case 0xC2: // false
10562 return sax->boolean(false);
10563
10564 case 0xC3: // true
10565 return sax->boolean(true);
10566
10567 case 0xC4: // bin 8
10568 case 0xC5: // bin 16
10569 case 0xC6: // bin 32
10570 case 0xC7: // ext 8
10571 case 0xC8: // ext 16
10572 case 0xC9: // ext 32
10573 case 0xD4: // fixext 1
10574 case 0xD5: // fixext 2
10575 case 0xD6: // fixext 4
10576 case 0xD7: // fixext 8
10577 case 0xD8: // fixext 16
10578 {
10579 binary_t b;
10580 return get_msgpack_binary(b) && sax->binary(b);
10581 }
10582
10583 case 0xCA: // float 32
10584 {
10585 float number{};
10586 return get_number(input_format_t::msgpack, number) && sax->number_float(static_cast<number_float_t>(number), "");
10587 }
10588
10589 case 0xCB: // float 64
10590 {
10591 double number{};
10592 return get_number(input_format_t::msgpack, number) && sax->number_float(static_cast<number_float_t>(number), "");
10593 }
10594
10595 case 0xCC: // uint 8
10596 {
10597 std::uint8_t number{};
10598 return get_number(input_format_t::msgpack, number) && sax->number_unsigned(number);
10599 }
10600
10601 case 0xCD: // uint 16
10602 {
10603 std::uint16_t number{};
10604 return get_number(input_format_t::msgpack, number) && sax->number_unsigned(number);
10605 }
10606
10607 case 0xCE: // uint 32
10608 {
10609 std::uint32_t number{};
10610 return get_number(input_format_t::msgpack, number) && sax->number_unsigned(number);
10611 }
10612
10613 case 0xCF: // uint 64
10614 {
10615 std::uint64_t number{};
10616 return get_number(input_format_t::msgpack, number) && sax->number_unsigned(number);
10617 }
10618
10619 case 0xD0: // int 8
10620 {
10621 std::int8_t number{};
10622 return get_number(input_format_t::msgpack, number) && sax->number_integer(number);
10623 }
10624
10625 case 0xD1: // int 16
10626 {
10627 std::int16_t number{};
10628 return get_number(input_format_t::msgpack, number) && sax->number_integer(number);
10629 }
10630
10631 case 0xD2: // int 32
10632 {
10633 std::int32_t number{};
10634 return get_number(input_format_t::msgpack, number) && sax->number_integer(number);
10635 }
10636
10637 case 0xD3: // int 64
10638 {
10639 std::int64_t number{};
10640 return get_number(input_format_t::msgpack, number) && sax->number_integer(number);
10641 }
10642
10643 case 0xDC: // array 16
10644 {
10645 std::uint16_t len{};
10646 return get_number(input_format_t::msgpack, len) && get_msgpack_array(static_cast<std::size_t>(len));
10647 }
10648
10649 case 0xDD: // array 32
10650 {
10651 std::uint32_t len{};
10652 return get_number(input_format_t::msgpack, len) && get_msgpack_array(conditional_static_cast<std::size_t>(len));
10653 }
10654
10655 case 0xDE: // map 16
10656 {
10657 std::uint16_t len{};
10658 return get_number(input_format_t::msgpack, len) && get_msgpack_object(static_cast<std::size_t>(len));
10659 }
10660
10661 case 0xDF: // map 32
10662 {
10663 std::uint32_t len{};
10664 return get_number(input_format_t::msgpack, len) && get_msgpack_object(conditional_static_cast<std::size_t>(len));
10665 }
10666
10667 // negative fixint
10668 case 0xE0:
10669 case 0xE1:
10670 case 0xE2:
10671 case 0xE3:
10672 case 0xE4:
10673 case 0xE5:
10674 case 0xE6:
10675 case 0xE7:
10676 case 0xE8:
10677 case 0xE9:
10678 case 0xEA:
10679 case 0xEB:
10680 case 0xEC:
10681 case 0xED:
10682 case 0xEE:
10683 case 0xEF:
10684 case 0xF0:
10685 case 0xF1:
10686 case 0xF2:
10687 case 0xF3:
10688 case 0xF4:
10689 case 0xF5:
10690 case 0xF6:
10691 case 0xF7:
10692 case 0xF8:
10693 case 0xF9:
10694 case 0xFA:
10695 case 0xFB:
10696 case 0xFC:
10697 case 0xFD:
10698 case 0xFE:
10699 case 0xFF:
10700 return sax->number_integer(static_cast<std::int8_t>(current));
10701
10702 default: // anything else
10703 {
10704 auto last_token = get_token_string();
10705 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
10706 exception_message(input_format_t::msgpack, concat("invalid byte: 0x", last_token), "value"), nullptr));
10707 }
10708 }
10709 }
10710
10711 /*!
10712 @brief reads a MessagePack string
10713
10714 This function first reads starting bytes to determine the expected
10715 string length and then copies this number of bytes into a string.
10716
10717 @param[out] result created string
10718
10719 @return whether string creation completed
10720 */
10721 bool get_msgpack_string(string_t& result)
10722 {
10723 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format_t::msgpack, "string")))
10724 {
10725 return false;
10726 }
10727
10728 switch (current)
10729 {
10730 // fixstr
10731 case 0xA0:
10732 case 0xA1:
10733 case 0xA2:
10734 case 0xA3:
10735 case 0xA4:
10736 case 0xA5:
10737 case 0xA6:
10738 case 0xA7:
10739 case 0xA8:
10740 case 0xA9:
10741 case 0xAA:
10742 case 0xAB:
10743 case 0xAC:
10744 case 0xAD:
10745 case 0xAE:
10746 case 0xAF:
10747 case 0xB0:
10748 case 0xB1:
10749 case 0xB2:
10750 case 0xB3:
10751 case 0xB4:
10752 case 0xB5:
10753 case 0xB6:
10754 case 0xB7:
10755 case 0xB8:
10756 case 0xB9:
10757 case 0xBA:
10758 case 0xBB:
10759 case 0xBC:
10760 case 0xBD:
10761 case 0xBE:
10762 case 0xBF:
10763 {
10764 return get_string(input_format_t::msgpack, static_cast<unsigned int>(current) & 0x1Fu, result);
10765 }
10766
10767 case 0xD9: // str 8
10768 {
10769 std::uint8_t len{};
10770 return get_number(input_format_t::msgpack, len) && get_string(input_format_t::msgpack, len, result);
10771 }
10772
10773 case 0xDA: // str 16
10774 {
10775 std::uint16_t len{};
10776 return get_number(input_format_t::msgpack, len) && get_string(input_format_t::msgpack, len, result);
10777 }
10778
10779 case 0xDB: // str 32
10780 {
10781 std::uint32_t len{};
10782 return get_number(input_format_t::msgpack, len) && get_string(input_format_t::msgpack, len, result);
10783 }
10784
10785 default:
10786 {
10787 auto last_token = get_token_string();
10788 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read,
10789 exception_message(input_format_t::msgpack, concat("expected length specification (0xA0-0xBF, 0xD9-0xDB); last byte: 0x", last_token), "string"), nullptr));
10790 }
10791 }
10792 }
10793
10794 /*!
10795 @brief reads a MessagePack byte array
10796
10797 This function first reads starting bytes to determine the expected
10798 byte array length and then copies this number of bytes into a byte array.
10799
10800 @param[out] result created byte array
10801
10802 @return whether byte array creation completed
10803 */
10804 bool get_msgpack_binary(binary_t& result)
10805 {
10806 // helper function to set the subtype
10807 auto assign_and_return_true = [&result](std::int8_t subtype)
10808 {
10809 result.set_subtype(static_cast<std::uint8_t>(subtype));
10810 return true;
10811 };
10812
10813 switch (current)
10814 {
10815 case 0xC4: // bin 8
10816 {
10817 std::uint8_t len{};
10818 return get_number(input_format_t::msgpack, len) &&
10819 get_binary(input_format_t::msgpack, len, result);
10820 }
10821
10822 case 0xC5: // bin 16
10823 {
10824 std::uint16_t len{};
10825 return get_number(input_format_t::msgpack, len) &&
10826 get_binary(input_format_t::msgpack, len, result);
10827 }
10828
10829 case 0xC6: // bin 32
10830 {
10831 std::uint32_t len{};
10832 return get_number(input_format_t::msgpack, len) &&
10833 get_binary(input_format_t::msgpack, len, result);
10834 }
10835
10836 case 0xC7: // ext 8
10837 {
10838 std::uint8_t len{};
10839 std::int8_t subtype{};
10840 return get_number(input_format_t::msgpack, len) &&
10841 get_number(input_format_t::msgpack, subtype) &&
10842 get_binary(input_format_t::msgpack, len, result) &&
10843 assign_and_return_true(subtype);
10844 }
10845
10846 case 0xC8: // ext 16
10847 {
10848 std::uint16_t len{};
10849 std::int8_t subtype{};
10850 return get_number(input_format_t::msgpack, len) &&
10851 get_number(input_format_t::msgpack, subtype) &&
10852 get_binary(input_format_t::msgpack, len, result) &&
10853 assign_and_return_true(subtype);
10854 }
10855
10856 case 0xC9: // ext 32
10857 {
10858 std::uint32_t len{};
10859 std::int8_t subtype{};
10860 return get_number(input_format_t::msgpack, len) &&
10861 get_number(input_format_t::msgpack, subtype) &&
10862 get_binary(input_format_t::msgpack, len, result) &&
10863 assign_and_return_true(subtype);
10864 }
10865
10866 case 0xD4: // fixext 1
10867 {
10868 std::int8_t subtype{};
10869 return get_number(input_format_t::msgpack, subtype) &&
10870 get_binary(input_format_t::msgpack, 1, result) &&
10871 assign_and_return_true(subtype);
10872 }
10873
10874 case 0xD5: // fixext 2
10875 {
10876 std::int8_t subtype{};
10877 return get_number(input_format_t::msgpack, subtype) &&
10878 get_binary(input_format_t::msgpack, 2, result) &&
10879 assign_and_return_true(subtype);
10880 }
10881
10882 case 0xD6: // fixext 4
10883 {
10884 std::int8_t subtype{};
10885 return get_number(input_format_t::msgpack, subtype) &&
10886 get_binary(input_format_t::msgpack, 4, result) &&
10887 assign_and_return_true(subtype);
10888 }
10889
10890 case 0xD7: // fixext 8
10891 {
10892 std::int8_t subtype{};
10893 return get_number(input_format_t::msgpack, subtype) &&
10894 get_binary(input_format_t::msgpack, 8, result) &&
10895 assign_and_return_true(subtype);
10896 }
10897
10898 case 0xD8: // fixext 16
10899 {
10900 std::int8_t subtype{};
10901 return get_number(input_format_t::msgpack, subtype) &&
10902 get_binary(input_format_t::msgpack, 16, result) &&
10903 assign_and_return_true(subtype);
10904 }
10905
10906 default: // LCOV_EXCL_LINE
10907 return false; // LCOV_EXCL_LINE
10908 }
10909 }
10910
10911 /*!
10912 @param[in] len the length of the array
10913 @return whether array creation completed
10914 */
10915 bool get_msgpack_array(const std::size_t len)
10916 {
10917 if (JSON_HEDLEY_UNLIKELY(!sax->start_array(len)))
10918 {
10919 return false;
10920 }
10921
10922 for (std::size_t i = 0; i < len; ++i)
10923 {
10924 if (JSON_HEDLEY_UNLIKELY(!parse_msgpack_internal()))
10925 {
10926 return false;
10927 }
10928 }
10929
10930 return sax->end_array();
10931 }
10932
10933 /*!
10934 @param[in] len the length of the object
10935 @return whether object creation completed
10936 */
10937 bool get_msgpack_object(const std::size_t len)
10938 {
10939 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(len)))
10940 {
10941 return false;
10942 }
10943
10944 string_t key;
10945 for (std::size_t i = 0; i < len; ++i)
10946 {
10947 get();
10948 if (JSON_HEDLEY_UNLIKELY(!get_msgpack_string(key) || !sax->key(key)))
10949 {
10950 return false;
10951 }
10952
10953 if (JSON_HEDLEY_UNLIKELY(!parse_msgpack_internal()))
10954 {
10955 return false;
10956 }
10957 key.clear();
10958 }
10959
10960 return sax->end_object();
10961 }
10962
10963 ////////////
10964 // UBJSON //
10965 ////////////
10966
10967 /*!
10968 @param[in] get_char whether a new character should be retrieved from the
10969 input (true, default) or whether the last read
10970 character should be considered instead
10971
10972 @return whether a valid UBJSON value was passed to the SAX parser
10973 */
10974 bool parse_ubjson_internal(const bool get_char = true)
10975 {
10976 return get_ubjson_value(get_char ? get_ignore_noop() : current);
10977 }
10978
10979 /*!
10980 @brief reads a UBJSON string
10981
10982 This function is either called after reading the 'S' byte explicitly
10983 indicating a string, or in case of an object key where the 'S' byte can be
10984 left out.
10985
10986 @param[out] result created string
10987 @param[in] get_char whether a new character should be retrieved from the
10988 input (true, default) or whether the last read
10989 character should be considered instead
10990
10991 @return whether string creation completed
10992 */
10993 bool get_ubjson_string(string_t& result, const bool get_char = true)
10994 {
10995 if (get_char)
10996 {
10997 get(); // TODO(niels): may we ignore N here?
10998 }
10999
11000 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "value")))
11001 {
11002 return false;
11003 }
11004
11005 switch (current)
11006 {
11007 case 'U':
11008 {
11009 std::uint8_t len{};
11010 return get_number(input_format, len) && get_string(input_format, len, result);
11011 }
11012
11013 case 'i':
11014 {
11015 std::int8_t len{};
11016 return get_number(input_format, len) && get_string(input_format, len, result);
11017 }
11018
11019 case 'I':
11020 {
11021 std::int16_t len{};
11022 return get_number(input_format, len) && get_string(input_format, len, result);
11023 }
11024
11025 case 'l':
11026 {
11027 std::int32_t len{};
11028 return get_number(input_format, len) && get_string(input_format, len, result);
11029 }
11030
11031 case 'L':
11032 {
11033 std::int64_t len{};
11034 return get_number(input_format, len) && get_string(input_format, len, result);
11035 }
11036
11037 case 'u':
11038 {
11039 if (input_format != input_format_t::bjdata)
11040 {
11041 break;
11042 }
11043 std::uint16_t len{};
11044 return get_number(input_format, len) && get_string(input_format, len, result);
11045 }
11046
11047 case 'm':
11048 {
11049 if (input_format != input_format_t::bjdata)
11050 {
11051 break;
11052 }
11053 std::uint32_t len{};
11054 return get_number(input_format, len) && get_string(input_format, len, result);
11055 }
11056
11057 case 'M':
11058 {
11059 if (input_format != input_format_t::bjdata)
11060 {
11061 break;
11062 }
11063 std::uint64_t len{};
11064 return get_number(input_format, len) && get_string(input_format, len, result);
11065 }
11066
11067 default:
11068 break;
11069 }
11070 auto last_token = get_token_string();
11071 std::string message;
11072
11073 if (input_format != input_format_t::bjdata)
11074 {
11075 message = "expected length type specification (U, i, I, l, L); last byte: 0x" + last_token;
11076 }
11077 else
11078 {
11079 message = "expected length type specification (U, i, u, I, m, l, M, L); last byte: 0x" + last_token;
11080 }
11081 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format, message, "string"), nullptr));
11082 }
11083
11084 /*!
11085 @param[out] dim an integer vector storing the ND array dimensions
11086 @return whether reading ND array size vector is successful
11087 */
11088 bool get_ubjson_ndarray_size(std::vector<size_t>& dim)
11089 {
11090 std::pair<std::size_t, char_int_type> size_and_type;
11091 size_t dimlen = 0;
11092 bool no_ndarray = true;
11093
11094 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_size_type(size_and_type, no_ndarray)))
11095 {
11096 return false;
11097 }
11098
11099 if (size_and_type.first != npos)
11100 {
11101 if (size_and_type.second != 0)
11102 {
11103 if (size_and_type.second != 'N')
11104 {
11105 for (std::size_t i = 0; i < size_and_type.first; ++i)
11106 {
11107 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_size_value(dimlen, no_ndarray, size_and_type.second)))
11108 {
11109 return false;
11110 }
11111 dim.push_back(dimlen);
11112 }
11113 }
11114 }
11115 else
11116 {
11117 for (std::size_t i = 0; i < size_and_type.first; ++i)
11118 {
11119 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_size_value(dimlen, no_ndarray)))
11120 {
11121 return false;
11122 }
11123 dim.push_back(dimlen);
11124 }
11125 }
11126 }
11127 else
11128 {
11129 while (current != ']')
11130 {
11131 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_size_value(dimlen, no_ndarray, current)))
11132 {
11133 return false;
11134 }
11135 dim.push_back(dimlen);
11136 get_ignore_noop();
11137 }
11138 }
11139 return true;
11140 }
11141
11142 /*!
11143 @param[out] result determined size
11144 @param[in,out] is_ndarray for input, `true` means already inside an ndarray vector
11145 or ndarray dimension is not allowed; `false` means ndarray
11146 is allowed; for output, `true` means an ndarray is found;
11147 is_ndarray can only return `true` when its initial value
11148 is `false`
11149 @param[in] prefix type marker if already read, otherwise set to 0
11150
11151 @return whether size determination completed
11152 */
11153 bool get_ubjson_size_value(std::size_t& result, bool& is_ndarray, char_int_type prefix = 0)
11154 {
11155 if (prefix == 0)
11156 {
11157 prefix = get_ignore_noop();
11158 }
11159
11160 switch (prefix)
11161 {
11162 case 'U':
11163 {
11164 std::uint8_t number{};
11165 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11166 {
11167 return false;
11168 }
11169 result = static_cast<std::size_t>(number);
11170 return true;
11171 }
11172
11173 case 'i':
11174 {
11175 std::int8_t number{};
11176 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11177 {
11178 return false;
11179 }
11180 if (number < 0)
11181 {
11182 return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read,
11183 exception_message(input_format, "count in an optimized container must be positive", "size"), nullptr));
11184 }
11185 result = static_cast<std::size_t>(number); // NOLINT(bugprone-signed-char-misuse,cert-str34-c): number is not a char
11186 return true;
11187 }
11188
11189 case 'I':
11190 {
11191 std::int16_t number{};
11192 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11193 {
11194 return false;
11195 }
11196 if (number < 0)
11197 {
11198 return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read,
11199 exception_message(input_format, "count in an optimized container must be positive", "size"), nullptr));
11200 }
11201 result = static_cast<std::size_t>(number);
11202 return true;
11203 }
11204
11205 case 'l':
11206 {
11207 std::int32_t number{};
11208 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11209 {
11210 return false;
11211 }
11212 if (number < 0)
11213 {
11214 return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read,
11215 exception_message(input_format, "count in an optimized container must be positive", "size"), nullptr));
11216 }
11217 result = static_cast<std::size_t>(number);
11218 return true;
11219 }
11220
11221 case 'L':
11222 {
11223 std::int64_t number{};
11224 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11225 {
11226 return false;
11227 }
11228 if (number < 0)
11229 {
11230 return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read,
11231 exception_message(input_format, "count in an optimized container must be positive", "size"), nullptr));
11232 }
11233 if (!value_in_range_of<std::size_t>(number))
11234 {
11235 return sax->parse_error(chars_read, get_token_string(), out_of_range::create(408,
11236 exception_message(input_format, "integer value overflow", "size"), nullptr));
11237 }
11238 result = static_cast<std::size_t>(number);
11239 return true;
11240 }
11241
11242 case 'u':
11243 {
11244 if (input_format != input_format_t::bjdata)
11245 {
11246 break;
11247 }
11248 std::uint16_t number{};
11249 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11250 {
11251 return false;
11252 }
11253 result = static_cast<std::size_t>(number);
11254 return true;
11255 }
11256
11257 case 'm':
11258 {
11259 if (input_format != input_format_t::bjdata)
11260 {
11261 break;
11262 }
11263 std::uint32_t number{};
11264 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11265 {
11266 return false;
11267 }
11268 result = conditional_static_cast<std::size_t>(number);
11269 return true;
11270 }
11271
11272 case 'M':
11273 {
11274 if (input_format != input_format_t::bjdata)
11275 {
11276 break;
11277 }
11278 std::uint64_t number{};
11279 if (JSON_HEDLEY_UNLIKELY(!get_number(input_format, number)))
11280 {
11281 return false;
11282 }
11283 if (!value_in_range_of<std::size_t>(number))
11284 {
11285 return sax->parse_error(chars_read, get_token_string(), out_of_range::create(408,
11286 exception_message(input_format, "integer value overflow", "size"), nullptr));
11287 }
11288 result = detail::conditional_static_cast<std::size_t>(number);
11289 return true;
11290 }
11291
11292 case '[':
11293 {
11294 if (input_format != input_format_t::bjdata)
11295 {
11296 break;
11297 }
11298 if (is_ndarray) // ndarray dimensional vector can only contain integers, and can not embed another array
11299 {
11300 return sax->parse_error(chars_read, get_token_string(), parse_error::create(113, chars_read, exception_message(input_format, "ndarray dimensional vector is not allowed", "size"), nullptr));
11301 }
11302 std::vector<size_t> dim;
11303 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_ndarray_size(dim)))
11304 {
11305 return false;
11306 }
11307 if (dim.size() == 1 || (dim.size() == 2 && dim.at(0) == 1)) // return normal array size if 1D row vector
11308 {
11309 result = dim.at(dim.size() - 1);
11310 return true;
11311 }
11312 if (!dim.empty()) // if ndarray, convert to an object in JData annotated array format
11313 {
11314 for (auto i : dim) // test if any dimension in an ndarray is 0, if so, return a 1D empty container
11315 {
11316 if ( i == 0 )
11317 {
11318 result = 0;
11319 return true;
11320 }
11321 }
11322
11323 string_t key = "_ArraySize_";
11324 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(3) || !sax->key(key) || !sax->start_array(dim.size())))
11325 {
11326 return false;
11327 }
11328 result = 1;
11329 for (auto i : dim)
11330 {
11331 result *= i;
11332 if (result == 0 || result == npos) // because dim elements shall not have zeros, result = 0 means overflow happened; it also can't be npos as it is used to initialize size in get_ubjson_size_type()
11333 {
11334 return sax->parse_error(chars_read, get_token_string(), out_of_range::create(408, exception_message(input_format, "excessive ndarray size caused overflow", "size"), nullptr));
11335 }
11336 if (JSON_HEDLEY_UNLIKELY(!sax->number_unsigned(static_cast<number_unsigned_t>(i))))
11337 {
11338 return false;
11339 }
11340 }
11341 is_ndarray = true;
11342 return sax->end_array();
11343 }
11344 result = 0;
11345 return true;
11346 }
11347
11348 default:
11349 break;
11350 }
11351 auto last_token = get_token_string();
11352 std::string message;
11353
11354 if (input_format != input_format_t::bjdata)
11355 {
11356 message = "expected length type specification (U, i, I, l, L) after '#'; last byte: 0x" + last_token;
11357 }
11358 else
11359 {
11360 message = "expected length type specification (U, i, u, I, m, l, M, L) after '#'; last byte: 0x" + last_token;
11361 }
11362 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format, message, "size"), nullptr));
11363 }
11364
11365 /*!
11366 @brief determine the type and size for a container
11367
11368 In the optimized UBJSON format, a type and a size can be provided to allow
11369 for a more compact representation.
11370
11371 @param[out] result pair of the size and the type
11372 @param[in] inside_ndarray whether the parser is parsing an ND array dimensional vector
11373
11374 @return whether pair creation completed
11375 */
11376 bool get_ubjson_size_type(std::pair<std::size_t, char_int_type>& result, bool inside_ndarray = false)
11377 {
11378 result.first = npos; // size
11379 result.second = 0; // type
11380 bool is_ndarray = false;
11381
11382 get_ignore_noop();
11383
11384 if (current == '$')
11385 {
11386 result.second = get(); // must not ignore 'N', because 'N' maybe the type
11387 if (input_format == input_format_t::bjdata
11388 && JSON_HEDLEY_UNLIKELY(std::binary_search(bjd_optimized_type_markers.begin(), bjd_optimized_type_markers.end(), result.second)))
11389 {
11390 auto last_token = get_token_string();
11391 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
11392 exception_message(input_format, concat("marker 0x", last_token, " is not a permitted optimized array type"), "type"), nullptr));
11393 }
11394
11395 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "type")))
11396 {
11397 return false;
11398 }
11399
11400 get_ignore_noop();
11401 if (JSON_HEDLEY_UNLIKELY(current != '#'))
11402 {
11403 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "value")))
11404 {
11405 return false;
11406 }
11407 auto last_token = get_token_string();
11408 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
11409 exception_message(input_format, concat("expected '#' after type information; last byte: 0x", last_token), "size"), nullptr));
11410 }
11411
11412 const bool is_error = get_ubjson_size_value(result.first, is_ndarray);
11413 if (input_format == input_format_t::bjdata && is_ndarray)
11414 {
11415 if (inside_ndarray)
11416 {
11417 return sax->parse_error(chars_read, get_token_string(), parse_error::create(112, chars_read,
11418 exception_message(input_format, "ndarray can not be recursive", "size"), nullptr));
11419 }
11420 result.second |= (1 << 8); // use bit 8 to indicate ndarray, all UBJSON and BJData markers should be ASCII letters
11421 }
11422 return is_error;
11423 }
11424
11425 if (current == '#')
11426 {
11427 const bool is_error = get_ubjson_size_value(result.first, is_ndarray);
11428 if (input_format == input_format_t::bjdata && is_ndarray)
11429 {
11430 return sax->parse_error(chars_read, get_token_string(), parse_error::create(112, chars_read,
11431 exception_message(input_format, "ndarray requires both type and size", "size"), nullptr));
11432 }
11433 return is_error;
11434 }
11435
11436 return true;
11437 }
11438
11439 /*!
11440 @param prefix the previously read or set type prefix
11441 @return whether value creation completed
11442 */
11443 bool get_ubjson_value(const char_int_type prefix)
11444 {
11445 switch (prefix)
11446 {
11447 case char_traits<char_type>::eof(): // EOF
11448 return unexpect_eof(input_format, "value");
11449
11450 case 'T': // true
11451 return sax->boolean(true);
11452 case 'F': // false
11453 return sax->boolean(false);
11454
11455 case 'Z': // null
11456 return sax->null();
11457
11458 case 'U':
11459 {
11460 std::uint8_t number{};
11461 return get_number(input_format, number) && sax->number_unsigned(number);
11462 }
11463
11464 case 'i':
11465 {
11466 std::int8_t number{};
11467 return get_number(input_format, number) && sax->number_integer(number);
11468 }
11469
11470 case 'I':
11471 {
11472 std::int16_t number{};
11473 return get_number(input_format, number) && sax->number_integer(number);
11474 }
11475
11476 case 'l':
11477 {
11478 std::int32_t number{};
11479 return get_number(input_format, number) && sax->number_integer(number);
11480 }
11481
11482 case 'L':
11483 {
11484 std::int64_t number{};
11485 return get_number(input_format, number) && sax->number_integer(number);
11486 }
11487
11488 case 'u':
11489 {
11490 if (input_format != input_format_t::bjdata)
11491 {
11492 break;
11493 }
11494 std::uint16_t number{};
11495 return get_number(input_format, number) && sax->number_unsigned(number);
11496 }
11497
11498 case 'm':
11499 {
11500 if (input_format != input_format_t::bjdata)
11501 {
11502 break;
11503 }
11504 std::uint32_t number{};
11505 return get_number(input_format, number) && sax->number_unsigned(number);
11506 }
11507
11508 case 'M':
11509 {
11510 if (input_format != input_format_t::bjdata)
11511 {
11512 break;
11513 }
11514 std::uint64_t number{};
11515 return get_number(input_format, number) && sax->number_unsigned(number);
11516 }
11517
11518 case 'h':
11519 {
11520 if (input_format != input_format_t::bjdata)
11521 {
11522 break;
11523 }
11524 const auto byte1_raw = get();
11525 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "number")))
11526 {
11527 return false;
11528 }
11529 const auto byte2_raw = get();
11530 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "number")))
11531 {
11532 return false;
11533 }
11534
11535 const auto byte1 = static_cast<unsigned char>(byte1_raw);
11536 const auto byte2 = static_cast<unsigned char>(byte2_raw);
11537
11538 // code from RFC 7049, Appendix D, Figure 3:
11539 // As half-precision floating-point numbers were only added
11540 // to IEEE 754 in 2008, today's programming platforms often
11541 // still only have limited support for them. It is very
11542 // easy to include at least decoding support for them even
11543 // without such support. An example of a small decoder for
11544 // half-precision floating-point numbers in the C language
11545 // is shown in Fig. 3.
11546 const auto half = static_cast<unsigned int>((byte2 << 8u) + byte1);
11547 const double val = [&half]
11548 {
11549 const int exp = (half >> 10u) & 0x1Fu;
11550 const unsigned int mant = half & 0x3FFu;
11551 JSON_ASSERT(0 <= exp&& exp <= 32);
11552 JSON_ASSERT(mant <= 1024);
11553 switch (exp)
11554 {
11555 case 0:
11556 return std::ldexp(mant, -24);
11557 case 31:
11558 return (mant == 0)
11559 ? std::numeric_limits<double>::infinity()
11560 : std::numeric_limits<double>::quiet_NaN();
11561 default:
11562 return std::ldexp(mant + 1024, exp - 25);
11563 }
11564 }();
11565 return sax->number_float((half & 0x8000u) != 0
11566 ? static_cast<number_float_t>(-val)
11567 : static_cast<number_float_t>(val), "");
11568 }
11569
11570 case 'd':
11571 {
11572 float number{};
11573 return get_number(input_format, number) && sax->number_float(static_cast<number_float_t>(number), "");
11574 }
11575
11576 case 'D':
11577 {
11578 double number{};
11579 return get_number(input_format, number) && sax->number_float(static_cast<number_float_t>(number), "");
11580 }
11581
11582 case 'H':
11583 {
11584 return get_ubjson_high_precision_number();
11585 }
11586
11587 case 'C': // char
11588 {
11589 get();
11590 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "char")))
11591 {
11592 return false;
11593 }
11594 if (JSON_HEDLEY_UNLIKELY(current > 127))
11595 {
11596 auto last_token = get_token_string();
11597 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read,
11598 exception_message(input_format, concat("byte after 'C' must be in range 0x00..0x7F; last byte: 0x", last_token), "char"), nullptr));
11599 }
11600 string_t s(1, static_cast<typename string_t::value_type>(current));
11601 return sax->string(s);
11602 }
11603
11604 case 'S': // string
11605 {
11606 string_t s;
11607 return get_ubjson_string(s) && sax->string(s);
11608 }
11609
11610 case '[': // array
11611 return get_ubjson_array();
11612
11613 case '{': // object
11614 return get_ubjson_object();
11615
11616 default: // anything else
11617 break;
11618 }
11619 auto last_token = get_token_string();
11620 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format, "invalid byte: 0x" + last_token, "value"), nullptr));
11621 }
11622
11623 /*!
11624 @return whether array creation completed
11625 */
11626 bool get_ubjson_array()
11627 {
11628 std::pair<std::size_t, char_int_type> size_and_type;
11629 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_size_type(size_and_type)))
11630 {
11631 return false;
11632 }
11633
11634 // if bit-8 of size_and_type.second is set to 1, encode bjdata ndarray as an object in JData annotated array format (https://github.com/NeuroJSON/jdata):
11635 // {"_ArrayType_" : "typeid", "_ArraySize_" : [n1, n2, ...], "_ArrayData_" : [v1, v2, ...]}
11636
11637 if (input_format == input_format_t::bjdata && size_and_type.first != npos && (size_and_type.second & (1 << 8)) != 0)
11638 {
11639 size_and_type.second &= ~(static_cast<char_int_type>(1) << 8); // use bit 8 to indicate ndarray, here we remove the bit to restore the type marker
11640 auto it = std::lower_bound(bjd_types_map.begin(), bjd_types_map.end(), size_and_type.second, [](const bjd_type & p, char_int_type t)
11641 {
11642 return p.first < t;
11643 });
11644 string_t key = "_ArrayType_";
11645 if (JSON_HEDLEY_UNLIKELY(it == bjd_types_map.end() || it->first != size_and_type.second))
11646 {
11647 auto last_token = get_token_string();
11648 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
11649 exception_message(input_format, "invalid byte: 0x" + last_token, "type"), nullptr));
11650 }
11651
11652 string_t type = it->second; // sax->string() takes a reference
11653 if (JSON_HEDLEY_UNLIKELY(!sax->key(key) || !sax->string(type)))
11654 {
11655 return false;
11656 }
11657
11658 if (size_and_type.second == 'C')
11659 {
11660 size_and_type.second = 'U';
11661 }
11662
11663 key = "_ArrayData_";
11664 if (JSON_HEDLEY_UNLIKELY(!sax->key(key) || !sax->start_array(size_and_type.first) ))
11665 {
11666 return false;
11667 }
11668
11669 for (std::size_t i = 0; i < size_and_type.first; ++i)
11670 {
11671 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_value(size_and_type.second)))
11672 {
11673 return false;
11674 }
11675 }
11676
11677 return (sax->end_array() && sax->end_object());
11678 }
11679
11680 if (size_and_type.first != npos)
11681 {
11682 if (JSON_HEDLEY_UNLIKELY(!sax->start_array(size_and_type.first)))
11683 {
11684 return false;
11685 }
11686
11687 if (size_and_type.second != 0)
11688 {
11689 if (size_and_type.second != 'N')
11690 {
11691 for (std::size_t i = 0; i < size_and_type.first; ++i)
11692 {
11693 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_value(size_and_type.second)))
11694 {
11695 return false;
11696 }
11697 }
11698 }
11699 }
11700 else
11701 {
11702 for (std::size_t i = 0; i < size_and_type.first; ++i)
11703 {
11704 if (JSON_HEDLEY_UNLIKELY(!parse_ubjson_internal()))
11705 {
11706 return false;
11707 }
11708 }
11709 }
11710 }
11711 else
11712 {
11713 if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
11714 {
11715 return false;
11716 }
11717
11718 while (current != ']')
11719 {
11720 if (JSON_HEDLEY_UNLIKELY(!parse_ubjson_internal(false)))
11721 {
11722 return false;
11723 }
11724 get_ignore_noop();
11725 }
11726 }
11727
11728 return sax->end_array();
11729 }
11730
11731 /*!
11732 @return whether object creation completed
11733 */
11734 bool get_ubjson_object()
11735 {
11736 std::pair<std::size_t, char_int_type> size_and_type;
11737 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_size_type(size_and_type)))
11738 {
11739 return false;
11740 }
11741
11742 // do not accept ND-array size in objects in BJData
11743 if (input_format == input_format_t::bjdata && size_and_type.first != npos && (size_and_type.second & (1 << 8)) != 0)
11744 {
11745 auto last_token = get_token_string();
11746 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read,
11747 exception_message(input_format, "BJData object does not support ND-array size in optimized format", "object"), nullptr));
11748 }
11749
11750 string_t key;
11751 if (size_and_type.first != npos)
11752 {
11753 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(size_and_type.first)))
11754 {
11755 return false;
11756 }
11757
11758 if (size_and_type.second != 0)
11759 {
11760 for (std::size_t i = 0; i < size_and_type.first; ++i)
11761 {
11762 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_string(key) || !sax->key(key)))
11763 {
11764 return false;
11765 }
11766 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_value(size_and_type.second)))
11767 {
11768 return false;
11769 }
11770 key.clear();
11771 }
11772 }
11773 else
11774 {
11775 for (std::size_t i = 0; i < size_and_type.first; ++i)
11776 {
11777 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_string(key) || !sax->key(key)))
11778 {
11779 return false;
11780 }
11781 if (JSON_HEDLEY_UNLIKELY(!parse_ubjson_internal()))
11782 {
11783 return false;
11784 }
11785 key.clear();
11786 }
11787 }
11788 }
11789 else
11790 {
11791 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
11792 {
11793 return false;
11794 }
11795
11796 while (current != '}')
11797 {
11798 if (JSON_HEDLEY_UNLIKELY(!get_ubjson_string(key, false) || !sax->key(key)))
11799 {
11800 return false;
11801 }
11802 if (JSON_HEDLEY_UNLIKELY(!parse_ubjson_internal()))
11803 {
11804 return false;
11805 }
11806 get_ignore_noop();
11807 key.clear();
11808 }
11809 }
11810
11811 return sax->end_object();
11812 }
11813
11814 // Note, no reader for UBJSON binary types is implemented because they do
11815 // not exist
11816
11817 bool get_ubjson_high_precision_number()
11818 {
11819 // get size of following number string
11820 std::size_t size{};
11821 bool no_ndarray = true;
11822 auto res = get_ubjson_size_value(size, no_ndarray);
11823 if (JSON_HEDLEY_UNLIKELY(!res))
11824 {
11825 return res;
11826 }
11827
11828 // get number string
11829 std::vector<char> number_vector;
11830 for (std::size_t i = 0; i < size; ++i)
11831 {
11832 get();
11833 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(input_format, "number")))
11834 {
11835 return false;
11836 }
11837 number_vector.push_back(static_cast<char>(current));
11838 }
11839
11840 // parse number string
11841 using ia_type = decltype(detail::input_adapter(number_vector));
11842 auto number_lexer = detail::lexer<BasicJsonType, ia_type>(detail::input_adapter(number_vector), false);
11843 const auto result_number = number_lexer.scan();
11844 const auto number_string = number_lexer.get_token_string();
11845 const auto result_remainder = number_lexer.scan();
11846
11847 using token_type = typename detail::lexer_base<BasicJsonType>::token_type;
11848
11849 if (JSON_HEDLEY_UNLIKELY(result_remainder != token_type::end_of_input))
11850 {
11851 return sax->parse_error(chars_read, number_string, parse_error::create(115, chars_read,
11852 exception_message(input_format, concat("invalid number text: ", number_lexer.get_token_string()), "high-precision number"), nullptr));
11853 }
11854
11855 switch (result_number)
11856 {
11857 case token_type::value_integer:
11858 return sax->number_integer(number_lexer.get_number_integer());
11859 case token_type::value_unsigned:
11860 return sax->number_unsigned(number_lexer.get_number_unsigned());
11861 case token_type::value_float:
11862 return sax->number_float(number_lexer.get_number_float(), std::move(number_string));
11863 case token_type::uninitialized:
11864 case token_type::literal_true:
11865 case token_type::literal_false:
11866 case token_type::literal_null:
11867 case token_type::value_string:
11868 case token_type::begin_array:
11869 case token_type::begin_object:
11870 case token_type::end_array:
11871 case token_type::end_object:
11872 case token_type::name_separator:
11873 case token_type::value_separator:
11874 case token_type::parse_error:
11875 case token_type::end_of_input:
11876 case token_type::literal_or_value:
11877 default:
11878 return sax->parse_error(chars_read, number_string, parse_error::create(115, chars_read,
11879 exception_message(input_format, concat("invalid number text: ", number_lexer.get_token_string()), "high-precision number"), nullptr));
11880 }
11881 }
11882
11883 ///////////////////////
11884 // Utility functions //
11885 ///////////////////////
11886
11887 /*!
11888 @brief get next character from the input
11889
11890 This function provides the interface to the used input adapter. It does
11891 not throw in case the input reached EOF, but returns a -'ve valued
11892 `char_traits<char_type>::eof()` in that case.
11893
11894 @return character read from the input
11895 */
11896 char_int_type get()
11897 {
11898 ++chars_read;
11899 return current = ia.get_character();
11900 }
11901
11902 /*!
11903 @return character read from the input after ignoring all 'N' entries
11904 */
11905 char_int_type get_ignore_noop()
11906 {
11907 do
11908 {
11909 get();
11910 }
11911 while (current == 'N');
11912
11913 return current;
11914 }
11915
11916 /*
11917 @brief read a number from the input
11918
11919 @tparam NumberType the type of the number
11920 @param[in] format the current format (for diagnostics)
11921 @param[out] result number of type @a NumberType
11922
11923 @return whether conversion completed
11924
11925 @note This function needs to respect the system's endianness, because
11926 bytes in CBOR, MessagePack, and UBJSON are stored in network order
11927 (big endian) and therefore need reordering on little endian systems.
11928 On the other hand, BSON and BJData use little endian and should reorder
11929 on big endian systems.
11930 */
11931 template<typename NumberType, bool InputIsLittleEndian = false>
11932 bool get_number(const input_format_t format, NumberType& result)
11933 {
11934 // step 1: read input into array with system's byte order
11935 std::array<std::uint8_t, sizeof(NumberType)> vec{};
11936 for (std::size_t i = 0; i < sizeof(NumberType); ++i)
11937 {
11938 get();
11939 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(format, "number")))
11940 {
11941 return false;
11942 }
11943
11944 // reverse byte order prior to conversion if necessary
11945 if (is_little_endian != (InputIsLittleEndian || format == input_format_t::bjdata))
11946 {
11947 vec[sizeof(NumberType) - i - 1] = static_cast<std::uint8_t>(current);
11948 }
11949 else
11950 {
11951 vec[i] = static_cast<std::uint8_t>(current); // LCOV_EXCL_LINE
11952 }
11953 }
11954
11955 // step 2: convert array into number of type T and return
11956 std::memcpy(&result, vec.data(), sizeof(NumberType));
11957 return true;
11958 }
11959
11960 /*!
11961 @brief create a string by reading characters from the input
11962
11963 @tparam NumberType the type of the number
11964 @param[in] format the current format (for diagnostics)
11965 @param[in] len number of characters to read
11966 @param[out] result string created by reading @a len bytes
11967
11968 @return whether string creation completed
11969
11970 @note We can not reserve @a len bytes for the result, because @a len
11971 may be too large. Usually, @ref unexpect_eof() detects the end of
11972 the input before we run out of string memory.
11973 */
11974 template<typename NumberType>
11975 bool get_string(const input_format_t format,
11976 const NumberType len,
11977 string_t& result)
11978 {
11979 bool success = true;
11980 for (NumberType i = 0; i < len; i++)
11981 {
11982 get();
11983 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(format, "string")))
11984 {
11985 success = false;
11986 break;
11987 }
11988 result.push_back(static_cast<typename string_t::value_type>(current));
11989 }
11990 return success;
11991 }
11992
11993 /*!
11994 @brief create a byte array by reading bytes from the input
11995
11996 @tparam NumberType the type of the number
11997 @param[in] format the current format (for diagnostics)
11998 @param[in] len number of bytes to read
11999 @param[out] result byte array created by reading @a len bytes
12000
12001 @return whether byte array creation completed
12002
12003 @note We can not reserve @a len bytes for the result, because @a len
12004 may be too large. Usually, @ref unexpect_eof() detects the end of
12005 the input before we run out of memory.
12006 */
12007 template<typename NumberType>
12008 bool get_binary(const input_format_t format,
12009 const NumberType len,
12010 binary_t& result)
12011 {
12012 bool success = true;
12013 for (NumberType i = 0; i < len; i++)
12014 {
12015 get();
12016 if (JSON_HEDLEY_UNLIKELY(!unexpect_eof(format, "binary")))
12017 {
12018 success = false;
12019 break;
12020 }
12021 result.push_back(static_cast<std::uint8_t>(current));
12022 }
12023 return success;
12024 }
12025
12026 /*!
12027 @param[in] format the current format (for diagnostics)
12028 @param[in] context further context information (for diagnostics)
12029 @return whether the last read character is not EOF
12030 */
12031 JSON_HEDLEY_NON_NULL(3)
12032 bool unexpect_eof(const input_format_t format, const char* context) const
12033 {
12034 if (JSON_HEDLEY_UNLIKELY(current == char_traits<char_type>::eof()))
12035 {
12036 return sax->parse_error(chars_read, "<end of file>",
12037 parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context), nullptr));
12038 }
12039 return true;
12040 }
12041
12042 /*!
12043 @return a string representation of the last read byte
12044 */
12045 std::string get_token_string() const
12046 {
12047 std::array<char, 3> cr{{}};
12048 static_cast<void>((std::snprintf)(cr.data(), cr.size(), "%.2hhX", static_cast<unsigned char>(current))); // NOLINT(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
12049 return std::string{cr.data()};
12050 }
12051
12052 /*!
12053 @param[in] format the current format
12054 @param[in] detail a detailed error message
12055 @param[in] context further context information
12056 @return a message string to use in the parse_error exceptions
12057 */
12058 std::string exception_message(const input_format_t format,
12059 const std::string& detail,
12060 const std::string& context) const
12061 {
12062 std::string error_msg = "syntax error while parsing ";
12063
12064 switch (format)
12065 {
12066 case input_format_t::cbor:
12067 error_msg += "CBOR";
12068 break;
12069
12070 case input_format_t::msgpack:
12071 error_msg += "MessagePack";
12072 break;
12073
12074 case input_format_t::ubjson:
12075 error_msg += "UBJSON";
12076 break;
12077
12078 case input_format_t::bson:
12079 error_msg += "BSON";
12080 break;
12081
12082 case input_format_t::bjdata:
12083 error_msg += "BJData";
12084 break;
12085
12086 case input_format_t::json: // LCOV_EXCL_LINE
12087 default: // LCOV_EXCL_LINE
12088 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
12089 }
12090
12091 return concat(error_msg, ' ', context, ": ", detail);
12092 }
12093
12094 private:
12095 static JSON_INLINE_VARIABLE constexpr std::size_t npos = static_cast<std::size_t>(-1);
12096
12097 /// input adapter
12098 InputAdapterType ia;
12099
12100 /// the current character
12101 char_int_type current = char_traits<char_type>::eof();
12102
12103 /// the number of characters read
12104 std::size_t chars_read = 0;
12105
12106 /// whether we can assume little endianness
12107 const bool is_little_endian = little_endianness();
12108
12109 /// input format
12110 const input_format_t input_format = input_format_t::json;
12111
12112 /// the SAX parser
12113 json_sax_t* sax = nullptr;
12114
12115 // excluded markers in bjdata optimized type
12116 #define JSON_BINARY_READER_MAKE_BJD_OPTIMIZED_TYPE_MARKERS_ \
12117 make_array<char_int_type>('F', 'H', 'N', 'S', 'T', 'Z', '[', '{')
12118
12119 #define JSON_BINARY_READER_MAKE_BJD_TYPES_MAP_ \
12120 make_array<bjd_type>( \
12121 bjd_type{'C', "char"}, \
12122 bjd_type{'D', "double"}, \
12123 bjd_type{'I', "int16"}, \
12124 bjd_type{'L', "int64"}, \
12125 bjd_type{'M', "uint64"}, \
12126 bjd_type{'U', "uint8"}, \
12127 bjd_type{'d', "single"}, \
12128 bjd_type{'i', "int8"}, \
12129 bjd_type{'l', "int32"}, \
12130 bjd_type{'m', "uint32"}, \
12131 bjd_type{'u', "uint16"})
12132
12133 JSON_PRIVATE_UNLESS_TESTED:
12134 // lookup tables
12135 // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
12136 const decltype(JSON_BINARY_READER_MAKE_BJD_OPTIMIZED_TYPE_MARKERS_) bjd_optimized_type_markers =
12137 JSON_BINARY_READER_MAKE_BJD_OPTIMIZED_TYPE_MARKERS_;
12138
12139 using bjd_type = std::pair<char_int_type, string_t>;
12140 // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
12141 const decltype(JSON_BINARY_READER_MAKE_BJD_TYPES_MAP_) bjd_types_map =
12142 JSON_BINARY_READER_MAKE_BJD_TYPES_MAP_;
12143
12144 #undef JSON_BINARY_READER_MAKE_BJD_OPTIMIZED_TYPE_MARKERS_
12145 #undef JSON_BINARY_READER_MAKE_BJD_TYPES_MAP_
12146 };
12147
12148 #ifndef JSON_HAS_CPP_17
12149 template<typename BasicJsonType, typename InputAdapterType, typename SAX>
12150 constexpr std::size_t binary_reader<BasicJsonType, InputAdapterType, SAX>::npos;
12151 #endif
12152
12153 } // namespace detail
12154 NLOHMANN_JSON_NAMESPACE_END
12155
12156 // #include <nlohmann/detail/input/input_adapters.hpp>
12157
12158 // #include <nlohmann/detail/input/lexer.hpp>
12159
12160 // #include <nlohmann/detail/input/parser.hpp>
12161 // __ _____ _____ _____
12162 // __| | __| | | | JSON for Modern C++
12163 // | | |__ | | | | | | version 3.11.3
12164 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
12165 //
12166 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
12167 // SPDX-License-Identifier: MIT
12168
12169
12170
12171 #include <cmath> // isfinite
12172 #include <cstdint> // uint8_t
12173 #include <functional> // function
12174 #include <string> // string
12175 #include <utility> // move
12176 #include <vector> // vector
12177
12178 // #include <nlohmann/detail/exceptions.hpp>
12179
12180 // #include <nlohmann/detail/input/input_adapters.hpp>
12181
12182 // #include <nlohmann/detail/input/json_sax.hpp>
12183
12184 // #include <nlohmann/detail/input/lexer.hpp>
12185
12186 // #include <nlohmann/detail/macro_scope.hpp>
12187
12188 // #include <nlohmann/detail/meta/is_sax.hpp>
12189
12190 // #include <nlohmann/detail/string_concat.hpp>
12191
12192 // #include <nlohmann/detail/value_t.hpp>
12193
12194
12195 NLOHMANN_JSON_NAMESPACE_BEGIN
12196 namespace detail
12197 {
12198 ////////////
12199 // parser //
12200 ////////////
12201
12202 enum class parse_event_t : std::uint8_t
12203 {
12204 /// the parser read `{` and started to process a JSON object
12205 object_start,
12206 /// the parser read `}` and finished processing a JSON object
12207 object_end,
12208 /// the parser read `[` and started to process a JSON array
12209 array_start,
12210 /// the parser read `]` and finished processing a JSON array
12211 array_end,
12212 /// the parser read a key of a value in an object
12213 key,
12214 /// the parser finished reading a JSON value
12215 value
12216 };
12217
12218 template<typename BasicJsonType>
12219 using parser_callback_t =
12220 std::function<bool(int /*depth*/, parse_event_t /*event*/, BasicJsonType& /*parsed*/)>;
12221
12222 /*!
12223 @brief syntax analysis
12224
12225 This class implements a recursive descent parser.
12226 */
12227 template<typename BasicJsonType, typename InputAdapterType>
12228 class parser
12229 {
12230 using number_integer_t = typename BasicJsonType::number_integer_t;
12231 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
12232 using number_float_t = typename BasicJsonType::number_float_t;
12233 using string_t = typename BasicJsonType::string_t;
12234 using lexer_t = lexer<BasicJsonType, InputAdapterType>;
12235 using token_type = typename lexer_t::token_type;
12236
12237 public:
12238 /// a parser reading from an input adapter
12239 explicit parser(InputAdapterType&& adapter,
12240 const parser_callback_t<BasicJsonType> cb = nullptr,
12241 const bool allow_exceptions_ = true,
12242 const bool skip_comments = false)
12243 : callback(cb)
12244 , m_lexer(std::move(adapter), skip_comments)
12245 , allow_exceptions(allow_exceptions_)
12246 {
12247 // read first token
12248 get_token();
12249 }
12250
12251 /*!
12252 @brief public parser interface
12253
12254 @param[in] strict whether to expect the last token to be EOF
12255 @param[in,out] result parsed JSON value
12256
12257 @throw parse_error.101 in case of an unexpected token
12258 @throw parse_error.102 if to_unicode fails or surrogate error
12259 @throw parse_error.103 if to_unicode fails
12260 */
12261 void parse(const bool strict, BasicJsonType& result)
12262 {
12263 if (callback)
12264 {
12265 json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
12266 sax_parse_internal(&sdp);
12267
12268 // in strict mode, input must be completely read
12269 if (strict && (get_token() != token_type::end_of_input))
12270 {
12271 sdp.parse_error(m_lexer.get_position(),
12272 m_lexer.get_token_string(),
12273 parse_error::create(101, m_lexer.get_position(),
12274 exception_message(token_type::end_of_input, "value"), nullptr));
12275 }
12276
12277 // in case of an error, return discarded value
12278 if (sdp.is_errored())
12279 {
12280 result = value_t::discarded;
12281 return;
12282 }
12283
12284 // set top-level value to null if it was discarded by the callback
12285 // function
12286 if (result.is_discarded())
12287 {
12288 result = nullptr;
12289 }
12290 }
12291 else
12292 {
12293 json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
12294 sax_parse_internal(&sdp);
12295
12296 // in strict mode, input must be completely read
12297 if (strict && (get_token() != token_type::end_of_input))
12298 {
12299 sdp.parse_error(m_lexer.get_position(),
12300 m_lexer.get_token_string(),
12301 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
12302 }
12303
12304 // in case of an error, return discarded value
12305 if (sdp.is_errored())
12306 {
12307 result = value_t::discarded;
12308 return;
12309 }
12310 }
12311
12312 result.assert_invariant();
12313 }
12314
12315 /*!
12316 @brief public accept interface
12317
12318 @param[in] strict whether to expect the last token to be EOF
12319 @return whether the input is a proper JSON text
12320 */
12321 bool accept(const bool strict = true)
12322 {
12323 json_sax_acceptor<BasicJsonType> sax_acceptor;
12324 return sax_parse(&sax_acceptor, strict);
12325 }
12326
12327 template<typename SAX>
12328 JSON_HEDLEY_NON_NULL(2)
12329 bool sax_parse(SAX* sax, const bool strict = true)
12330 {
12331 (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
12332 const bool result = sax_parse_internal(sax);
12333
12334 // strict mode: next byte must be EOF
12335 if (result && strict && (get_token() != token_type::end_of_input))
12336 {
12337 return sax->parse_error(m_lexer.get_position(),
12338 m_lexer.get_token_string(),
12339 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_of_input, "value"), nullptr));
12340 }
12341
12342 return result;
12343 }
12344
12345 private:
12346 template<typename SAX>
12347 JSON_HEDLEY_NON_NULL(2)
12348 bool sax_parse_internal(SAX* sax)
12349 {
12350 // stack to remember the hierarchy of structured values we are parsing
12351 // true = array; false = object
12352 std::vector<bool> states;
12353 // value to avoid a goto (see comment where set to true)
12354 bool skip_to_state_evaluation = false;
12355
12356 while (true)
12357 {
12358 if (!skip_to_state_evaluation)
12359 {
12360 // invariant: get_token() was called before each iteration
12361 switch (last_token)
12362 {
12363 case token_type::begin_object:
12364 {
12365 if (JSON_HEDLEY_UNLIKELY(!sax->start_object(static_cast<std::size_t>(-1))))
12366 {
12367 return false;
12368 }
12369
12370 // closing } -> we are done
12371 if (get_token() == token_type::end_object)
12372 {
12373 if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
12374 {
12375 return false;
12376 }
12377 break;
12378 }
12379
12380 // parse key
12381 if (JSON_HEDLEY_UNLIKELY(last_token != token_type::value_string))
12382 {
12383 return sax->parse_error(m_lexer.get_position(),
12384 m_lexer.get_token_string(),
12385 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
12386 }
12387 if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
12388 {
12389 return false;
12390 }
12391
12392 // parse separator (:)
12393 if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
12394 {
12395 return sax->parse_error(m_lexer.get_position(),
12396 m_lexer.get_token_string(),
12397 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
12398 }
12399
12400 // remember we are now inside an object
12401 states.push_back(false);
12402
12403 // parse values
12404 get_token();
12405 continue;
12406 }
12407
12408 case token_type::begin_array:
12409 {
12410 if (JSON_HEDLEY_UNLIKELY(!sax->start_array(static_cast<std::size_t>(-1))))
12411 {
12412 return false;
12413 }
12414
12415 // closing ] -> we are done
12416 if (get_token() == token_type::end_array)
12417 {
12418 if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
12419 {
12420 return false;
12421 }
12422 break;
12423 }
12424
12425 // remember we are now inside an array
12426 states.push_back(true);
12427
12428 // parse values (no need to call get_token)
12429 continue;
12430 }
12431
12432 case token_type::value_float:
12433 {
12434 const auto res = m_lexer.get_number_float();
12435
12436 if (JSON_HEDLEY_UNLIKELY(!std::isfinite(res)))
12437 {
12438 return sax->parse_error(m_lexer.get_position(),
12439 m_lexer.get_token_string(),
12440 out_of_range::create(406, concat("number overflow parsing '", m_lexer.get_token_string(), '\''), nullptr));
12441 }
12442
12443 if (JSON_HEDLEY_UNLIKELY(!sax->number_float(res, m_lexer.get_string())))
12444 {
12445 return false;
12446 }
12447
12448 break;
12449 }
12450
12451 case token_type::literal_false:
12452 {
12453 if (JSON_HEDLEY_UNLIKELY(!sax->boolean(false)))
12454 {
12455 return false;
12456 }
12457 break;
12458 }
12459
12460 case token_type::literal_null:
12461 {
12462 if (JSON_HEDLEY_UNLIKELY(!sax->null()))
12463 {
12464 return false;
12465 }
12466 break;
12467 }
12468
12469 case token_type::literal_true:
12470 {
12471 if (JSON_HEDLEY_UNLIKELY(!sax->boolean(true)))
12472 {
12473 return false;
12474 }
12475 break;
12476 }
12477
12478 case token_type::value_integer:
12479 {
12480 if (JSON_HEDLEY_UNLIKELY(!sax->number_integer(m_lexer.get_number_integer())))
12481 {
12482 return false;
12483 }
12484 break;
12485 }
12486
12487 case token_type::value_string:
12488 {
12489 if (JSON_HEDLEY_UNLIKELY(!sax->string(m_lexer.get_string())))
12490 {
12491 return false;
12492 }
12493 break;
12494 }
12495
12496 case token_type::value_unsigned:
12497 {
12498 if (JSON_HEDLEY_UNLIKELY(!sax->number_unsigned(m_lexer.get_number_unsigned())))
12499 {
12500 return false;
12501 }
12502 break;
12503 }
12504
12505 case token_type::parse_error:
12506 {
12507 // using "uninitialized" to avoid "expected" message
12508 return sax->parse_error(m_lexer.get_position(),
12509 m_lexer.get_token_string(),
12510 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::uninitialized, "value"), nullptr));
12511 }
12512 case token_type::end_of_input:
12513 {
12514 if (JSON_HEDLEY_UNLIKELY(m_lexer.get_position().chars_read_total == 1))
12515 {
12516 return sax->parse_error(m_lexer.get_position(),
12517 m_lexer.get_token_string(),
12518 parse_error::create(101, m_lexer.get_position(),
12519 "attempting to parse an empty input; check that your input string or stream contains the expected JSON", nullptr));
12520 }
12521
12522 return sax->parse_error(m_lexer.get_position(),
12523 m_lexer.get_token_string(),
12524 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
12525 }
12526 case token_type::uninitialized:
12527 case token_type::end_array:
12528 case token_type::end_object:
12529 case token_type::name_separator:
12530 case token_type::value_separator:
12531 case token_type::literal_or_value:
12532 default: // the last token was unexpected
12533 {
12534 return sax->parse_error(m_lexer.get_position(),
12535 m_lexer.get_token_string(),
12536 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::literal_or_value, "value"), nullptr));
12537 }
12538 }
12539 }
12540 else
12541 {
12542 skip_to_state_evaluation = false;
12543 }
12544
12545 // we reached this line after we successfully parsed a value
12546 if (states.empty())
12547 {
12548 // empty stack: we reached the end of the hierarchy: done
12549 return true;
12550 }
12551
12552 if (states.back()) // array
12553 {
12554 // comma -> next value
12555 if (get_token() == token_type::value_separator)
12556 {
12557 // parse a new value
12558 get_token();
12559 continue;
12560 }
12561
12562 // closing ]
12563 if (JSON_HEDLEY_LIKELY(last_token == token_type::end_array))
12564 {
12565 if (JSON_HEDLEY_UNLIKELY(!sax->end_array()))
12566 {
12567 return false;
12568 }
12569
12570 // We are done with this array. Before we can parse a
12571 // new value, we need to evaluate the new state first.
12572 // By setting skip_to_state_evaluation to false, we
12573 // are effectively jumping to the beginning of this if.
12574 JSON_ASSERT(!states.empty());
12575 states.pop_back();
12576 skip_to_state_evaluation = true;
12577 continue;
12578 }
12579
12580 return sax->parse_error(m_lexer.get_position(),
12581 m_lexer.get_token_string(),
12582 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_array, "array"), nullptr));
12583 }
12584
12585 // states.back() is false -> object
12586
12587 // comma -> next value
12588 if (get_token() == token_type::value_separator)
12589 {
12590 // parse key
12591 if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::value_string))
12592 {
12593 return sax->parse_error(m_lexer.get_position(),
12594 m_lexer.get_token_string(),
12595 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::value_string, "object key"), nullptr));
12596 }
12597
12598 if (JSON_HEDLEY_UNLIKELY(!sax->key(m_lexer.get_string())))
12599 {
12600 return false;
12601 }
12602
12603 // parse separator (:)
12604 if (JSON_HEDLEY_UNLIKELY(get_token() != token_type::name_separator))
12605 {
12606 return sax->parse_error(m_lexer.get_position(),
12607 m_lexer.get_token_string(),
12608 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::name_separator, "object separator"), nullptr));
12609 }
12610
12611 // parse values
12612 get_token();
12613 continue;
12614 }
12615
12616 // closing }
12617 if (JSON_HEDLEY_LIKELY(last_token == token_type::end_object))
12618 {
12619 if (JSON_HEDLEY_UNLIKELY(!sax->end_object()))
12620 {
12621 return false;
12622 }
12623
12624 // We are done with this object. Before we can parse a
12625 // new value, we need to evaluate the new state first.
12626 // By setting skip_to_state_evaluation to false, we
12627 // are effectively jumping to the beginning of this if.
12628 JSON_ASSERT(!states.empty());
12629 states.pop_back();
12630 skip_to_state_evaluation = true;
12631 continue;
12632 }
12633
12634 return sax->parse_error(m_lexer.get_position(),
12635 m_lexer.get_token_string(),
12636 parse_error::create(101, m_lexer.get_position(), exception_message(token_type::end_object, "object"), nullptr));
12637 }
12638 }
12639
12640 /// get next token from lexer
12641 token_type get_token()
12642 {
12643 return last_token = m_lexer.scan();
12644 }
12645
12646 std::string exception_message(const token_type expected, const std::string& context)
12647 {
12648 std::string error_msg = "syntax error ";
12649
12650 if (!context.empty())
12651 {
12652 error_msg += concat("while parsing ", context, ' ');
12653 }
12654
12655 error_msg += "- ";
12656
12657 if (last_token == token_type::parse_error)
12658 {
12659 error_msg += concat(m_lexer.get_error_message(), "; last read: '",
12660 m_lexer.get_token_string(), '\'');
12661 }
12662 else
12663 {
12664 error_msg += concat("unexpected ", lexer_t::token_type_name(last_token));
12665 }
12666
12667 if (expected != token_type::uninitialized)
12668 {
12669 error_msg += concat("; expected ", lexer_t::token_type_name(expected));
12670 }
12671
12672 return error_msg;
12673 }
12674
12675 private:
12676 /// callback function
12677 const parser_callback_t<BasicJsonType> callback = nullptr;
12678 /// the type of the last read token
12679 token_type last_token = token_type::uninitialized;
12680 /// the lexer
12681 lexer_t m_lexer;
12682 /// whether to throw exceptions in case of errors
12683 const bool allow_exceptions = true;
12684 };
12685
12686 } // namespace detail
12687 NLOHMANN_JSON_NAMESPACE_END
12688
12689 // #include <nlohmann/detail/iterators/internal_iterator.hpp>
12690 // __ _____ _____ _____
12691 // __| | __| | | | JSON for Modern C++
12692 // | | |__ | | | | | | version 3.11.3
12693 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
12694 //
12695 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
12696 // SPDX-License-Identifier: MIT
12697
12698
12699
12700 // #include <nlohmann/detail/abi_macros.hpp>
12701
12702 // #include <nlohmann/detail/iterators/primitive_iterator.hpp>
12703 // __ _____ _____ _____
12704 // __| | __| | | | JSON for Modern C++
12705 // | | |__ | | | | | | version 3.11.3
12706 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
12707 //
12708 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
12709 // SPDX-License-Identifier: MIT
12710
12711
12712
12713 #include <cstddef> // ptrdiff_t
12714 #include <limits> // numeric_limits
12715
12716 // #include <nlohmann/detail/macro_scope.hpp>
12717
12718
12719 NLOHMANN_JSON_NAMESPACE_BEGIN
12720 namespace detail
12721 {
12722
12723 /*
12724 @brief an iterator for primitive JSON types
12725
12726 This class models an iterator for primitive JSON types (boolean, number,
12727 string). It's only purpose is to allow the iterator/const_iterator classes
12728 to "iterate" over primitive values. Internally, the iterator is modeled by
12729 a `difference_type` variable. Value begin_value (`0`) models the begin,
12730 end_value (`1`) models past the end.
12731 */
12732 class primitive_iterator_t
12733 {
12734 private:
12735 using difference_type = std::ptrdiff_t;
12736 static constexpr difference_type begin_value = 0;
12737 static constexpr difference_type end_value = begin_value + 1;
12738
12739 JSON_PRIVATE_UNLESS_TESTED:
12740 /// iterator as signed integer type
12741 difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
12742
12743 public:
12744 constexpr difference_type get_value() const noexcept
12745 {
12746 return m_it;
12747 }
12748
12749 /// set iterator to a defined beginning
12750 void set_begin() noexcept
12751 {
12752 m_it = begin_value;
12753 }
12754
12755 /// set iterator to a defined past the end
12756 void set_end() noexcept
12757 {
12758 m_it = end_value;
12759 }
12760
12761 /// return whether the iterator can be dereferenced
12762 constexpr bool is_begin() const noexcept
12763 {
12764 return m_it == begin_value;
12765 }
12766
12767 /// return whether the iterator is at end
12768 constexpr bool is_end() const noexcept
12769 {
12770 return m_it == end_value;
12771 }
12772
12773 friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
12774 {
12775 return lhs.m_it == rhs.m_it;
12776 }
12777
12778 friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
12779 {
12780 return lhs.m_it < rhs.m_it;
12781 }
12782
12783 primitive_iterator_t operator+(difference_type n) noexcept
12784 {
12785 auto result = *this;
12786 result += n;
12787 return result;
12788 }
12789
12790 friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
12791 {
12792 return lhs.m_it - rhs.m_it;
12793 }
12794
12795 primitive_iterator_t& operator++() noexcept
12796 {
12797 ++m_it;
12798 return *this;
12799 }
12800
12801 primitive_iterator_t operator++(int)& noexcept // NOLINT(cert-dcl21-cpp)
12802 {
12803 auto result = *this;
12804 ++m_it;
12805 return result;
12806 }
12807
12808 primitive_iterator_t& operator--() noexcept
12809 {
12810 --m_it;
12811 return *this;
12812 }
12813
12814 primitive_iterator_t operator--(int)& noexcept // NOLINT(cert-dcl21-cpp)
12815 {
12816 auto result = *this;
12817 --m_it;
12818 return result;
12819 }
12820
12821 primitive_iterator_t& operator+=(difference_type n) noexcept
12822 {
12823 m_it += n;
12824 return *this;
12825 }
12826
12827 primitive_iterator_t& operator-=(difference_type n) noexcept
12828 {
12829 m_it -= n;
12830 return *this;
12831 }
12832 };
12833
12834 } // namespace detail
12835 NLOHMANN_JSON_NAMESPACE_END
12836
12837
12838 NLOHMANN_JSON_NAMESPACE_BEGIN
12839 namespace detail
12840 {
12841
12842 /*!
12843 @brief an iterator value
12844
12845 @note This structure could easily be a union, but MSVC currently does not allow
12846 unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
12847 */
12848 template<typename BasicJsonType> struct internal_iterator
12849 {
12850 /// iterator for JSON objects
12851 typename BasicJsonType::object_t::iterator object_iterator {};
12852 /// iterator for JSON arrays
12853 typename BasicJsonType::array_t::iterator array_iterator {};
12854 /// generic iterator for all other types
12855 primitive_iterator_t primitive_iterator {};
12856 };
12857
12858 } // namespace detail
12859 NLOHMANN_JSON_NAMESPACE_END
12860
12861 // #include <nlohmann/detail/iterators/iter_impl.hpp>
12862 // __ _____ _____ _____
12863 // __| | __| | | | JSON for Modern C++
12864 // | | |__ | | | | | | version 3.11.3
12865 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
12866 //
12867 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
12868 // SPDX-License-Identifier: MIT
12869
12870
12871
12872 #include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
12873 #include <type_traits> // conditional, is_const, remove_const
12874
12875 // #include <nlohmann/detail/exceptions.hpp>
12876
12877 // #include <nlohmann/detail/iterators/internal_iterator.hpp>
12878
12879 // #include <nlohmann/detail/iterators/primitive_iterator.hpp>
12880
12881 // #include <nlohmann/detail/macro_scope.hpp>
12882
12883 // #include <nlohmann/detail/meta/cpp_future.hpp>
12884
12885 // #include <nlohmann/detail/meta/type_traits.hpp>
12886
12887 // #include <nlohmann/detail/value_t.hpp>
12888
12889
12890 NLOHMANN_JSON_NAMESPACE_BEGIN
12891 namespace detail
12892 {
12893
12894 // forward declare, to be able to friend it later on
12895 template<typename IteratorType> class iteration_proxy;
12896 template<typename IteratorType> class iteration_proxy_value;
12897
12898 /*!
12899 @brief a template for a bidirectional iterator for the @ref basic_json class
12900 This class implements a both iterators (iterator and const_iterator) for the
12901 @ref basic_json class.
12902 @note An iterator is called *initialized* when a pointer to a JSON value has
12903 been set (e.g., by a constructor or a copy assignment). If the iterator is
12904 default-constructed, it is *uninitialized* and most methods are undefined.
12905 **The library uses assertions to detect calls on uninitialized iterators.**
12906 @requirement The class satisfies the following concept requirements:
12907 -
12908 [BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
12909 The iterator that can be moved can be moved in both directions (i.e.
12910 incremented and decremented).
12911 @since version 1.0.0, simplified in version 2.0.9, change to bidirectional
12912 iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
12913 */
12914 template<typename BasicJsonType>
12915 class iter_impl // NOLINT(cppcoreguidelines-special-member-functions,hicpp-special-member-functions)
12916 {
12917 /// the iterator with BasicJsonType of different const-ness
12918 using other_iter_impl = iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
12919 /// allow basic_json to access private members
12920 friend other_iter_impl;
12921 friend BasicJsonType;
12922 friend iteration_proxy<iter_impl>;
12923 friend iteration_proxy_value<iter_impl>;
12924
12925 using object_t = typename BasicJsonType::object_t;
12926 using array_t = typename BasicJsonType::array_t;
12927 // make sure BasicJsonType is basic_json or const basic_json
12928 static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
12929 "iter_impl only accepts (const) basic_json");
12930 // superficial check for the LegacyBidirectionalIterator named requirement
12931 static_assert(std::is_base_of<std::bidirectional_iterator_tag, std::bidirectional_iterator_tag>::value
12932 && std::is_base_of<std::bidirectional_iterator_tag, typename std::iterator_traits<typename array_t::iterator>::iterator_category>::value,
12933 "basic_json iterator assumes array and object type iterators satisfy the LegacyBidirectionalIterator named requirement.");
12934
12935 public:
12936 /// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
12937 /// The C++ Standard has never required user-defined iterators to derive from std::iterator.
12938 /// A user-defined iterator should provide publicly accessible typedefs named
12939 /// iterator_category, value_type, difference_type, pointer, and reference.
12940 /// Note that value_type is required to be non-const, even for constant iterators.
12941 using iterator_category = std::bidirectional_iterator_tag;
12942
12943 /// the type of the values when the iterator is dereferenced
12944 using value_type = typename BasicJsonType::value_type;
12945 /// a type to represent differences between iterators
12946 using difference_type = typename BasicJsonType::difference_type;
12947 /// defines a pointer to the type iterated over (value_type)
12948 using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
12949 typename BasicJsonType::const_pointer,
12950 typename BasicJsonType::pointer>::type;
12951 /// defines a reference to the type iterated over (value_type)
12952 using reference =
12953 typename std::conditional<std::is_const<BasicJsonType>::value,
12954 typename BasicJsonType::const_reference,
12955 typename BasicJsonType::reference>::type;
12956
12957 iter_impl() = default;
12958 ~iter_impl() = default;
12959 iter_impl(iter_impl&&) noexcept = default;
12960 iter_impl& operator=(iter_impl&&) noexcept = default;
12961
12962 /*!
12963 @brief constructor for a given JSON instance
12964 @param[in] object pointer to a JSON object for this iterator
12965 @pre object != nullptr
12966 @post The iterator is initialized; i.e. `m_object != nullptr`.
12967 */
12968 explicit iter_impl(pointer object) noexcept : m_object(object)
12969 {
12970 JSON_ASSERT(m_object != nullptr);
12971
12972 switch (m_object->m_data.m_type)
12973 {
12974 case value_t::object:
12975 {
12976 m_it.object_iterator = typename object_t::iterator();
12977 break;
12978 }
12979
12980 case value_t::array:
12981 {
12982 m_it.array_iterator = typename array_t::iterator();
12983 break;
12984 }
12985
12986 case value_t::null:
12987 case value_t::string:
12988 case value_t::boolean:
12989 case value_t::number_integer:
12990 case value_t::number_unsigned:
12991 case value_t::number_float:
12992 case value_t::binary:
12993 case value_t::discarded:
12994 default:
12995 {
12996 m_it.primitive_iterator = primitive_iterator_t();
12997 break;
12998 }
12999 }
13000 }
13001
13002 /*!
13003 @note The conventional copy constructor and copy assignment are implicitly
13004 defined. Combined with the following converting constructor and
13005 assignment, they support: (1) copy from iterator to iterator, (2)
13006 copy from const iterator to const iterator, and (3) conversion from
13007 iterator to const iterator. However conversion from const iterator
13008 to iterator is not defined.
13009 */
13010
13011 /*!
13012 @brief const copy constructor
13013 @param[in] other const iterator to copy from
13014 @note This copy constructor had to be defined explicitly to circumvent a bug
13015 occurring on msvc v19.0 compiler (VS 2015) debug build. For more
13016 information refer to: https://github.com/nlohmann/json/issues/1608
13017 */
13018 iter_impl(const iter_impl<const BasicJsonType>& other) noexcept
13019 : m_object(other.m_object), m_it(other.m_it)
13020 {}
13021
13022 /*!
13023 @brief converting assignment
13024 @param[in] other const iterator to copy from
13025 @return const/non-const iterator
13026 @note It is not checked whether @a other is initialized.
13027 */
13028 iter_impl& operator=(const iter_impl<const BasicJsonType>& other) noexcept
13029 {
13030 if (&other != this)
13031 {
13032 m_object = other.m_object;
13033 m_it = other.m_it;
13034 }
13035 return *this;
13036 }
13037
13038 /*!
13039 @brief converting constructor
13040 @param[in] other non-const iterator to copy from
13041 @note It is not checked whether @a other is initialized.
13042 */
13043 iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
13044 : m_object(other.m_object), m_it(other.m_it)
13045 {}
13046
13047 /*!
13048 @brief converting assignment
13049 @param[in] other non-const iterator to copy from
13050 @return const/non-const iterator
13051 @note It is not checked whether @a other is initialized.
13052 */
13053 iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept // NOLINT(cert-oop54-cpp)
13054 {
13055 m_object = other.m_object;
13056 m_it = other.m_it;
13057 return *this;
13058 }
13059
13060 JSON_PRIVATE_UNLESS_TESTED:
13061 /*!
13062 @brief set the iterator to the first value
13063 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13064 */
13065 void set_begin() noexcept
13066 {
13067 JSON_ASSERT(m_object != nullptr);
13068
13069 switch (m_object->m_data.m_type)
13070 {
13071 case value_t::object:
13072 {
13073 m_it.object_iterator = m_object->m_data.m_value.object->begin();
13074 break;
13075 }
13076
13077 case value_t::array:
13078 {
13079 m_it.array_iterator = m_object->m_data.m_value.array->begin();
13080 break;
13081 }
13082
13083 case value_t::null:
13084 {
13085 // set to end so begin()==end() is true: null is empty
13086 m_it.primitive_iterator.set_end();
13087 break;
13088 }
13089
13090 case value_t::string:
13091 case value_t::boolean:
13092 case value_t::number_integer:
13093 case value_t::number_unsigned:
13094 case value_t::number_float:
13095 case value_t::binary:
13096 case value_t::discarded:
13097 default:
13098 {
13099 m_it.primitive_iterator.set_begin();
13100 break;
13101 }
13102 }
13103 }
13104
13105 /*!
13106 @brief set the iterator past the last value
13107 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13108 */
13109 void set_end() noexcept
13110 {
13111 JSON_ASSERT(m_object != nullptr);
13112
13113 switch (m_object->m_data.m_type)
13114 {
13115 case value_t::object:
13116 {
13117 m_it.object_iterator = m_object->m_data.m_value.object->end();
13118 break;
13119 }
13120
13121 case value_t::array:
13122 {
13123 m_it.array_iterator = m_object->m_data.m_value.array->end();
13124 break;
13125 }
13126
13127 case value_t::null:
13128 case value_t::string:
13129 case value_t::boolean:
13130 case value_t::number_integer:
13131 case value_t::number_unsigned:
13132 case value_t::number_float:
13133 case value_t::binary:
13134 case value_t::discarded:
13135 default:
13136 {
13137 m_it.primitive_iterator.set_end();
13138 break;
13139 }
13140 }
13141 }
13142
13143 public:
13144 /*!
13145 @brief return a reference to the value pointed to by the iterator
13146 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13147 */
13148 reference operator*() const
13149 {
13150 JSON_ASSERT(m_object != nullptr);
13151
13152 switch (m_object->m_data.m_type)
13153 {
13154 case value_t::object:
13155 {
13156 JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
13157 return m_it.object_iterator->second;
13158 }
13159
13160 case value_t::array:
13161 {
13162 JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
13163 return *m_it.array_iterator;
13164 }
13165
13166 case value_t::null:
13167 JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
13168
13169 case value_t::string:
13170 case value_t::boolean:
13171 case value_t::number_integer:
13172 case value_t::number_unsigned:
13173 case value_t::number_float:
13174 case value_t::binary:
13175 case value_t::discarded:
13176 default:
13177 {
13178 if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
13179 {
13180 return *m_object;
13181 }
13182
13183 JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
13184 }
13185 }
13186 }
13187
13188 /*!
13189 @brief dereference the iterator
13190 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13191 */
13192 pointer operator->() const
13193 {
13194 JSON_ASSERT(m_object != nullptr);
13195
13196 switch (m_object->m_data.m_type)
13197 {
13198 case value_t::object:
13199 {
13200 JSON_ASSERT(m_it.object_iterator != m_object->m_data.m_value.object->end());
13201 return &(m_it.object_iterator->second);
13202 }
13203
13204 case value_t::array:
13205 {
13206 JSON_ASSERT(m_it.array_iterator != m_object->m_data.m_value.array->end());
13207 return &*m_it.array_iterator;
13208 }
13209
13210 case value_t::null:
13211 case value_t::string:
13212 case value_t::boolean:
13213 case value_t::number_integer:
13214 case value_t::number_unsigned:
13215 case value_t::number_float:
13216 case value_t::binary:
13217 case value_t::discarded:
13218 default:
13219 {
13220 if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.is_begin()))
13221 {
13222 return m_object;
13223 }
13224
13225 JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
13226 }
13227 }
13228 }
13229
13230 /*!
13231 @brief post-increment (it++)
13232 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13233 */
13234 iter_impl operator++(int)& // NOLINT(cert-dcl21-cpp)
13235 {
13236 auto result = *this;
13237 ++(*this);
13238 return result;
13239 }
13240
13241 /*!
13242 @brief pre-increment (++it)
13243 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13244 */
13245 iter_impl& operator++()
13246 {
13247 JSON_ASSERT(m_object != nullptr);
13248
13249 switch (m_object->m_data.m_type)
13250 {
13251 case value_t::object:
13252 {
13253 std::advance(m_it.object_iterator, 1);
13254 break;
13255 }
13256
13257 case value_t::array:
13258 {
13259 std::advance(m_it.array_iterator, 1);
13260 break;
13261 }
13262
13263 case value_t::null:
13264 case value_t::string:
13265 case value_t::boolean:
13266 case value_t::number_integer:
13267 case value_t::number_unsigned:
13268 case value_t::number_float:
13269 case value_t::binary:
13270 case value_t::discarded:
13271 default:
13272 {
13273 ++m_it.primitive_iterator;
13274 break;
13275 }
13276 }
13277
13278 return *this;
13279 }
13280
13281 /*!
13282 @brief post-decrement (it--)
13283 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13284 */
13285 iter_impl operator--(int)& // NOLINT(cert-dcl21-cpp)
13286 {
13287 auto result = *this;
13288 --(*this);
13289 return result;
13290 }
13291
13292 /*!
13293 @brief pre-decrement (--it)
13294 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13295 */
13296 iter_impl& operator--()
13297 {
13298 JSON_ASSERT(m_object != nullptr);
13299
13300 switch (m_object->m_data.m_type)
13301 {
13302 case value_t::object:
13303 {
13304 std::advance(m_it.object_iterator, -1);
13305 break;
13306 }
13307
13308 case value_t::array:
13309 {
13310 std::advance(m_it.array_iterator, -1);
13311 break;
13312 }
13313
13314 case value_t::null:
13315 case value_t::string:
13316 case value_t::boolean:
13317 case value_t::number_integer:
13318 case value_t::number_unsigned:
13319 case value_t::number_float:
13320 case value_t::binary:
13321 case value_t::discarded:
13322 default:
13323 {
13324 --m_it.primitive_iterator;
13325 break;
13326 }
13327 }
13328
13329 return *this;
13330 }
13331
13332 /*!
13333 @brief comparison: equal
13334 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13335 */
13336 template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
13337 bool operator==(const IterImpl& other) const
13338 {
13339 // if objects are not the same, the comparison is undefined
13340 if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
13341 {
13342 JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
13343 }
13344
13345 JSON_ASSERT(m_object != nullptr);
13346
13347 switch (m_object->m_data.m_type)
13348 {
13349 case value_t::object:
13350 return (m_it.object_iterator == other.m_it.object_iterator);
13351
13352 case value_t::array:
13353 return (m_it.array_iterator == other.m_it.array_iterator);
13354
13355 case value_t::null:
13356 case value_t::string:
13357 case value_t::boolean:
13358 case value_t::number_integer:
13359 case value_t::number_unsigned:
13360 case value_t::number_float:
13361 case value_t::binary:
13362 case value_t::discarded:
13363 default:
13364 return (m_it.primitive_iterator == other.m_it.primitive_iterator);
13365 }
13366 }
13367
13368 /*!
13369 @brief comparison: not equal
13370 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13371 */
13372 template < typename IterImpl, detail::enable_if_t < (std::is_same<IterImpl, iter_impl>::value || std::is_same<IterImpl, other_iter_impl>::value), std::nullptr_t > = nullptr >
13373 bool operator!=(const IterImpl& other) const
13374 {
13375 return !operator==(other);
13376 }
13377
13378 /*!
13379 @brief comparison: smaller
13380 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13381 */
13382 bool operator<(const iter_impl& other) const
13383 {
13384 // if objects are not the same, the comparison is undefined
13385 if (JSON_HEDLEY_UNLIKELY(m_object != other.m_object))
13386 {
13387 JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers", m_object));
13388 }
13389
13390 JSON_ASSERT(m_object != nullptr);
13391
13392 switch (m_object->m_data.m_type)
13393 {
13394 case value_t::object:
13395 JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators", m_object));
13396
13397 case value_t::array:
13398 return (m_it.array_iterator < other.m_it.array_iterator);
13399
13400 case value_t::null:
13401 case value_t::string:
13402 case value_t::boolean:
13403 case value_t::number_integer:
13404 case value_t::number_unsigned:
13405 case value_t::number_float:
13406 case value_t::binary:
13407 case value_t::discarded:
13408 default:
13409 return (m_it.primitive_iterator < other.m_it.primitive_iterator);
13410 }
13411 }
13412
13413 /*!
13414 @brief comparison: less than or equal
13415 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13416 */
13417 bool operator<=(const iter_impl& other) const
13418 {
13419 return !other.operator < (*this);
13420 }
13421
13422 /*!
13423 @brief comparison: greater than
13424 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13425 */
13426 bool operator>(const iter_impl& other) const
13427 {
13428 return !operator<=(other);
13429 }
13430
13431 /*!
13432 @brief comparison: greater than or equal
13433 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13434 */
13435 bool operator>=(const iter_impl& other) const
13436 {
13437 return !operator<(other);
13438 }
13439
13440 /*!
13441 @brief add to iterator
13442 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13443 */
13444 iter_impl& operator+=(difference_type i)
13445 {
13446 JSON_ASSERT(m_object != nullptr);
13447
13448 switch (m_object->m_data.m_type)
13449 {
13450 case value_t::object:
13451 JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
13452
13453 case value_t::array:
13454 {
13455 std::advance(m_it.array_iterator, i);
13456 break;
13457 }
13458
13459 case value_t::null:
13460 case value_t::string:
13461 case value_t::boolean:
13462 case value_t::number_integer:
13463 case value_t::number_unsigned:
13464 case value_t::number_float:
13465 case value_t::binary:
13466 case value_t::discarded:
13467 default:
13468 {
13469 m_it.primitive_iterator += i;
13470 break;
13471 }
13472 }
13473
13474 return *this;
13475 }
13476
13477 /*!
13478 @brief subtract from iterator
13479 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13480 */
13481 iter_impl& operator-=(difference_type i)
13482 {
13483 return operator+=(-i);
13484 }
13485
13486 /*!
13487 @brief add to iterator
13488 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13489 */
13490 iter_impl operator+(difference_type i) const
13491 {
13492 auto result = *this;
13493 result += i;
13494 return result;
13495 }
13496
13497 /*!
13498 @brief addition of distance and iterator
13499 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13500 */
13501 friend iter_impl operator+(difference_type i, const iter_impl& it)
13502 {
13503 auto result = it;
13504 result += i;
13505 return result;
13506 }
13507
13508 /*!
13509 @brief subtract from iterator
13510 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13511 */
13512 iter_impl operator-(difference_type i) const
13513 {
13514 auto result = *this;
13515 result -= i;
13516 return result;
13517 }
13518
13519 /*!
13520 @brief return difference
13521 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13522 */
13523 difference_type operator-(const iter_impl& other) const
13524 {
13525 JSON_ASSERT(m_object != nullptr);
13526
13527 switch (m_object->m_data.m_type)
13528 {
13529 case value_t::object:
13530 JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators", m_object));
13531
13532 case value_t::array:
13533 return m_it.array_iterator - other.m_it.array_iterator;
13534
13535 case value_t::null:
13536 case value_t::string:
13537 case value_t::boolean:
13538 case value_t::number_integer:
13539 case value_t::number_unsigned:
13540 case value_t::number_float:
13541 case value_t::binary:
13542 case value_t::discarded:
13543 default:
13544 return m_it.primitive_iterator - other.m_it.primitive_iterator;
13545 }
13546 }
13547
13548 /*!
13549 @brief access to successor
13550 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13551 */
13552 reference operator[](difference_type n) const
13553 {
13554 JSON_ASSERT(m_object != nullptr);
13555
13556 switch (m_object->m_data.m_type)
13557 {
13558 case value_t::object:
13559 JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators", m_object));
13560
13561 case value_t::array:
13562 return *std::next(m_it.array_iterator, n);
13563
13564 case value_t::null:
13565 JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
13566
13567 case value_t::string:
13568 case value_t::boolean:
13569 case value_t::number_integer:
13570 case value_t::number_unsigned:
13571 case value_t::number_float:
13572 case value_t::binary:
13573 case value_t::discarded:
13574 default:
13575 {
13576 if (JSON_HEDLEY_LIKELY(m_it.primitive_iterator.get_value() == -n))
13577 {
13578 return *m_object;
13579 }
13580
13581 JSON_THROW(invalid_iterator::create(214, "cannot get value", m_object));
13582 }
13583 }
13584 }
13585
13586 /*!
13587 @brief return the key of an object iterator
13588 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13589 */
13590 const typename object_t::key_type& key() const
13591 {
13592 JSON_ASSERT(m_object != nullptr);
13593
13594 if (JSON_HEDLEY_LIKELY(m_object->is_object()))
13595 {
13596 return m_it.object_iterator->first;
13597 }
13598
13599 JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators", m_object));
13600 }
13601
13602 /*!
13603 @brief return the value of an iterator
13604 @pre The iterator is initialized; i.e. `m_object != nullptr`.
13605 */
13606 reference value() const
13607 {
13608 return operator*();
13609 }
13610
13611 JSON_PRIVATE_UNLESS_TESTED:
13612 /// associated JSON instance
13613 pointer m_object = nullptr;
13614 /// the actual iterator of the associated instance
13615 internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it {};
13616 };
13617
13618 } // namespace detail
13619 NLOHMANN_JSON_NAMESPACE_END
13620
13621 // #include <nlohmann/detail/iterators/iteration_proxy.hpp>
13622
13623 // #include <nlohmann/detail/iterators/json_reverse_iterator.hpp>
13624 // __ _____ _____ _____
13625 // __| | __| | | | JSON for Modern C++
13626 // | | |__ | | | | | | version 3.11.3
13627 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
13628 //
13629 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
13630 // SPDX-License-Identifier: MIT
13631
13632
13633
13634 #include <cstddef> // ptrdiff_t
13635 #include <iterator> // reverse_iterator
13636 #include <utility> // declval
13637
13638 // #include <nlohmann/detail/abi_macros.hpp>
13639
13640
13641 NLOHMANN_JSON_NAMESPACE_BEGIN
13642 namespace detail
13643 {
13644
13645 //////////////////////
13646 // reverse_iterator //
13647 //////////////////////
13648
13649 /*!
13650 @brief a template for a reverse iterator class
13651
13652 @tparam Base the base iterator type to reverse. Valid types are @ref
13653 iterator (to create @ref reverse_iterator) and @ref const_iterator (to
13654 create @ref const_reverse_iterator).
13655
13656 @requirement The class satisfies the following concept requirements:
13657 -
13658 [BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
13659 The iterator that can be moved can be moved in both directions (i.e.
13660 incremented and decremented).
13661 - [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
13662 It is possible to write to the pointed-to element (only if @a Base is
13663 @ref iterator).
13664
13665 @since version 1.0.0
13666 */
13667 template<typename Base>
13668 class json_reverse_iterator : public std::reverse_iterator<Base>
13669 {
13670 public:
13671 using difference_type = std::ptrdiff_t;
13672 /// shortcut to the reverse iterator adapter
13673 using base_iterator = std::reverse_iterator<Base>;
13674 /// the reference type for the pointed-to element
13675 using reference = typename Base::reference;
13676
13677 /// create reverse iterator from iterator
13678 explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
13679 : base_iterator(it) {}
13680
13681 /// create reverse iterator from base class
13682 explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
13683
13684 /// post-increment (it++)
13685 json_reverse_iterator operator++(int)& // NOLINT(cert-dcl21-cpp)
13686 {
13687 return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
13688 }
13689
13690 /// pre-increment (++it)
13691 json_reverse_iterator& operator++()
13692 {
13693 return static_cast<json_reverse_iterator&>(base_iterator::operator++());
13694 }
13695
13696 /// post-decrement (it--)
13697 json_reverse_iterator operator--(int)& // NOLINT(cert-dcl21-cpp)
13698 {
13699 return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
13700 }
13701
13702 /// pre-decrement (--it)
13703 json_reverse_iterator& operator--()
13704 {
13705 return static_cast<json_reverse_iterator&>(base_iterator::operator--());
13706 }
13707
13708 /// add to iterator
13709 json_reverse_iterator& operator+=(difference_type i)
13710 {
13711 return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
13712 }
13713
13714 /// add to iterator
13715 json_reverse_iterator operator+(difference_type i) const
13716 {
13717 return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
13718 }
13719
13720 /// subtract from iterator
13721 json_reverse_iterator operator-(difference_type i) const
13722 {
13723 return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
13724 }
13725
13726 /// return difference
13727 difference_type operator-(const json_reverse_iterator& other) const
13728 {
13729 return base_iterator(*this) - base_iterator(other);
13730 }
13731
13732 /// access to successor
13733 reference operator[](difference_type n) const
13734 {
13735 return *(this->operator+(n));
13736 }
13737
13738 /// return the key of an object iterator
13739 auto key() const -> decltype(std::declval<Base>().key())
13740 {
13741 auto it = --this->base();
13742 return it.key();
13743 }
13744
13745 /// return the value of an iterator
13746 reference value() const
13747 {
13748 auto it = --this->base();
13749 return it.operator * ();
13750 }
13751 };
13752
13753 } // namespace detail
13754 NLOHMANN_JSON_NAMESPACE_END
13755
13756 // #include <nlohmann/detail/iterators/primitive_iterator.hpp>
13757
13758 // #include <nlohmann/detail/json_custom_base_class.hpp>
13759 // __ _____ _____ _____
13760 // __| | __| | | | JSON for Modern C++
13761 // | | |__ | | | | | | version 3.11.3
13762 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
13763 //
13764 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
13765 // SPDX-License-Identifier: MIT
13766
13767
13768
13769 #include <type_traits> // conditional, is_same
13770
13771 // #include <nlohmann/detail/abi_macros.hpp>
13772
13773
13774 NLOHMANN_JSON_NAMESPACE_BEGIN
13775 namespace detail
13776 {
13777
13778 /*!
13779 @brief Default base class of the @ref basic_json class.
13780
13781 So that the correct implementations of the copy / move ctors / assign operators
13782 of @ref basic_json do not require complex case distinctions
13783 (no base class / custom base class used as customization point),
13784 @ref basic_json always has a base class.
13785 By default, this class is used because it is empty and thus has no effect
13786 on the behavior of @ref basic_json.
13787 */
13788 struct json_default_base {};
13789
13790 template<class T>
13791 using json_base_class = typename std::conditional <
13792 std::is_same<T, void>::value,
13793 json_default_base,
13794 T
13795 >::type;
13796
13797 } // namespace detail
13798 NLOHMANN_JSON_NAMESPACE_END
13799
13800 // #include <nlohmann/detail/json_pointer.hpp>
13801 // __ _____ _____ _____
13802 // __| | __| | | | JSON for Modern C++
13803 // | | |__ | | | | | | version 3.11.3
13804 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
13805 //
13806 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
13807 // SPDX-License-Identifier: MIT
13808
13809
13810
13811 #include <algorithm> // all_of
13812 #include <cctype> // isdigit
13813 #include <cerrno> // errno, ERANGE
13814 #include <cstdlib> // strtoull
13815 #ifndef JSON_NO_IO
13816 #include <iosfwd> // ostream
13817 #endif // JSON_NO_IO
13818 #include <limits> // max
13819 #include <numeric> // accumulate
13820 #include <string> // string
13821 #include <utility> // move
13822 #include <vector> // vector
13823
13824 // #include <nlohmann/detail/exceptions.hpp>
13825
13826 // #include <nlohmann/detail/macro_scope.hpp>
13827
13828 // #include <nlohmann/detail/string_concat.hpp>
13829
13830 // #include <nlohmann/detail/string_escape.hpp>
13831
13832 // #include <nlohmann/detail/value_t.hpp>
13833
13834
13835 NLOHMANN_JSON_NAMESPACE_BEGIN
13836
13837 /// @brief JSON Pointer defines a string syntax for identifying a specific value within a JSON document
13838 /// @sa https://json.nlohmann.me/api/json_pointer/
13839 template<typename RefStringType>
13840 class json_pointer
13841 {
13842 // allow basic_json to access private members
13843 NLOHMANN_BASIC_JSON_TPL_DECLARATION
13844 friend class basic_json;
13845
13846 template<typename>
13847 friend class json_pointer;
13848
13849 template<typename T>
13850 struct string_t_helper
13851 {
13852 using type = T;
13853 };
13854
13855 NLOHMANN_BASIC_JSON_TPL_DECLARATION
13856 struct string_t_helper<NLOHMANN_BASIC_JSON_TPL>
13857 {
13858 using type = StringType;
13859 };
13860
13861 public:
13862 // for backwards compatibility accept BasicJsonType
13863 using string_t = typename string_t_helper<RefStringType>::type;
13864
13865 /// @brief create JSON pointer
13866 /// @sa https://json.nlohmann.me/api/json_pointer/json_pointer/
13867 explicit json_pointer(const string_t& s = "")
13868 : reference_tokens(split(s))
13869 {}
13870
13871 /// @brief return a string representation of the JSON pointer
13872 /// @sa https://json.nlohmann.me/api/json_pointer/to_string/
13873 string_t to_string() const
13874 {
13875 return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
13876 string_t{},
13877 [](const string_t& a, const string_t& b)
13878 {
13879 return detail::concat(a, '/', detail::escape(b));
13880 });
13881 }
13882
13883 /// @brief return a string representation of the JSON pointer
13884 /// @sa https://json.nlohmann.me/api/json_pointer/operator_string/
13885 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, to_string())
13886 operator string_t() const
13887 {
13888 return to_string();
13889 }
13890
13891 #ifndef JSON_NO_IO
13892 /// @brief write string representation of the JSON pointer to stream
13893 /// @sa https://json.nlohmann.me/api/basic_json/operator_ltlt/
13894 friend std::ostream& operator<<(std::ostream& o, const json_pointer& ptr)
13895 {
13896 o << ptr.to_string();
13897 return o;
13898 }
13899 #endif
13900
13901 /// @brief append another JSON pointer at the end of this JSON pointer
13902 /// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
13903 json_pointer& operator/=(const json_pointer& ptr)
13904 {
13905 reference_tokens.insert(reference_tokens.end(),
13906 ptr.reference_tokens.begin(),
13907 ptr.reference_tokens.end());
13908 return *this;
13909 }
13910
13911 /// @brief append an unescaped reference token at the end of this JSON pointer
13912 /// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
13913 json_pointer& operator/=(string_t token)
13914 {
13915 push_back(std::move(token));
13916 return *this;
13917 }
13918
13919 /// @brief append an array index at the end of this JSON pointer
13920 /// @sa https://json.nlohmann.me/api/json_pointer/operator_slasheq/
13921 json_pointer& operator/=(std::size_t array_idx)
13922 {
13923 return *this /= std::to_string(array_idx);
13924 }
13925
13926 /// @brief create a new JSON pointer by appending the right JSON pointer at the end of the left JSON pointer
13927 /// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
13928 friend json_pointer operator/(const json_pointer& lhs,
13929 const json_pointer& rhs)
13930 {
13931 return json_pointer(lhs) /= rhs;
13932 }
13933
13934 /// @brief create a new JSON pointer by appending the unescaped token at the end of the JSON pointer
13935 /// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
13936 friend json_pointer operator/(const json_pointer& lhs, string_t token) // NOLINT(performance-unnecessary-value-param)
13937 {
13938 return json_pointer(lhs) /= std::move(token);
13939 }
13940
13941 /// @brief create a new JSON pointer by appending the array-index-token at the end of the JSON pointer
13942 /// @sa https://json.nlohmann.me/api/json_pointer/operator_slash/
13943 friend json_pointer operator/(const json_pointer& lhs, std::size_t array_idx)
13944 {
13945 return json_pointer(lhs) /= array_idx;
13946 }
13947
13948 /// @brief returns the parent of this JSON pointer
13949 /// @sa https://json.nlohmann.me/api/json_pointer/parent_pointer/
13950 json_pointer parent_pointer() const
13951 {
13952 if (empty())
13953 {
13954 return *this;
13955 }
13956
13957 json_pointer res = *this;
13958 res.pop_back();
13959 return res;
13960 }
13961
13962 /// @brief remove last reference token
13963 /// @sa https://json.nlohmann.me/api/json_pointer/pop_back/
13964 void pop_back()
13965 {
13966 if (JSON_HEDLEY_UNLIKELY(empty()))
13967 {
13968 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
13969 }
13970
13971 reference_tokens.pop_back();
13972 }
13973
13974 /// @brief return last reference token
13975 /// @sa https://json.nlohmann.me/api/json_pointer/back/
13976 const string_t& back() const
13977 {
13978 if (JSON_HEDLEY_UNLIKELY(empty()))
13979 {
13980 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
13981 }
13982
13983 return reference_tokens.back();
13984 }
13985
13986 /// @brief append an unescaped token at the end of the reference pointer
13987 /// @sa https://json.nlohmann.me/api/json_pointer/push_back/
13988 void push_back(const string_t& token)
13989 {
13990 reference_tokens.push_back(token);
13991 }
13992
13993 /// @brief append an unescaped token at the end of the reference pointer
13994 /// @sa https://json.nlohmann.me/api/json_pointer/push_back/
13995 void push_back(string_t&& token)
13996 {
13997 reference_tokens.push_back(std::move(token));
13998 }
13999
14000 /// @brief return whether pointer points to the root document
14001 /// @sa https://json.nlohmann.me/api/json_pointer/empty/
14002 bool empty() const noexcept
14003 {
14004 return reference_tokens.empty();
14005 }
14006
14007 private:
14008 /*!
14009 @param[in] s reference token to be converted into an array index
14010
14011 @return integer representation of @a s
14012
14013 @throw parse_error.106 if an array index begins with '0'
14014 @throw parse_error.109 if an array index begins not with a digit
14015 @throw out_of_range.404 if string @a s could not be converted to an integer
14016 @throw out_of_range.410 if an array index exceeds size_type
14017 */
14018 template<typename BasicJsonType>
14019 static typename BasicJsonType::size_type array_index(const string_t& s)
14020 {
14021 using size_type = typename BasicJsonType::size_type;
14022
14023 // error condition (cf. RFC 6901, Sect. 4)
14024 if (JSON_HEDLEY_UNLIKELY(s.size() > 1 && s[0] == '0'))
14025 {
14026 JSON_THROW(detail::parse_error::create(106, 0, detail::concat("array index '", s, "' must not begin with '0'"), nullptr));
14027 }
14028
14029 // error condition (cf. RFC 6901, Sect. 4)
14030 if (JSON_HEDLEY_UNLIKELY(s.size() > 1 && !(s[0] >= '1' && s[0] <= '9')))
14031 {
14032 JSON_THROW(detail::parse_error::create(109, 0, detail::concat("array index '", s, "' is not a number"), nullptr));
14033 }
14034
14035 const char* p = s.c_str();
14036 char* p_end = nullptr;
14037 errno = 0; // strtoull doesn't reset errno
14038 const unsigned long long res = std::strtoull(p, &p_end, 10); // NOLINT(runtime/int)
14039 if (p == p_end // invalid input or empty string
14040 || errno == ERANGE // out of range
14041 || JSON_HEDLEY_UNLIKELY(static_cast<std::size_t>(p_end - p) != s.size())) // incomplete read
14042 {
14043 JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", s, "'"), nullptr));
14044 }
14045
14046 // only triggered on special platforms (like 32bit), see also
14047 // https://github.com/nlohmann/json/pull/2203
14048 if (res >= static_cast<unsigned long long>((std::numeric_limits<size_type>::max)())) // NOLINT(runtime/int)
14049 {
14050 JSON_THROW(detail::out_of_range::create(410, detail::concat("array index ", s, " exceeds size_type"), nullptr)); // LCOV_EXCL_LINE
14051 }
14052
14053 return static_cast<size_type>(res);
14054 }
14055
14056 JSON_PRIVATE_UNLESS_TESTED:
14057 json_pointer top() const
14058 {
14059 if (JSON_HEDLEY_UNLIKELY(empty()))
14060 {
14061 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent", nullptr));
14062 }
14063
14064 json_pointer result = *this;
14065 result.reference_tokens = {reference_tokens[0]};
14066 return result;
14067 }
14068
14069 private:
14070 /*!
14071 @brief create and return a reference to the pointed to value
14072
14073 @complexity Linear in the number of reference tokens.
14074
14075 @throw parse_error.109 if array index is not a number
14076 @throw type_error.313 if value cannot be unflattened
14077 */
14078 template<typename BasicJsonType>
14079 BasicJsonType& get_and_create(BasicJsonType& j) const
14080 {
14081 auto* result = &j;
14082
14083 // in case no reference tokens exist, return a reference to the JSON value
14084 // j which will be overwritten by a primitive value
14085 for (const auto& reference_token : reference_tokens)
14086 {
14087 switch (result->type())
14088 {
14089 case detail::value_t::null:
14090 {
14091 if (reference_token == "0")
14092 {
14093 // start a new array if reference token is 0
14094 result = &result->operator[](0);
14095 }
14096 else
14097 {
14098 // start a new object otherwise
14099 result = &result->operator[](reference_token);
14100 }
14101 break;
14102 }
14103
14104 case detail::value_t::object:
14105 {
14106 // create an entry in the object
14107 result = &result->operator[](reference_token);
14108 break;
14109 }
14110
14111 case detail::value_t::array:
14112 {
14113 // create an entry in the array
14114 result = &result->operator[](array_index<BasicJsonType>(reference_token));
14115 break;
14116 }
14117
14118 /*
14119 The following code is only reached if there exists a reference
14120 token _and_ the current value is primitive. In this case, we have
14121 an error situation, because primitive values may only occur as
14122 single value; that is, with an empty list of reference tokens.
14123 */
14124 case detail::value_t::string:
14125 case detail::value_t::boolean:
14126 case detail::value_t::number_integer:
14127 case detail::value_t::number_unsigned:
14128 case detail::value_t::number_float:
14129 case detail::value_t::binary:
14130 case detail::value_t::discarded:
14131 default:
14132 JSON_THROW(detail::type_error::create(313, "invalid value to unflatten", &j));
14133 }
14134 }
14135
14136 return *result;
14137 }
14138
14139 /*!
14140 @brief return a reference to the pointed to value
14141
14142 @note This version does not throw if a value is not present, but tries to
14143 create nested values instead. For instance, calling this function
14144 with pointer `"/this/that"` on a null value is equivalent to calling
14145 `operator[]("this").operator[]("that")` on that value, effectively
14146 changing the null value to an object.
14147
14148 @param[in] ptr a JSON value
14149
14150 @return reference to the JSON value pointed to by the JSON pointer
14151
14152 @complexity Linear in the length of the JSON pointer.
14153
14154 @throw parse_error.106 if an array index begins with '0'
14155 @throw parse_error.109 if an array index was not a number
14156 @throw out_of_range.404 if the JSON pointer can not be resolved
14157 */
14158 template<typename BasicJsonType>
14159 BasicJsonType& get_unchecked(BasicJsonType* ptr) const
14160 {
14161 for (const auto& reference_token : reference_tokens)
14162 {
14163 // convert null values to arrays or objects before continuing
14164 if (ptr->is_null())
14165 {
14166 // check if reference token is a number
14167 const bool nums =
14168 std::all_of(reference_token.begin(), reference_token.end(),
14169 [](const unsigned char x)
14170 {
14171 return std::isdigit(x);
14172 });
14173
14174 // change value to array for numbers or "-" or to object otherwise
14175 *ptr = (nums || reference_token == "-")
14176 ? detail::value_t::array
14177 : detail::value_t::object;
14178 }
14179
14180 switch (ptr->type())
14181 {
14182 case detail::value_t::object:
14183 {
14184 // use unchecked object access
14185 ptr = &ptr->operator[](reference_token);
14186 break;
14187 }
14188
14189 case detail::value_t::array:
14190 {
14191 if (reference_token == "-")
14192 {
14193 // explicitly treat "-" as index beyond the end
14194 ptr = &ptr->operator[](ptr->m_data.m_value.array->size());
14195 }
14196 else
14197 {
14198 // convert array index to number; unchecked access
14199 ptr = &ptr->operator[](array_index<BasicJsonType>(reference_token));
14200 }
14201 break;
14202 }
14203
14204 case detail::value_t::null:
14205 case detail::value_t::string:
14206 case detail::value_t::boolean:
14207 case detail::value_t::number_integer:
14208 case detail::value_t::number_unsigned:
14209 case detail::value_t::number_float:
14210 case detail::value_t::binary:
14211 case detail::value_t::discarded:
14212 default:
14213 JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
14214 }
14215 }
14216
14217 return *ptr;
14218 }
14219
14220 /*!
14221 @throw parse_error.106 if an array index begins with '0'
14222 @throw parse_error.109 if an array index was not a number
14223 @throw out_of_range.402 if the array index '-' is used
14224 @throw out_of_range.404 if the JSON pointer can not be resolved
14225 */
14226 template<typename BasicJsonType>
14227 BasicJsonType& get_checked(BasicJsonType* ptr) const
14228 {
14229 for (const auto& reference_token : reference_tokens)
14230 {
14231 switch (ptr->type())
14232 {
14233 case detail::value_t::object:
14234 {
14235 // note: at performs range check
14236 ptr = &ptr->at(reference_token);
14237 break;
14238 }
14239
14240 case detail::value_t::array:
14241 {
14242 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
14243 {
14244 // "-" always fails the range check
14245 JSON_THROW(detail::out_of_range::create(402, detail::concat(
14246 "array index '-' (", std::to_string(ptr->m_data.m_value.array->size()),
14247 ") is out of range"), ptr));
14248 }
14249
14250 // note: at performs range check
14251 ptr = &ptr->at(array_index<BasicJsonType>(reference_token));
14252 break;
14253 }
14254
14255 case detail::value_t::null:
14256 case detail::value_t::string:
14257 case detail::value_t::boolean:
14258 case detail::value_t::number_integer:
14259 case detail::value_t::number_unsigned:
14260 case detail::value_t::number_float:
14261 case detail::value_t::binary:
14262 case detail::value_t::discarded:
14263 default:
14264 JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
14265 }
14266 }
14267
14268 return *ptr;
14269 }
14270
14271 /*!
14272 @brief return a const reference to the pointed to value
14273
14274 @param[in] ptr a JSON value
14275
14276 @return const reference to the JSON value pointed to by the JSON
14277 pointer
14278
14279 @throw parse_error.106 if an array index begins with '0'
14280 @throw parse_error.109 if an array index was not a number
14281 @throw out_of_range.402 if the array index '-' is used
14282 @throw out_of_range.404 if the JSON pointer can not be resolved
14283 */
14284 template<typename BasicJsonType>
14285 const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
14286 {
14287 for (const auto& reference_token : reference_tokens)
14288 {
14289 switch (ptr->type())
14290 {
14291 case detail::value_t::object:
14292 {
14293 // use unchecked object access
14294 ptr = &ptr->operator[](reference_token);
14295 break;
14296 }
14297
14298 case detail::value_t::array:
14299 {
14300 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
14301 {
14302 // "-" cannot be used for const access
14303 JSON_THROW(detail::out_of_range::create(402, detail::concat("array index '-' (", std::to_string(ptr->m_data.m_value.array->size()), ") is out of range"), ptr));
14304 }
14305
14306 // use unchecked array access
14307 ptr = &ptr->operator[](array_index<BasicJsonType>(reference_token));
14308 break;
14309 }
14310
14311 case detail::value_t::null:
14312 case detail::value_t::string:
14313 case detail::value_t::boolean:
14314 case detail::value_t::number_integer:
14315 case detail::value_t::number_unsigned:
14316 case detail::value_t::number_float:
14317 case detail::value_t::binary:
14318 case detail::value_t::discarded:
14319 default:
14320 JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
14321 }
14322 }
14323
14324 return *ptr;
14325 }
14326
14327 /*!
14328 @throw parse_error.106 if an array index begins with '0'
14329 @throw parse_error.109 if an array index was not a number
14330 @throw out_of_range.402 if the array index '-' is used
14331 @throw out_of_range.404 if the JSON pointer can not be resolved
14332 */
14333 template<typename BasicJsonType>
14334 const BasicJsonType& get_checked(const BasicJsonType* ptr) const
14335 {
14336 for (const auto& reference_token : reference_tokens)
14337 {
14338 switch (ptr->type())
14339 {
14340 case detail::value_t::object:
14341 {
14342 // note: at performs range check
14343 ptr = &ptr->at(reference_token);
14344 break;
14345 }
14346
14347 case detail::value_t::array:
14348 {
14349 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
14350 {
14351 // "-" always fails the range check
14352 JSON_THROW(detail::out_of_range::create(402, detail::concat(
14353 "array index '-' (", std::to_string(ptr->m_data.m_value.array->size()),
14354 ") is out of range"), ptr));
14355 }
14356
14357 // note: at performs range check
14358 ptr = &ptr->at(array_index<BasicJsonType>(reference_token));
14359 break;
14360 }
14361
14362 case detail::value_t::null:
14363 case detail::value_t::string:
14364 case detail::value_t::boolean:
14365 case detail::value_t::number_integer:
14366 case detail::value_t::number_unsigned:
14367 case detail::value_t::number_float:
14368 case detail::value_t::binary:
14369 case detail::value_t::discarded:
14370 default:
14371 JSON_THROW(detail::out_of_range::create(404, detail::concat("unresolved reference token '", reference_token, "'"), ptr));
14372 }
14373 }
14374
14375 return *ptr;
14376 }
14377
14378 /*!
14379 @throw parse_error.106 if an array index begins with '0'
14380 @throw parse_error.109 if an array index was not a number
14381 */
14382 template<typename BasicJsonType>
14383 bool contains(const BasicJsonType* ptr) const
14384 {
14385 for (const auto& reference_token : reference_tokens)
14386 {
14387 switch (ptr->type())
14388 {
14389 case detail::value_t::object:
14390 {
14391 if (!ptr->contains(reference_token))
14392 {
14393 // we did not find the key in the object
14394 return false;
14395 }
14396
14397 ptr = &ptr->operator[](reference_token);
14398 break;
14399 }
14400
14401 case detail::value_t::array:
14402 {
14403 if (JSON_HEDLEY_UNLIKELY(reference_token == "-"))
14404 {
14405 // "-" always fails the range check
14406 return false;
14407 }
14408 if (JSON_HEDLEY_UNLIKELY(reference_token.size() == 1 && !("0" <= reference_token && reference_token <= "9")))
14409 {
14410 // invalid char
14411 return false;
14412 }
14413 if (JSON_HEDLEY_UNLIKELY(reference_token.size() > 1))
14414 {
14415 if (JSON_HEDLEY_UNLIKELY(!('1' <= reference_token[0] && reference_token[0] <= '9')))
14416 {
14417 // first char should be between '1' and '9'
14418 return false;
14419 }
14420 for (std::size_t i = 1; i < reference_token.size(); i++)
14421 {
14422 if (JSON_HEDLEY_UNLIKELY(!('0' <= reference_token[i] && reference_token[i] <= '9')))
14423 {
14424 // other char should be between '0' and '9'
14425 return false;
14426 }
14427 }
14428 }
14429
14430 const auto idx = array_index<BasicJsonType>(reference_token);
14431 if (idx >= ptr->size())
14432 {
14433 // index out of range
14434 return false;
14435 }
14436
14437 ptr = &ptr->operator[](idx);
14438 break;
14439 }
14440
14441 case detail::value_t::null:
14442 case detail::value_t::string:
14443 case detail::value_t::boolean:
14444 case detail::value_t::number_integer:
14445 case detail::value_t::number_unsigned:
14446 case detail::value_t::number_float:
14447 case detail::value_t::binary:
14448 case detail::value_t::discarded:
14449 default:
14450 {
14451 // we do not expect primitive values if there is still a
14452 // reference token to process
14453 return false;
14454 }
14455 }
14456 }
14457
14458 // no reference token left means we found a primitive value
14459 return true;
14460 }
14461
14462 /*!
14463 @brief split the string input to reference tokens
14464
14465 @note This function is only called by the json_pointer constructor.
14466 All exceptions below are documented there.
14467
14468 @throw parse_error.107 if the pointer is not empty or begins with '/'
14469 @throw parse_error.108 if character '~' is not followed by '0' or '1'
14470 */
14471 static std::vector<string_t> split(const string_t& reference_string)
14472 {
14473 std::vector<string_t> result;
14474
14475 // special case: empty reference string -> no reference tokens
14476 if (reference_string.empty())
14477 {
14478 return result;
14479 }
14480
14481 // check if nonempty reference string begins with slash
14482 if (JSON_HEDLEY_UNLIKELY(reference_string[0] != '/'))
14483 {
14484 JSON_THROW(detail::parse_error::create(107, 1, detail::concat("JSON pointer must be empty or begin with '/' - was: '", reference_string, "'"), nullptr));
14485 }
14486
14487 // extract the reference tokens:
14488 // - slash: position of the last read slash (or end of string)
14489 // - start: position after the previous slash
14490 for (
14491 // search for the first slash after the first character
14492 std::size_t slash = reference_string.find_first_of('/', 1),
14493 // set the beginning of the first reference token
14494 start = 1;
14495 // we can stop if start == 0 (if slash == string_t::npos)
14496 start != 0;
14497 // set the beginning of the next reference token
14498 // (will eventually be 0 if slash == string_t::npos)
14499 start = (slash == string_t::npos) ? 0 : slash + 1,
14500 // find next slash
14501 slash = reference_string.find_first_of('/', start))
14502 {
14503 // use the text between the beginning of the reference token
14504 // (start) and the last slash (slash).
14505 auto reference_token = reference_string.substr(start, slash - start);
14506
14507 // check reference tokens are properly escaped
14508 for (std::size_t pos = reference_token.find_first_of('~');
14509 pos != string_t::npos;
14510 pos = reference_token.find_first_of('~', pos + 1))
14511 {
14512 JSON_ASSERT(reference_token[pos] == '~');
14513
14514 // ~ must be followed by 0 or 1
14515 if (JSON_HEDLEY_UNLIKELY(pos == reference_token.size() - 1 ||
14516 (reference_token[pos + 1] != '0' &&
14517 reference_token[pos + 1] != '1')))
14518 {
14519 JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'", nullptr));
14520 }
14521 }
14522
14523 // finally, store the reference token
14524 detail::unescape(reference_token);
14525 result.push_back(reference_token);
14526 }
14527
14528 return result;
14529 }
14530
14531 private:
14532 /*!
14533 @param[in] reference_string the reference string to the current value
14534 @param[in] value the value to consider
14535 @param[in,out] result the result object to insert values to
14536
14537 @note Empty objects or arrays are flattened to `null`.
14538 */
14539 template<typename BasicJsonType>
14540 static void flatten(const string_t& reference_string,
14541 const BasicJsonType& value,
14542 BasicJsonType& result)
14543 {
14544 switch (value.type())
14545 {
14546 case detail::value_t::array:
14547 {
14548 if (value.m_data.m_value.array->empty())
14549 {
14550 // flatten empty array as null
14551 result[reference_string] = nullptr;
14552 }
14553 else
14554 {
14555 // iterate array and use index as reference string
14556 for (std::size_t i = 0; i < value.m_data.m_value.array->size(); ++i)
14557 {
14558 flatten(detail::concat(reference_string, '/', std::to_string(i)),
14559 value.m_data.m_value.array->operator[](i), result);
14560 }
14561 }
14562 break;
14563 }
14564
14565 case detail::value_t::object:
14566 {
14567 if (value.m_data.m_value.object->empty())
14568 {
14569 // flatten empty object as null
14570 result[reference_string] = nullptr;
14571 }
14572 else
14573 {
14574 // iterate object and use keys as reference string
14575 for (const auto& element : *value.m_data.m_value.object)
14576 {
14577 flatten(detail::concat(reference_string, '/', detail::escape(element.first)), element.second, result);
14578 }
14579 }
14580 break;
14581 }
14582
14583 case detail::value_t::null:
14584 case detail::value_t::string:
14585 case detail::value_t::boolean:
14586 case detail::value_t::number_integer:
14587 case detail::value_t::number_unsigned:
14588 case detail::value_t::number_float:
14589 case detail::value_t::binary:
14590 case detail::value_t::discarded:
14591 default:
14592 {
14593 // add primitive value with its reference string
14594 result[reference_string] = value;
14595 break;
14596 }
14597 }
14598 }
14599
14600 /*!
14601 @param[in] value flattened JSON
14602
14603 @return unflattened JSON
14604
14605 @throw parse_error.109 if array index is not a number
14606 @throw type_error.314 if value is not an object
14607 @throw type_error.315 if object values are not primitive
14608 @throw type_error.313 if value cannot be unflattened
14609 */
14610 template<typename BasicJsonType>
14611 static BasicJsonType
14612 unflatten(const BasicJsonType& value)
14613 {
14614 if (JSON_HEDLEY_UNLIKELY(!value.is_object()))
14615 {
14616 JSON_THROW(detail::type_error::create(314, "only objects can be unflattened", &value));
14617 }
14618
14619 BasicJsonType result;
14620
14621 // iterate the JSON object values
14622 for (const auto& element : *value.m_data.m_value.object)
14623 {
14624 if (JSON_HEDLEY_UNLIKELY(!element.second.is_primitive()))
14625 {
14626 JSON_THROW(detail::type_error::create(315, "values in object must be primitive", &element.second));
14627 }
14628
14629 // assign value to reference pointed to by JSON pointer; Note that if
14630 // the JSON pointer is "" (i.e., points to the whole value), function
14631 // get_and_create returns a reference to result itself. An assignment
14632 // will then create a primitive value.
14633 json_pointer(element.first).get_and_create(result) = element.second;
14634 }
14635
14636 return result;
14637 }
14638
14639 // can't use conversion operator because of ambiguity
14640 json_pointer<string_t> convert() const&
14641 {
14642 json_pointer<string_t> result;
14643 result.reference_tokens = reference_tokens;
14644 return result;
14645 }
14646
14647 json_pointer<string_t> convert()&&
14648 {
14649 json_pointer<string_t> result;
14650 result.reference_tokens = std::move(reference_tokens);
14651 return result;
14652 }
14653
14654 public:
14655 #if JSON_HAS_THREE_WAY_COMPARISON
14656 /// @brief compares two JSON pointers for equality
14657 /// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
14658 template<typename RefStringTypeRhs>
14659 bool operator==(const json_pointer<RefStringTypeRhs>& rhs) const noexcept
14660 {
14661 return reference_tokens == rhs.reference_tokens;
14662 }
14663
14664 /// @brief compares JSON pointer and string for equality
14665 /// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
14666 JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer))
14667 bool operator==(const string_t& rhs) const
14668 {
14669 return *this == json_pointer(rhs);
14670 }
14671
14672 /// @brief 3-way compares two JSON pointers
14673 template<typename RefStringTypeRhs>
14674 std::strong_ordering operator<=>(const json_pointer<RefStringTypeRhs>& rhs) const noexcept // *NOPAD*
14675 {
14676 return reference_tokens <=> rhs.reference_tokens; // *NOPAD*
14677 }
14678 #else
14679 /// @brief compares two JSON pointers for equality
14680 /// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
14681 template<typename RefStringTypeLhs, typename RefStringTypeRhs>
14682 // NOLINTNEXTLINE(readability-redundant-declaration)
14683 friend bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
14684 const json_pointer<RefStringTypeRhs>& rhs) noexcept;
14685
14686 /// @brief compares JSON pointer and string for equality
14687 /// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
14688 template<typename RefStringTypeLhs, typename StringType>
14689 // NOLINTNEXTLINE(readability-redundant-declaration)
14690 friend bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
14691 const StringType& rhs);
14692
14693 /// @brief compares string and JSON pointer for equality
14694 /// @sa https://json.nlohmann.me/api/json_pointer/operator_eq/
14695 template<typename RefStringTypeRhs, typename StringType>
14696 // NOLINTNEXTLINE(readability-redundant-declaration)
14697 friend bool operator==(const StringType& lhs,
14698 const json_pointer<RefStringTypeRhs>& rhs);
14699
14700 /// @brief compares two JSON pointers for inequality
14701 /// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
14702 template<typename RefStringTypeLhs, typename RefStringTypeRhs>
14703 // NOLINTNEXTLINE(readability-redundant-declaration)
14704 friend bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
14705 const json_pointer<RefStringTypeRhs>& rhs) noexcept;
14706
14707 /// @brief compares JSON pointer and string for inequality
14708 /// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
14709 template<typename RefStringTypeLhs, typename StringType>
14710 // NOLINTNEXTLINE(readability-redundant-declaration)
14711 friend bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
14712 const StringType& rhs);
14713
14714 /// @brief compares string and JSON pointer for inequality
14715 /// @sa https://json.nlohmann.me/api/json_pointer/operator_ne/
14716 template<typename RefStringTypeRhs, typename StringType>
14717 // NOLINTNEXTLINE(readability-redundant-declaration)
14718 friend bool operator!=(const StringType& lhs,
14719 const json_pointer<RefStringTypeRhs>& rhs);
14720
14721 /// @brief compares two JSON pointer for less-than
14722 template<typename RefStringTypeLhs, typename RefStringTypeRhs>
14723 // NOLINTNEXTLINE(readability-redundant-declaration)
14724 friend bool operator<(const json_pointer<RefStringTypeLhs>& lhs,
14725 const json_pointer<RefStringTypeRhs>& rhs) noexcept;
14726 #endif
14727
14728 private:
14729 /// the reference tokens
14730 std::vector<string_t> reference_tokens;
14731 };
14732
14733 #if !JSON_HAS_THREE_WAY_COMPARISON
14734 // functions cannot be defined inside class due to ODR violations
14735 template<typename RefStringTypeLhs, typename RefStringTypeRhs>
14736 inline bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
14737 const json_pointer<RefStringTypeRhs>& rhs) noexcept
14738 {
14739 return lhs.reference_tokens == rhs.reference_tokens;
14740 }
14741
14742 template<typename RefStringTypeLhs,
14743 typename StringType = typename json_pointer<RefStringTypeLhs>::string_t>
14744 JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer, json_pointer))
14745 inline bool operator==(const json_pointer<RefStringTypeLhs>& lhs,
14746 const StringType& rhs)
14747 {
14748 return lhs == json_pointer<RefStringTypeLhs>(rhs);
14749 }
14750
14751 template<typename RefStringTypeRhs,
14752 typename StringType = typename json_pointer<RefStringTypeRhs>::string_t>
14753 JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator==(json_pointer, json_pointer))
14754 inline bool operator==(const StringType& lhs,
14755 const json_pointer<RefStringTypeRhs>& rhs)
14756 {
14757 return json_pointer<RefStringTypeRhs>(lhs) == rhs;
14758 }
14759
14760 template<typename RefStringTypeLhs, typename RefStringTypeRhs>
14761 inline bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
14762 const json_pointer<RefStringTypeRhs>& rhs) noexcept
14763 {
14764 return !(lhs == rhs);
14765 }
14766
14767 template<typename RefStringTypeLhs,
14768 typename StringType = typename json_pointer<RefStringTypeLhs>::string_t>
14769 JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator!=(json_pointer, json_pointer))
14770 inline bool operator!=(const json_pointer<RefStringTypeLhs>& lhs,
14771 const StringType& rhs)
14772 {
14773 return !(lhs == rhs);
14774 }
14775
14776 template<typename RefStringTypeRhs,
14777 typename StringType = typename json_pointer<RefStringTypeRhs>::string_t>
14778 JSON_HEDLEY_DEPRECATED_FOR(3.11.2, operator!=(json_pointer, json_pointer))
14779 inline bool operator!=(const StringType& lhs,
14780 const json_pointer<RefStringTypeRhs>& rhs)
14781 {
14782 return !(lhs == rhs);
14783 }
14784
14785 template<typename RefStringTypeLhs, typename RefStringTypeRhs>
14786 inline bool operator<(const json_pointer<RefStringTypeLhs>& lhs,
14787 const json_pointer<RefStringTypeRhs>& rhs) noexcept
14788 {
14789 return lhs.reference_tokens < rhs.reference_tokens;
14790 }
14791 #endif
14792
14793 NLOHMANN_JSON_NAMESPACE_END
14794
14795 // #include <nlohmann/detail/json_ref.hpp>
14796 // __ _____ _____ _____
14797 // __| | __| | | | JSON for Modern C++
14798 // | | |__ | | | | | | version 3.11.3
14799 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
14800 //
14801 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
14802 // SPDX-License-Identifier: MIT
14803
14804
14805
14806 #include <initializer_list>
14807 #include <utility>
14808
14809 // #include <nlohmann/detail/abi_macros.hpp>
14810
14811 // #include <nlohmann/detail/meta/type_traits.hpp>
14812
14813
14814 NLOHMANN_JSON_NAMESPACE_BEGIN
14815 namespace detail
14816 {
14817
14818 template<typename BasicJsonType>
14819 class json_ref
14820 {
14821 public:
14822 using value_type = BasicJsonType;
14823
14824 json_ref(value_type&& value)
14825 : owned_value(std::move(value))
14826 {}
14827
14828 json_ref(const value_type& value)
14829 : value_ref(&value)
14830 {}
14831
14832 json_ref(std::initializer_list<json_ref> init)
14833 : owned_value(init)
14834 {}
14835
14836 template <
14837 class... Args,
14838 enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
14839 json_ref(Args && ... args)
14840 : owned_value(std::forward<Args>(args)...)
14841 {}
14842
14843 // class should be movable only
14844 json_ref(json_ref&&) noexcept = default;
14845 json_ref(const json_ref&) = delete;
14846 json_ref& operator=(const json_ref&) = delete;
14847 json_ref& operator=(json_ref&&) = delete;
14848 ~json_ref() = default;
14849
14850 value_type moved_or_copied() const
14851 {
14852 if (value_ref == nullptr)
14853 {
14854 return std::move(owned_value);
14855 }
14856 return *value_ref;
14857 }
14858
14859 value_type const& operator*() const
14860 {
14861 return value_ref ? *value_ref : owned_value;
14862 }
14863
14864 value_type const* operator->() const
14865 {
14866 return &** this;
14867 }
14868
14869 private:
14870 mutable value_type owned_value = nullptr;
14871 value_type const* value_ref = nullptr;
14872 };
14873
14874 } // namespace detail
14875 NLOHMANN_JSON_NAMESPACE_END
14876
14877 // #include <nlohmann/detail/macro_scope.hpp>
14878
14879 // #include <nlohmann/detail/string_concat.hpp>
14880
14881 // #include <nlohmann/detail/string_escape.hpp>
14882
14883 // #include <nlohmann/detail/meta/cpp_future.hpp>
14884
14885 // #include <nlohmann/detail/meta/type_traits.hpp>
14886
14887 // #include <nlohmann/detail/output/binary_writer.hpp>
14888 // __ _____ _____ _____
14889 // __| | __| | | | JSON for Modern C++
14890 // | | |__ | | | | | | version 3.11.3
14891 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
14892 //
14893 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
14894 // SPDX-License-Identifier: MIT
14895
14896
14897
14898 #include <algorithm> // reverse
14899 #include <array> // array
14900 #include <map> // map
14901 #include <cmath> // isnan, isinf
14902 #include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
14903 #include <cstring> // memcpy
14904 #include <limits> // numeric_limits
14905 #include <string> // string
14906 #include <utility> // move
14907 #include <vector> // vector
14908
14909 // #include <nlohmann/detail/input/binary_reader.hpp>
14910
14911 // #include <nlohmann/detail/macro_scope.hpp>
14912
14913 // #include <nlohmann/detail/output/output_adapters.hpp>
14914 // __ _____ _____ _____
14915 // __| | __| | | | JSON for Modern C++
14916 // | | |__ | | | | | | version 3.11.3
14917 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
14918 //
14919 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
14920 // SPDX-License-Identifier: MIT
14921
14922
14923
14924 #include <algorithm> // copy
14925 #include <cstddef> // size_t
14926 #include <iterator> // back_inserter
14927 #include <memory> // shared_ptr, make_shared
14928 #include <string> // basic_string
14929 #include <vector> // vector
14930
14931 #ifndef JSON_NO_IO
14932 #include <ios> // streamsize
14933 #include <ostream> // basic_ostream
14934 #endif // JSON_NO_IO
14935
14936 // #include <nlohmann/detail/macro_scope.hpp>
14937
14938
14939 NLOHMANN_JSON_NAMESPACE_BEGIN
14940 namespace detail
14941 {
14942
14943 /// abstract output adapter interface
14944 template<typename CharType> struct output_adapter_protocol
14945 {
14946 virtual void write_character(CharType c) = 0;
14947 virtual void write_characters(const CharType* s, std::size_t length) = 0;
14948 virtual ~output_adapter_protocol() = default;
14949
14950 output_adapter_protocol() = default;
14951 output_adapter_protocol(const output_adapter_protocol&) = default;
14952 output_adapter_protocol(output_adapter_protocol&&) noexcept = default;
14953 output_adapter_protocol& operator=(const output_adapter_protocol&) = default;
14954 output_adapter_protocol& operator=(output_adapter_protocol&&) noexcept = default;
14955 };
14956
14957 /// a type to simplify interfaces
14958 template<typename CharType>
14959 using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>;
14960
14961 /// output adapter for byte vectors
14962 template<typename CharType, typename AllocatorType = std::allocator<CharType>>
14963 class output_vector_adapter : public output_adapter_protocol<CharType>
14964 {
14965 public:
14966 explicit output_vector_adapter(std::vector<CharType, AllocatorType>& vec) noexcept
14967 : v(vec)
14968 {}
14969
14970 void write_character(CharType c) override
14971 {
14972 v.push_back(c);
14973 }
14974
14975 JSON_HEDLEY_NON_NULL(2)
14976 void write_characters(const CharType* s, std::size_t length) override
14977 {
14978 v.insert(v.end(), s, s + length);
14979 }
14980
14981 private:
14982 std::vector<CharType, AllocatorType>& v;
14983 };
14984
14985 #ifndef JSON_NO_IO
14986 /// output adapter for output streams
14987 template<typename CharType>
14988 class output_stream_adapter : public output_adapter_protocol<CharType>
14989 {
14990 public:
14991 explicit output_stream_adapter(std::basic_ostream<CharType>& s) noexcept
14992 : stream(s)
14993 {}
14994
14995 void write_character(CharType c) override
14996 {
14997 stream.put(c);
14998 }
14999
15000 JSON_HEDLEY_NON_NULL(2)
15001 void write_characters(const CharType* s, std::size_t length) override
15002 {
15003 stream.write(s, static_cast<std::streamsize>(length));
15004 }
15005
15006 private:
15007 std::basic_ostream<CharType>& stream;
15008 };
15009 #endif // JSON_NO_IO
15010
15011 /// output adapter for basic_string
15012 template<typename CharType, typename StringType = std::basic_string<CharType>>
15013 class output_string_adapter : public output_adapter_protocol<CharType>
15014 {
15015 public:
15016 explicit output_string_adapter(StringType& s) noexcept
15017 : str(s)
15018 {}
15019
15020 void write_character(CharType c) override
15021 {
15022 str.push_back(c);
15023 }
15024
15025 JSON_HEDLEY_NON_NULL(2)
15026 void write_characters(const CharType* s, std::size_t length) override
15027 {
15028 str.append(s, length);
15029 }
15030
15031 private:
15032 StringType& str;
15033 };
15034
15035 template<typename CharType, typename StringType = std::basic_string<CharType>>
15036 class output_adapter
15037 {
15038 public:
15039 template<typename AllocatorType = std::allocator<CharType>>
15040 output_adapter(std::vector<CharType, AllocatorType>& vec)
15041 : oa(std::make_shared<output_vector_adapter<CharType, AllocatorType>>(vec)) {}
15042
15043 #ifndef JSON_NO_IO
15044 output_adapter(std::basic_ostream<CharType>& s)
15045 : oa(std::make_shared<output_stream_adapter<CharType>>(s)) {}
15046 #endif // JSON_NO_IO
15047
15048 output_adapter(StringType& s)
15049 : oa(std::make_shared<output_string_adapter<CharType, StringType>>(s)) {}
15050
15051 operator output_adapter_t<CharType>()
15052 {
15053 return oa;
15054 }
15055
15056 private:
15057 output_adapter_t<CharType> oa = nullptr;
15058 };
15059
15060 } // namespace detail
15061 NLOHMANN_JSON_NAMESPACE_END
15062
15063 // #include <nlohmann/detail/string_concat.hpp>
15064
15065
15066 NLOHMANN_JSON_NAMESPACE_BEGIN
15067 namespace detail
15068 {
15069
15070 ///////////////////
15071 // binary writer //
15072 ///////////////////
15073
15074 /*!
15075 @brief serialization to CBOR and MessagePack values
15076 */
15077 template<typename BasicJsonType, typename CharType>
15078 class binary_writer
15079 {
15080 using string_t = typename BasicJsonType::string_t;
15081 using binary_t = typename BasicJsonType::binary_t;
15082 using number_float_t = typename BasicJsonType::number_float_t;
15083
15084 public:
15085 /*!
15086 @brief create a binary writer
15087
15088 @param[in] adapter output adapter to write to
15089 */
15090 explicit binary_writer(output_adapter_t<CharType> adapter) : oa(std::move(adapter))
15091 {
15092 JSON_ASSERT(oa);
15093 }
15094
15095 /*!
15096 @param[in] j JSON value to serialize
15097 @pre j.type() == value_t::object
15098 */
15099 void write_bson(const BasicJsonType& j)
15100 {
15101 switch (j.type())
15102 {
15103 case value_t::object:
15104 {
15105 write_bson_object(*j.m_data.m_value.object);
15106 break;
15107 }
15108
15109 case value_t::null:
15110 case value_t::array:
15111 case value_t::string:
15112 case value_t::boolean:
15113 case value_t::number_integer:
15114 case value_t::number_unsigned:
15115 case value_t::number_float:
15116 case value_t::binary:
15117 case value_t::discarded:
15118 default:
15119 {
15120 JSON_THROW(type_error::create(317, concat("to serialize to BSON, top-level type must be object, but is ", j.type_name()), &j));
15121 }
15122 }
15123 }
15124
15125 /*!
15126 @param[in] j JSON value to serialize
15127 */
15128 void write_cbor(const BasicJsonType& j)
15129 {
15130 switch (j.type())
15131 {
15132 case value_t::null:
15133 {
15134 oa->write_character(to_char_type(0xF6));
15135 break;
15136 }
15137
15138 case value_t::boolean:
15139 {
15140 oa->write_character(j.m_data.m_value.boolean
15141 ? to_char_type(0xF5)
15142 : to_char_type(0xF4));
15143 break;
15144 }
15145
15146 case value_t::number_integer:
15147 {
15148 if (j.m_data.m_value.number_integer >= 0)
15149 {
15150 // CBOR does not differentiate between positive signed
15151 // integers and unsigned integers. Therefore, we used the
15152 // code from the value_t::number_unsigned case here.
15153 if (j.m_data.m_value.number_integer <= 0x17)
15154 {
15155 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_integer));
15156 }
15157 else if (j.m_data.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
15158 {
15159 oa->write_character(to_char_type(0x18));
15160 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_integer));
15161 }
15162 else if (j.m_data.m_value.number_integer <= (std::numeric_limits<std::uint16_t>::max)())
15163 {
15164 oa->write_character(to_char_type(0x19));
15165 write_number(static_cast<std::uint16_t>(j.m_data.m_value.number_integer));
15166 }
15167 else if (j.m_data.m_value.number_integer <= (std::numeric_limits<std::uint32_t>::max)())
15168 {
15169 oa->write_character(to_char_type(0x1A));
15170 write_number(static_cast<std::uint32_t>(j.m_data.m_value.number_integer));
15171 }
15172 else
15173 {
15174 oa->write_character(to_char_type(0x1B));
15175 write_number(static_cast<std::uint64_t>(j.m_data.m_value.number_integer));
15176 }
15177 }
15178 else
15179 {
15180 // The conversions below encode the sign in the first
15181 // byte, and the value is converted to a positive number.
15182 const auto positive_number = -1 - j.m_data.m_value.number_integer;
15183 if (j.m_data.m_value.number_integer >= -24)
15184 {
15185 write_number(static_cast<std::uint8_t>(0x20 + positive_number));
15186 }
15187 else if (positive_number <= (std::numeric_limits<std::uint8_t>::max)())
15188 {
15189 oa->write_character(to_char_type(0x38));
15190 write_number(static_cast<std::uint8_t>(positive_number));
15191 }
15192 else if (positive_number <= (std::numeric_limits<std::uint16_t>::max)())
15193 {
15194 oa->write_character(to_char_type(0x39));
15195 write_number(static_cast<std::uint16_t>(positive_number));
15196 }
15197 else if (positive_number <= (std::numeric_limits<std::uint32_t>::max)())
15198 {
15199 oa->write_character(to_char_type(0x3A));
15200 write_number(static_cast<std::uint32_t>(positive_number));
15201 }
15202 else
15203 {
15204 oa->write_character(to_char_type(0x3B));
15205 write_number(static_cast<std::uint64_t>(positive_number));
15206 }
15207 }
15208 break;
15209 }
15210
15211 case value_t::number_unsigned:
15212 {
15213 if (j.m_data.m_value.number_unsigned <= 0x17)
15214 {
15215 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_unsigned));
15216 }
15217 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
15218 {
15219 oa->write_character(to_char_type(0x18));
15220 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_unsigned));
15221 }
15222 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
15223 {
15224 oa->write_character(to_char_type(0x19));
15225 write_number(static_cast<std::uint16_t>(j.m_data.m_value.number_unsigned));
15226 }
15227 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
15228 {
15229 oa->write_character(to_char_type(0x1A));
15230 write_number(static_cast<std::uint32_t>(j.m_data.m_value.number_unsigned));
15231 }
15232 else
15233 {
15234 oa->write_character(to_char_type(0x1B));
15235 write_number(static_cast<std::uint64_t>(j.m_data.m_value.number_unsigned));
15236 }
15237 break;
15238 }
15239
15240 case value_t::number_float:
15241 {
15242 if (std::isnan(j.m_data.m_value.number_float))
15243 {
15244 // NaN is 0xf97e00 in CBOR
15245 oa->write_character(to_char_type(0xF9));
15246 oa->write_character(to_char_type(0x7E));
15247 oa->write_character(to_char_type(0x00));
15248 }
15249 else if (std::isinf(j.m_data.m_value.number_float))
15250 {
15251 // Infinity is 0xf97c00, -Infinity is 0xf9fc00
15252 oa->write_character(to_char_type(0xf9));
15253 oa->write_character(j.m_data.m_value.number_float > 0 ? to_char_type(0x7C) : to_char_type(0xFC));
15254 oa->write_character(to_char_type(0x00));
15255 }
15256 else
15257 {
15258 write_compact_float(j.m_data.m_value.number_float, detail::input_format_t::cbor);
15259 }
15260 break;
15261 }
15262
15263 case value_t::string:
15264 {
15265 // step 1: write control byte and the string length
15266 const auto N = j.m_data.m_value.string->size();
15267 if (N <= 0x17)
15268 {
15269 write_number(static_cast<std::uint8_t>(0x60 + N));
15270 }
15271 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
15272 {
15273 oa->write_character(to_char_type(0x78));
15274 write_number(static_cast<std::uint8_t>(N));
15275 }
15276 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15277 {
15278 oa->write_character(to_char_type(0x79));
15279 write_number(static_cast<std::uint16_t>(N));
15280 }
15281 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15282 {
15283 oa->write_character(to_char_type(0x7A));
15284 write_number(static_cast<std::uint32_t>(N));
15285 }
15286 // LCOV_EXCL_START
15287 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
15288 {
15289 oa->write_character(to_char_type(0x7B));
15290 write_number(static_cast<std::uint64_t>(N));
15291 }
15292 // LCOV_EXCL_STOP
15293
15294 // step 2: write the string
15295 oa->write_characters(
15296 reinterpret_cast<const CharType*>(j.m_data.m_value.string->c_str()),
15297 j.m_data.m_value.string->size());
15298 break;
15299 }
15300
15301 case value_t::array:
15302 {
15303 // step 1: write control byte and the array size
15304 const auto N = j.m_data.m_value.array->size();
15305 if (N <= 0x17)
15306 {
15307 write_number(static_cast<std::uint8_t>(0x80 + N));
15308 }
15309 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
15310 {
15311 oa->write_character(to_char_type(0x98));
15312 write_number(static_cast<std::uint8_t>(N));
15313 }
15314 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15315 {
15316 oa->write_character(to_char_type(0x99));
15317 write_number(static_cast<std::uint16_t>(N));
15318 }
15319 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15320 {
15321 oa->write_character(to_char_type(0x9A));
15322 write_number(static_cast<std::uint32_t>(N));
15323 }
15324 // LCOV_EXCL_START
15325 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
15326 {
15327 oa->write_character(to_char_type(0x9B));
15328 write_number(static_cast<std::uint64_t>(N));
15329 }
15330 // LCOV_EXCL_STOP
15331
15332 // step 2: write each element
15333 for (const auto& el : *j.m_data.m_value.array)
15334 {
15335 write_cbor(el);
15336 }
15337 break;
15338 }
15339
15340 case value_t::binary:
15341 {
15342 if (j.m_data.m_value.binary->has_subtype())
15343 {
15344 if (j.m_data.m_value.binary->subtype() <= (std::numeric_limits<std::uint8_t>::max)())
15345 {
15346 write_number(static_cast<std::uint8_t>(0xd8));
15347 write_number(static_cast<std::uint8_t>(j.m_data.m_value.binary->subtype()));
15348 }
15349 else if (j.m_data.m_value.binary->subtype() <= (std::numeric_limits<std::uint16_t>::max)())
15350 {
15351 write_number(static_cast<std::uint8_t>(0xd9));
15352 write_number(static_cast<std::uint16_t>(j.m_data.m_value.binary->subtype()));
15353 }
15354 else if (j.m_data.m_value.binary->subtype() <= (std::numeric_limits<std::uint32_t>::max)())
15355 {
15356 write_number(static_cast<std::uint8_t>(0xda));
15357 write_number(static_cast<std::uint32_t>(j.m_data.m_value.binary->subtype()));
15358 }
15359 else if (j.m_data.m_value.binary->subtype() <= (std::numeric_limits<std::uint64_t>::max)())
15360 {
15361 write_number(static_cast<std::uint8_t>(0xdb));
15362 write_number(static_cast<std::uint64_t>(j.m_data.m_value.binary->subtype()));
15363 }
15364 }
15365
15366 // step 1: write control byte and the binary array size
15367 const auto N = j.m_data.m_value.binary->size();
15368 if (N <= 0x17)
15369 {
15370 write_number(static_cast<std::uint8_t>(0x40 + N));
15371 }
15372 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
15373 {
15374 oa->write_character(to_char_type(0x58));
15375 write_number(static_cast<std::uint8_t>(N));
15376 }
15377 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15378 {
15379 oa->write_character(to_char_type(0x59));
15380 write_number(static_cast<std::uint16_t>(N));
15381 }
15382 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15383 {
15384 oa->write_character(to_char_type(0x5A));
15385 write_number(static_cast<std::uint32_t>(N));
15386 }
15387 // LCOV_EXCL_START
15388 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
15389 {
15390 oa->write_character(to_char_type(0x5B));
15391 write_number(static_cast<std::uint64_t>(N));
15392 }
15393 // LCOV_EXCL_STOP
15394
15395 // step 2: write each element
15396 oa->write_characters(
15397 reinterpret_cast<const CharType*>(j.m_data.m_value.binary->data()),
15398 N);
15399
15400 break;
15401 }
15402
15403 case value_t::object:
15404 {
15405 // step 1: write control byte and the object size
15406 const auto N = j.m_data.m_value.object->size();
15407 if (N <= 0x17)
15408 {
15409 write_number(static_cast<std::uint8_t>(0xA0 + N));
15410 }
15411 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
15412 {
15413 oa->write_character(to_char_type(0xB8));
15414 write_number(static_cast<std::uint8_t>(N));
15415 }
15416 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15417 {
15418 oa->write_character(to_char_type(0xB9));
15419 write_number(static_cast<std::uint16_t>(N));
15420 }
15421 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15422 {
15423 oa->write_character(to_char_type(0xBA));
15424 write_number(static_cast<std::uint32_t>(N));
15425 }
15426 // LCOV_EXCL_START
15427 else if (N <= (std::numeric_limits<std::uint64_t>::max)())
15428 {
15429 oa->write_character(to_char_type(0xBB));
15430 write_number(static_cast<std::uint64_t>(N));
15431 }
15432 // LCOV_EXCL_STOP
15433
15434 // step 2: write each element
15435 for (const auto& el : *j.m_data.m_value.object)
15436 {
15437 write_cbor(el.first);
15438 write_cbor(el.second);
15439 }
15440 break;
15441 }
15442
15443 case value_t::discarded:
15444 default:
15445 break;
15446 }
15447 }
15448
15449 /*!
15450 @param[in] j JSON value to serialize
15451 */
15452 void write_msgpack(const BasicJsonType& j)
15453 {
15454 switch (j.type())
15455 {
15456 case value_t::null: // nil
15457 {
15458 oa->write_character(to_char_type(0xC0));
15459 break;
15460 }
15461
15462 case value_t::boolean: // true and false
15463 {
15464 oa->write_character(j.m_data.m_value.boolean
15465 ? to_char_type(0xC3)
15466 : to_char_type(0xC2));
15467 break;
15468 }
15469
15470 case value_t::number_integer:
15471 {
15472 if (j.m_data.m_value.number_integer >= 0)
15473 {
15474 // MessagePack does not differentiate between positive
15475 // signed integers and unsigned integers. Therefore, we used
15476 // the code from the value_t::number_unsigned case here.
15477 if (j.m_data.m_value.number_unsigned < 128)
15478 {
15479 // positive fixnum
15480 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_integer));
15481 }
15482 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
15483 {
15484 // uint 8
15485 oa->write_character(to_char_type(0xCC));
15486 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_integer));
15487 }
15488 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
15489 {
15490 // uint 16
15491 oa->write_character(to_char_type(0xCD));
15492 write_number(static_cast<std::uint16_t>(j.m_data.m_value.number_integer));
15493 }
15494 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
15495 {
15496 // uint 32
15497 oa->write_character(to_char_type(0xCE));
15498 write_number(static_cast<std::uint32_t>(j.m_data.m_value.number_integer));
15499 }
15500 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
15501 {
15502 // uint 64
15503 oa->write_character(to_char_type(0xCF));
15504 write_number(static_cast<std::uint64_t>(j.m_data.m_value.number_integer));
15505 }
15506 }
15507 else
15508 {
15509 if (j.m_data.m_value.number_integer >= -32)
15510 {
15511 // negative fixnum
15512 write_number(static_cast<std::int8_t>(j.m_data.m_value.number_integer));
15513 }
15514 else if (j.m_data.m_value.number_integer >= (std::numeric_limits<std::int8_t>::min)() &&
15515 j.m_data.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
15516 {
15517 // int 8
15518 oa->write_character(to_char_type(0xD0));
15519 write_number(static_cast<std::int8_t>(j.m_data.m_value.number_integer));
15520 }
15521 else if (j.m_data.m_value.number_integer >= (std::numeric_limits<std::int16_t>::min)() &&
15522 j.m_data.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
15523 {
15524 // int 16
15525 oa->write_character(to_char_type(0xD1));
15526 write_number(static_cast<std::int16_t>(j.m_data.m_value.number_integer));
15527 }
15528 else if (j.m_data.m_value.number_integer >= (std::numeric_limits<std::int32_t>::min)() &&
15529 j.m_data.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
15530 {
15531 // int 32
15532 oa->write_character(to_char_type(0xD2));
15533 write_number(static_cast<std::int32_t>(j.m_data.m_value.number_integer));
15534 }
15535 else if (j.m_data.m_value.number_integer >= (std::numeric_limits<std::int64_t>::min)() &&
15536 j.m_data.m_value.number_integer <= (std::numeric_limits<std::int64_t>::max)())
15537 {
15538 // int 64
15539 oa->write_character(to_char_type(0xD3));
15540 write_number(static_cast<std::int64_t>(j.m_data.m_value.number_integer));
15541 }
15542 }
15543 break;
15544 }
15545
15546 case value_t::number_unsigned:
15547 {
15548 if (j.m_data.m_value.number_unsigned < 128)
15549 {
15550 // positive fixnum
15551 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_integer));
15552 }
15553 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint8_t>::max)())
15554 {
15555 // uint 8
15556 oa->write_character(to_char_type(0xCC));
15557 write_number(static_cast<std::uint8_t>(j.m_data.m_value.number_integer));
15558 }
15559 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint16_t>::max)())
15560 {
15561 // uint 16
15562 oa->write_character(to_char_type(0xCD));
15563 write_number(static_cast<std::uint16_t>(j.m_data.m_value.number_integer));
15564 }
15565 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint32_t>::max)())
15566 {
15567 // uint 32
15568 oa->write_character(to_char_type(0xCE));
15569 write_number(static_cast<std::uint32_t>(j.m_data.m_value.number_integer));
15570 }
15571 else if (j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
15572 {
15573 // uint 64
15574 oa->write_character(to_char_type(0xCF));
15575 write_number(static_cast<std::uint64_t>(j.m_data.m_value.number_integer));
15576 }
15577 break;
15578 }
15579
15580 case value_t::number_float:
15581 {
15582 write_compact_float(j.m_data.m_value.number_float, detail::input_format_t::msgpack);
15583 break;
15584 }
15585
15586 case value_t::string:
15587 {
15588 // step 1: write control byte and the string length
15589 const auto N = j.m_data.m_value.string->size();
15590 if (N <= 31)
15591 {
15592 // fixstr
15593 write_number(static_cast<std::uint8_t>(0xA0 | N));
15594 }
15595 else if (N <= (std::numeric_limits<std::uint8_t>::max)())
15596 {
15597 // str 8
15598 oa->write_character(to_char_type(0xD9));
15599 write_number(static_cast<std::uint8_t>(N));
15600 }
15601 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15602 {
15603 // str 16
15604 oa->write_character(to_char_type(0xDA));
15605 write_number(static_cast<std::uint16_t>(N));
15606 }
15607 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15608 {
15609 // str 32
15610 oa->write_character(to_char_type(0xDB));
15611 write_number(static_cast<std::uint32_t>(N));
15612 }
15613
15614 // step 2: write the string
15615 oa->write_characters(
15616 reinterpret_cast<const CharType*>(j.m_data.m_value.string->c_str()),
15617 j.m_data.m_value.string->size());
15618 break;
15619 }
15620
15621 case value_t::array:
15622 {
15623 // step 1: write control byte and the array size
15624 const auto N = j.m_data.m_value.array->size();
15625 if (N <= 15)
15626 {
15627 // fixarray
15628 write_number(static_cast<std::uint8_t>(0x90 | N));
15629 }
15630 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15631 {
15632 // array 16
15633 oa->write_character(to_char_type(0xDC));
15634 write_number(static_cast<std::uint16_t>(N));
15635 }
15636 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15637 {
15638 // array 32
15639 oa->write_character(to_char_type(0xDD));
15640 write_number(static_cast<std::uint32_t>(N));
15641 }
15642
15643 // step 2: write each element
15644 for (const auto& el : *j.m_data.m_value.array)
15645 {
15646 write_msgpack(el);
15647 }
15648 break;
15649 }
15650
15651 case value_t::binary:
15652 {
15653 // step 0: determine if the binary type has a set subtype to
15654 // determine whether or not to use the ext or fixext types
15655 const bool use_ext = j.m_data.m_value.binary->has_subtype();
15656
15657 // step 1: write control byte and the byte string length
15658 const auto N = j.m_data.m_value.binary->size();
15659 if (N <= (std::numeric_limits<std::uint8_t>::max)())
15660 {
15661 std::uint8_t output_type{};
15662 bool fixed = true;
15663 if (use_ext)
15664 {
15665 switch (N)
15666 {
15667 case 1:
15668 output_type = 0xD4; // fixext 1
15669 break;
15670 case 2:
15671 output_type = 0xD5; // fixext 2
15672 break;
15673 case 4:
15674 output_type = 0xD6; // fixext 4
15675 break;
15676 case 8:
15677 output_type = 0xD7; // fixext 8
15678 break;
15679 case 16:
15680 output_type = 0xD8; // fixext 16
15681 break;
15682 default:
15683 output_type = 0xC7; // ext 8
15684 fixed = false;
15685 break;
15686 }
15687
15688 }
15689 else
15690 {
15691 output_type = 0xC4; // bin 8
15692 fixed = false;
15693 }
15694
15695 oa->write_character(to_char_type(output_type));
15696 if (!fixed)
15697 {
15698 write_number(static_cast<std::uint8_t>(N));
15699 }
15700 }
15701 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15702 {
15703 const std::uint8_t output_type = use_ext
15704 ? 0xC8 // ext 16
15705 : 0xC5; // bin 16
15706
15707 oa->write_character(to_char_type(output_type));
15708 write_number(static_cast<std::uint16_t>(N));
15709 }
15710 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15711 {
15712 const std::uint8_t output_type = use_ext
15713 ? 0xC9 // ext 32
15714 : 0xC6; // bin 32
15715
15716 oa->write_character(to_char_type(output_type));
15717 write_number(static_cast<std::uint32_t>(N));
15718 }
15719
15720 // step 1.5: if this is an ext type, write the subtype
15721 if (use_ext)
15722 {
15723 write_number(static_cast<std::int8_t>(j.m_data.m_value.binary->subtype()));
15724 }
15725
15726 // step 2: write the byte string
15727 oa->write_characters(
15728 reinterpret_cast<const CharType*>(j.m_data.m_value.binary->data()),
15729 N);
15730
15731 break;
15732 }
15733
15734 case value_t::object:
15735 {
15736 // step 1: write control byte and the object size
15737 const auto N = j.m_data.m_value.object->size();
15738 if (N <= 15)
15739 {
15740 // fixmap
15741 write_number(static_cast<std::uint8_t>(0x80 | (N & 0xF)));
15742 }
15743 else if (N <= (std::numeric_limits<std::uint16_t>::max)())
15744 {
15745 // map 16
15746 oa->write_character(to_char_type(0xDE));
15747 write_number(static_cast<std::uint16_t>(N));
15748 }
15749 else if (N <= (std::numeric_limits<std::uint32_t>::max)())
15750 {
15751 // map 32
15752 oa->write_character(to_char_type(0xDF));
15753 write_number(static_cast<std::uint32_t>(N));
15754 }
15755
15756 // step 2: write each element
15757 for (const auto& el : *j.m_data.m_value.object)
15758 {
15759 write_msgpack(el.first);
15760 write_msgpack(el.second);
15761 }
15762 break;
15763 }
15764
15765 case value_t::discarded:
15766 default:
15767 break;
15768 }
15769 }
15770
15771 /*!
15772 @param[in] j JSON value to serialize
15773 @param[in] use_count whether to use '#' prefixes (optimized format)
15774 @param[in] use_type whether to use '$' prefixes (optimized format)
15775 @param[in] add_prefix whether prefixes need to be used for this value
15776 @param[in] use_bjdata whether write in BJData format, default is false
15777 */
15778 void write_ubjson(const BasicJsonType& j, const bool use_count,
15779 const bool use_type, const bool add_prefix = true,
15780 const bool use_bjdata = false)
15781 {
15782 switch (j.type())
15783 {
15784 case value_t::null:
15785 {
15786 if (add_prefix)
15787 {
15788 oa->write_character(to_char_type('Z'));
15789 }
15790 break;
15791 }
15792
15793 case value_t::boolean:
15794 {
15795 if (add_prefix)
15796 {
15797 oa->write_character(j.m_data.m_value.boolean
15798 ? to_char_type('T')
15799 : to_char_type('F'));
15800 }
15801 break;
15802 }
15803
15804 case value_t::number_integer:
15805 {
15806 write_number_with_ubjson_prefix(j.m_data.m_value.number_integer, add_prefix, use_bjdata);
15807 break;
15808 }
15809
15810 case value_t::number_unsigned:
15811 {
15812 write_number_with_ubjson_prefix(j.m_data.m_value.number_unsigned, add_prefix, use_bjdata);
15813 break;
15814 }
15815
15816 case value_t::number_float:
15817 {
15818 write_number_with_ubjson_prefix(j.m_data.m_value.number_float, add_prefix, use_bjdata);
15819 break;
15820 }
15821
15822 case value_t::string:
15823 {
15824 if (add_prefix)
15825 {
15826 oa->write_character(to_char_type('S'));
15827 }
15828 write_number_with_ubjson_prefix(j.m_data.m_value.string->size(), true, use_bjdata);
15829 oa->write_characters(
15830 reinterpret_cast<const CharType*>(j.m_data.m_value.string->c_str()),
15831 j.m_data.m_value.string->size());
15832 break;
15833 }
15834
15835 case value_t::array:
15836 {
15837 if (add_prefix)
15838 {
15839 oa->write_character(to_char_type('['));
15840 }
15841
15842 bool prefix_required = true;
15843 if (use_type && !j.m_data.m_value.array->empty())
15844 {
15845 JSON_ASSERT(use_count);
15846 const CharType first_prefix = ubjson_prefix(j.front(), use_bjdata);
15847 const bool same_prefix = std::all_of(j.begin() + 1, j.end(),
15848 [this, first_prefix, use_bjdata](const BasicJsonType & v)
15849 {
15850 return ubjson_prefix(v, use_bjdata) == first_prefix;
15851 });
15852
15853 std::vector<CharType> bjdx = {'[', '{', 'S', 'H', 'T', 'F', 'N', 'Z'}; // excluded markers in bjdata optimized type
15854
15855 if (same_prefix && !(use_bjdata && std::find(bjdx.begin(), bjdx.end(), first_prefix) != bjdx.end()))
15856 {
15857 prefix_required = false;
15858 oa->write_character(to_char_type('$'));
15859 oa->write_character(first_prefix);
15860 }
15861 }
15862
15863 if (use_count)
15864 {
15865 oa->write_character(to_char_type('#'));
15866 write_number_with_ubjson_prefix(j.m_data.m_value.array->size(), true, use_bjdata);
15867 }
15868
15869 for (const auto& el : *j.m_data.m_value.array)
15870 {
15871 write_ubjson(el, use_count, use_type, prefix_required, use_bjdata);
15872 }
15873
15874 if (!use_count)
15875 {
15876 oa->write_character(to_char_type(']'));
15877 }
15878
15879 break;
15880 }
15881
15882 case value_t::binary:
15883 {
15884 if (add_prefix)
15885 {
15886 oa->write_character(to_char_type('['));
15887 }
15888
15889 if (use_type && !j.m_data.m_value.binary->empty())
15890 {
15891 JSON_ASSERT(use_count);
15892 oa->write_character(to_char_type('$'));
15893 oa->write_character('U');
15894 }
15895
15896 if (use_count)
15897 {
15898 oa->write_character(to_char_type('#'));
15899 write_number_with_ubjson_prefix(j.m_data.m_value.binary->size(), true, use_bjdata);
15900 }
15901
15902 if (use_type)
15903 {
15904 oa->write_characters(
15905 reinterpret_cast<const CharType*>(j.m_data.m_value.binary->data()),
15906 j.m_data.m_value.binary->size());
15907 }
15908 else
15909 {
15910 for (size_t i = 0; i < j.m_data.m_value.binary->size(); ++i)
15911 {
15912 oa->write_character(to_char_type('U'));
15913 oa->write_character(j.m_data.m_value.binary->data()[i]);
15914 }
15915 }
15916
15917 if (!use_count)
15918 {
15919 oa->write_character(to_char_type(']'));
15920 }
15921
15922 break;
15923 }
15924
15925 case value_t::object:
15926 {
15927 if (use_bjdata && j.m_data.m_value.object->size() == 3 && j.m_data.m_value.object->find("_ArrayType_") != j.m_data.m_value.object->end() && j.m_data.m_value.object->find("_ArraySize_") != j.m_data.m_value.object->end() && j.m_data.m_value.object->find("_ArrayData_") != j.m_data.m_value.object->end())
15928 {
15929 if (!write_bjdata_ndarray(*j.m_data.m_value.object, use_count, use_type)) // decode bjdata ndarray in the JData format (https://github.com/NeuroJSON/jdata)
15930 {
15931 break;
15932 }
15933 }
15934
15935 if (add_prefix)
15936 {
15937 oa->write_character(to_char_type('{'));
15938 }
15939
15940 bool prefix_required = true;
15941 if (use_type && !j.m_data.m_value.object->empty())
15942 {
15943 JSON_ASSERT(use_count);
15944 const CharType first_prefix = ubjson_prefix(j.front(), use_bjdata);
15945 const bool same_prefix = std::all_of(j.begin(), j.end(),
15946 [this, first_prefix, use_bjdata](const BasicJsonType & v)
15947 {
15948 return ubjson_prefix(v, use_bjdata) == first_prefix;
15949 });
15950
15951 std::vector<CharType> bjdx = {'[', '{', 'S', 'H', 'T', 'F', 'N', 'Z'}; // excluded markers in bjdata optimized type
15952
15953 if (same_prefix && !(use_bjdata && std::find(bjdx.begin(), bjdx.end(), first_prefix) != bjdx.end()))
15954 {
15955 prefix_required = false;
15956 oa->write_character(to_char_type('$'));
15957 oa->write_character(first_prefix);
15958 }
15959 }
15960
15961 if (use_count)
15962 {
15963 oa->write_character(to_char_type('#'));
15964 write_number_with_ubjson_prefix(j.m_data.m_value.object->size(), true, use_bjdata);
15965 }
15966
15967 for (const auto& el : *j.m_data.m_value.object)
15968 {
15969 write_number_with_ubjson_prefix(el.first.size(), true, use_bjdata);
15970 oa->write_characters(
15971 reinterpret_cast<const CharType*>(el.first.c_str()),
15972 el.first.size());
15973 write_ubjson(el.second, use_count, use_type, prefix_required, use_bjdata);
15974 }
15975
15976 if (!use_count)
15977 {
15978 oa->write_character(to_char_type('}'));
15979 }
15980
15981 break;
15982 }
15983
15984 case value_t::discarded:
15985 default:
15986 break;
15987 }
15988 }
15989
15990 private:
15991 //////////
15992 // BSON //
15993 //////////
15994
15995 /*!
15996 @return The size of a BSON document entry header, including the id marker
15997 and the entry name size (and its null-terminator).
15998 */
15999 static std::size_t calc_bson_entry_header_size(const string_t& name, const BasicJsonType& j)
16000 {
16001 const auto it = name.find(static_cast<typename string_t::value_type>(0));
16002 if (JSON_HEDLEY_UNLIKELY(it != BasicJsonType::string_t::npos))
16003 {
16004 JSON_THROW(out_of_range::create(409, concat("BSON key cannot contain code point U+0000 (at byte ", std::to_string(it), ")"), &j));
16005 static_cast<void>(j);
16006 }
16007
16008 return /*id*/ 1ul + name.size() + /*zero-terminator*/1u;
16009 }
16010
16011 /*!
16012 @brief Writes the given @a element_type and @a name to the output adapter
16013 */
16014 void write_bson_entry_header(const string_t& name,
16015 const std::uint8_t element_type)
16016 {
16017 oa->write_character(to_char_type(element_type)); // boolean
16018 oa->write_characters(
16019 reinterpret_cast<const CharType*>(name.c_str()),
16020 name.size() + 1u);
16021 }
16022
16023 /*!
16024 @brief Writes a BSON element with key @a name and boolean value @a value
16025 */
16026 void write_bson_boolean(const string_t& name,
16027 const bool value)
16028 {
16029 write_bson_entry_header(name, 0x08);
16030 oa->write_character(value ? to_char_type(0x01) : to_char_type(0x00));
16031 }
16032
16033 /*!
16034 @brief Writes a BSON element with key @a name and double value @a value
16035 */
16036 void write_bson_double(const string_t& name,
16037 const double value)
16038 {
16039 write_bson_entry_header(name, 0x01);
16040 write_number<double>(value, true);
16041 }
16042
16043 /*!
16044 @return The size of the BSON-encoded string in @a value
16045 */
16046 static std::size_t calc_bson_string_size(const string_t& value)
16047 {
16048 return sizeof(std::int32_t) + value.size() + 1ul;
16049 }
16050
16051 /*!
16052 @brief Writes a BSON element with key @a name and string value @a value
16053 */
16054 void write_bson_string(const string_t& name,
16055 const string_t& value)
16056 {
16057 write_bson_entry_header(name, 0x02);
16058
16059 write_number<std::int32_t>(static_cast<std::int32_t>(value.size() + 1ul), true);
16060 oa->write_characters(
16061 reinterpret_cast<const CharType*>(value.c_str()),
16062 value.size() + 1);
16063 }
16064
16065 /*!
16066 @brief Writes a BSON element with key @a name and null value
16067 */
16068 void write_bson_null(const string_t& name)
16069 {
16070 write_bson_entry_header(name, 0x0A);
16071 }
16072
16073 /*!
16074 @return The size of the BSON-encoded integer @a value
16075 */
16076 static std::size_t calc_bson_integer_size(const std::int64_t value)
16077 {
16078 return (std::numeric_limits<std::int32_t>::min)() <= value && value <= (std::numeric_limits<std::int32_t>::max)()
16079 ? sizeof(std::int32_t)
16080 : sizeof(std::int64_t);
16081 }
16082
16083 /*!
16084 @brief Writes a BSON element with key @a name and integer @a value
16085 */
16086 void write_bson_integer(const string_t& name,
16087 const std::int64_t value)
16088 {
16089 if ((std::numeric_limits<std::int32_t>::min)() <= value && value <= (std::numeric_limits<std::int32_t>::max)())
16090 {
16091 write_bson_entry_header(name, 0x10); // int32
16092 write_number<std::int32_t>(static_cast<std::int32_t>(value), true);
16093 }
16094 else
16095 {
16096 write_bson_entry_header(name, 0x12); // int64
16097 write_number<std::int64_t>(static_cast<std::int64_t>(value), true);
16098 }
16099 }
16100
16101 /*!
16102 @return The size of the BSON-encoded unsigned integer in @a j
16103 */
16104 static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept
16105 {
16106 return (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
16107 ? sizeof(std::int32_t)
16108 : sizeof(std::int64_t);
16109 }
16110
16111 /*!
16112 @brief Writes a BSON element with key @a name and unsigned @a value
16113 */
16114 void write_bson_unsigned(const string_t& name,
16115 const BasicJsonType& j)
16116 {
16117 if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
16118 {
16119 write_bson_entry_header(name, 0x10 /* int32 */);
16120 write_number<std::int32_t>(static_cast<std::int32_t>(j.m_data.m_value.number_unsigned), true);
16121 }
16122 else if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
16123 {
16124 write_bson_entry_header(name, 0x12 /* int64 */);
16125 write_number<std::int64_t>(static_cast<std::int64_t>(j.m_data.m_value.number_unsigned), true);
16126 }
16127 else
16128 {
16129 JSON_THROW(out_of_range::create(407, concat("integer number ", std::to_string(j.m_data.m_value.number_unsigned), " cannot be represented by BSON as it does not fit int64"), &j));
16130 }
16131 }
16132
16133 /*!
16134 @brief Writes a BSON element with key @a name and object @a value
16135 */
16136 void write_bson_object_entry(const string_t& name,
16137 const typename BasicJsonType::object_t& value)
16138 {
16139 write_bson_entry_header(name, 0x03); // object
16140 write_bson_object(value);
16141 }
16142
16143 /*!
16144 @return The size of the BSON-encoded array @a value
16145 */
16146 static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t& value)
16147 {
16148 std::size_t array_index = 0ul;
16149
16150 const std::size_t embedded_document_size = std::accumulate(std::begin(value), std::end(value), static_cast<std::size_t>(0), [&array_index](std::size_t result, const typename BasicJsonType::array_t::value_type & el)
16151 {
16152 return result + calc_bson_element_size(std::to_string(array_index++), el);
16153 });
16154
16155 return sizeof(std::int32_t) + embedded_document_size + 1ul;
16156 }
16157
16158 /*!
16159 @return The size of the BSON-encoded binary array @a value
16160 */
16161 static std::size_t calc_bson_binary_size(const typename BasicJsonType::binary_t& value)
16162 {
16163 return sizeof(std::int32_t) + value.size() + 1ul;
16164 }
16165
16166 /*!
16167 @brief Writes a BSON element with key @a name and array @a value
16168 */
16169 void write_bson_array(const string_t& name,
16170 const typename BasicJsonType::array_t& value)
16171 {
16172 write_bson_entry_header(name, 0x04); // array
16173 write_number<std::int32_t>(static_cast<std::int32_t>(calc_bson_array_size(value)), true);
16174
16175 std::size_t array_index = 0ul;
16176
16177 for (const auto& el : value)
16178 {
16179 write_bson_element(std::to_string(array_index++), el);
16180 }
16181
16182 oa->write_character(to_char_type(0x00));
16183 }
16184
16185 /*!
16186 @brief Writes a BSON element with key @a name and binary value @a value
16187 */
16188 void write_bson_binary(const string_t& name,
16189 const binary_t& value)
16190 {
16191 write_bson_entry_header(name, 0x05);
16192
16193 write_number<std::int32_t>(static_cast<std::int32_t>(value.size()), true);
16194 write_number(value.has_subtype() ? static_cast<std::uint8_t>(value.subtype()) : static_cast<std::uint8_t>(0x00));
16195
16196 oa->write_characters(reinterpret_cast<const CharType*>(value.data()), value.size());
16197 }
16198
16199 /*!
16200 @brief Calculates the size necessary to serialize the JSON value @a j with its @a name
16201 @return The calculated size for the BSON document entry for @a j with the given @a name.
16202 */
16203 static std::size_t calc_bson_element_size(const string_t& name,
16204 const BasicJsonType& j)
16205 {
16206 const auto header_size = calc_bson_entry_header_size(name, j);
16207 switch (j.type())
16208 {
16209 case value_t::object:
16210 return header_size + calc_bson_object_size(*j.m_data.m_value.object);
16211
16212 case value_t::array:
16213 return header_size + calc_bson_array_size(*j.m_data.m_value.array);
16214
16215 case value_t::binary:
16216 return header_size + calc_bson_binary_size(*j.m_data.m_value.binary);
16217
16218 case value_t::boolean:
16219 return header_size + 1ul;
16220
16221 case value_t::number_float:
16222 return header_size + 8ul;
16223
16224 case value_t::number_integer:
16225 return header_size + calc_bson_integer_size(j.m_data.m_value.number_integer);
16226
16227 case value_t::number_unsigned:
16228 return header_size + calc_bson_unsigned_size(j.m_data.m_value.number_unsigned);
16229
16230 case value_t::string:
16231 return header_size + calc_bson_string_size(*j.m_data.m_value.string);
16232
16233 case value_t::null:
16234 return header_size + 0ul;
16235
16236 // LCOV_EXCL_START
16237 case value_t::discarded:
16238 default:
16239 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert)
16240 return 0ul;
16241 // LCOV_EXCL_STOP
16242 }
16243 }
16244
16245 /*!
16246 @brief Serializes the JSON value @a j to BSON and associates it with the
16247 key @a name.
16248 @param name The name to associate with the JSON entity @a j within the
16249 current BSON document
16250 */
16251 void write_bson_element(const string_t& name,
16252 const BasicJsonType& j)
16253 {
16254 switch (j.type())
16255 {
16256 case value_t::object:
16257 return write_bson_object_entry(name, *j.m_data.m_value.object);
16258
16259 case value_t::array:
16260 return write_bson_array(name, *j.m_data.m_value.array);
16261
16262 case value_t::binary:
16263 return write_bson_binary(name, *j.m_data.m_value.binary);
16264
16265 case value_t::boolean:
16266 return write_bson_boolean(name, j.m_data.m_value.boolean);
16267
16268 case value_t::number_float:
16269 return write_bson_double(name, j.m_data.m_value.number_float);
16270
16271 case value_t::number_integer:
16272 return write_bson_integer(name, j.m_data.m_value.number_integer);
16273
16274 case value_t::number_unsigned:
16275 return write_bson_unsigned(name, j);
16276
16277 case value_t::string:
16278 return write_bson_string(name, *j.m_data.m_value.string);
16279
16280 case value_t::null:
16281 return write_bson_null(name);
16282
16283 // LCOV_EXCL_START
16284 case value_t::discarded:
16285 default:
16286 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert)
16287 return;
16288 // LCOV_EXCL_STOP
16289 }
16290 }
16291
16292 /*!
16293 @brief Calculates the size of the BSON serialization of the given
16294 JSON-object @a j.
16295 @param[in] value JSON value to serialize
16296 @pre value.type() == value_t::object
16297 */
16298 static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t& value)
16299 {
16300 const std::size_t document_size = std::accumulate(value.begin(), value.end(), static_cast<std::size_t>(0),
16301 [](size_t result, const typename BasicJsonType::object_t::value_type & el)
16302 {
16303 return result += calc_bson_element_size(el.first, el.second);
16304 });
16305
16306 return sizeof(std::int32_t) + document_size + 1ul;
16307 }
16308
16309 /*!
16310 @param[in] value JSON value to serialize
16311 @pre value.type() == value_t::object
16312 */
16313 void write_bson_object(const typename BasicJsonType::object_t& value)
16314 {
16315 write_number<std::int32_t>(static_cast<std::int32_t>(calc_bson_object_size(value)), true);
16316
16317 for (const auto& el : value)
16318 {
16319 write_bson_element(el.first, el.second);
16320 }
16321
16322 oa->write_character(to_char_type(0x00));
16323 }
16324
16325 //////////
16326 // CBOR //
16327 //////////
16328
16329 static constexpr CharType get_cbor_float_prefix(float /*unused*/)
16330 {
16331 return to_char_type(0xFA); // Single-Precision Float
16332 }
16333
16334 static constexpr CharType get_cbor_float_prefix(double /*unused*/)
16335 {
16336 return to_char_type(0xFB); // Double-Precision Float
16337 }
16338
16339 /////////////
16340 // MsgPack //
16341 /////////////
16342
16343 static constexpr CharType get_msgpack_float_prefix(float /*unused*/)
16344 {
16345 return to_char_type(0xCA); // float 32
16346 }
16347
16348 static constexpr CharType get_msgpack_float_prefix(double /*unused*/)
16349 {
16350 return to_char_type(0xCB); // float 64
16351 }
16352
16353 ////////////
16354 // UBJSON //
16355 ////////////
16356
16357 // UBJSON: write number (floating point)
16358 template<typename NumberType, typename std::enable_if<
16359 std::is_floating_point<NumberType>::value, int>::type = 0>
16360 void write_number_with_ubjson_prefix(const NumberType n,
16361 const bool add_prefix,
16362 const bool use_bjdata)
16363 {
16364 if (add_prefix)
16365 {
16366 oa->write_character(get_ubjson_float_prefix(n));
16367 }
16368 write_number(n, use_bjdata);
16369 }
16370
16371 // UBJSON: write number (unsigned integer)
16372 template<typename NumberType, typename std::enable_if<
16373 std::is_unsigned<NumberType>::value, int>::type = 0>
16374 void write_number_with_ubjson_prefix(const NumberType n,
16375 const bool add_prefix,
16376 const bool use_bjdata)
16377 {
16378 if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
16379 {
16380 if (add_prefix)
16381 {
16382 oa->write_character(to_char_type('i')); // int8
16383 }
16384 write_number(static_cast<std::uint8_t>(n), use_bjdata);
16385 }
16386 else if (n <= (std::numeric_limits<std::uint8_t>::max)())
16387 {
16388 if (add_prefix)
16389 {
16390 oa->write_character(to_char_type('U')); // uint8
16391 }
16392 write_number(static_cast<std::uint8_t>(n), use_bjdata);
16393 }
16394 else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
16395 {
16396 if (add_prefix)
16397 {
16398 oa->write_character(to_char_type('I')); // int16
16399 }
16400 write_number(static_cast<std::int16_t>(n), use_bjdata);
16401 }
16402 else if (use_bjdata && n <= static_cast<uint64_t>((std::numeric_limits<uint16_t>::max)()))
16403 {
16404 if (add_prefix)
16405 {
16406 oa->write_character(to_char_type('u')); // uint16 - bjdata only
16407 }
16408 write_number(static_cast<std::uint16_t>(n), use_bjdata);
16409 }
16410 else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
16411 {
16412 if (add_prefix)
16413 {
16414 oa->write_character(to_char_type('l')); // int32
16415 }
16416 write_number(static_cast<std::int32_t>(n), use_bjdata);
16417 }
16418 else if (use_bjdata && n <= static_cast<uint64_t>((std::numeric_limits<uint32_t>::max)()))
16419 {
16420 if (add_prefix)
16421 {
16422 oa->write_character(to_char_type('m')); // uint32 - bjdata only
16423 }
16424 write_number(static_cast<std::uint32_t>(n), use_bjdata);
16425 }
16426 else if (n <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
16427 {
16428 if (add_prefix)
16429 {
16430 oa->write_character(to_char_type('L')); // int64
16431 }
16432 write_number(static_cast<std::int64_t>(n), use_bjdata);
16433 }
16434 else if (use_bjdata && n <= (std::numeric_limits<uint64_t>::max)())
16435 {
16436 if (add_prefix)
16437 {
16438 oa->write_character(to_char_type('M')); // uint64 - bjdata only
16439 }
16440 write_number(static_cast<std::uint64_t>(n), use_bjdata);
16441 }
16442 else
16443 {
16444 if (add_prefix)
16445 {
16446 oa->write_character(to_char_type('H')); // high-precision number
16447 }
16448
16449 const auto number = BasicJsonType(n).dump();
16450 write_number_with_ubjson_prefix(number.size(), true, use_bjdata);
16451 for (std::size_t i = 0; i < number.size(); ++i)
16452 {
16453 oa->write_character(to_char_type(static_cast<std::uint8_t>(number[i])));
16454 }
16455 }
16456 }
16457
16458 // UBJSON: write number (signed integer)
16459 template < typename NumberType, typename std::enable_if <
16460 std::is_signed<NumberType>::value&&
16461 !std::is_floating_point<NumberType>::value, int >::type = 0 >
16462 void write_number_with_ubjson_prefix(const NumberType n,
16463 const bool add_prefix,
16464 const bool use_bjdata)
16465 {
16466 if ((std::numeric_limits<std::int8_t>::min)() <= n && n <= (std::numeric_limits<std::int8_t>::max)())
16467 {
16468 if (add_prefix)
16469 {
16470 oa->write_character(to_char_type('i')); // int8
16471 }
16472 write_number(static_cast<std::int8_t>(n), use_bjdata);
16473 }
16474 else if (static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::min)()) <= n && n <= static_cast<std::int64_t>((std::numeric_limits<std::uint8_t>::max)()))
16475 {
16476 if (add_prefix)
16477 {
16478 oa->write_character(to_char_type('U')); // uint8
16479 }
16480 write_number(static_cast<std::uint8_t>(n), use_bjdata);
16481 }
16482 else if ((std::numeric_limits<std::int16_t>::min)() <= n && n <= (std::numeric_limits<std::int16_t>::max)())
16483 {
16484 if (add_prefix)
16485 {
16486 oa->write_character(to_char_type('I')); // int16
16487 }
16488 write_number(static_cast<std::int16_t>(n), use_bjdata);
16489 }
16490 else if (use_bjdata && (static_cast<std::int64_t>((std::numeric_limits<std::uint16_t>::min)()) <= n && n <= static_cast<std::int64_t>((std::numeric_limits<std::uint16_t>::max)())))
16491 {
16492 if (add_prefix)
16493 {
16494 oa->write_character(to_char_type('u')); // uint16 - bjdata only
16495 }
16496 write_number(static_cast<uint16_t>(n), use_bjdata);
16497 }
16498 else if ((std::numeric_limits<std::int32_t>::min)() <= n && n <= (std::numeric_limits<std::int32_t>::max)())
16499 {
16500 if (add_prefix)
16501 {
16502 oa->write_character(to_char_type('l')); // int32
16503 }
16504 write_number(static_cast<std::int32_t>(n), use_bjdata);
16505 }
16506 else if (use_bjdata && (static_cast<std::int64_t>((std::numeric_limits<std::uint32_t>::min)()) <= n && n <= static_cast<std::int64_t>((std::numeric_limits<std::uint32_t>::max)())))
16507 {
16508 if (add_prefix)
16509 {
16510 oa->write_character(to_char_type('m')); // uint32 - bjdata only
16511 }
16512 write_number(static_cast<uint32_t>(n), use_bjdata);
16513 }
16514 else if ((std::numeric_limits<std::int64_t>::min)() <= n && n <= (std::numeric_limits<std::int64_t>::max)())
16515 {
16516 if (add_prefix)
16517 {
16518 oa->write_character(to_char_type('L')); // int64
16519 }
16520 write_number(static_cast<std::int64_t>(n), use_bjdata);
16521 }
16522 // LCOV_EXCL_START
16523 else
16524 {
16525 if (add_prefix)
16526 {
16527 oa->write_character(to_char_type('H')); // high-precision number
16528 }
16529
16530 const auto number = BasicJsonType(n).dump();
16531 write_number_with_ubjson_prefix(number.size(), true, use_bjdata);
16532 for (std::size_t i = 0; i < number.size(); ++i)
16533 {
16534 oa->write_character(to_char_type(static_cast<std::uint8_t>(number[i])));
16535 }
16536 }
16537 // LCOV_EXCL_STOP
16538 }
16539
16540 /*!
16541 @brief determine the type prefix of container values
16542 */
16543 CharType ubjson_prefix(const BasicJsonType& j, const bool use_bjdata) const noexcept
16544 {
16545 switch (j.type())
16546 {
16547 case value_t::null:
16548 return 'Z';
16549
16550 case value_t::boolean:
16551 return j.m_data.m_value.boolean ? 'T' : 'F';
16552
16553 case value_t::number_integer:
16554 {
16555 if ((std::numeric_limits<std::int8_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::int8_t>::max)())
16556 {
16557 return 'i';
16558 }
16559 if ((std::numeric_limits<std::uint8_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::uint8_t>::max)())
16560 {
16561 return 'U';
16562 }
16563 if ((std::numeric_limits<std::int16_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::int16_t>::max)())
16564 {
16565 return 'I';
16566 }
16567 if (use_bjdata && ((std::numeric_limits<std::uint16_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::uint16_t>::max)()))
16568 {
16569 return 'u';
16570 }
16571 if ((std::numeric_limits<std::int32_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::int32_t>::max)())
16572 {
16573 return 'l';
16574 }
16575 if (use_bjdata && ((std::numeric_limits<std::uint32_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::uint32_t>::max)()))
16576 {
16577 return 'm';
16578 }
16579 if ((std::numeric_limits<std::int64_t>::min)() <= j.m_data.m_value.number_integer && j.m_data.m_value.number_integer <= (std::numeric_limits<std::int64_t>::max)())
16580 {
16581 return 'L';
16582 }
16583 // anything else is treated as high-precision number
16584 return 'H'; // LCOV_EXCL_LINE
16585 }
16586
16587 case value_t::number_unsigned:
16588 {
16589 if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int8_t>::max)()))
16590 {
16591 return 'i';
16592 }
16593 if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::uint8_t>::max)()))
16594 {
16595 return 'U';
16596 }
16597 if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int16_t>::max)()))
16598 {
16599 return 'I';
16600 }
16601 if (use_bjdata && j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::uint16_t>::max)()))
16602 {
16603 return 'u';
16604 }
16605 if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
16606 {
16607 return 'l';
16608 }
16609 if (use_bjdata && j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::uint32_t>::max)()))
16610 {
16611 return 'm';
16612 }
16613 if (j.m_data.m_value.number_unsigned <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
16614 {
16615 return 'L';
16616 }
16617 if (use_bjdata && j.m_data.m_value.number_unsigned <= (std::numeric_limits<std::uint64_t>::max)())
16618 {
16619 return 'M';
16620 }
16621 // anything else is treated as high-precision number
16622 return 'H'; // LCOV_EXCL_LINE
16623 }
16624
16625 case value_t::number_float:
16626 return get_ubjson_float_prefix(j.m_data.m_value.number_float);
16627
16628 case value_t::string:
16629 return 'S';
16630
16631 case value_t::array: // fallthrough
16632 case value_t::binary:
16633 return '[';
16634
16635 case value_t::object:
16636 return '{';
16637
16638 case value_t::discarded:
16639 default: // discarded values
16640 return 'N';
16641 }
16642 }
16643
16644 static constexpr CharType get_ubjson_float_prefix(float /*unused*/)
16645 {
16646 return 'd'; // float 32
16647 }
16648
16649 static constexpr CharType get_ubjson_float_prefix(double /*unused*/)
16650 {
16651 return 'D'; // float 64
16652 }
16653
16654 /*!
16655 @return false if the object is successfully converted to a bjdata ndarray, true if the type or size is invalid
16656 */
16657 bool write_bjdata_ndarray(const typename BasicJsonType::object_t& value, const bool use_count, const bool use_type)
16658 {
16659 std::map<string_t, CharType> bjdtype = {{"uint8", 'U'}, {"int8", 'i'}, {"uint16", 'u'}, {"int16", 'I'},
16660 {"uint32", 'm'}, {"int32", 'l'}, {"uint64", 'M'}, {"int64", 'L'}, {"single", 'd'}, {"double", 'D'}, {"char", 'C'}
16661 };
16662
16663 string_t key = "_ArrayType_";
16664 auto it = bjdtype.find(static_cast<string_t>(value.at(key)));
16665 if (it == bjdtype.end())
16666 {
16667 return true;
16668 }
16669 CharType dtype = it->second;
16670
16671 key = "_ArraySize_";
16672 std::size_t len = (value.at(key).empty() ? 0 : 1);
16673 for (const auto& el : value.at(key))
16674 {
16675 len *= static_cast<std::size_t>(el.m_data.m_value.number_unsigned);
16676 }
16677
16678 key = "_ArrayData_";
16679 if (value.at(key).size() != len)
16680 {
16681 return true;
16682 }
16683
16684 oa->write_character('[');
16685 oa->write_character('$');
16686 oa->write_character(dtype);
16687 oa->write_character('#');
16688
16689 key = "_ArraySize_";
16690 write_ubjson(value.at(key), use_count, use_type, true, true);
16691
16692 key = "_ArrayData_";
16693 if (dtype == 'U' || dtype == 'C')
16694 {
16695 for (const auto& el : value.at(key))
16696 {
16697 write_number(static_cast<std::uint8_t>(el.m_data.m_value.number_unsigned), true);
16698 }
16699 }
16700 else if (dtype == 'i')
16701 {
16702 for (const auto& el : value.at(key))
16703 {
16704 write_number(static_cast<std::int8_t>(el.m_data.m_value.number_integer), true);
16705 }
16706 }
16707 else if (dtype == 'u')
16708 {
16709 for (const auto& el : value.at(key))
16710 {
16711 write_number(static_cast<std::uint16_t>(el.m_data.m_value.number_unsigned), true);
16712 }
16713 }
16714 else if (dtype == 'I')
16715 {
16716 for (const auto& el : value.at(key))
16717 {
16718 write_number(static_cast<std::int16_t>(el.m_data.m_value.number_integer), true);
16719 }
16720 }
16721 else if (dtype == 'm')
16722 {
16723 for (const auto& el : value.at(key))
16724 {
16725 write_number(static_cast<std::uint32_t>(el.m_data.m_value.number_unsigned), true);
16726 }
16727 }
16728 else if (dtype == 'l')
16729 {
16730 for (const auto& el : value.at(key))
16731 {
16732 write_number(static_cast<std::int32_t>(el.m_data.m_value.number_integer), true);
16733 }
16734 }
16735 else if (dtype == 'M')
16736 {
16737 for (const auto& el : value.at(key))
16738 {
16739 write_number(static_cast<std::uint64_t>(el.m_data.m_value.number_unsigned), true);
16740 }
16741 }
16742 else if (dtype == 'L')
16743 {
16744 for (const auto& el : value.at(key))
16745 {
16746 write_number(static_cast<std::int64_t>(el.m_data.m_value.number_integer), true);
16747 }
16748 }
16749 else if (dtype == 'd')
16750 {
16751 for (const auto& el : value.at(key))
16752 {
16753 write_number(static_cast<float>(el.m_data.m_value.number_float), true);
16754 }
16755 }
16756 else if (dtype == 'D')
16757 {
16758 for (const auto& el : value.at(key))
16759 {
16760 write_number(static_cast<double>(el.m_data.m_value.number_float), true);
16761 }
16762 }
16763 return false;
16764 }
16765
16766 ///////////////////////
16767 // Utility functions //
16768 ///////////////////////
16769
16770 /*
16771 @brief write a number to output input
16772 @param[in] n number of type @a NumberType
16773 @param[in] OutputIsLittleEndian Set to true if output data is
16774 required to be little endian
16775 @tparam NumberType the type of the number
16776
16777 @note This function needs to respect the system's endianness, because bytes
16778 in CBOR, MessagePack, and UBJSON are stored in network order (big
16779 endian) and therefore need reordering on little endian systems.
16780 On the other hand, BSON and BJData use little endian and should reorder
16781 on big endian systems.
16782 */
16783 template<typename NumberType>
16784 void write_number(const NumberType n, const bool OutputIsLittleEndian = false)
16785 {
16786 // step 1: write number to array of length NumberType
16787 std::array<CharType, sizeof(NumberType)> vec{};
16788 std::memcpy(vec.data(), &n, sizeof(NumberType));
16789
16790 // step 2: write array to output (with possible reordering)
16791 if (is_little_endian != OutputIsLittleEndian)
16792 {
16793 // reverse byte order prior to conversion if necessary
16794 std::reverse(vec.begin(), vec.end());
16795 }
16796
16797 oa->write_characters(vec.data(), sizeof(NumberType));
16798 }
16799
16800 void write_compact_float(const number_float_t n, detail::input_format_t format)
16801 {
16802 #ifdef __GNUC__
16803 #pragma GCC diagnostic push
16804 #pragma GCC diagnostic ignored "-Wfloat-equal"
16805 #endif
16806 if (static_cast<double>(n) >= static_cast<double>(std::numeric_limits<float>::lowest()) &&
16807 static_cast<double>(n) <= static_cast<double>((std::numeric_limits<float>::max)()) &&
16808 static_cast<double>(static_cast<float>(n)) == static_cast<double>(n))
16809 {
16810 oa->write_character(format == detail::input_format_t::cbor
16811 ? get_cbor_float_prefix(static_cast<float>(n))
16812 : get_msgpack_float_prefix(static_cast<float>(n)));
16813 write_number(static_cast<float>(n));
16814 }
16815 else
16816 {
16817 oa->write_character(format == detail::input_format_t::cbor
16818 ? get_cbor_float_prefix(n)
16819 : get_msgpack_float_prefix(n));
16820 write_number(n);
16821 }
16822 #ifdef __GNUC__
16823 #pragma GCC diagnostic pop
16824 #endif
16825 }
16826
16827 public:
16828 // The following to_char_type functions are implement the conversion
16829 // between uint8_t and CharType. In case CharType is not unsigned,
16830 // such a conversion is required to allow values greater than 128.
16831 // See <https://github.com/nlohmann/json/issues/1286> for a discussion.
16832 template < typename C = CharType,
16833 enable_if_t < std::is_signed<C>::value && std::is_signed<char>::value > * = nullptr >
16834 static constexpr CharType to_char_type(std::uint8_t x) noexcept
16835 {
16836 return *reinterpret_cast<char*>(&x);
16837 }
16838
16839 template < typename C = CharType,
16840 enable_if_t < std::is_signed<C>::value && std::is_unsigned<char>::value > * = nullptr >
16841 static CharType to_char_type(std::uint8_t x) noexcept
16842 {
16843 static_assert(sizeof(std::uint8_t) == sizeof(CharType), "size of CharType must be equal to std::uint8_t");
16844 static_assert(std::is_trivial<CharType>::value, "CharType must be trivial");
16845 CharType result;
16846 std::memcpy(&result, &x, sizeof(x));
16847 return result;
16848 }
16849
16850 template<typename C = CharType,
16851 enable_if_t<std::is_unsigned<C>::value>* = nullptr>
16852 static constexpr CharType to_char_type(std::uint8_t x) noexcept
16853 {
16854 return x;
16855 }
16856
16857 template < typename InputCharType, typename C = CharType,
16858 enable_if_t <
16859 std::is_signed<C>::value &&
16860 std::is_signed<char>::value &&
16861 std::is_same<char, typename std::remove_cv<InputCharType>::type>::value
16862 > * = nullptr >
16863 static constexpr CharType to_char_type(InputCharType x) noexcept
16864 {
16865 return x;
16866 }
16867
16868 private:
16869 /// whether we can assume little endianness
16870 const bool is_little_endian = little_endianness();
16871
16872 /// the output
16873 output_adapter_t<CharType> oa = nullptr;
16874 };
16875
16876 } // namespace detail
16877 NLOHMANN_JSON_NAMESPACE_END
16878
16879 // #include <nlohmann/detail/output/output_adapters.hpp>
16880
16881 // #include <nlohmann/detail/output/serializer.hpp>
16882 // __ _____ _____ _____
16883 // __| | __| | | | JSON for Modern C++
16884 // | | |__ | | | | | | version 3.11.3
16885 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
16886 //
16887 // SPDX-FileCopyrightText: 2008-2009 Björn Hoehrmann <bjoern@hoehrmann.de>
16888 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
16889 // SPDX-License-Identifier: MIT
16890
16891
16892
16893 #include <algorithm> // reverse, remove, fill, find, none_of
16894 #include <array> // array
16895 #include <clocale> // localeconv, lconv
16896 #include <cmath> // labs, isfinite, isnan, signbit
16897 #include <cstddef> // size_t, ptrdiff_t
16898 #include <cstdint> // uint8_t
16899 #include <cstdio> // snprintf
16900 #include <limits> // numeric_limits
16901 #include <string> // string, char_traits
16902 #include <iomanip> // setfill, setw
16903 #include <type_traits> // is_same
16904 #include <utility> // move
16905
16906 // #include <nlohmann/detail/conversions/to_chars.hpp>
16907 // __ _____ _____ _____
16908 // __| | __| | | | JSON for Modern C++
16909 // | | |__ | | | | | | version 3.11.3
16910 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
16911 //
16912 // SPDX-FileCopyrightText: 2009 Florian Loitsch <https://florian.loitsch.com/>
16913 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
16914 // SPDX-License-Identifier: MIT
16915
16916
16917
16918 #include <array> // array
16919 #include <cmath> // signbit, isfinite
16920 #include <cstdint> // intN_t, uintN_t
16921 #include <cstring> // memcpy, memmove
16922 #include <limits> // numeric_limits
16923 #include <type_traits> // conditional
16924
16925 // #include <nlohmann/detail/macro_scope.hpp>
16926
16927
16928 NLOHMANN_JSON_NAMESPACE_BEGIN
16929 namespace detail
16930 {
16931
16932 /*!
16933 @brief implements the Grisu2 algorithm for binary to decimal floating-point
16934 conversion.
16935
16936 This implementation is a slightly modified version of the reference
16937 implementation which may be obtained from
16938 http://florian.loitsch.com/publications (bench.tar.gz).
16939
16940 The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
16941
16942 For a detailed description of the algorithm see:
16943
16944 [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
16945 Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
16946 Language Design and Implementation, PLDI 2010
16947 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
16948 Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
16949 Design and Implementation, PLDI 1996
16950 */
16951 namespace dtoa_impl
16952 {
16953
16954 template<typename Target, typename Source>
16955 Target reinterpret_bits(const Source source)
16956 {
16957 static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
16958
16959 Target target;
16960 std::memcpy(&target, &source, sizeof(Source));
16961 return target;
16962 }
16963
16964 struct diyfp // f * 2^e
16965 {
16966 static constexpr int kPrecision = 64; // = q
16967
16968 std::uint64_t f = 0;
16969 int e = 0;
16970
16971 constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
16972
16973 /*!
16974 @brief returns x - y
16975 @pre x.e == y.e and x.f >= y.f
16976 */
16977 static diyfp sub(const diyfp& x, const diyfp& y) noexcept
16978 {
16979 JSON_ASSERT(x.e == y.e);
16980 JSON_ASSERT(x.f >= y.f);
16981
16982 return {x.f - y.f, x.e};
16983 }
16984
16985 /*!
16986 @brief returns x * y
16987 @note The result is rounded. (Only the upper q bits are returned.)
16988 */
16989 static diyfp mul(const diyfp& x, const diyfp& y) noexcept
16990 {
16991 static_assert(kPrecision == 64, "internal error");
16992
16993 // Computes:
16994 // f = round((x.f * y.f) / 2^q)
16995 // e = x.e + y.e + q
16996
16997 // Emulate the 64-bit * 64-bit multiplication:
16998 //
16999 // p = u * v
17000 // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
17001 // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi )
17002 // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 )
17003 // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 )
17004 // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3)
17005 // = (p0_lo ) + 2^32 (Q ) + 2^64 (H )
17006 // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
17007 //
17008 // (Since Q might be larger than 2^32 - 1)
17009 //
17010 // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
17011 //
17012 // (Q_hi + H does not overflow a 64-bit int)
17013 //
17014 // = p_lo + 2^64 p_hi
17015
17016 const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
17017 const std::uint64_t u_hi = x.f >> 32u;
17018 const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
17019 const std::uint64_t v_hi = y.f >> 32u;
17020
17021 const std::uint64_t p0 = u_lo * v_lo;
17022 const std::uint64_t p1 = u_lo * v_hi;
17023 const std::uint64_t p2 = u_hi * v_lo;
17024 const std::uint64_t p3 = u_hi * v_hi;
17025
17026 const std::uint64_t p0_hi = p0 >> 32u;
17027 const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
17028 const std::uint64_t p1_hi = p1 >> 32u;
17029 const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
17030 const std::uint64_t p2_hi = p2 >> 32u;
17031
17032 std::uint64_t Q = p0_hi + p1_lo + p2_lo;
17033
17034 // The full product might now be computed as
17035 //
17036 // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
17037 // p_lo = p0_lo + (Q << 32)
17038 //
17039 // But in this particular case here, the full p_lo is not required.
17040 // Effectively we only need to add the highest bit in p_lo to p_hi (and
17041 // Q_hi + 1 does not overflow).
17042
17043 Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
17044
17045 const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
17046
17047 return {h, x.e + y.e + 64};
17048 }
17049
17050 /*!
17051 @brief normalize x such that the significand is >= 2^(q-1)
17052 @pre x.f != 0
17053 */
17054 static diyfp normalize(diyfp x) noexcept
17055 {
17056 JSON_ASSERT(x.f != 0);
17057
17058 while ((x.f >> 63u) == 0)
17059 {
17060 x.f <<= 1u;
17061 x.e--;
17062 }
17063
17064 return x;
17065 }
17066
17067 /*!
17068 @brief normalize x such that the result has the exponent E
17069 @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
17070 */
17071 static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
17072 {
17073 const int delta = x.e - target_exponent;
17074
17075 JSON_ASSERT(delta >= 0);
17076 JSON_ASSERT(((x.f << delta) >> delta) == x.f);
17077
17078 return {x.f << delta, target_exponent};
17079 }
17080 };
17081
17082 struct boundaries
17083 {
17084 diyfp w;
17085 diyfp minus;
17086 diyfp plus;
17087 };
17088
17089 /*!
17090 Compute the (normalized) diyfp representing the input number 'value' and its
17091 boundaries.
17092
17093 @pre value must be finite and positive
17094 */
17095 template<typename FloatType>
17096 boundaries compute_boundaries(FloatType value)
17097 {
17098 JSON_ASSERT(std::isfinite(value));
17099 JSON_ASSERT(value > 0);
17100
17101 // Convert the IEEE representation into a diyfp.
17102 //
17103 // If v is denormal:
17104 // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
17105 // If v is normalized:
17106 // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
17107
17108 static_assert(std::numeric_limits<FloatType>::is_iec559,
17109 "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
17110
17111 constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
17112 constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
17113 constexpr int kMinExp = 1 - kBias;
17114 constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
17115
17116 using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;
17117
17118 const auto bits = static_cast<std::uint64_t>(reinterpret_bits<bits_type>(value));
17119 const std::uint64_t E = bits >> (kPrecision - 1);
17120 const std::uint64_t F = bits & (kHiddenBit - 1);
17121
17122 const bool is_denormal = E == 0;
17123 const diyfp v = is_denormal
17124 ? diyfp(F, kMinExp)
17125 : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
17126
17127 // Compute the boundaries m- and m+ of the floating-point value
17128 // v = f * 2^e.
17129 //
17130 // Determine v- and v+, the floating-point predecessor and successor if v,
17131 // respectively.
17132 //
17133 // v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
17134 // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
17135 //
17136 // v+ = v + 2^e
17137 //
17138 // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
17139 // between m- and m+ round to v, regardless of how the input rounding
17140 // algorithm breaks ties.
17141 //
17142 // ---+-------------+-------------+-------------+-------------+--- (A)
17143 // v- m- v m+ v+
17144 //
17145 // -----------------+------+------+-------------+-------------+--- (B)
17146 // v- m- v m+ v+
17147
17148 const bool lower_boundary_is_closer = F == 0 && E > 1;
17149 const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
17150 const diyfp m_minus = lower_boundary_is_closer
17151 ? diyfp(4 * v.f - 1, v.e - 2) // (B)
17152 : diyfp(2 * v.f - 1, v.e - 1); // (A)
17153
17154 // Determine the normalized w+ = m+.
17155 const diyfp w_plus = diyfp::normalize(m_plus);
17156
17157 // Determine w- = m- such that e_(w-) = e_(w+).
17158 const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
17159
17160 return {diyfp::normalize(v), w_minus, w_plus};
17161 }
17162
17163 // Given normalized diyfp w, Grisu needs to find a (normalized) cached
17164 // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
17165 // within a certain range [alpha, gamma] (Definition 3.2 from [1])
17166 //
17167 // alpha <= e = e_c + e_w + q <= gamma
17168 //
17169 // or
17170 //
17171 // f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
17172 // <= f_c * f_w * 2^gamma
17173 //
17174 // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
17175 //
17176 // 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
17177 //
17178 // or
17179 //
17180 // 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
17181 //
17182 // The choice of (alpha,gamma) determines the size of the table and the form of
17183 // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
17184 // in practice:
17185 //
17186 // The idea is to cut the number c * w = f * 2^e into two parts, which can be
17187 // processed independently: An integral part p1, and a fractional part p2:
17188 //
17189 // f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
17190 // = (f div 2^-e) + (f mod 2^-e) * 2^e
17191 // = p1 + p2 * 2^e
17192 //
17193 // The conversion of p1 into decimal form requires a series of divisions and
17194 // modulos by (a power of) 10. These operations are faster for 32-bit than for
17195 // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
17196 // achieved by choosing
17197 //
17198 // -e >= 32 or e <= -32 := gamma
17199 //
17200 // In order to convert the fractional part
17201 //
17202 // p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
17203 //
17204 // into decimal form, the fraction is repeatedly multiplied by 10 and the digits
17205 // d[-i] are extracted in order:
17206 //
17207 // (10 * p2) div 2^-e = d[-1]
17208 // (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
17209 //
17210 // The multiplication by 10 must not overflow. It is sufficient to choose
17211 //
17212 // 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
17213 //
17214 // Since p2 = f mod 2^-e < 2^-e,
17215 //
17216 // -e <= 60 or e >= -60 := alpha
17217
17218 constexpr int kAlpha = -60;
17219 constexpr int kGamma = -32;
17220
17221 struct cached_power // c = f * 2^e ~= 10^k
17222 {
17223 std::uint64_t f;
17224 int e;
17225 int k;
17226 };
17227
17228 /*!
17229 For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
17230 power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
17231 satisfies (Definition 3.2 from [1])
17232
17233 alpha <= e_c + e + q <= gamma.
17234 */
17235 inline cached_power get_cached_power_for_binary_exponent(int e)
17236 {
17237 // Now
17238 //
17239 // alpha <= e_c + e + q <= gamma (1)
17240 // ==> f_c * 2^alpha <= c * 2^e * 2^q
17241 //
17242 // and since the c's are normalized, 2^(q-1) <= f_c,
17243 //
17244 // ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
17245 // ==> 2^(alpha - e - 1) <= c
17246 //
17247 // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
17248 //
17249 // k = ceil( log_10( 2^(alpha - e - 1) ) )
17250 // = ceil( (alpha - e - 1) * log_10(2) )
17251 //
17252 // From the paper:
17253 // "In theory the result of the procedure could be wrong since c is rounded,
17254 // and the computation itself is approximated [...]. In practice, however,
17255 // this simple function is sufficient."
17256 //
17257 // For IEEE double precision floating-point numbers converted into
17258 // normalized diyfp's w = f * 2^e, with q = 64,
17259 //
17260 // e >= -1022 (min IEEE exponent)
17261 // -52 (p - 1)
17262 // -52 (p - 1, possibly normalize denormal IEEE numbers)
17263 // -11 (normalize the diyfp)
17264 // = -1137
17265 //
17266 // and
17267 //
17268 // e <= +1023 (max IEEE exponent)
17269 // -52 (p - 1)
17270 // -11 (normalize the diyfp)
17271 // = 960
17272 //
17273 // This binary exponent range [-1137,960] results in a decimal exponent
17274 // range [-307,324]. One does not need to store a cached power for each
17275 // k in this range. For each such k it suffices to find a cached power
17276 // such that the exponent of the product lies in [alpha,gamma].
17277 // This implies that the difference of the decimal exponents of adjacent
17278 // table entries must be less than or equal to
17279 //
17280 // floor( (gamma - alpha) * log_10(2) ) = 8.
17281 //
17282 // (A smaller distance gamma-alpha would require a larger table.)
17283
17284 // NB:
17285 // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
17286
17287 constexpr int kCachedPowersMinDecExp = -300;
17288 constexpr int kCachedPowersDecStep = 8;
17289
17290 static constexpr std::array<cached_power, 79> kCachedPowers =
17291 {
17292 {
17293 { 0xAB70FE17C79AC6CA, -1060, -300 },
17294 { 0xFF77B1FCBEBCDC4F, -1034, -292 },
17295 { 0xBE5691EF416BD60C, -1007, -284 },
17296 { 0x8DD01FAD907FFC3C, -980, -276 },
17297 { 0xD3515C2831559A83, -954, -268 },
17298 { 0x9D71AC8FADA6C9B5, -927, -260 },
17299 { 0xEA9C227723EE8BCB, -901, -252 },
17300 { 0xAECC49914078536D, -874, -244 },
17301 { 0x823C12795DB6CE57, -847, -236 },
17302 { 0xC21094364DFB5637, -821, -228 },
17303 { 0x9096EA6F3848984F, -794, -220 },
17304 { 0xD77485CB25823AC7, -768, -212 },
17305 { 0xA086CFCD97BF97F4, -741, -204 },
17306 { 0xEF340A98172AACE5, -715, -196 },
17307 { 0xB23867FB2A35B28E, -688, -188 },
17308 { 0x84C8D4DFD2C63F3B, -661, -180 },
17309 { 0xC5DD44271AD3CDBA, -635, -172 },
17310 { 0x936B9FCEBB25C996, -608, -164 },
17311 { 0xDBAC6C247D62A584, -582, -156 },
17312 { 0xA3AB66580D5FDAF6, -555, -148 },
17313 { 0xF3E2F893DEC3F126, -529, -140 },
17314 { 0xB5B5ADA8AAFF80B8, -502, -132 },
17315 { 0x87625F056C7C4A8B, -475, -124 },
17316 { 0xC9BCFF6034C13053, -449, -116 },
17317 { 0x964E858C91BA2655, -422, -108 },
17318 { 0xDFF9772470297EBD, -396, -100 },
17319 { 0xA6DFBD9FB8E5B88F, -369, -92 },
17320 { 0xF8A95FCF88747D94, -343, -84 },
17321 { 0xB94470938FA89BCF, -316, -76 },
17322 { 0x8A08F0F8BF0F156B, -289, -68 },
17323 { 0xCDB02555653131B6, -263, -60 },
17324 { 0x993FE2C6D07B7FAC, -236, -52 },
17325 { 0xE45C10C42A2B3B06, -210, -44 },
17326 { 0xAA242499697392D3, -183, -36 },
17327 { 0xFD87B5F28300CA0E, -157, -28 },
17328 { 0xBCE5086492111AEB, -130, -20 },
17329 { 0x8CBCCC096F5088CC, -103, -12 },
17330 { 0xD1B71758E219652C, -77, -4 },
17331 { 0x9C40000000000000, -50, 4 },
17332 { 0xE8D4A51000000000, -24, 12 },
17333 { 0xAD78EBC5AC620000, 3, 20 },
17334 { 0x813F3978F8940984, 30, 28 },
17335 { 0xC097CE7BC90715B3, 56, 36 },
17336 { 0x8F7E32CE7BEA5C70, 83, 44 },
17337 { 0xD5D238A4ABE98068, 109, 52 },
17338 { 0x9F4F2726179A2245, 136, 60 },
17339 { 0xED63A231D4C4FB27, 162, 68 },
17340 { 0xB0DE65388CC8ADA8, 189, 76 },
17341 { 0x83C7088E1AAB65DB, 216, 84 },
17342 { 0xC45D1DF942711D9A, 242, 92 },
17343 { 0x924D692CA61BE758, 269, 100 },
17344 { 0xDA01EE641A708DEA, 295, 108 },
17345 { 0xA26DA3999AEF774A, 322, 116 },
17346 { 0xF209787BB47D6B85, 348, 124 },
17347 { 0xB454E4A179DD1877, 375, 132 },
17348 { 0x865B86925B9BC5C2, 402, 140 },
17349 { 0xC83553C5C8965D3D, 428, 148 },
17350 { 0x952AB45CFA97A0B3, 455, 156 },
17351 { 0xDE469FBD99A05FE3, 481, 164 },
17352 { 0xA59BC234DB398C25, 508, 172 },
17353 { 0xF6C69A72A3989F5C, 534, 180 },
17354 { 0xB7DCBF5354E9BECE, 561, 188 },
17355 { 0x88FCF317F22241E2, 588, 196 },
17356 { 0xCC20CE9BD35C78A5, 614, 204 },
17357 { 0x98165AF37B2153DF, 641, 212 },
17358 { 0xE2A0B5DC971F303A, 667, 220 },
17359 { 0xA8D9D1535CE3B396, 694, 228 },
17360 { 0xFB9B7CD9A4A7443C, 720, 236 },
17361 { 0xBB764C4CA7A44410, 747, 244 },
17362 { 0x8BAB8EEFB6409C1A, 774, 252 },
17363 { 0xD01FEF10A657842C, 800, 260 },
17364 { 0x9B10A4E5E9913129, 827, 268 },
17365 { 0xE7109BFBA19C0C9D, 853, 276 },
17366 { 0xAC2820D9623BF429, 880, 284 },
17367 { 0x80444B5E7AA7CF85, 907, 292 },
17368 { 0xBF21E44003ACDD2D, 933, 300 },
17369 { 0x8E679C2F5E44FF8F, 960, 308 },
17370 { 0xD433179D9C8CB841, 986, 316 },
17371 { 0x9E19DB92B4E31BA9, 1013, 324 },
17372 }
17373 };
17374
17375 // This computation gives exactly the same results for k as
17376 // k = ceil((kAlpha - e - 1) * 0.30102999566398114)
17377 // for |e| <= 1500, but doesn't require floating-point operations.
17378 // NB: log_10(2) ~= 78913 / 2^18
17379 JSON_ASSERT(e >= -1500);
17380 JSON_ASSERT(e <= 1500);
17381 const int f = kAlpha - e - 1;
17382 const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
17383
17384 const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
17385 JSON_ASSERT(index >= 0);
17386 JSON_ASSERT(static_cast<std::size_t>(index) < kCachedPowers.size());
17387
17388 const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
17389 JSON_ASSERT(kAlpha <= cached.e + e + 64);
17390 JSON_ASSERT(kGamma >= cached.e + e + 64);
17391
17392 return cached;
17393 }
17394
17395 /*!
17396 For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
17397 For n == 0, returns 1 and sets pow10 := 1.
17398 */
17399 inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
17400 {
17401 // LCOV_EXCL_START
17402 if (n >= 1000000000)
17403 {
17404 pow10 = 1000000000;
17405 return 10;
17406 }
17407 // LCOV_EXCL_STOP
17408 if (n >= 100000000)
17409 {
17410 pow10 = 100000000;
17411 return 9;
17412 }
17413 if (n >= 10000000)
17414 {
17415 pow10 = 10000000;
17416 return 8;
17417 }
17418 if (n >= 1000000)
17419 {
17420 pow10 = 1000000;
17421 return 7;
17422 }
17423 if (n >= 100000)
17424 {
17425 pow10 = 100000;
17426 return 6;
17427 }
17428 if (n >= 10000)
17429 {
17430 pow10 = 10000;
17431 return 5;
17432 }
17433 if (n >= 1000)
17434 {
17435 pow10 = 1000;
17436 return 4;
17437 }
17438 if (n >= 100)
17439 {
17440 pow10 = 100;
17441 return 3;
17442 }
17443 if (n >= 10)
17444 {
17445 pow10 = 10;
17446 return 2;
17447 }
17448
17449 pow10 = 1;
17450 return 1;
17451 }
17452
17453 inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
17454 std::uint64_t rest, std::uint64_t ten_k)
17455 {
17456 JSON_ASSERT(len >= 1);
17457 JSON_ASSERT(dist <= delta);
17458 JSON_ASSERT(rest <= delta);
17459 JSON_ASSERT(ten_k > 0);
17460
17461 // <--------------------------- delta ---->
17462 // <---- dist --------->
17463 // --------------[------------------+-------------------]--------------
17464 // M- w M+
17465 //
17466 // ten_k
17467 // <------>
17468 // <---- rest ---->
17469 // --------------[------------------+----+--------------]--------------
17470 // w V
17471 // = buf * 10^k
17472 //
17473 // ten_k represents a unit-in-the-last-place in the decimal representation
17474 // stored in buf.
17475 // Decrement buf by ten_k while this takes buf closer to w.
17476
17477 // The tests are written in this order to avoid overflow in unsigned
17478 // integer arithmetic.
17479
17480 while (rest < dist
17481 && delta - rest >= ten_k
17482 && (rest + ten_k < dist || dist - rest > rest + ten_k - dist))
17483 {
17484 JSON_ASSERT(buf[len - 1] != '0');
17485 buf[len - 1]--;
17486 rest += ten_k;
17487 }
17488 }
17489
17490 /*!
17491 Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
17492 M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
17493 */
17494 inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
17495 diyfp M_minus, diyfp w, diyfp M_plus)
17496 {
17497 static_assert(kAlpha >= -60, "internal error");
17498 static_assert(kGamma <= -32, "internal error");
17499
17500 // Generates the digits (and the exponent) of a decimal floating-point
17501 // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
17502 // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
17503 //
17504 // <--------------------------- delta ---->
17505 // <---- dist --------->
17506 // --------------[------------------+-------------------]--------------
17507 // M- w M+
17508 //
17509 // Grisu2 generates the digits of M+ from left to right and stops as soon as
17510 // V is in [M-,M+].
17511
17512 JSON_ASSERT(M_plus.e >= kAlpha);
17513 JSON_ASSERT(M_plus.e <= kGamma);
17514
17515 std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
17516 std::uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e)
17517
17518 // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
17519 //
17520 // M+ = f * 2^e
17521 // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
17522 // = ((p1 ) * 2^-e + (p2 )) * 2^e
17523 // = p1 + p2 * 2^e
17524
17525 const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
17526
17527 auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
17528 std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
17529
17530 // 1)
17531 //
17532 // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
17533
17534 JSON_ASSERT(p1 > 0);
17535
17536 std::uint32_t pow10{};
17537 const int k = find_largest_pow10(p1, pow10);
17538
17539 // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
17540 //
17541 // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
17542 // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
17543 //
17544 // M+ = p1 + p2 * 2^e
17545 // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
17546 // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
17547 // = d[k-1] * 10^(k-1) + ( rest) * 2^e
17548 //
17549 // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
17550 //
17551 // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
17552 //
17553 // but stop as soon as
17554 //
17555 // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
17556
17557 int n = k;
17558 while (n > 0)
17559 {
17560 // Invariants:
17561 // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
17562 // pow10 = 10^(n-1) <= p1 < 10^n
17563 //
17564 const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
17565 const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
17566 //
17567 // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
17568 // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
17569 //
17570 JSON_ASSERT(d <= 9);
17571 buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
17572 //
17573 // M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
17574 //
17575 p1 = r;
17576 n--;
17577 //
17578 // M+ = buffer * 10^n + (p1 + p2 * 2^e)
17579 // pow10 = 10^n
17580 //
17581
17582 // Now check if enough digits have been generated.
17583 // Compute
17584 //
17585 // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
17586 //
17587 // Note:
17588 // Since rest and delta share the same exponent e, it suffices to
17589 // compare the significands.
17590 const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
17591 if (rest <= delta)
17592 {
17593 // V = buffer * 10^n, with M- <= V <= M+.
17594
17595 decimal_exponent += n;
17596
17597 // We may now just stop. But instead look if the buffer could be
17598 // decremented to bring V closer to w.
17599 //
17600 // pow10 = 10^n is now 1 ulp in the decimal representation V.
17601 // The rounding procedure works with diyfp's with an implicit
17602 // exponent of e.
17603 //
17604 // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
17605 //
17606 const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
17607 grisu2_round(buffer, length, dist, delta, rest, ten_n);
17608
17609 return;
17610 }
17611
17612 pow10 /= 10;
17613 //
17614 // pow10 = 10^(n-1) <= p1 < 10^n
17615 // Invariants restored.
17616 }
17617
17618 // 2)
17619 //
17620 // The digits of the integral part have been generated:
17621 //
17622 // M+ = d[k-1]...d[1]d[0] + p2 * 2^e
17623 // = buffer + p2 * 2^e
17624 //
17625 // Now generate the digits of the fractional part p2 * 2^e.
17626 //
17627 // Note:
17628 // No decimal point is generated: the exponent is adjusted instead.
17629 //
17630 // p2 actually represents the fraction
17631 //
17632 // p2 * 2^e
17633 // = p2 / 2^-e
17634 // = d[-1] / 10^1 + d[-2] / 10^2 + ...
17635 //
17636 // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
17637 //
17638 // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
17639 // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
17640 //
17641 // using
17642 //
17643 // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
17644 // = ( d) * 2^-e + ( r)
17645 //
17646 // or
17647 // 10^m * p2 * 2^e = d + r * 2^e
17648 //
17649 // i.e.
17650 //
17651 // M+ = buffer + p2 * 2^e
17652 // = buffer + 10^-m * (d + r * 2^e)
17653 // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
17654 //
17655 // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
17656
17657 JSON_ASSERT(p2 > delta);
17658
17659 int m = 0;
17660 for (;;)
17661 {
17662 // Invariant:
17663 // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
17664 // = buffer * 10^-m + 10^-m * (p2 ) * 2^e
17665 // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e
17666 // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
17667 //
17668 JSON_ASSERT(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
17669 p2 *= 10;
17670 const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
17671 const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
17672 //
17673 // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
17674 // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
17675 // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
17676 //
17677 JSON_ASSERT(d <= 9);
17678 buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
17679 //
17680 // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
17681 //
17682 p2 = r;
17683 m++;
17684 //
17685 // M+ = buffer * 10^-m + 10^-m * p2 * 2^e
17686 // Invariant restored.
17687
17688 // Check if enough digits have been generated.
17689 //
17690 // 10^-m * p2 * 2^e <= delta * 2^e
17691 // p2 * 2^e <= 10^m * delta * 2^e
17692 // p2 <= 10^m * delta
17693 delta *= 10;
17694 dist *= 10;
17695 if (p2 <= delta)
17696 {
17697 break;
17698 }
17699 }
17700
17701 // V = buffer * 10^-m, with M- <= V <= M+.
17702
17703 decimal_exponent -= m;
17704
17705 // 1 ulp in the decimal representation is now 10^-m.
17706 // Since delta and dist are now scaled by 10^m, we need to do the
17707 // same with ulp in order to keep the units in sync.
17708 //
17709 // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
17710 //
17711 const std::uint64_t ten_m = one.f;
17712 grisu2_round(buffer, length, dist, delta, p2, ten_m);
17713
17714 // By construction this algorithm generates the shortest possible decimal
17715 // number (Loitsch, Theorem 6.2) which rounds back to w.
17716 // For an input number of precision p, at least
17717 //
17718 // N = 1 + ceil(p * log_10(2))
17719 //
17720 // decimal digits are sufficient to identify all binary floating-point
17721 // numbers (Matula, "In-and-Out conversions").
17722 // This implies that the algorithm does not produce more than N decimal
17723 // digits.
17724 //
17725 // N = 17 for p = 53 (IEEE double precision)
17726 // N = 9 for p = 24 (IEEE single precision)
17727 }
17728
17729 /*!
17730 v = buf * 10^decimal_exponent
17731 len is the length of the buffer (number of decimal digits)
17732 The buffer must be large enough, i.e. >= max_digits10.
17733 */
17734 JSON_HEDLEY_NON_NULL(1)
17735 inline void grisu2(char* buf, int& len, int& decimal_exponent,
17736 diyfp m_minus, diyfp v, diyfp m_plus)
17737 {
17738 JSON_ASSERT(m_plus.e == m_minus.e);
17739 JSON_ASSERT(m_plus.e == v.e);
17740
17741 // --------(-----------------------+-----------------------)-------- (A)
17742 // m- v m+
17743 //
17744 // --------------------(-----------+-----------------------)-------- (B)
17745 // m- v m+
17746 //
17747 // First scale v (and m- and m+) such that the exponent is in the range
17748 // [alpha, gamma].
17749
17750 const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
17751
17752 const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
17753
17754 // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
17755 const diyfp w = diyfp::mul(v, c_minus_k);
17756 const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
17757 const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
17758
17759 // ----(---+---)---------------(---+---)---------------(---+---)----
17760 // w- w w+
17761 // = c*m- = c*v = c*m+
17762 //
17763 // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
17764 // w+ are now off by a small amount.
17765 // In fact:
17766 //
17767 // w - v * 10^k < 1 ulp
17768 //
17769 // To account for this inaccuracy, add resp. subtract 1 ulp.
17770 //
17771 // --------+---[---------------(---+---)---------------]---+--------
17772 // w- M- w M+ w+
17773 //
17774 // Now any number in [M-, M+] (bounds included) will round to w when input,
17775 // regardless of how the input rounding algorithm breaks ties.
17776 //
17777 // And digit_gen generates the shortest possible such number in [M-, M+].
17778 // Note that this does not mean that Grisu2 always generates the shortest
17779 // possible number in the interval (m-, m+).
17780 const diyfp M_minus(w_minus.f + 1, w_minus.e);
17781 const diyfp M_plus (w_plus.f - 1, w_plus.e );
17782
17783 decimal_exponent = -cached.k; // = -(-k) = k
17784
17785 grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
17786 }
17787
17788 /*!
17789 v = buf * 10^decimal_exponent
17790 len is the length of the buffer (number of decimal digits)
17791 The buffer must be large enough, i.e. >= max_digits10.
17792 */
17793 template<typename FloatType>
17794 JSON_HEDLEY_NON_NULL(1)
17795 void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
17796 {
17797 static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
17798 "internal error: not enough precision");
17799
17800 JSON_ASSERT(std::isfinite(value));
17801 JSON_ASSERT(value > 0);
17802
17803 // If the neighbors (and boundaries) of 'value' are always computed for double-precision
17804 // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
17805 // decimal representations are not exactly "short".
17806 //
17807 // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
17808 // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
17809 // and since sprintf promotes floats to doubles, I think this is exactly what 'std::to_chars'
17810 // does.
17811 // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
17812 // representation using the corresponding std::from_chars function recovers value exactly". That
17813 // indicates that single precision floating-point numbers should be recovered using
17814 // 'std::strtof'.
17815 //
17816 // NB: If the neighbors are computed for single-precision numbers, there is a single float
17817 // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
17818 // value is off by 1 ulp.
17819 #if 0 // NOLINT(readability-avoid-unconditional-preprocessor-if)
17820 const boundaries w = compute_boundaries(static_cast<double>(value));
17821 #else
17822 const boundaries w = compute_boundaries(value);
17823 #endif
17824
17825 grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
17826 }
17827
17828 /*!
17829 @brief appends a decimal representation of e to buf
17830 @return a pointer to the element following the exponent.
17831 @pre -1000 < e < 1000
17832 */
17833 JSON_HEDLEY_NON_NULL(1)
17834 JSON_HEDLEY_RETURNS_NON_NULL
17835 inline char* append_exponent(char* buf, int e)
17836 {
17837 JSON_ASSERT(e > -1000);
17838 JSON_ASSERT(e < 1000);
17839
17840 if (e < 0)
17841 {
17842 e = -e;
17843 *buf++ = '-';
17844 }
17845 else
17846 {
17847 *buf++ = '+';
17848 }
17849
17850 auto k = static_cast<std::uint32_t>(e);
17851 if (k < 10)
17852 {
17853 // Always print at least two digits in the exponent.
17854 // This is for compatibility with printf("%g").
17855 *buf++ = '0';
17856 *buf++ = static_cast<char>('0' + k);
17857 }
17858 else if (k < 100)
17859 {
17860 *buf++ = static_cast<char>('0' + k / 10);
17861 k %= 10;
17862 *buf++ = static_cast<char>('0' + k);
17863 }
17864 else
17865 {
17866 *buf++ = static_cast<char>('0' + k / 100);
17867 k %= 100;
17868 *buf++ = static_cast<char>('0' + k / 10);
17869 k %= 10;
17870 *buf++ = static_cast<char>('0' + k);
17871 }
17872
17873 return buf;
17874 }
17875
17876 /*!
17877 @brief prettify v = buf * 10^decimal_exponent
17878
17879 If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
17880 notation. Otherwise it will be printed in exponential notation.
17881
17882 @pre min_exp < 0
17883 @pre max_exp > 0
17884 */
17885 JSON_HEDLEY_NON_NULL(1)
17886 JSON_HEDLEY_RETURNS_NON_NULL
17887 inline char* format_buffer(char* buf, int len, int decimal_exponent,
17888 int min_exp, int max_exp)
17889 {
17890 JSON_ASSERT(min_exp < 0);
17891 JSON_ASSERT(max_exp > 0);
17892
17893 const int k = len;
17894 const int n = len + decimal_exponent;
17895
17896 // v = buf * 10^(n-k)
17897 // k is the length of the buffer (number of decimal digits)
17898 // n is the position of the decimal point relative to the start of the buffer.
17899
17900 if (k <= n && n <= max_exp)
17901 {
17902 // digits[000]
17903 // len <= max_exp + 2
17904
17905 std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));
17906 // Make it look like a floating-point number (#362, #378)
17907 buf[n + 0] = '.';
17908 buf[n + 1] = '0';
17909 return buf + (static_cast<size_t>(n) + 2);
17910 }
17911
17912 if (0 < n && n <= max_exp)
17913 {
17914 // dig.its
17915 // len <= max_digits10 + 1
17916
17917 JSON_ASSERT(k > n);
17918
17919 std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n, static_cast<size_t>(k) - static_cast<size_t>(n));
17920 buf[n] = '.';
17921 return buf + (static_cast<size_t>(k) + 1U);
17922 }
17923
17924 if (min_exp < n && n <= 0)
17925 {
17926 // 0.[000]digits
17927 // len <= 2 + (-min_exp - 1) + max_digits10
17928
17929 std::memmove(buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k));
17930 buf[0] = '0';
17931 buf[1] = '.';
17932 std::memset(buf + 2, '0', static_cast<size_t>(-n));
17933 return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));
17934 }
17935
17936 if (k == 1)
17937 {
17938 // dE+123
17939 // len <= 1 + 5
17940
17941 buf += 1;
17942 }
17943 else
17944 {
17945 // d.igitsE+123
17946 // len <= max_digits10 + 1 + 5
17947
17948 std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);
17949 buf[1] = '.';
17950 buf += 1 + static_cast<size_t>(k);
17951 }
17952
17953 *buf++ = 'e';
17954 return append_exponent(buf, n - 1);
17955 }
17956
17957 } // namespace dtoa_impl
17958
17959 /*!
17960 @brief generates a decimal representation of the floating-point number value in [first, last).
17961
17962 The format of the resulting decimal representation is similar to printf's %g
17963 format. Returns an iterator pointing past-the-end of the decimal representation.
17964
17965 @note The input number must be finite, i.e. NaN's and Inf's are not supported.
17966 @note The buffer must be large enough.
17967 @note The result is NOT null-terminated.
17968 */
17969 template<typename FloatType>
17970 JSON_HEDLEY_NON_NULL(1, 2)
17971 JSON_HEDLEY_RETURNS_NON_NULL
17972 char* to_chars(char* first, const char* last, FloatType value)
17973 {
17974 static_cast<void>(last); // maybe unused - fix warning
17975 JSON_ASSERT(std::isfinite(value));
17976
17977 // Use signbit(value) instead of (value < 0) since signbit works for -0.
17978 if (std::signbit(value))
17979 {
17980 value = -value;
17981 *first++ = '-';
17982 }
17983
17984 #ifdef __GNUC__
17985 #pragma GCC diagnostic push
17986 #pragma GCC diagnostic ignored "-Wfloat-equal"
17987 #endif
17988 if (value == 0) // +-0
17989 {
17990 *first++ = '0';
17991 // Make it look like a floating-point number (#362, #378)
17992 *first++ = '.';
17993 *first++ = '0';
17994 return first;
17995 }
17996 #ifdef __GNUC__
17997 #pragma GCC diagnostic pop
17998 #endif
17999
18000 JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10);
18001
18002 // Compute v = buffer * 10^decimal_exponent.
18003 // The decimal digits are stored in the buffer, which needs to be interpreted
18004 // as an unsigned decimal integer.
18005 // len is the length of the buffer, i.e. the number of decimal digits.
18006 int len = 0;
18007 int decimal_exponent = 0;
18008 dtoa_impl::grisu2(first, len, decimal_exponent, value);
18009
18010 JSON_ASSERT(len <= std::numeric_limits<FloatType>::max_digits10);
18011
18012 // Format the buffer like printf("%.*g", prec, value)
18013 constexpr int kMinExp = -4;
18014 // Use digits10 here to increase compatibility with version 2.
18015 constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
18016
18017 JSON_ASSERT(last - first >= kMaxExp + 2);
18018 JSON_ASSERT(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
18019 JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
18020
18021 return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
18022 }
18023
18024 } // namespace detail
18025 NLOHMANN_JSON_NAMESPACE_END
18026
18027 // #include <nlohmann/detail/exceptions.hpp>
18028
18029 // #include <nlohmann/detail/macro_scope.hpp>
18030
18031 // #include <nlohmann/detail/meta/cpp_future.hpp>
18032
18033 // #include <nlohmann/detail/output/binary_writer.hpp>
18034
18035 // #include <nlohmann/detail/output/output_adapters.hpp>
18036
18037 // #include <nlohmann/detail/string_concat.hpp>
18038
18039 // #include <nlohmann/detail/value_t.hpp>
18040
18041
18042 NLOHMANN_JSON_NAMESPACE_BEGIN
18043 namespace detail
18044 {
18045
18046 ///////////////////
18047 // serialization //
18048 ///////////////////
18049
18050 /// how to treat decoding errors
18051 enum class error_handler_t
18052 {
18053 strict, ///< throw a type_error exception in case of invalid UTF-8
18054 replace, ///< replace invalid UTF-8 sequences with U+FFFD
18055 ignore ///< ignore invalid UTF-8 sequences
18056 };
18057
18058 template<typename BasicJsonType>
18059 class serializer
18060 {
18061 using string_t = typename BasicJsonType::string_t;
18062 using number_float_t = typename BasicJsonType::number_float_t;
18063 using number_integer_t = typename BasicJsonType::number_integer_t;
18064 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
18065 using binary_char_t = typename BasicJsonType::binary_t::value_type;
18066 static constexpr std::uint8_t UTF8_ACCEPT = 0;
18067 static constexpr std::uint8_t UTF8_REJECT = 1;
18068
18069 public:
18070 /*!
18071 @param[in] s output stream to serialize to
18072 @param[in] ichar indentation character to use
18073 @param[in] error_handler_ how to react on decoding errors
18074 */
18075 serializer(output_adapter_t<char> s, const char ichar,
18076 error_handler_t error_handler_ = error_handler_t::strict)
18077 : o(std::move(s))
18078 , loc(std::localeconv())
18079 , thousands_sep(loc->thousands_sep == nullptr ? '\0' : std::char_traits<char>::to_char_type(* (loc->thousands_sep)))
18080 , decimal_point(loc->decimal_point == nullptr ? '\0' : std::char_traits<char>::to_char_type(* (loc->decimal_point)))
18081 , indent_char(ichar)
18082 , indent_string(512, indent_char)
18083 , error_handler(error_handler_)
18084 {}
18085
18086 // delete because of pointer members
18087 serializer(const serializer&) = delete;
18088 serializer& operator=(const serializer&) = delete;
18089 serializer(serializer&&) = delete;
18090 serializer& operator=(serializer&&) = delete;
18091 ~serializer() = default;
18092
18093 /*!
18094 @brief internal implementation of the serialization function
18095
18096 This function is called by the public member function dump and organizes
18097 the serialization internally. The indentation level is propagated as
18098 additional parameter. In case of arrays and objects, the function is
18099 called recursively.
18100
18101 - strings and object keys are escaped using `escape_string()`
18102 - integer numbers are converted implicitly via `operator<<`
18103 - floating-point numbers are converted to a string using `"%g"` format
18104 - binary values are serialized as objects containing the subtype and the
18105 byte array
18106
18107 @param[in] val value to serialize
18108 @param[in] pretty_print whether the output shall be pretty-printed
18109 @param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters
18110 in the output are escaped with `\uXXXX` sequences, and the result consists
18111 of ASCII characters only.
18112 @param[in] indent_step the indent level
18113 @param[in] current_indent the current indent level (only used internally)
18114 */
18115 void dump(const BasicJsonType& val,
18116 const bool pretty_print,
18117 const bool ensure_ascii,
18118 const unsigned int indent_step,
18119 const unsigned int current_indent = 0)
18120 {
18121 switch (val.m_data.m_type)
18122 {
18123 case value_t::object:
18124 {
18125 if (val.m_data.m_value.object->empty())
18126 {
18127 o->write_characters("{}", 2);
18128 return;
18129 }
18130
18131 if (pretty_print)
18132 {
18133 o->write_characters("{\n", 2);
18134
18135 // variable to hold indentation for recursive calls
18136 const auto new_indent = current_indent + indent_step;
18137 if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
18138 {
18139 indent_string.resize(indent_string.size() * 2, ' ');
18140 }
18141
18142 // first n-1 elements
18143 auto i = val.m_data.m_value.object->cbegin();
18144 for (std::size_t cnt = 0; cnt < val.m_data.m_value.object->size() - 1; ++cnt, ++i)
18145 {
18146 o->write_characters(indent_string.c_str(), new_indent);
18147 o->write_character('\"');
18148 dump_escaped(i->first, ensure_ascii);
18149 o->write_characters("\": ", 3);
18150 dump(i->second, true, ensure_ascii, indent_step, new_indent);
18151 o->write_characters(",\n", 2);
18152 }
18153
18154 // last element
18155 JSON_ASSERT(i != val.m_data.m_value.object->cend());
18156 JSON_ASSERT(std::next(i) == val.m_data.m_value.object->cend());
18157 o->write_characters(indent_string.c_str(), new_indent);
18158 o->write_character('\"');
18159 dump_escaped(i->first, ensure_ascii);
18160 o->write_characters("\": ", 3);
18161 dump(i->second, true, ensure_ascii, indent_step, new_indent);
18162
18163 o->write_character('\n');
18164 o->write_characters(indent_string.c_str(), current_indent);
18165 o->write_character('}');
18166 }
18167 else
18168 {
18169 o->write_character('{');
18170
18171 // first n-1 elements
18172 auto i = val.m_data.m_value.object->cbegin();
18173 for (std::size_t cnt = 0; cnt < val.m_data.m_value.object->size() - 1; ++cnt, ++i)
18174 {
18175 o->write_character('\"');
18176 dump_escaped(i->first, ensure_ascii);
18177 o->write_characters("\":", 2);
18178 dump(i->second, false, ensure_ascii, indent_step, current_indent);
18179 o->write_character(',');
18180 }
18181
18182 // last element
18183 JSON_ASSERT(i != val.m_data.m_value.object->cend());
18184 JSON_ASSERT(std::next(i) == val.m_data.m_value.object->cend());
18185 o->write_character('\"');
18186 dump_escaped(i->first, ensure_ascii);
18187 o->write_characters("\":", 2);
18188 dump(i->second, false, ensure_ascii, indent_step, current_indent);
18189
18190 o->write_character('}');
18191 }
18192
18193 return;
18194 }
18195
18196 case value_t::array:
18197 {
18198 if (val.m_data.m_value.array->empty())
18199 {
18200 o->write_characters("[]", 2);
18201 return;
18202 }
18203
18204 if (pretty_print)
18205 {
18206 o->write_characters("[\n", 2);
18207
18208 // variable to hold indentation for recursive calls
18209 const auto new_indent = current_indent + indent_step;
18210 if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
18211 {
18212 indent_string.resize(indent_string.size() * 2, ' ');
18213 }
18214
18215 // first n-1 elements
18216 for (auto i = val.m_data.m_value.array->cbegin();
18217 i != val.m_data.m_value.array->cend() - 1; ++i)
18218 {
18219 o->write_characters(indent_string.c_str(), new_indent);
18220 dump(*i, true, ensure_ascii, indent_step, new_indent);
18221 o->write_characters(",\n", 2);
18222 }
18223
18224 // last element
18225 JSON_ASSERT(!val.m_data.m_value.array->empty());
18226 o->write_characters(indent_string.c_str(), new_indent);
18227 dump(val.m_data.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
18228
18229 o->write_character('\n');
18230 o->write_characters(indent_string.c_str(), current_indent);
18231 o->write_character(']');
18232 }
18233 else
18234 {
18235 o->write_character('[');
18236
18237 // first n-1 elements
18238 for (auto i = val.m_data.m_value.array->cbegin();
18239 i != val.m_data.m_value.array->cend() - 1; ++i)
18240 {
18241 dump(*i, false, ensure_ascii, indent_step, current_indent);
18242 o->write_character(',');
18243 }
18244
18245 // last element
18246 JSON_ASSERT(!val.m_data.m_value.array->empty());
18247 dump(val.m_data.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
18248
18249 o->write_character(']');
18250 }
18251
18252 return;
18253 }
18254
18255 case value_t::string:
18256 {
18257 o->write_character('\"');
18258 dump_escaped(*val.m_data.m_value.string, ensure_ascii);
18259 o->write_character('\"');
18260 return;
18261 }
18262
18263 case value_t::binary:
18264 {
18265 if (pretty_print)
18266 {
18267 o->write_characters("{\n", 2);
18268
18269 // variable to hold indentation for recursive calls
18270 const auto new_indent = current_indent + indent_step;
18271 if (JSON_HEDLEY_UNLIKELY(indent_string.size() < new_indent))
18272 {
18273 indent_string.resize(indent_string.size() * 2, ' ');
18274 }
18275
18276 o->write_characters(indent_string.c_str(), new_indent);
18277
18278 o->write_characters("\"bytes\": [", 10);
18279
18280 if (!val.m_data.m_value.binary->empty())
18281 {
18282 for (auto i = val.m_data.m_value.binary->cbegin();
18283 i != val.m_data.m_value.binary->cend() - 1; ++i)
18284 {
18285 dump_integer(*i);
18286 o->write_characters(", ", 2);
18287 }
18288 dump_integer(val.m_data.m_value.binary->back());
18289 }
18290
18291 o->write_characters("],\n", 3);
18292 o->write_characters(indent_string.c_str(), new_indent);
18293
18294 o->write_characters("\"subtype\": ", 11);
18295 if (val.m_data.m_value.binary->has_subtype())
18296 {
18297 dump_integer(val.m_data.m_value.binary->subtype());
18298 }
18299 else
18300 {
18301 o->write_characters("null", 4);
18302 }
18303 o->write_character('\n');
18304 o->write_characters(indent_string.c_str(), current_indent);
18305 o->write_character('}');
18306 }
18307 else
18308 {
18309 o->write_characters("{\"bytes\":[", 10);
18310
18311 if (!val.m_data.m_value.binary->empty())
18312 {
18313 for (auto i = val.m_data.m_value.binary->cbegin();
18314 i != val.m_data.m_value.binary->cend() - 1; ++i)
18315 {
18316 dump_integer(*i);
18317 o->write_character(',');
18318 }
18319 dump_integer(val.m_data.m_value.binary->back());
18320 }
18321
18322 o->write_characters("],\"subtype\":", 12);
18323 if (val.m_data.m_value.binary->has_subtype())
18324 {
18325 dump_integer(val.m_data.m_value.binary->subtype());
18326 o->write_character('}');
18327 }
18328 else
18329 {
18330 o->write_characters("null}", 5);
18331 }
18332 }
18333 return;
18334 }
18335
18336 case value_t::boolean:
18337 {
18338 if (val.m_data.m_value.boolean)
18339 {
18340 o->write_characters("true", 4);
18341 }
18342 else
18343 {
18344 o->write_characters("false", 5);
18345 }
18346 return;
18347 }
18348
18349 case value_t::number_integer:
18350 {
18351 dump_integer(val.m_data.m_value.number_integer);
18352 return;
18353 }
18354
18355 case value_t::number_unsigned:
18356 {
18357 dump_integer(val.m_data.m_value.number_unsigned);
18358 return;
18359 }
18360
18361 case value_t::number_float:
18362 {
18363 dump_float(val.m_data.m_value.number_float);
18364 return;
18365 }
18366
18367 case value_t::discarded:
18368 {
18369 o->write_characters("<discarded>", 11);
18370 return;
18371 }
18372
18373 case value_t::null:
18374 {
18375 o->write_characters("null", 4);
18376 return;
18377 }
18378
18379 default: // LCOV_EXCL_LINE
18380 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
18381 }
18382 }
18383
18384 JSON_PRIVATE_UNLESS_TESTED:
18385 /*!
18386 @brief dump escaped string
18387
18388 Escape a string by replacing certain special characters by a sequence of an
18389 escape character (backslash) and another character and other control
18390 characters by a sequence of "\u" followed by a four-digit hex
18391 representation. The escaped string is written to output stream @a o.
18392
18393 @param[in] s the string to escape
18394 @param[in] ensure_ascii whether to escape non-ASCII characters with
18395 \uXXXX sequences
18396
18397 @complexity Linear in the length of string @a s.
18398 */
18399 void dump_escaped(const string_t& s, const bool ensure_ascii)
18400 {
18401 std::uint32_t codepoint{};
18402 std::uint8_t state = UTF8_ACCEPT;
18403 std::size_t bytes = 0; // number of bytes written to string_buffer
18404
18405 // number of bytes written at the point of the last valid byte
18406 std::size_t bytes_after_last_accept = 0;
18407 std::size_t undumped_chars = 0;
18408
18409 for (std::size_t i = 0; i < s.size(); ++i)
18410 {
18411 const auto byte = static_cast<std::uint8_t>(s[i]);
18412
18413 switch (decode(state, codepoint, byte))
18414 {
18415 case UTF8_ACCEPT: // decode found a new code point
18416 {
18417 switch (codepoint)
18418 {
18419 case 0x08: // backspace
18420 {
18421 string_buffer[bytes++] = '\\';
18422 string_buffer[bytes++] = 'b';
18423 break;
18424 }
18425
18426 case 0x09: // horizontal tab
18427 {
18428 string_buffer[bytes++] = '\\';
18429 string_buffer[bytes++] = 't';
18430 break;
18431 }
18432
18433 case 0x0A: // newline
18434 {
18435 string_buffer[bytes++] = '\\';
18436 string_buffer[bytes++] = 'n';
18437 break;
18438 }
18439
18440 case 0x0C: // formfeed
18441 {
18442 string_buffer[bytes++] = '\\';
18443 string_buffer[bytes++] = 'f';
18444 break;
18445 }
18446
18447 case 0x0D: // carriage return
18448 {
18449 string_buffer[bytes++] = '\\';
18450 string_buffer[bytes++] = 'r';
18451 break;
18452 }
18453
18454 case 0x22: // quotation mark
18455 {
18456 string_buffer[bytes++] = '\\';
18457 string_buffer[bytes++] = '\"';
18458 break;
18459 }
18460
18461 case 0x5C: // reverse solidus
18462 {
18463 string_buffer[bytes++] = '\\';
18464 string_buffer[bytes++] = '\\';
18465 break;
18466 }
18467
18468 default:
18469 {
18470 // escape control characters (0x00..0x1F) or, if
18471 // ensure_ascii parameter is used, non-ASCII characters
18472 if ((codepoint <= 0x1F) || (ensure_ascii && (codepoint >= 0x7F)))
18473 {
18474 if (codepoint <= 0xFFFF)
18475 {
18476 // NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
18477 static_cast<void>((std::snprintf)(string_buffer.data() + bytes, 7, "\\u%04x",
18478 static_cast<std::uint16_t>(codepoint)));
18479 bytes += 6;
18480 }
18481 else
18482 {
18483 // NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
18484 static_cast<void>((std::snprintf)(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x",
18485 static_cast<std::uint16_t>(0xD7C0u + (codepoint >> 10u)),
18486 static_cast<std::uint16_t>(0xDC00u + (codepoint & 0x3FFu))));
18487 bytes += 12;
18488 }
18489 }
18490 else
18491 {
18492 // copy byte to buffer (all previous bytes
18493 // been copied have in default case above)
18494 string_buffer[bytes++] = s[i];
18495 }
18496 break;
18497 }
18498 }
18499
18500 // write buffer and reset index; there must be 13 bytes
18501 // left, as this is the maximal number of bytes to be
18502 // written ("\uxxxx\uxxxx\0") for one code point
18503 if (string_buffer.size() - bytes < 13)
18504 {
18505 o->write_characters(string_buffer.data(), bytes);
18506 bytes = 0;
18507 }
18508
18509 // remember the byte position of this accept
18510 bytes_after_last_accept = bytes;
18511 undumped_chars = 0;
18512 break;
18513 }
18514
18515 case UTF8_REJECT: // decode found invalid UTF-8 byte
18516 {
18517 switch (error_handler)
18518 {
18519 case error_handler_t::strict:
18520 {
18521 JSON_THROW(type_error::create(316, concat("invalid UTF-8 byte at index ", std::to_string(i), ": 0x", hex_bytes(byte | 0)), nullptr));
18522 }
18523
18524 case error_handler_t::ignore:
18525 case error_handler_t::replace:
18526 {
18527 // in case we saw this character the first time, we
18528 // would like to read it again, because the byte
18529 // may be OK for itself, but just not OK for the
18530 // previous sequence
18531 if (undumped_chars > 0)
18532 {
18533 --i;
18534 }
18535
18536 // reset length buffer to the last accepted index;
18537 // thus removing/ignoring the invalid characters
18538 bytes = bytes_after_last_accept;
18539
18540 if (error_handler == error_handler_t::replace)
18541 {
18542 // add a replacement character
18543 if (ensure_ascii)
18544 {
18545 string_buffer[bytes++] = '\\';
18546 string_buffer[bytes++] = 'u';
18547 string_buffer[bytes++] = 'f';
18548 string_buffer[bytes++] = 'f';
18549 string_buffer[bytes++] = 'f';
18550 string_buffer[bytes++] = 'd';
18551 }
18552 else
18553 {
18554 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xEF');
18555 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBF');
18556 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBD');
18557 }
18558
18559 // write buffer and reset index; there must be 13 bytes
18560 // left, as this is the maximal number of bytes to be
18561 // written ("\uxxxx\uxxxx\0") for one code point
18562 if (string_buffer.size() - bytes < 13)
18563 {
18564 o->write_characters(string_buffer.data(), bytes);
18565 bytes = 0;
18566 }
18567
18568 bytes_after_last_accept = bytes;
18569 }
18570
18571 undumped_chars = 0;
18572
18573 // continue processing the string
18574 state = UTF8_ACCEPT;
18575 break;
18576 }
18577
18578 default: // LCOV_EXCL_LINE
18579 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
18580 }
18581 break;
18582 }
18583
18584 default: // decode found yet incomplete multi-byte code point
18585 {
18586 if (!ensure_ascii)
18587 {
18588 // code point will not be escaped - copy byte to buffer
18589 string_buffer[bytes++] = s[i];
18590 }
18591 ++undumped_chars;
18592 break;
18593 }
18594 }
18595 }
18596
18597 // we finished processing the string
18598 if (JSON_HEDLEY_LIKELY(state == UTF8_ACCEPT))
18599 {
18600 // write buffer
18601 if (bytes > 0)
18602 {
18603 o->write_characters(string_buffer.data(), bytes);
18604 }
18605 }
18606 else
18607 {
18608 // we finish reading, but do not accept: string was incomplete
18609 switch (error_handler)
18610 {
18611 case error_handler_t::strict:
18612 {
18613 JSON_THROW(type_error::create(316, concat("incomplete UTF-8 string; last byte: 0x", hex_bytes(static_cast<std::uint8_t>(s.back() | 0))), nullptr));
18614 }
18615
18616 case error_handler_t::ignore:
18617 {
18618 // write all accepted bytes
18619 o->write_characters(string_buffer.data(), bytes_after_last_accept);
18620 break;
18621 }
18622
18623 case error_handler_t::replace:
18624 {
18625 // write all accepted bytes
18626 o->write_characters(string_buffer.data(), bytes_after_last_accept);
18627 // add a replacement character
18628 if (ensure_ascii)
18629 {
18630 o->write_characters("\\ufffd", 6);
18631 }
18632 else
18633 {
18634 o->write_characters("\xEF\xBF\xBD", 3);
18635 }
18636 break;
18637 }
18638
18639 default: // LCOV_EXCL_LINE
18640 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
18641 }
18642 }
18643 }
18644
18645 private:
18646 /*!
18647 @brief count digits
18648
18649 Count the number of decimal (base 10) digits for an input unsigned integer.
18650
18651 @param[in] x unsigned integer number to count its digits
18652 @return number of decimal digits
18653 */
18654 inline unsigned int count_digits(number_unsigned_t x) noexcept
18655 {
18656 unsigned int n_digits = 1;
18657 for (;;)
18658 {
18659 if (x < 10)
18660 {
18661 return n_digits;
18662 }
18663 if (x < 100)
18664 {
18665 return n_digits + 1;
18666 }
18667 if (x < 1000)
18668 {
18669 return n_digits + 2;
18670 }
18671 if (x < 10000)
18672 {
18673 return n_digits + 3;
18674 }
18675 x = x / 10000u;
18676 n_digits += 4;
18677 }
18678 }
18679
18680 /*!
18681 * @brief convert a byte to a uppercase hex representation
18682 * @param[in] byte byte to represent
18683 * @return representation ("00".."FF")
18684 */
18685 static std::string hex_bytes(std::uint8_t byte)
18686 {
18687 std::string result = "FF";
18688 constexpr const char* nibble_to_hex = "0123456789ABCDEF";
18689 result[0] = nibble_to_hex[byte / 16];
18690 result[1] = nibble_to_hex[byte % 16];
18691 return result;
18692 }
18693
18694 // templates to avoid warnings about useless casts
18695 template <typename NumberType, enable_if_t<std::is_signed<NumberType>::value, int> = 0>
18696 bool is_negative_number(NumberType x)
18697 {
18698 return x < 0;
18699 }
18700
18701 template < typename NumberType, enable_if_t <std::is_unsigned<NumberType>::value, int > = 0 >
18702 bool is_negative_number(NumberType /*unused*/)
18703 {
18704 return false;
18705 }
18706
18707 /*!
18708 @brief dump an integer
18709
18710 Dump a given integer to output stream @a o. Works internally with
18711 @a number_buffer.
18712
18713 @param[in] x integer number (signed or unsigned) to dump
18714 @tparam NumberType either @a number_integer_t or @a number_unsigned_t
18715 */
18716 template < typename NumberType, detail::enable_if_t <
18717 std::is_integral<NumberType>::value ||
18718 std::is_same<NumberType, number_unsigned_t>::value ||
18719 std::is_same<NumberType, number_integer_t>::value ||
18720 std::is_same<NumberType, binary_char_t>::value,
18721 int > = 0 >
18722 void dump_integer(NumberType x)
18723 {
18724 static constexpr std::array<std::array<char, 2>, 100> digits_to_99
18725 {
18726 {
18727 {{'0', '0'}}, {{'0', '1'}}, {{'0', '2'}}, {{'0', '3'}}, {{'0', '4'}}, {{'0', '5'}}, {{'0', '6'}}, {{'0', '7'}}, {{'0', '8'}}, {{'0', '9'}},
18728 {{'1', '0'}}, {{'1', '1'}}, {{'1', '2'}}, {{'1', '3'}}, {{'1', '4'}}, {{'1', '5'}}, {{'1', '6'}}, {{'1', '7'}}, {{'1', '8'}}, {{'1', '9'}},
18729 {{'2', '0'}}, {{'2', '1'}}, {{'2', '2'}}, {{'2', '3'}}, {{'2', '4'}}, {{'2', '5'}}, {{'2', '6'}}, {{'2', '7'}}, {{'2', '8'}}, {{'2', '9'}},
18730 {{'3', '0'}}, {{'3', '1'}}, {{'3', '2'}}, {{'3', '3'}}, {{'3', '4'}}, {{'3', '5'}}, {{'3', '6'}}, {{'3', '7'}}, {{'3', '8'}}, {{'3', '9'}},
18731 {{'4', '0'}}, {{'4', '1'}}, {{'4', '2'}}, {{'4', '3'}}, {{'4', '4'}}, {{'4', '5'}}, {{'4', '6'}}, {{'4', '7'}}, {{'4', '8'}}, {{'4', '9'}},
18732 {{'5', '0'}}, {{'5', '1'}}, {{'5', '2'}}, {{'5', '3'}}, {{'5', '4'}}, {{'5', '5'}}, {{'5', '6'}}, {{'5', '7'}}, {{'5', '8'}}, {{'5', '9'}},
18733 {{'6', '0'}}, {{'6', '1'}}, {{'6', '2'}}, {{'6', '3'}}, {{'6', '4'}}, {{'6', '5'}}, {{'6', '6'}}, {{'6', '7'}}, {{'6', '8'}}, {{'6', '9'}},
18734 {{'7', '0'}}, {{'7', '1'}}, {{'7', '2'}}, {{'7', '3'}}, {{'7', '4'}}, {{'7', '5'}}, {{'7', '6'}}, {{'7', '7'}}, {{'7', '8'}}, {{'7', '9'}},
18735 {{'8', '0'}}, {{'8', '1'}}, {{'8', '2'}}, {{'8', '3'}}, {{'8', '4'}}, {{'8', '5'}}, {{'8', '6'}}, {{'8', '7'}}, {{'8', '8'}}, {{'8', '9'}},
18736 {{'9', '0'}}, {{'9', '1'}}, {{'9', '2'}}, {{'9', '3'}}, {{'9', '4'}}, {{'9', '5'}}, {{'9', '6'}}, {{'9', '7'}}, {{'9', '8'}}, {{'9', '9'}},
18737 }
18738 };
18739
18740 // special case for "0"
18741 if (x == 0)
18742 {
18743 o->write_character('0');
18744 return;
18745 }
18746
18747 // use a pointer to fill the buffer
18748 auto buffer_ptr = number_buffer.begin(); // NOLINT(llvm-qualified-auto,readability-qualified-auto,cppcoreguidelines-pro-type-vararg,hicpp-vararg)
18749
18750 number_unsigned_t abs_value;
18751
18752 unsigned int n_chars{};
18753
18754 if (is_negative_number(x))
18755 {
18756 *buffer_ptr = '-';
18757 abs_value = remove_sign(static_cast<number_integer_t>(x));
18758
18759 // account one more byte for the minus sign
18760 n_chars = 1 + count_digits(abs_value);
18761 }
18762 else
18763 {
18764 abs_value = static_cast<number_unsigned_t>(x);
18765 n_chars = count_digits(abs_value);
18766 }
18767
18768 // spare 1 byte for '\0'
18769 JSON_ASSERT(n_chars < number_buffer.size() - 1);
18770
18771 // jump to the end to generate the string from backward,
18772 // so we later avoid reversing the result
18773 buffer_ptr += n_chars;
18774
18775 // Fast int2ascii implementation inspired by "Fastware" talk by Andrei Alexandrescu
18776 // See: https://www.youtube.com/watch?v=o4-CwDo2zpg
18777 while (abs_value >= 100)
18778 {
18779 const auto digits_index = static_cast<unsigned>((abs_value % 100));
18780 abs_value /= 100;
18781 *(--buffer_ptr) = digits_to_99[digits_index][1];
18782 *(--buffer_ptr) = digits_to_99[digits_index][0];
18783 }
18784
18785 if (abs_value >= 10)
18786 {
18787 const auto digits_index = static_cast<unsigned>(abs_value);
18788 *(--buffer_ptr) = digits_to_99[digits_index][1];
18789 *(--buffer_ptr) = digits_to_99[digits_index][0];
18790 }
18791 else
18792 {
18793 *(--buffer_ptr) = static_cast<char>('0' + abs_value);
18794 }
18795
18796 o->write_characters(number_buffer.data(), n_chars);
18797 }
18798
18799 /*!
18800 @brief dump a floating-point number
18801
18802 Dump a given floating-point number to output stream @a o. Works internally
18803 with @a number_buffer.
18804
18805 @param[in] x floating-point number to dump
18806 */
18807 void dump_float(number_float_t x)
18808 {
18809 // NaN / inf
18810 if (!std::isfinite(x))
18811 {
18812 o->write_characters("null", 4);
18813 return;
18814 }
18815
18816 // If number_float_t is an IEEE-754 single or double precision number,
18817 // use the Grisu2 algorithm to produce short numbers which are
18818 // guaranteed to round-trip, using strtof and strtod, resp.
18819 //
18820 // NB: The test below works if <long double> == <double>.
18821 static constexpr bool is_ieee_single_or_double
18822 = (std::numeric_limits<number_float_t>::is_iec559 && std::numeric_limits<number_float_t>::digits == 24 && std::numeric_limits<number_float_t>::max_exponent == 128) ||
18823 (std::numeric_limits<number_float_t>::is_iec559 && std::numeric_limits<number_float_t>::digits == 53 && std::numeric_limits<number_float_t>::max_exponent == 1024);
18824
18825 dump_float(x, std::integral_constant<bool, is_ieee_single_or_double>());
18826 }
18827
18828 void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/)
18829 {
18830 auto* begin = number_buffer.data();
18831 auto* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x);
18832
18833 o->write_characters(begin, static_cast<size_t>(end - begin));
18834 }
18835
18836 void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/)
18837 {
18838 // get number of digits for a float -> text -> float round-trip
18839 static constexpr auto d = std::numeric_limits<number_float_t>::max_digits10;
18840
18841 // the actual conversion
18842 // NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg,hicpp-vararg)
18843 std::ptrdiff_t len = (std::snprintf)(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
18844
18845 // negative value indicates an error
18846 JSON_ASSERT(len > 0);
18847 // check if buffer was large enough
18848 JSON_ASSERT(static_cast<std::size_t>(len) < number_buffer.size());
18849
18850 // erase thousands separator
18851 if (thousands_sep != '\0')
18852 {
18853 // NOLINTNEXTLINE(readability-qualified-auto,llvm-qualified-auto): std::remove returns an iterator, see https://github.com/nlohmann/json/issues/3081
18854 const auto end = std::remove(number_buffer.begin(), number_buffer.begin() + len, thousands_sep);
18855 std::fill(end, number_buffer.end(), '\0');
18856 JSON_ASSERT((end - number_buffer.begin()) <= len);
18857 len = (end - number_buffer.begin());
18858 }
18859
18860 // convert decimal point to '.'
18861 if (decimal_point != '\0' && decimal_point != '.')
18862 {
18863 // NOLINTNEXTLINE(readability-qualified-auto,llvm-qualified-auto): std::find returns an iterator, see https://github.com/nlohmann/json/issues/3081
18864 const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
18865 if (dec_pos != number_buffer.end())
18866 {
18867 *dec_pos = '.';
18868 }
18869 }
18870
18871 o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
18872
18873 // determine if we need to append ".0"
18874 const bool value_is_int_like =
18875 std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
18876 [](char c)
18877 {
18878 return c == '.' || c == 'e';
18879 });
18880
18881 if (value_is_int_like)
18882 {
18883 o->write_characters(".0", 2);
18884 }
18885 }
18886
18887 /*!
18888 @brief check whether a string is UTF-8 encoded
18889
18890 The function checks each byte of a string whether it is UTF-8 encoded. The
18891 result of the check is stored in the @a state parameter. The function must
18892 be called initially with state 0 (accept). State 1 means the string must
18893 be rejected, because the current byte is not allowed. If the string is
18894 completely processed, but the state is non-zero, the string ended
18895 prematurely; that is, the last byte indicated more bytes should have
18896 followed.
18897
18898 @param[in,out] state the state of the decoding
18899 @param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT)
18900 @param[in] byte next byte to decode
18901 @return new state
18902
18903 @note The function has been edited: a std::array is used.
18904
18905 @copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
18906 @sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
18907 */
18908 static std::uint8_t decode(std::uint8_t& state, std::uint32_t& codep, const std::uint8_t byte) noexcept
18909 {
18910 static const std::array<std::uint8_t, 400> utf8d =
18911 {
18912 {
18913 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
18914 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
18915 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
18916 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
18917 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
18918 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
18919 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
18920 0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
18921 0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
18922 0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
18923 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
18924 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
18925 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
18926 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
18927 }
18928 };
18929
18930 JSON_ASSERT(byte < utf8d.size());
18931 const std::uint8_t type = utf8d[byte];
18932
18933 codep = (state != UTF8_ACCEPT)
18934 ? (byte & 0x3fu) | (codep << 6u)
18935 : (0xFFu >> type) & (byte);
18936
18937 const std::size_t index = 256u + static_cast<size_t>(state) * 16u + static_cast<size_t>(type);
18938 JSON_ASSERT(index < utf8d.size());
18939 state = utf8d[index];
18940 return state;
18941 }
18942
18943 /*
18944 * Overload to make the compiler happy while it is instantiating
18945 * dump_integer for number_unsigned_t.
18946 * Must never be called.
18947 */
18948 number_unsigned_t remove_sign(number_unsigned_t x)
18949 {
18950 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
18951 return x; // LCOV_EXCL_LINE
18952 }
18953
18954 /*
18955 * Helper function for dump_integer
18956 *
18957 * This function takes a negative signed integer and returns its absolute
18958 * value as unsigned integer. The plus/minus shuffling is necessary as we can
18959 * not directly remove the sign of an arbitrary signed integer as the
18960 * absolute values of INT_MIN and INT_MAX are usually not the same. See
18961 * #1708 for details.
18962 */
18963 inline number_unsigned_t remove_sign(number_integer_t x) noexcept
18964 {
18965 JSON_ASSERT(x < 0 && x < (std::numeric_limits<number_integer_t>::max)()); // NOLINT(misc-redundant-expression)
18966 return static_cast<number_unsigned_t>(-(x + 1)) + 1;
18967 }
18968
18969 private:
18970 /// the output of the serializer
18971 output_adapter_t<char> o = nullptr;
18972
18973 /// a (hopefully) large enough character buffer
18974 std::array<char, 64> number_buffer{{}};
18975
18976 /// the locale
18977 const std::lconv* loc = nullptr;
18978 /// the locale's thousand separator character
18979 const char thousands_sep = '\0';
18980 /// the locale's decimal point character
18981 const char decimal_point = '\0';
18982
18983 /// string buffer
18984 std::array<char, 512> string_buffer{{}};
18985
18986 /// the indentation character
18987 const char indent_char;
18988 /// the indentation string
18989 string_t indent_string;
18990
18991 /// error_handler how to react on decoding errors
18992 const error_handler_t error_handler;
18993 };
18994
18995 } // namespace detail
18996 NLOHMANN_JSON_NAMESPACE_END
18997
18998 // #include <nlohmann/detail/value_t.hpp>
18999
19000 // #include <nlohmann/json_fwd.hpp>
19001
19002 // #include <nlohmann/ordered_map.hpp>
19003 // __ _____ _____ _____
19004 // __| | __| | | | JSON for Modern C++
19005 // | | |__ | | | | | | version 3.11.3
19006 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
19007 //
19008 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
19009 // SPDX-License-Identifier: MIT
19010
19011
19012
19013 #include <functional> // equal_to, less
19014 #include <initializer_list> // initializer_list
19015 #include <iterator> // input_iterator_tag, iterator_traits
19016 #include <memory> // allocator
19017 #include <stdexcept> // for out_of_range
19018 #include <type_traits> // enable_if, is_convertible
19019 #include <utility> // pair
19020 #include <vector> // vector
19021
19022 // #include <nlohmann/detail/macro_scope.hpp>
19023
19024 // #include <nlohmann/detail/meta/type_traits.hpp>
19025
19026
19027 NLOHMANN_JSON_NAMESPACE_BEGIN
19028
19029 /// ordered_map: a minimal map-like container that preserves insertion order
19030 /// for use within nlohmann::basic_json<ordered_map>
19031 template <class Key, class T, class IgnoredLess = std::less<Key>,
19032 class Allocator = std::allocator<std::pair<const Key, T>>>
19033 struct ordered_map : std::vector<std::pair<const Key, T>, Allocator>
19034 {
19035 using key_type = Key;
19036 using mapped_type = T;
19037 using Container = std::vector<std::pair<const Key, T>, Allocator>;
19038 using iterator = typename Container::iterator;
19039 using const_iterator = typename Container::const_iterator;
19040 using size_type = typename Container::size_type;
19041 using value_type = typename Container::value_type;
19042 #ifdef JSON_HAS_CPP_14
19043 using key_compare = std::equal_to<>;
19044 #else
19045 using key_compare = std::equal_to<Key>;
19046 #endif
19047
19048 // Explicit constructors instead of `using Container::Container`
19049 // otherwise older compilers choke on it (GCC <= 5.5, xcode <= 9.4)
19050 ordered_map() noexcept(noexcept(Container())) : Container{} {}
19051 explicit ordered_map(const Allocator& alloc) noexcept(noexcept(Container(alloc))) : Container{alloc} {}
19052 template <class It>
19053 ordered_map(It first, It last, const Allocator& alloc = Allocator())
19054 : Container{first, last, alloc} {}
19055 ordered_map(std::initializer_list<value_type> init, const Allocator& alloc = Allocator() )
19056 : Container{init, alloc} {}
19057
19058 std::pair<iterator, bool> emplace(const key_type& key, T&& t)
19059 {
19060 for (auto it = this->begin(); it != this->end(); ++it)
19061 {
19062 if (m_compare(it->first, key))
19063 {
19064 return {it, false};
19065 }
19066 }
19067 Container::emplace_back(key, std::forward<T>(t));
19068 return {std::prev(this->end()), true};
19069 }
19070
19071 template<class KeyType, detail::enable_if_t<
19072 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19073 std::pair<iterator, bool> emplace(KeyType && key, T && t)
19074 {
19075 for (auto it = this->begin(); it != this->end(); ++it)
19076 {
19077 if (m_compare(it->first, key))
19078 {
19079 return {it, false};
19080 }
19081 }
19082 Container::emplace_back(std::forward<KeyType>(key), std::forward<T>(t));
19083 return {std::prev(this->end()), true};
19084 }
19085
19086 T& operator[](const key_type& key)
19087 {
19088 return emplace(key, T{}).first->second;
19089 }
19090
19091 template<class KeyType, detail::enable_if_t<
19092 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19093 T & operator[](KeyType && key)
19094 {
19095 return emplace(std::forward<KeyType>(key), T{}).first->second;
19096 }
19097
19098 const T& operator[](const key_type& key) const
19099 {
19100 return at(key);
19101 }
19102
19103 template<class KeyType, detail::enable_if_t<
19104 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19105 const T & operator[](KeyType && key) const
19106 {
19107 return at(std::forward<KeyType>(key));
19108 }
19109
19110 T& at(const key_type& key)
19111 {
19112 for (auto it = this->begin(); it != this->end(); ++it)
19113 {
19114 if (m_compare(it->first, key))
19115 {
19116 return it->second;
19117 }
19118 }
19119
19120 JSON_THROW(std::out_of_range("key not found"));
19121 }
19122
19123 template<class KeyType, detail::enable_if_t<
19124 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19125 T & at(KeyType && key) // NOLINT(cppcoreguidelines-missing-std-forward)
19126 {
19127 for (auto it = this->begin(); it != this->end(); ++it)
19128 {
19129 if (m_compare(it->first, key))
19130 {
19131 return it->second;
19132 }
19133 }
19134
19135 JSON_THROW(std::out_of_range("key not found"));
19136 }
19137
19138 const T& at(const key_type& key) const
19139 {
19140 for (auto it = this->begin(); it != this->end(); ++it)
19141 {
19142 if (m_compare(it->first, key))
19143 {
19144 return it->second;
19145 }
19146 }
19147
19148 JSON_THROW(std::out_of_range("key not found"));
19149 }
19150
19151 template<class KeyType, detail::enable_if_t<
19152 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19153 const T & at(KeyType && key) const // NOLINT(cppcoreguidelines-missing-std-forward)
19154 {
19155 for (auto it = this->begin(); it != this->end(); ++it)
19156 {
19157 if (m_compare(it->first, key))
19158 {
19159 return it->second;
19160 }
19161 }
19162
19163 JSON_THROW(std::out_of_range("key not found"));
19164 }
19165
19166 size_type erase(const key_type& key)
19167 {
19168 for (auto it = this->begin(); it != this->end(); ++it)
19169 {
19170 if (m_compare(it->first, key))
19171 {
19172 // Since we cannot move const Keys, re-construct them in place
19173 for (auto next = it; ++next != this->end(); ++it)
19174 {
19175 it->~value_type(); // Destroy but keep allocation
19176 new (&*it) value_type{std::move(*next)};
19177 }
19178 Container::pop_back();
19179 return 1;
19180 }
19181 }
19182 return 0;
19183 }
19184
19185 template<class KeyType, detail::enable_if_t<
19186 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19187 size_type erase(KeyType && key) // NOLINT(cppcoreguidelines-missing-std-forward)
19188 {
19189 for (auto it = this->begin(); it != this->end(); ++it)
19190 {
19191 if (m_compare(it->first, key))
19192 {
19193 // Since we cannot move const Keys, re-construct them in place
19194 for (auto next = it; ++next != this->end(); ++it)
19195 {
19196 it->~value_type(); // Destroy but keep allocation
19197 new (&*it) value_type{std::move(*next)};
19198 }
19199 Container::pop_back();
19200 return 1;
19201 }
19202 }
19203 return 0;
19204 }
19205
19206 iterator erase(iterator pos)
19207 {
19208 return erase(pos, std::next(pos));
19209 }
19210
19211 iterator erase(iterator first, iterator last)
19212 {
19213 if (first == last)
19214 {
19215 return first;
19216 }
19217
19218 const auto elements_affected = std::distance(first, last);
19219 const auto offset = std::distance(Container::begin(), first);
19220
19221 // This is the start situation. We need to delete elements_affected
19222 // elements (3 in this example: e, f, g), and need to return an
19223 // iterator past the last deleted element (h in this example).
19224 // Note that offset is the distance from the start of the vector
19225 // to first. We will need this later.
19226
19227 // [ a, b, c, d, e, f, g, h, i, j ]
19228 // ^ ^
19229 // first last
19230
19231 // Since we cannot move const Keys, we re-construct them in place.
19232 // We start at first and re-construct (viz. copy) the elements from
19233 // the back of the vector. Example for first iteration:
19234
19235 // ,--------.
19236 // v | destroy e and re-construct with h
19237 // [ a, b, c, d, e, f, g, h, i, j ]
19238 // ^ ^
19239 // it it + elements_affected
19240
19241 for (auto it = first; std::next(it, elements_affected) != Container::end(); ++it)
19242 {
19243 it->~value_type(); // destroy but keep allocation
19244 new (&*it) value_type{std::move(*std::next(it, elements_affected))}; // "move" next element to it
19245 }
19246
19247 // [ a, b, c, d, h, i, j, h, i, j ]
19248 // ^ ^
19249 // first last
19250
19251 // remove the unneeded elements at the end of the vector
19252 Container::resize(this->size() - static_cast<size_type>(elements_affected));
19253
19254 // [ a, b, c, d, h, i, j ]
19255 // ^ ^
19256 // first last
19257
19258 // first is now pointing past the last deleted element, but we cannot
19259 // use this iterator, because it may have been invalidated by the
19260 // resize call. Instead, we can return begin() + offset.
19261 return Container::begin() + offset;
19262 }
19263
19264 size_type count(const key_type& key) const
19265 {
19266 for (auto it = this->begin(); it != this->end(); ++it)
19267 {
19268 if (m_compare(it->first, key))
19269 {
19270 return 1;
19271 }
19272 }
19273 return 0;
19274 }
19275
19276 template<class KeyType, detail::enable_if_t<
19277 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19278 size_type count(KeyType && key) const // NOLINT(cppcoreguidelines-missing-std-forward)
19279 {
19280 for (auto it = this->begin(); it != this->end(); ++it)
19281 {
19282 if (m_compare(it->first, key))
19283 {
19284 return 1;
19285 }
19286 }
19287 return 0;
19288 }
19289
19290 iterator find(const key_type& key)
19291 {
19292 for (auto it = this->begin(); it != this->end(); ++it)
19293 {
19294 if (m_compare(it->first, key))
19295 {
19296 return it;
19297 }
19298 }
19299 return Container::end();
19300 }
19301
19302 template<class KeyType, detail::enable_if_t<
19303 detail::is_usable_as_key_type<key_compare, key_type, KeyType>::value, int> = 0>
19304 iterator find(KeyType && key) // NOLINT(cppcoreguidelines-missing-std-forward)
19305 {
19306 for (auto it = this->begin(); it != this->end(); ++it)
19307 {
19308 if (m_compare(it->first, key))
19309 {
19310 return it;
19311 }
19312 }
19313 return Container::end();
19314 }
19315
19316 const_iterator find(const key_type& key) const
19317 {
19318 for (auto it = this->begin(); it != this->end(); ++it)
19319 {
19320 if (m_compare(it->first, key))
19321 {
19322 return it;
19323 }
19324 }
19325 return Container::end();
19326 }
19327
19328 std::pair<iterator, bool> insert( value_type&& value )
19329 {
19330 return emplace(value.first, std::move(value.second));
19331 }
19332
19333 std::pair<iterator, bool> insert( const value_type& value )
19334 {
19335 for (auto it = this->begin(); it != this->end(); ++it)
19336 {
19337 if (m_compare(it->first, value.first))
19338 {
19339 return {it, false};
19340 }
19341 }
19342 Container::push_back(value);
19343 return {--this->end(), true};
19344 }
19345
19346 template<typename InputIt>
19347 using require_input_iter = typename std::enable_if<std::is_convertible<typename std::iterator_traits<InputIt>::iterator_category,
19348 std::input_iterator_tag>::value>::type;
19349
19350 template<typename InputIt, typename = require_input_iter<InputIt>>
19351 void insert(InputIt first, InputIt last)
19352 {
19353 for (auto it = first; it != last; ++it)
19354 {
19355 insert(*it);
19356 }
19357 }
19358
19359 private:
19360 JSON_NO_UNIQUE_ADDRESS key_compare m_compare = key_compare();
19361 };
19362
19363 NLOHMANN_JSON_NAMESPACE_END
19364
19365
19366 #if defined(JSON_HAS_CPP_17)
19367 #if JSON_HAS_STATIC_RTTI
19368 #include <any>
19369 #endif
19370 #include <string_view>
19371 #endif
19372
19373 /*!
19374 @brief namespace for Niels Lohmann
19375 @see https://github.com/nlohmann
19376 @since version 1.0.0
19377 */
19378 NLOHMANN_JSON_NAMESPACE_BEGIN
19379
19380 /*!
19381 @brief a class to store JSON values
19382
19383 @internal
19384 @invariant The member variables @a m_value and @a m_type have the following
19385 relationship:
19386 - If `m_type == value_t::object`, then `m_value.object != nullptr`.
19387 - If `m_type == value_t::array`, then `m_value.array != nullptr`.
19388 - If `m_type == value_t::string`, then `m_value.string != nullptr`.
19389 The invariants are checked by member function assert_invariant().
19390
19391 @note ObjectType trick from https://stackoverflow.com/a/9860911
19392 @endinternal
19393
19394 @since version 1.0.0
19395
19396 @nosubgrouping
19397 */
19398 NLOHMANN_BASIC_JSON_TPL_DECLARATION
19399 class basic_json // NOLINT(cppcoreguidelines-special-member-functions,hicpp-special-member-functions)
19400 : public ::nlohmann::detail::json_base_class<CustomBaseClass>
19401 {
19402 private:
19403 template<detail::value_t> friend struct detail::external_constructor;
19404
19405 template<typename>
19406 friend class ::nlohmann::json_pointer;
19407 // can be restored when json_pointer backwards compatibility is removed
19408 // friend ::nlohmann::json_pointer<StringType>;
19409
19410 template<typename BasicJsonType, typename InputType>
19411 friend class ::nlohmann::detail::parser;
19412 friend ::nlohmann::detail::serializer<basic_json>;
19413 template<typename BasicJsonType>
19414 friend class ::nlohmann::detail::iter_impl;
19415 template<typename BasicJsonType, typename CharType>
19416 friend class ::nlohmann::detail::binary_writer;
19417 template<typename BasicJsonType, typename InputType, typename SAX>
19418 friend class ::nlohmann::detail::binary_reader;
19419 template<typename BasicJsonType>
19420 friend class ::nlohmann::detail::json_sax_dom_parser;
19421 template<typename BasicJsonType>
19422 friend class ::nlohmann::detail::json_sax_dom_callback_parser;
19423 friend class ::nlohmann::detail::exception;
19424
19425 /// workaround type for MSVC
19426 using basic_json_t = NLOHMANN_BASIC_JSON_TPL;
19427 using json_base_class_t = ::nlohmann::detail::json_base_class<CustomBaseClass>;
19428
19429 JSON_PRIVATE_UNLESS_TESTED:
19430 // convenience aliases for types residing in namespace detail;
19431 using lexer = ::nlohmann::detail::lexer_base<basic_json>;
19432
19433 template<typename InputAdapterType>
19434 static ::nlohmann::detail::parser<basic_json, InputAdapterType> parser(
19435 InputAdapterType adapter,
19436 detail::parser_callback_t<basic_json>cb = nullptr,
19437 const bool allow_exceptions = true,
19438 const bool ignore_comments = false
19439 )
19440 {
19441 return ::nlohmann::detail::parser<basic_json, InputAdapterType>(std::move(adapter),
19442 std::move(cb), allow_exceptions, ignore_comments);
19443 }
19444
19445 private:
19446 using primitive_iterator_t = ::nlohmann::detail::primitive_iterator_t;
19447 template<typename BasicJsonType>
19448 using internal_iterator = ::nlohmann::detail::internal_iterator<BasicJsonType>;
19449 template<typename BasicJsonType>
19450 using iter_impl = ::nlohmann::detail::iter_impl<BasicJsonType>;
19451 template<typename Iterator>
19452 using iteration_proxy = ::nlohmann::detail::iteration_proxy<Iterator>;
19453 template<typename Base> using json_reverse_iterator = ::nlohmann::detail::json_reverse_iterator<Base>;
19454
19455 template<typename CharType>
19456 using output_adapter_t = ::nlohmann::detail::output_adapter_t<CharType>;
19457
19458 template<typename InputType>
19459 using binary_reader = ::nlohmann::detail::binary_reader<basic_json, InputType>;
19460 template<typename CharType> using binary_writer = ::nlohmann::detail::binary_writer<basic_json, CharType>;
19461
19462 JSON_PRIVATE_UNLESS_TESTED:
19463 using serializer = ::nlohmann::detail::serializer<basic_json>;
19464
19465 public:
19466 using value_t = detail::value_t;
19467 /// JSON Pointer, see @ref nlohmann::json_pointer
19468 using json_pointer = ::nlohmann::json_pointer<StringType>;
19469 template<typename T, typename SFINAE>
19470 using json_serializer = JSONSerializer<T, SFINAE>;
19471 /// how to treat decoding errors
19472 using error_handler_t = detail::error_handler_t;
19473 /// how to treat CBOR tags
19474 using cbor_tag_handler_t = detail::cbor_tag_handler_t;
19475 /// helper type for initializer lists of basic_json values
19476 using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>;
19477
19478 using input_format_t = detail::input_format_t;
19479 /// SAX interface type, see @ref nlohmann::json_sax
19480 using json_sax_t = json_sax<basic_json>;
19481
19482 ////////////////
19483 // exceptions //
19484 ////////////////
19485
19486 /// @name exceptions
19487 /// Classes to implement user-defined exceptions.
19488 /// @{
19489
19490 using exception = detail::exception;
19491 using parse_error = detail::parse_error;
19492 using invalid_iterator = detail::invalid_iterator;
19493 using type_error = detail::type_error;
19494 using out_of_range = detail::out_of_range;
19495 using other_error = detail::other_error;
19496
19497 /// @}
19498
19499 /////////////////////
19500 // container types //
19501 /////////////////////
19502
19503 /// @name container types
19504 /// The canonic container types to use @ref basic_json like any other STL
19505 /// container.
19506 /// @{
19507
19508 /// the type of elements in a basic_json container
19509 using value_type = basic_json;
19510
19511 /// the type of an element reference
19512 using reference = value_type&;
19513 /// the type of an element const reference
19514 using const_reference = const value_type&;
19515
19516 /// a type to represent differences between iterators
19517 using difference_type = std::ptrdiff_t;
19518 /// a type to represent container sizes
19519 using size_type = std::size_t;
19520
19521 /// the allocator type
19522 using allocator_type = AllocatorType<basic_json>;
19523
19524 /// the type of an element pointer
19525 using pointer = typename std::allocator_traits<allocator_type>::pointer;
19526 /// the type of an element const pointer
19527 using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
19528
19529 /// an iterator for a basic_json container
19530 using iterator = iter_impl<basic_json>;
19531 /// a const iterator for a basic_json container
19532 using const_iterator = iter_impl<const basic_json>;
19533 /// a reverse iterator for a basic_json container
19534 using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>;
19535 /// a const reverse iterator for a basic_json container
19536 using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>;
19537
19538 /// @}
19539
19540 /// @brief returns the allocator associated with the container
19541 /// @sa https://json.nlohmann.me/api/basic_json/get_allocator/
19542 static allocator_type get_allocator()
19543 {
19544 return allocator_type();
19545 }
19546
19547 /// @brief returns version information on the library
19548 /// @sa https://json.nlohmann.me/api/basic_json/meta/
19549 JSON_HEDLEY_WARN_UNUSED_RESULT
19550 static basic_json meta()
19551 {
19552 basic_json result;
19553
19554 result["copyright"] = "(C) 2013-2023 Niels Lohmann";
19555 result["name"] = "JSON for Modern C++";
19556 result["url"] = "https://github.com/nlohmann/json";
19557 result["version"]["string"] =
19558 detail::concat(std::to_string(NLOHMANN_JSON_VERSION_MAJOR), '.',
19559 std::to_string(NLOHMANN_JSON_VERSION_MINOR), '.',
19560 std::to_string(NLOHMANN_JSON_VERSION_PATCH));
19561 result["version"]["major"] = NLOHMANN_JSON_VERSION_MAJOR;
19562 result["version"]["minor"] = NLOHMANN_JSON_VERSION_MINOR;
19563 result["version"]["patch"] = NLOHMANN_JSON_VERSION_PATCH;
19564
19565 #ifdef _WIN32
19566 result["platform"] = "win32";
19567 #elif defined __linux__
19568 result["platform"] = "linux";
19569 #elif defined __APPLE__
19570 result["platform"] = "apple";
19571 #elif defined __unix__
19572 result["platform"] = "unix";
19573 #else
19574 result["platform"] = "unknown";
19575 #endif
19576
19577 #if defined(__ICC) || defined(__INTEL_COMPILER)
19578 result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
19579 #elif defined(__clang__)
19580 result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
19581 #elif defined(__GNUC__) || defined(__GNUG__)
19582 result["compiler"] = {{"family", "gcc"}, {"version", detail::concat(
19583 std::to_string(__GNUC__), '.',
19584 std::to_string(__GNUC_MINOR__), '.',
19585 std::to_string(__GNUC_PATCHLEVEL__))
19586 }
19587 };
19588 #elif defined(__HP_cc) || defined(__HP_aCC)
19589 result["compiler"] = "hp"
19590 #elif defined(__IBMCPP__)
19591 result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
19592 #elif defined(_MSC_VER)
19593 result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
19594 #elif defined(__PGI)
19595 result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
19596 #elif defined(__SUNPRO_CC)
19597 result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
19598 #else
19599 result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
19600 #endif
19601
19602 #if defined(_MSVC_LANG)
19603 result["compiler"]["c++"] = std::to_string(_MSVC_LANG);
19604 #elif defined(__cplusplus)
19605 result["compiler"]["c++"] = std::to_string(__cplusplus);
19606 #else
19607 result["compiler"]["c++"] = "unknown";
19608 #endif
19609 return result;
19610 }
19611
19612 ///////////////////////////
19613 // JSON value data types //
19614 ///////////////////////////
19615
19616 /// @name JSON value data types
19617 /// The data types to store a JSON value. These types are derived from
19618 /// the template arguments passed to class @ref basic_json.
19619 /// @{
19620
19621 /// @brief default object key comparator type
19622 /// The actual object key comparator type (@ref object_comparator_t) may be
19623 /// different.
19624 /// @sa https://json.nlohmann.me/api/basic_json/default_object_comparator_t/
19625 #if defined(JSON_HAS_CPP_14)
19626 // use of transparent comparator avoids unnecessary repeated construction of temporaries
19627 // in functions involving lookup by key with types other than object_t::key_type (aka. StringType)
19628 using default_object_comparator_t = std::less<>;
19629 #else
19630 using default_object_comparator_t = std::less<StringType>;
19631 #endif
19632
19633 /// @brief a type for an object
19634 /// @sa https://json.nlohmann.me/api/basic_json/object_t/
19635 using object_t = ObjectType<StringType,
19636 basic_json,
19637 default_object_comparator_t,
19638 AllocatorType<std::pair<const StringType,
19639 basic_json>>>;
19640
19641 /// @brief a type for an array
19642 /// @sa https://json.nlohmann.me/api/basic_json/array_t/
19643 using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
19644
19645 /// @brief a type for a string
19646 /// @sa https://json.nlohmann.me/api/basic_json/string_t/
19647 using string_t = StringType;
19648
19649 /// @brief a type for a boolean
19650 /// @sa https://json.nlohmann.me/api/basic_json/boolean_t/
19651 using boolean_t = BooleanType;
19652
19653 /// @brief a type for a number (integer)
19654 /// @sa https://json.nlohmann.me/api/basic_json/number_integer_t/
19655 using number_integer_t = NumberIntegerType;
19656
19657 /// @brief a type for a number (unsigned)
19658 /// @sa https://json.nlohmann.me/api/basic_json/number_unsigned_t/
19659 using number_unsigned_t = NumberUnsignedType;
19660
19661 /// @brief a type for a number (floating-point)
19662 /// @sa https://json.nlohmann.me/api/basic_json/number_float_t/
19663 using number_float_t = NumberFloatType;
19664
19665 /// @brief a type for a packed binary type
19666 /// @sa https://json.nlohmann.me/api/basic_json/binary_t/
19667 using binary_t = nlohmann::byte_container_with_subtype<BinaryType>;
19668
19669 /// @brief object key comparator type
19670 /// @sa https://json.nlohmann.me/api/basic_json/object_comparator_t/
19671 using object_comparator_t = detail::actual_object_comparator_t<basic_json>;
19672
19673 /// @}
19674
19675 private:
19676
19677 /// helper for exception-safe object creation
19678 template<typename T, typename... Args>
19679 JSON_HEDLEY_RETURNS_NON_NULL
19680 static T* create(Args&& ... args)
19681 {
19682 AllocatorType<T> alloc;
19683 using AllocatorTraits = std::allocator_traits<AllocatorType<T>>;
19684
19685 auto deleter = [&](T * obj)
19686 {
19687 AllocatorTraits::deallocate(alloc, obj, 1);
19688 };
19689 std::unique_ptr<T, decltype(deleter)> obj(AllocatorTraits::allocate(alloc, 1), deleter);
19690 AllocatorTraits::construct(alloc, obj.get(), std::forward<Args>(args)...);
19691 JSON_ASSERT(obj != nullptr);
19692 return obj.release();
19693 }
19694
19695 ////////////////////////
19696 // JSON value storage //
19697 ////////////////////////
19698
19699 JSON_PRIVATE_UNLESS_TESTED:
19700 /*!
19701 @brief a JSON value
19702
19703 The actual storage for a JSON value of the @ref basic_json class. This
19704 union combines the different storage types for the JSON value types
19705 defined in @ref value_t.
19706
19707 JSON type | value_t type | used type
19708 --------- | --------------- | ------------------------
19709 object | object | pointer to @ref object_t
19710 array | array | pointer to @ref array_t
19711 string | string | pointer to @ref string_t
19712 boolean | boolean | @ref boolean_t
19713 number | number_integer | @ref number_integer_t
19714 number | number_unsigned | @ref number_unsigned_t
19715 number | number_float | @ref number_float_t
19716 binary | binary | pointer to @ref binary_t
19717 null | null | *no value is stored*
19718
19719 @note Variable-length types (objects, arrays, and strings) are stored as
19720 pointers. The size of the union should not exceed 64 bits if the default
19721 value types are used.
19722
19723 @since version 1.0.0
19724 */
19725 union json_value
19726 {
19727 /// object (stored with pointer to save storage)
19728 object_t* object;
19729 /// array (stored with pointer to save storage)
19730 array_t* array;
19731 /// string (stored with pointer to save storage)
19732 string_t* string;
19733 /// binary (stored with pointer to save storage)
19734 binary_t* binary;
19735 /// boolean
19736 boolean_t boolean;
19737 /// number (integer)
19738 number_integer_t number_integer;
19739 /// number (unsigned integer)
19740 number_unsigned_t number_unsigned;
19741 /// number (floating-point)
19742 number_float_t number_float;
19743
19744 /// default constructor (for null values)
19745 json_value() = default;
19746 /// constructor for booleans
19747 json_value(boolean_t v) noexcept : boolean(v) {}
19748 /// constructor for numbers (integer)
19749 json_value(number_integer_t v) noexcept : number_integer(v) {}
19750 /// constructor for numbers (unsigned)
19751 json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
19752 /// constructor for numbers (floating-point)
19753 json_value(number_float_t v) noexcept : number_float(v) {}
19754 /// constructor for empty values of a given type
19755 json_value(value_t t)
19756 {
19757 switch (t)
19758 {
19759 case value_t::object:
19760 {
19761 object = create<object_t>();
19762 break;
19763 }
19764
19765 case value_t::array:
19766 {
19767 array = create<array_t>();
19768 break;
19769 }
19770
19771 case value_t::string:
19772 {
19773 string = create<string_t>("");
19774 break;
19775 }
19776
19777 case value_t::binary:
19778 {
19779 binary = create<binary_t>();
19780 break;
19781 }
19782
19783 case value_t::boolean:
19784 {
19785 boolean = static_cast<boolean_t>(false);
19786 break;
19787 }
19788
19789 case value_t::number_integer:
19790 {
19791 number_integer = static_cast<number_integer_t>(0);
19792 break;
19793 }
19794
19795 case value_t::number_unsigned:
19796 {
19797 number_unsigned = static_cast<number_unsigned_t>(0);
19798 break;
19799 }
19800
19801 case value_t::number_float:
19802 {
19803 number_float = static_cast<number_float_t>(0.0);
19804 break;
19805 }
19806
19807 case value_t::null:
19808 {
19809 object = nullptr; // silence warning, see #821
19810 break;
19811 }
19812
19813 case value_t::discarded:
19814 default:
19815 {
19816 object = nullptr; // silence warning, see #821
19817 if (JSON_HEDLEY_UNLIKELY(t == value_t::null))
19818 {
19819 JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.11.3", nullptr)); // LCOV_EXCL_LINE
19820 }
19821 break;
19822 }
19823 }
19824 }
19825
19826 /// constructor for strings
19827 json_value(const string_t& value) : string(create<string_t>(value)) {}
19828
19829 /// constructor for rvalue strings
19830 json_value(string_t&& value) : string(create<string_t>(std::move(value))) {}
19831
19832 /// constructor for objects
19833 json_value(const object_t& value) : object(create<object_t>(value)) {}
19834
19835 /// constructor for rvalue objects
19836 json_value(object_t&& value) : object(create<object_t>(std::move(value))) {}
19837
19838 /// constructor for arrays
19839 json_value(const array_t& value) : array(create<array_t>(value)) {}
19840
19841 /// constructor for rvalue arrays
19842 json_value(array_t&& value) : array(create<array_t>(std::move(value))) {}
19843
19844 /// constructor for binary arrays
19845 json_value(const typename binary_t::container_type& value) : binary(create<binary_t>(value)) {}
19846
19847 /// constructor for rvalue binary arrays
19848 json_value(typename binary_t::container_type&& value) : binary(create<binary_t>(std::move(value))) {}
19849
19850 /// constructor for binary arrays (internal type)
19851 json_value(const binary_t& value) : binary(create<binary_t>(value)) {}
19852
19853 /// constructor for rvalue binary arrays (internal type)
19854 json_value(binary_t&& value) : binary(create<binary_t>(std::move(value))) {}
19855
19856 void destroy(value_t t)
19857 {
19858 if (
19859 (t == value_t::object && object == nullptr) ||
19860 (t == value_t::array && array == nullptr) ||
19861 (t == value_t::string && string == nullptr) ||
19862 (t == value_t::binary && binary == nullptr)
19863 )
19864 {
19865 //not initialized (e.g. due to exception in the ctor)
19866 return;
19867 }
19868 if (t == value_t::array || t == value_t::object)
19869 {
19870 // flatten the current json_value to a heap-allocated stack
19871 std::vector<basic_json> stack;
19872
19873 // move the top-level items to stack
19874 if (t == value_t::array)
19875 {
19876 stack.reserve(array->size());
19877 std::move(array->begin(), array->end(), std::back_inserter(stack));
19878 }
19879 else
19880 {
19881 stack.reserve(object->size());
19882 for (auto&& it : *object)
19883 {
19884 stack.push_back(std::move(it.second));
19885 }
19886 }
19887
19888 while (!stack.empty())
19889 {
19890 // move the last item to local variable to be processed
19891 basic_json current_item(std::move(stack.back()));
19892 stack.pop_back();
19893
19894 // if current_item is array/object, move
19895 // its children to the stack to be processed later
19896 if (current_item.is_array())
19897 {
19898 std::move(current_item.m_data.m_value.array->begin(), current_item.m_data.m_value.array->end(), std::back_inserter(stack));
19899
19900 current_item.m_data.m_value.array->clear();
19901 }
19902 else if (current_item.is_object())
19903 {
19904 for (auto&& it : *current_item.m_data.m_value.object)
19905 {
19906 stack.push_back(std::move(it.second));
19907 }
19908
19909 current_item.m_data.m_value.object->clear();
19910 }
19911
19912 // it's now safe that current_item get destructed
19913 // since it doesn't have any children
19914 }
19915 }
19916
19917 switch (t)
19918 {
19919 case value_t::object:
19920 {
19921 AllocatorType<object_t> alloc;
19922 std::allocator_traits<decltype(alloc)>::destroy(alloc, object);
19923 std::allocator_traits<decltype(alloc)>::deallocate(alloc, object, 1);
19924 break;
19925 }
19926
19927 case value_t::array:
19928 {
19929 AllocatorType<array_t> alloc;
19930 std::allocator_traits<decltype(alloc)>::destroy(alloc, array);
19931 std::allocator_traits<decltype(alloc)>::deallocate(alloc, array, 1);
19932 break;
19933 }
19934
19935 case value_t::string:
19936 {
19937 AllocatorType<string_t> alloc;
19938 std::allocator_traits<decltype(alloc)>::destroy(alloc, string);
19939 std::allocator_traits<decltype(alloc)>::deallocate(alloc, string, 1);
19940 break;
19941 }
19942
19943 case value_t::binary:
19944 {
19945 AllocatorType<binary_t> alloc;
19946 std::allocator_traits<decltype(alloc)>::destroy(alloc, binary);
19947 std::allocator_traits<decltype(alloc)>::deallocate(alloc, binary, 1);
19948 break;
19949 }
19950
19951 case value_t::null:
19952 case value_t::boolean:
19953 case value_t::number_integer:
19954 case value_t::number_unsigned:
19955 case value_t::number_float:
19956 case value_t::discarded:
19957 default:
19958 {
19959 break;
19960 }
19961 }
19962 }
19963 };
19964
19965 private:
19966 /*!
19967 @brief checks the class invariants
19968
19969 This function asserts the class invariants. It needs to be called at the
19970 end of every constructor to make sure that created objects respect the
19971 invariant. Furthermore, it has to be called each time the type of a JSON
19972 value is changed, because the invariant expresses a relationship between
19973 @a m_type and @a m_value.
19974
19975 Furthermore, the parent relation is checked for arrays and objects: If
19976 @a check_parents true and the value is an array or object, then the
19977 container's elements must have the current value as parent.
19978
19979 @param[in] check_parents whether the parent relation should be checked.
19980 The value is true by default and should only be set to false
19981 during destruction of objects when the invariant does not
19982 need to hold.
19983 */
19984 void assert_invariant(bool check_parents = true) const noexcept
19985 {
19986 JSON_ASSERT(m_data.m_type != value_t::object || m_data.m_value.object != nullptr);
19987 JSON_ASSERT(m_data.m_type != value_t::array || m_data.m_value.array != nullptr);
19988 JSON_ASSERT(m_data.m_type != value_t::string || m_data.m_value.string != nullptr);
19989 JSON_ASSERT(m_data.m_type != value_t::binary || m_data.m_value.binary != nullptr);
19990
19991 #if JSON_DIAGNOSTICS
19992 JSON_TRY
19993 {
19994 // cppcheck-suppress assertWithSideEffect
19995 JSON_ASSERT(!check_parents || !is_structured() || std::all_of(begin(), end(), [this](const basic_json & j)
19996 {
19997 return j.m_parent == this;
19998 }));
19999 }
20000 JSON_CATCH(...) {} // LCOV_EXCL_LINE
20001 #endif
20002 static_cast<void>(check_parents);
20003 }
20004
20005 void set_parents()
20006 {
20007 #if JSON_DIAGNOSTICS
20008 switch (m_data.m_type)
20009 {
20010 case value_t::array:
20011 {
20012 for (auto& element : *m_data.m_value.array)
20013 {
20014 element.m_parent = this;
20015 }
20016 break;
20017 }
20018
20019 case value_t::object:
20020 {
20021 for (auto& element : *m_data.m_value.object)
20022 {
20023 element.second.m_parent = this;
20024 }
20025 break;
20026 }
20027
20028 case value_t::null:
20029 case value_t::string:
20030 case value_t::boolean:
20031 case value_t::number_integer:
20032 case value_t::number_unsigned:
20033 case value_t::number_float:
20034 case value_t::binary:
20035 case value_t::discarded:
20036 default:
20037 break;
20038 }
20039 #endif
20040 }
20041
20042 iterator set_parents(iterator it, typename iterator::difference_type count_set_parents)
20043 {
20044 #if JSON_DIAGNOSTICS
20045 for (typename iterator::difference_type i = 0; i < count_set_parents; ++i)
20046 {
20047 (it + i)->m_parent = this;
20048 }
20049 #else
20050 static_cast<void>(count_set_parents);
20051 #endif
20052 return it;
20053 }
20054
20055 reference set_parent(reference j, std::size_t old_capacity = static_cast<std::size_t>(-1))
20056 {
20057 #if JSON_DIAGNOSTICS
20058 if (old_capacity != static_cast<std::size_t>(-1))
20059 {
20060 // see https://github.com/nlohmann/json/issues/2838
20061 JSON_ASSERT(type() == value_t::array);
20062 if (JSON_HEDLEY_UNLIKELY(m_data.m_value.array->capacity() != old_capacity))
20063 {
20064 // capacity has changed: update all parents
20065 set_parents();
20066 return j;
20067 }
20068 }
20069
20070 // ordered_json uses a vector internally, so pointers could have
20071 // been invalidated; see https://github.com/nlohmann/json/issues/2962
20072 #ifdef JSON_HEDLEY_MSVC_VERSION
20073 #pragma warning(push )
20074 #pragma warning(disable : 4127) // ignore warning to replace if with if constexpr
20075 #endif
20076 if (detail::is_ordered_map<object_t>::value)
20077 {
20078 set_parents();
20079 return j;
20080 }
20081 #ifdef JSON_HEDLEY_MSVC_VERSION
20082 #pragma warning( pop )
20083 #endif
20084
20085 j.m_parent = this;
20086 #else
20087 static_cast<void>(j);
20088 static_cast<void>(old_capacity);
20089 #endif
20090 return j;
20091 }
20092
20093 public:
20094 //////////////////////////
20095 // JSON parser callback //
20096 //////////////////////////
20097
20098 /// @brief parser event types
20099 /// @sa https://json.nlohmann.me/api/basic_json/parse_event_t/
20100 using parse_event_t = detail::parse_event_t;
20101
20102 /// @brief per-element parser callback type
20103 /// @sa https://json.nlohmann.me/api/basic_json/parser_callback_t/
20104 using parser_callback_t = detail::parser_callback_t<basic_json>;
20105
20106 //////////////////
20107 // constructors //
20108 //////////////////
20109
20110 /// @name constructors and destructors
20111 /// Constructors of class @ref basic_json, copy/move constructor, copy
20112 /// assignment, static functions creating objects, and the destructor.
20113 /// @{
20114
20115 /// @brief create an empty value with a given type
20116 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20117 basic_json(const value_t v)
20118 : m_data(v)
20119 {
20120 assert_invariant();
20121 }
20122
20123 /// @brief create a null object
20124 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20125 basic_json(std::nullptr_t = nullptr) noexcept // NOLINT(bugprone-exception-escape)
20126 : basic_json(value_t::null)
20127 {
20128 assert_invariant();
20129 }
20130
20131 /// @brief create a JSON value from compatible types
20132 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20133 template < typename CompatibleType,
20134 typename U = detail::uncvref_t<CompatibleType>,
20135 detail::enable_if_t <
20136 !detail::is_basic_json<U>::value && detail::is_compatible_type<basic_json_t, U>::value, int > = 0 >
20137 basic_json(CompatibleType && val) noexcept(noexcept( // NOLINT(bugprone-forwarding-reference-overload,bugprone-exception-escape)
20138 JSONSerializer<U>::to_json(std::declval<basic_json_t&>(),
20139 std::forward<CompatibleType>(val))))
20140 {
20141 JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
20142 set_parents();
20143 assert_invariant();
20144 }
20145
20146 /// @brief create a JSON value from an existing one
20147 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20148 template < typename BasicJsonType,
20149 detail::enable_if_t <
20150 detail::is_basic_json<BasicJsonType>::value&& !std::is_same<basic_json, BasicJsonType>::value, int > = 0 >
20151 basic_json(const BasicJsonType& val)
20152 {
20153 using other_boolean_t = typename BasicJsonType::boolean_t;
20154 using other_number_float_t = typename BasicJsonType::number_float_t;
20155 using other_number_integer_t = typename BasicJsonType::number_integer_t;
20156 using other_number_unsigned_t = typename BasicJsonType::number_unsigned_t;
20157 using other_string_t = typename BasicJsonType::string_t;
20158 using other_object_t = typename BasicJsonType::object_t;
20159 using other_array_t = typename BasicJsonType::array_t;
20160 using other_binary_t = typename BasicJsonType::binary_t;
20161
20162 switch (val.type())
20163 {
20164 case value_t::boolean:
20165 JSONSerializer<other_boolean_t>::to_json(*this, val.template get<other_boolean_t>());
20166 break;
20167 case value_t::number_float:
20168 JSONSerializer<other_number_float_t>::to_json(*this, val.template get<other_number_float_t>());
20169 break;
20170 case value_t::number_integer:
20171 JSONSerializer<other_number_integer_t>::to_json(*this, val.template get<other_number_integer_t>());
20172 break;
20173 case value_t::number_unsigned:
20174 JSONSerializer<other_number_unsigned_t>::to_json(*this, val.template get<other_number_unsigned_t>());
20175 break;
20176 case value_t::string:
20177 JSONSerializer<other_string_t>::to_json(*this, val.template get_ref<const other_string_t&>());
20178 break;
20179 case value_t::object:
20180 JSONSerializer<other_object_t>::to_json(*this, val.template get_ref<const other_object_t&>());
20181 break;
20182 case value_t::array:
20183 JSONSerializer<other_array_t>::to_json(*this, val.template get_ref<const other_array_t&>());
20184 break;
20185 case value_t::binary:
20186 JSONSerializer<other_binary_t>::to_json(*this, val.template get_ref<const other_binary_t&>());
20187 break;
20188 case value_t::null:
20189 *this = nullptr;
20190 break;
20191 case value_t::discarded:
20192 m_data.m_type = value_t::discarded;
20193 break;
20194 default: // LCOV_EXCL_LINE
20195 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
20196 }
20197 JSON_ASSERT(m_data.m_type == val.type());
20198 set_parents();
20199 assert_invariant();
20200 }
20201
20202 /// @brief create a container (array or object) from an initializer list
20203 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20204 basic_json(initializer_list_t init,
20205 bool type_deduction = true,
20206 value_t manual_type = value_t::array)
20207 {
20208 // check if each element is an array with two elements whose first
20209 // element is a string
20210 bool is_an_object = std::all_of(init.begin(), init.end(),
20211 [](const detail::json_ref<basic_json>& element_ref)
20212 {
20213 // The cast is to ensure op[size_type] is called, bearing in mind size_type may not be int;
20214 // (many string types can be constructed from 0 via its null-pointer guise, so we get a
20215 // broken call to op[key_type], the wrong semantics and a 4804 warning on Windows)
20216 return element_ref->is_array() && element_ref->size() == 2 && (*element_ref)[static_cast<size_type>(0)].is_string();
20217 });
20218
20219 // adjust type if type deduction is not wanted
20220 if (!type_deduction)
20221 {
20222 // if array is wanted, do not create an object though possible
20223 if (manual_type == value_t::array)
20224 {
20225 is_an_object = false;
20226 }
20227
20228 // if object is wanted but impossible, throw an exception
20229 if (JSON_HEDLEY_UNLIKELY(manual_type == value_t::object && !is_an_object))
20230 {
20231 JSON_THROW(type_error::create(301, "cannot create object from initializer list", nullptr));
20232 }
20233 }
20234
20235 if (is_an_object)
20236 {
20237 // the initializer list is a list of pairs -> create object
20238 m_data.m_type = value_t::object;
20239 m_data.m_value = value_t::object;
20240
20241 for (auto& element_ref : init)
20242 {
20243 auto element = element_ref.moved_or_copied();
20244 m_data.m_value.object->emplace(
20245 std::move(*((*element.m_data.m_value.array)[0].m_data.m_value.string)),
20246 std::move((*element.m_data.m_value.array)[1]));
20247 }
20248 }
20249 else
20250 {
20251 // the initializer list describes an array -> create array
20252 m_data.m_type = value_t::array;
20253 m_data.m_value.array = create<array_t>(init.begin(), init.end());
20254 }
20255
20256 set_parents();
20257 assert_invariant();
20258 }
20259
20260 /// @brief explicitly create a binary array (without subtype)
20261 /// @sa https://json.nlohmann.me/api/basic_json/binary/
20262 JSON_HEDLEY_WARN_UNUSED_RESULT
20263 static basic_json binary(const typename binary_t::container_type& init)
20264 {
20265 auto res = basic_json();
20266 res.m_data.m_type = value_t::binary;
20267 res.m_data.m_value = init;
20268 return res;
20269 }
20270
20271 /// @brief explicitly create a binary array (with subtype)
20272 /// @sa https://json.nlohmann.me/api/basic_json/binary/
20273 JSON_HEDLEY_WARN_UNUSED_RESULT
20274 static basic_json binary(const typename binary_t::container_type& init, typename binary_t::subtype_type subtype)
20275 {
20276 auto res = basic_json();
20277 res.m_data.m_type = value_t::binary;
20278 res.m_data.m_value = binary_t(init, subtype);
20279 return res;
20280 }
20281
20282 /// @brief explicitly create a binary array
20283 /// @sa https://json.nlohmann.me/api/basic_json/binary/
20284 JSON_HEDLEY_WARN_UNUSED_RESULT
20285 static basic_json binary(typename binary_t::container_type&& init)
20286 {
20287 auto res = basic_json();
20288 res.m_data.m_type = value_t::binary;
20289 res.m_data.m_value = std::move(init);
20290 return res;
20291 }
20292
20293 /// @brief explicitly create a binary array (with subtype)
20294 /// @sa https://json.nlohmann.me/api/basic_json/binary/
20295 JSON_HEDLEY_WARN_UNUSED_RESULT
20296 static basic_json binary(typename binary_t::container_type&& init, typename binary_t::subtype_type subtype)
20297 {
20298 auto res = basic_json();
20299 res.m_data.m_type = value_t::binary;
20300 res.m_data.m_value = binary_t(std::move(init), subtype);
20301 return res;
20302 }
20303
20304 /// @brief explicitly create an array from an initializer list
20305 /// @sa https://json.nlohmann.me/api/basic_json/array/
20306 JSON_HEDLEY_WARN_UNUSED_RESULT
20307 static basic_json array(initializer_list_t init = {})
20308 {
20309 return basic_json(init, false, value_t::array);
20310 }
20311
20312 /// @brief explicitly create an object from an initializer list
20313 /// @sa https://json.nlohmann.me/api/basic_json/object/
20314 JSON_HEDLEY_WARN_UNUSED_RESULT
20315 static basic_json object(initializer_list_t init = {})
20316 {
20317 return basic_json(init, false, value_t::object);
20318 }
20319
20320 /// @brief construct an array with count copies of given value
20321 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20322 basic_json(size_type cnt, const basic_json& val):
20323 m_data{cnt, val}
20324 {
20325 set_parents();
20326 assert_invariant();
20327 }
20328
20329 /// @brief construct a JSON container given an iterator range
20330 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20331 template < class InputIT, typename std::enable_if <
20332 std::is_same<InputIT, typename basic_json_t::iterator>::value ||
20333 std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int >::type = 0 >
20334 basic_json(InputIT first, InputIT last)
20335 {
20336 JSON_ASSERT(first.m_object != nullptr);
20337 JSON_ASSERT(last.m_object != nullptr);
20338
20339 // make sure iterator fits the current value
20340 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
20341 {
20342 JSON_THROW(invalid_iterator::create(201, "iterators are not compatible", nullptr));
20343 }
20344
20345 // copy type from first iterator
20346 m_data.m_type = first.m_object->m_data.m_type;
20347
20348 // check if iterator range is complete for primitive values
20349 switch (m_data.m_type)
20350 {
20351 case value_t::boolean:
20352 case value_t::number_float:
20353 case value_t::number_integer:
20354 case value_t::number_unsigned:
20355 case value_t::string:
20356 {
20357 if (JSON_HEDLEY_UNLIKELY(!first.m_it.primitive_iterator.is_begin()
20358 || !last.m_it.primitive_iterator.is_end()))
20359 {
20360 JSON_THROW(invalid_iterator::create(204, "iterators out of range", first.m_object));
20361 }
20362 break;
20363 }
20364
20365 case value_t::null:
20366 case value_t::object:
20367 case value_t::array:
20368 case value_t::binary:
20369 case value_t::discarded:
20370 default:
20371 break;
20372 }
20373
20374 switch (m_data.m_type)
20375 {
20376 case value_t::number_integer:
20377 {
20378 m_data.m_value.number_integer = first.m_object->m_data.m_value.number_integer;
20379 break;
20380 }
20381
20382 case value_t::number_unsigned:
20383 {
20384 m_data.m_value.number_unsigned = first.m_object->m_data.m_value.number_unsigned;
20385 break;
20386 }
20387
20388 case value_t::number_float:
20389 {
20390 m_data.m_value.number_float = first.m_object->m_data.m_value.number_float;
20391 break;
20392 }
20393
20394 case value_t::boolean:
20395 {
20396 m_data.m_value.boolean = first.m_object->m_data.m_value.boolean;
20397 break;
20398 }
20399
20400 case value_t::string:
20401 {
20402 m_data.m_value = *first.m_object->m_data.m_value.string;
20403 break;
20404 }
20405
20406 case value_t::object:
20407 {
20408 m_data.m_value.object = create<object_t>(first.m_it.object_iterator,
20409 last.m_it.object_iterator);
20410 break;
20411 }
20412
20413 case value_t::array:
20414 {
20415 m_data.m_value.array = create<array_t>(first.m_it.array_iterator,
20416 last.m_it.array_iterator);
20417 break;
20418 }
20419
20420 case value_t::binary:
20421 {
20422 m_data.m_value = *first.m_object->m_data.m_value.binary;
20423 break;
20424 }
20425
20426 case value_t::null:
20427 case value_t::discarded:
20428 default:
20429 JSON_THROW(invalid_iterator::create(206, detail::concat("cannot construct with iterators from ", first.m_object->type_name()), first.m_object));
20430 }
20431
20432 set_parents();
20433 assert_invariant();
20434 }
20435
20436 ///////////////////////////////////////
20437 // other constructors and destructor //
20438 ///////////////////////////////////////
20439
20440 template<typename JsonRef,
20441 detail::enable_if_t<detail::conjunction<detail::is_json_ref<JsonRef>,
20442 std::is_same<typename JsonRef::value_type, basic_json>>::value, int> = 0 >
20443 basic_json(const JsonRef& ref) : basic_json(ref.moved_or_copied()) {}
20444
20445 /// @brief copy constructor
20446 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20447 basic_json(const basic_json& other)
20448 : json_base_class_t(other)
20449 {
20450 m_data.m_type = other.m_data.m_type;
20451 // check of passed value is valid
20452 other.assert_invariant();
20453
20454 switch (m_data.m_type)
20455 {
20456 case value_t::object:
20457 {
20458 m_data.m_value = *other.m_data.m_value.object;
20459 break;
20460 }
20461
20462 case value_t::array:
20463 {
20464 m_data.m_value = *other.m_data.m_value.array;
20465 break;
20466 }
20467
20468 case value_t::string:
20469 {
20470 m_data.m_value = *other.m_data.m_value.string;
20471 break;
20472 }
20473
20474 case value_t::boolean:
20475 {
20476 m_data.m_value = other.m_data.m_value.boolean;
20477 break;
20478 }
20479
20480 case value_t::number_integer:
20481 {
20482 m_data.m_value = other.m_data.m_value.number_integer;
20483 break;
20484 }
20485
20486 case value_t::number_unsigned:
20487 {
20488 m_data.m_value = other.m_data.m_value.number_unsigned;
20489 break;
20490 }
20491
20492 case value_t::number_float:
20493 {
20494 m_data.m_value = other.m_data.m_value.number_float;
20495 break;
20496 }
20497
20498 case value_t::binary:
20499 {
20500 m_data.m_value = *other.m_data.m_value.binary;
20501 break;
20502 }
20503
20504 case value_t::null:
20505 case value_t::discarded:
20506 default:
20507 break;
20508 }
20509
20510 set_parents();
20511 assert_invariant();
20512 }
20513
20514 /// @brief move constructor
20515 /// @sa https://json.nlohmann.me/api/basic_json/basic_json/
20516 basic_json(basic_json&& other) noexcept
20517 : json_base_class_t(std::forward<json_base_class_t>(other)),
20518 m_data(std::move(other.m_data))
20519 {
20520 // check that passed value is valid
20521 other.assert_invariant(false);
20522
20523 // invalidate payload
20524 other.m_data.m_type = value_t::null;
20525 other.m_data.m_value = {};
20526
20527 set_parents();
20528 assert_invariant();
20529 }
20530
20531 /// @brief copy assignment
20532 /// @sa https://json.nlohmann.me/api/basic_json/operator=/
20533 basic_json& operator=(basic_json other) noexcept (
20534 std::is_nothrow_move_constructible<value_t>::value&&
20535 std::is_nothrow_move_assignable<value_t>::value&&
20536 std::is_nothrow_move_constructible<json_value>::value&&
20537 std::is_nothrow_move_assignable<json_value>::value&&
20538 std::is_nothrow_move_assignable<json_base_class_t>::value
20539 )
20540 {
20541 // check that passed value is valid
20542 other.assert_invariant();
20543
20544 using std::swap;
20545 swap(m_data.m_type, other.m_data.m_type);
20546 swap(m_data.m_value, other.m_data.m_value);
20547 json_base_class_t::operator=(std::move(other));
20548
20549 set_parents();
20550 assert_invariant();
20551 return *this;
20552 }
20553
20554 /// @brief destructor
20555 /// @sa https://json.nlohmann.me/api/basic_json/~basic_json/
20556 ~basic_json() noexcept
20557 {
20558 assert_invariant(false);
20559 }
20560
20561 /// @}
20562
20563 public:
20564 ///////////////////////
20565 // object inspection //
20566 ///////////////////////
20567
20568 /// @name object inspection
20569 /// Functions to inspect the type of a JSON value.
20570 /// @{
20571
20572 /// @brief serialization
20573 /// @sa https://json.nlohmann.me/api/basic_json/dump/
20574 string_t dump(const int indent = -1,
20575 const char indent_char = ' ',
20576 const bool ensure_ascii = false,
20577 const error_handler_t error_handler = error_handler_t::strict) const
20578 {
20579 string_t result;
20580 serializer s(detail::output_adapter<char, string_t>(result), indent_char, error_handler);
20581
20582 if (indent >= 0)
20583 {
20584 s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent));
20585 }
20586 else
20587 {
20588 s.dump(*this, false, ensure_ascii, 0);
20589 }
20590
20591 return result;
20592 }
20593
20594 /// @brief return the type of the JSON value (explicit)
20595 /// @sa https://json.nlohmann.me/api/basic_json/type/
20596 constexpr value_t type() const noexcept
20597 {
20598 return m_data.m_type;
20599 }
20600
20601 /// @brief return whether type is primitive
20602 /// @sa https://json.nlohmann.me/api/basic_json/is_primitive/
20603 constexpr bool is_primitive() const noexcept
20604 {
20605 return is_null() || is_string() || is_boolean() || is_number() || is_binary();
20606 }
20607
20608 /// @brief return whether type is structured
20609 /// @sa https://json.nlohmann.me/api/basic_json/is_structured/
20610 constexpr bool is_structured() const noexcept
20611 {
20612 return is_array() || is_object();
20613 }
20614
20615 /// @brief return whether value is null
20616 /// @sa https://json.nlohmann.me/api/basic_json/is_null/
20617 constexpr bool is_null() const noexcept
20618 {
20619 return m_data.m_type == value_t::null;
20620 }
20621
20622 /// @brief return whether value is a boolean
20623 /// @sa https://json.nlohmann.me/api/basic_json/is_boolean/
20624 constexpr bool is_boolean() const noexcept
20625 {
20626 return m_data.m_type == value_t::boolean;
20627 }
20628
20629 /// @brief return whether value is a number
20630 /// @sa https://json.nlohmann.me/api/basic_json/is_number/
20631 constexpr bool is_number() const noexcept
20632 {
20633 return is_number_integer() || is_number_float();
20634 }
20635
20636 /// @brief return whether value is an integer number
20637 /// @sa https://json.nlohmann.me/api/basic_json/is_number_integer/
20638 constexpr bool is_number_integer() const noexcept
20639 {
20640 return m_data.m_type == value_t::number_integer || m_data.m_type == value_t::number_unsigned;
20641 }
20642
20643 /// @brief return whether value is an unsigned integer number
20644 /// @sa https://json.nlohmann.me/api/basic_json/is_number_unsigned/
20645 constexpr bool is_number_unsigned() const noexcept
20646 {
20647 return m_data.m_type == value_t::number_unsigned;
20648 }
20649
20650 /// @brief return whether value is a floating-point number
20651 /// @sa https://json.nlohmann.me/api/basic_json/is_number_float/
20652 constexpr bool is_number_float() const noexcept
20653 {
20654 return m_data.m_type == value_t::number_float;
20655 }
20656
20657 /// @brief return whether value is an object
20658 /// @sa https://json.nlohmann.me/api/basic_json/is_object/
20659 constexpr bool is_object() const noexcept
20660 {
20661 return m_data.m_type == value_t::object;
20662 }
20663
20664 /// @brief return whether value is an array
20665 /// @sa https://json.nlohmann.me/api/basic_json/is_array/
20666 constexpr bool is_array() const noexcept
20667 {
20668 return m_data.m_type == value_t::array;
20669 }
20670
20671 /// @brief return whether value is a string
20672 /// @sa https://json.nlohmann.me/api/basic_json/is_string/
20673 constexpr bool is_string() const noexcept
20674 {
20675 return m_data.m_type == value_t::string;
20676 }
20677
20678 /// @brief return whether value is a binary array
20679 /// @sa https://json.nlohmann.me/api/basic_json/is_binary/
20680 constexpr bool is_binary() const noexcept
20681 {
20682 return m_data.m_type == value_t::binary;
20683 }
20684
20685 /// @brief return whether value is discarded
20686 /// @sa https://json.nlohmann.me/api/basic_json/is_discarded/
20687 constexpr bool is_discarded() const noexcept
20688 {
20689 return m_data.m_type == value_t::discarded;
20690 }
20691
20692 /// @brief return the type of the JSON value (implicit)
20693 /// @sa https://json.nlohmann.me/api/basic_json/operator_value_t/
20694 constexpr operator value_t() const noexcept
20695 {
20696 return m_data.m_type;
20697 }
20698
20699 /// @}
20700
20701 private:
20702 //////////////////
20703 // value access //
20704 //////////////////
20705
20706 /// get a boolean (explicit)
20707 boolean_t get_impl(boolean_t* /*unused*/) const
20708 {
20709 if (JSON_HEDLEY_LIKELY(is_boolean()))
20710 {
20711 return m_data.m_value.boolean;
20712 }
20713
20714 JSON_THROW(type_error::create(302, detail::concat("type must be boolean, but is ", type_name()), this));
20715 }
20716
20717 /// get a pointer to the value (object)
20718 object_t* get_impl_ptr(object_t* /*unused*/) noexcept
20719 {
20720 return is_object() ? m_data.m_value.object : nullptr;
20721 }
20722
20723 /// get a pointer to the value (object)
20724 constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
20725 {
20726 return is_object() ? m_data.m_value.object : nullptr;
20727 }
20728
20729 /// get a pointer to the value (array)
20730 array_t* get_impl_ptr(array_t* /*unused*/) noexcept
20731 {
20732 return is_array() ? m_data.m_value.array : nullptr;
20733 }
20734
20735 /// get a pointer to the value (array)
20736 constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
20737 {
20738 return is_array() ? m_data.m_value.array : nullptr;
20739 }
20740
20741 /// get a pointer to the value (string)
20742 string_t* get_impl_ptr(string_t* /*unused*/) noexcept
20743 {
20744 return is_string() ? m_data.m_value.string : nullptr;
20745 }
20746
20747 /// get a pointer to the value (string)
20748 constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
20749 {
20750 return is_string() ? m_data.m_value.string : nullptr;
20751 }
20752
20753 /// get a pointer to the value (boolean)
20754 boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
20755 {
20756 return is_boolean() ? &m_data.m_value.boolean : nullptr;
20757 }
20758
20759 /// get a pointer to the value (boolean)
20760 constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
20761 {
20762 return is_boolean() ? &m_data.m_value.boolean : nullptr;
20763 }
20764
20765 /// get a pointer to the value (integer number)
20766 number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept
20767 {
20768 return is_number_integer() ? &m_data.m_value.number_integer : nullptr;
20769 }
20770
20771 /// get a pointer to the value (integer number)
20772 constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
20773 {
20774 return is_number_integer() ? &m_data.m_value.number_integer : nullptr;
20775 }
20776
20777 /// get a pointer to the value (unsigned number)
20778 number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept
20779 {
20780 return is_number_unsigned() ? &m_data.m_value.number_unsigned : nullptr;
20781 }
20782
20783 /// get a pointer to the value (unsigned number)
20784 constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
20785 {
20786 return is_number_unsigned() ? &m_data.m_value.number_unsigned : nullptr;
20787 }
20788
20789 /// get a pointer to the value (floating-point number)
20790 number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept
20791 {
20792 return is_number_float() ? &m_data.m_value.number_float : nullptr;
20793 }
20794
20795 /// get a pointer to the value (floating-point number)
20796 constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
20797 {
20798 return is_number_float() ? &m_data.m_value.number_float : nullptr;
20799 }
20800
20801 /// get a pointer to the value (binary)
20802 binary_t* get_impl_ptr(binary_t* /*unused*/) noexcept
20803 {
20804 return is_binary() ? m_data.m_value.binary : nullptr;
20805 }
20806
20807 /// get a pointer to the value (binary)
20808 constexpr const binary_t* get_impl_ptr(const binary_t* /*unused*/) const noexcept
20809 {
20810 return is_binary() ? m_data.m_value.binary : nullptr;
20811 }
20812
20813 /*!
20814 @brief helper function to implement get_ref()
20815
20816 This function helps to implement get_ref() without code duplication for
20817 const and non-const overloads
20818
20819 @tparam ThisType will be deduced as `basic_json` or `const basic_json`
20820
20821 @throw type_error.303 if ReferenceType does not match underlying value
20822 type of the current JSON
20823 */
20824 template<typename ReferenceType, typename ThisType>
20825 static ReferenceType get_ref_impl(ThisType& obj)
20826 {
20827 // delegate the call to get_ptr<>()
20828 auto* ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>();
20829
20830 if (JSON_HEDLEY_LIKELY(ptr != nullptr))
20831 {
20832 return *ptr;
20833 }
20834
20835 JSON_THROW(type_error::create(303, detail::concat("incompatible ReferenceType for get_ref, actual type is ", obj.type_name()), &obj));
20836 }
20837
20838 public:
20839 /// @name value access
20840 /// Direct access to the stored value of a JSON value.
20841 /// @{
20842
20843 /// @brief get a pointer value (implicit)
20844 /// @sa https://json.nlohmann.me/api/basic_json/get_ptr/
20845 template<typename PointerType, typename std::enable_if<
20846 std::is_pointer<PointerType>::value, int>::type = 0>
20847 auto get_ptr() noexcept -> decltype(std::declval<basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
20848 {
20849 // delegate the call to get_impl_ptr<>()
20850 return get_impl_ptr(static_cast<PointerType>(nullptr));
20851 }
20852
20853 /// @brief get a pointer value (implicit)
20854 /// @sa https://json.nlohmann.me/api/basic_json/get_ptr/
20855 template < typename PointerType, typename std::enable_if <
20856 std::is_pointer<PointerType>::value&&
20857 std::is_const<typename std::remove_pointer<PointerType>::type>::value, int >::type = 0 >
20858 constexpr auto get_ptr() const noexcept -> decltype(std::declval<const basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
20859 {
20860 // delegate the call to get_impl_ptr<>() const
20861 return get_impl_ptr(static_cast<PointerType>(nullptr));
20862 }
20863
20864 private:
20865 /*!
20866 @brief get a value (explicit)
20867
20868 Explicit type conversion between the JSON value and a compatible value
20869 which is [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
20870 and [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
20871 The value is converted by calling the @ref json_serializer<ValueType>
20872 `from_json()` method.
20873
20874 The function is equivalent to executing
20875 @code {.cpp}
20876 ValueType ret;
20877 JSONSerializer<ValueType>::from_json(*this, ret);
20878 return ret;
20879 @endcode
20880
20881 This overloads is chosen if:
20882 - @a ValueType is not @ref basic_json,
20883 - @ref json_serializer<ValueType> has a `from_json()` method of the form
20884 `void from_json(const basic_json&, ValueType&)`, and
20885 - @ref json_serializer<ValueType> does not have a `from_json()` method of
20886 the form `ValueType from_json(const basic_json&)`
20887
20888 @tparam ValueType the returned value type
20889
20890 @return copy of the JSON value, converted to @a ValueType
20891
20892 @throw what @ref json_serializer<ValueType> `from_json()` method throws
20893
20894 @liveexample{The example below shows several conversions from JSON values
20895 to other types. There a few things to note: (1) Floating-point numbers can
20896 be converted to integers\, (2) A JSON array can be converted to a standard
20897 `std::vector<short>`\, (3) A JSON object can be converted to C++
20898 associative containers such as `std::unordered_map<std::string\,
20899 json>`.,get__ValueType_const}
20900
20901 @since version 2.1.0
20902 */
20903 template < typename ValueType,
20904 detail::enable_if_t <
20905 detail::is_default_constructible<ValueType>::value&&
20906 detail::has_from_json<basic_json_t, ValueType>::value,
20907 int > = 0 >
20908 ValueType get_impl(detail::priority_tag<0> /*unused*/) const noexcept(noexcept(
20909 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
20910 {
20911 auto ret = ValueType();
20912 JSONSerializer<ValueType>::from_json(*this, ret);
20913 return ret;
20914 }
20915
20916 /*!
20917 @brief get a value (explicit); special case
20918
20919 Explicit type conversion between the JSON value and a compatible value
20920 which is **not** [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
20921 and **not** [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
20922 The value is converted by calling the @ref json_serializer<ValueType>
20923 `from_json()` method.
20924
20925 The function is equivalent to executing
20926 @code {.cpp}
20927 return JSONSerializer<ValueType>::from_json(*this);
20928 @endcode
20929
20930 This overloads is chosen if:
20931 - @a ValueType is not @ref basic_json and
20932 - @ref json_serializer<ValueType> has a `from_json()` method of the form
20933 `ValueType from_json(const basic_json&)`
20934
20935 @note If @ref json_serializer<ValueType> has both overloads of
20936 `from_json()`, this one is chosen.
20937
20938 @tparam ValueType the returned value type
20939
20940 @return copy of the JSON value, converted to @a ValueType
20941
20942 @throw what @ref json_serializer<ValueType> `from_json()` method throws
20943
20944 @since version 2.1.0
20945 */
20946 template < typename ValueType,
20947 detail::enable_if_t <
20948 detail::has_non_default_from_json<basic_json_t, ValueType>::value,
20949 int > = 0 >
20950 ValueType get_impl(detail::priority_tag<1> /*unused*/) const noexcept(noexcept(
20951 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>())))
20952 {
20953 return JSONSerializer<ValueType>::from_json(*this);
20954 }
20955
20956 /*!
20957 @brief get special-case overload
20958
20959 This overloads converts the current @ref basic_json in a different
20960 @ref basic_json type
20961
20962 @tparam BasicJsonType == @ref basic_json
20963
20964 @return a copy of *this, converted into @a BasicJsonType
20965
20966 @complexity Depending on the implementation of the called `from_json()`
20967 method.
20968
20969 @since version 3.2.0
20970 */
20971 template < typename BasicJsonType,
20972 detail::enable_if_t <
20973 detail::is_basic_json<BasicJsonType>::value,
20974 int > = 0 >
20975 BasicJsonType get_impl(detail::priority_tag<2> /*unused*/) const
20976 {
20977 return *this;
20978 }
20979
20980 /*!
20981 @brief get special-case overload
20982
20983 This overloads avoids a lot of template boilerplate, it can be seen as the
20984 identity method
20985
20986 @tparam BasicJsonType == @ref basic_json
20987
20988 @return a copy of *this
20989
20990 @complexity Constant.
20991
20992 @since version 2.1.0
20993 */
20994 template<typename BasicJsonType,
20995 detail::enable_if_t<
20996 std::is_same<BasicJsonType, basic_json_t>::value,
20997 int> = 0>
20998 basic_json get_impl(detail::priority_tag<3> /*unused*/) const
20999 {
21000 return *this;
21001 }
21002
21003 /*!
21004 @brief get a pointer value (explicit)
21005 @copydoc get()
21006 */
21007 template<typename PointerType,
21008 detail::enable_if_t<
21009 std::is_pointer<PointerType>::value,
21010 int> = 0>
21011 constexpr auto get_impl(detail::priority_tag<4> /*unused*/) const noexcept
21012 -> decltype(std::declval<const basic_json_t&>().template get_ptr<PointerType>())
21013 {
21014 // delegate the call to get_ptr
21015 return get_ptr<PointerType>();
21016 }
21017
21018 public:
21019 /*!
21020 @brief get a (pointer) value (explicit)
21021
21022 Performs explicit type conversion between the JSON value and a compatible value if required.
21023
21024 - If the requested type is a pointer to the internally stored JSON value that pointer is returned.
21025 No copies are made.
21026
21027 - If the requested type is the current @ref basic_json, or a different @ref basic_json convertible
21028 from the current @ref basic_json.
21029
21030 - Otherwise the value is converted by calling the @ref json_serializer<ValueType> `from_json()`
21031 method.
21032
21033 @tparam ValueTypeCV the provided value type
21034 @tparam ValueType the returned value type
21035
21036 @return copy of the JSON value, converted to @tparam ValueType if necessary
21037
21038 @throw what @ref json_serializer<ValueType> `from_json()` method throws if conversion is required
21039
21040 @since version 2.1.0
21041 */
21042 template < typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>>
21043 #if defined(JSON_HAS_CPP_14)
21044 constexpr
21045 #endif
21046 auto get() const noexcept(
21047 noexcept(std::declval<const basic_json_t&>().template get_impl<ValueType>(detail::priority_tag<4> {})))
21048 -> decltype(std::declval<const basic_json_t&>().template get_impl<ValueType>(detail::priority_tag<4> {}))
21049 {
21050 // we cannot static_assert on ValueTypeCV being non-const, because
21051 // there is support for get<const basic_json_t>(), which is why we
21052 // still need the uncvref
21053 static_assert(!std::is_reference<ValueTypeCV>::value,
21054 "get() cannot be used with reference types, you might want to use get_ref()");
21055 return get_impl<ValueType>(detail::priority_tag<4> {});
21056 }
21057
21058 /*!
21059 @brief get a pointer value (explicit)
21060
21061 Explicit pointer access to the internally stored JSON value. No copies are
21062 made.
21063
21064 @warning The pointer becomes invalid if the underlying JSON object
21065 changes.
21066
21067 @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
21068 object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
21069 @ref number_unsigned_t, or @ref number_float_t.
21070
21071 @return pointer to the internally stored JSON value if the requested
21072 pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
21073
21074 @complexity Constant.
21075
21076 @liveexample{The example below shows how pointers to internal values of a
21077 JSON value can be requested. Note that no type conversions are made and a
21078 `nullptr` is returned if the value and the requested pointer type does not
21079 match.,get__PointerType}
21080
21081 @sa see @ref get_ptr() for explicit pointer-member access
21082
21083 @since version 1.0.0
21084 */
21085 template<typename PointerType, typename std::enable_if<
21086 std::is_pointer<PointerType>::value, int>::type = 0>
21087 auto get() noexcept -> decltype(std::declval<basic_json_t&>().template get_ptr<PointerType>())
21088 {
21089 // delegate the call to get_ptr
21090 return get_ptr<PointerType>();
21091 }
21092
21093 /// @brief get a value (explicit)
21094 /// @sa https://json.nlohmann.me/api/basic_json/get_to/
21095 template < typename ValueType,
21096 detail::enable_if_t <
21097 !detail::is_basic_json<ValueType>::value&&
21098 detail::has_from_json<basic_json_t, ValueType>::value,
21099 int > = 0 >
21100 ValueType & get_to(ValueType& v) const noexcept(noexcept(
21101 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), v)))
21102 {
21103 JSONSerializer<ValueType>::from_json(*this, v);
21104 return v;
21105 }
21106
21107 // specialization to allow calling get_to with a basic_json value
21108 // see https://github.com/nlohmann/json/issues/2175
21109 template<typename ValueType,
21110 detail::enable_if_t <
21111 detail::is_basic_json<ValueType>::value,
21112 int> = 0>
21113 ValueType & get_to(ValueType& v) const
21114 {
21115 v = *this;
21116 return v;
21117 }
21118
21119 template <
21120 typename T, std::size_t N,
21121 typename Array = T (&)[N], // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
21122 detail::enable_if_t <
21123 detail::has_from_json<basic_json_t, Array>::value, int > = 0 >
21124 Array get_to(T (&v)[N]) const // NOLINT(cppcoreguidelines-avoid-c-arrays,hicpp-avoid-c-arrays,modernize-avoid-c-arrays)
21125 noexcept(noexcept(JSONSerializer<Array>::from_json(
21126 std::declval<const basic_json_t&>(), v)))
21127 {
21128 JSONSerializer<Array>::from_json(*this, v);
21129 return v;
21130 }
21131
21132 /// @brief get a reference value (implicit)
21133 /// @sa https://json.nlohmann.me/api/basic_json/get_ref/
21134 template<typename ReferenceType, typename std::enable_if<
21135 std::is_reference<ReferenceType>::value, int>::type = 0>
21136 ReferenceType get_ref()
21137 {
21138 // delegate call to get_ref_impl
21139 return get_ref_impl<ReferenceType>(*this);
21140 }
21141
21142 /// @brief get a reference value (implicit)
21143 /// @sa https://json.nlohmann.me/api/basic_json/get_ref/
21144 template < typename ReferenceType, typename std::enable_if <
21145 std::is_reference<ReferenceType>::value&&
21146 std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int >::type = 0 >
21147 ReferenceType get_ref() const
21148 {
21149 // delegate call to get_ref_impl
21150 return get_ref_impl<ReferenceType>(*this);
21151 }
21152
21153 /*!
21154 @brief get a value (implicit)
21155
21156 Implicit type conversion between the JSON value and a compatible value.
21157 The call is realized by calling @ref get() const.
21158
21159 @tparam ValueType non-pointer type compatible to the JSON value, for
21160 instance `int` for JSON integer numbers, `bool` for JSON booleans, or
21161 `std::vector` types for JSON arrays. The character type of @ref string_t
21162 as well as an initializer list of this type is excluded to avoid
21163 ambiguities as these types implicitly convert to `std::string`.
21164
21165 @return copy of the JSON value, converted to type @a ValueType
21166
21167 @throw type_error.302 in case passed type @a ValueType is incompatible
21168 to the JSON value type (e.g., the JSON value is of type boolean, but a
21169 string is requested); see example below
21170
21171 @complexity Linear in the size of the JSON value.
21172
21173 @liveexample{The example below shows several conversions from JSON values
21174 to other types. There a few things to note: (1) Floating-point numbers can
21175 be converted to integers\, (2) A JSON array can be converted to a standard
21176 `std::vector<short>`\, (3) A JSON object can be converted to C++
21177 associative containers such as `std::unordered_map<std::string\,
21178 json>`.,operator__ValueType}
21179
21180 @since version 1.0.0
21181 */
21182 template < typename ValueType, typename std::enable_if <
21183 detail::conjunction <
21184 detail::negation<std::is_pointer<ValueType>>,
21185 detail::negation<std::is_same<ValueType, std::nullptr_t>>,
21186 detail::negation<std::is_same<ValueType, detail::json_ref<basic_json>>>,
21187 detail::negation<std::is_same<ValueType, typename string_t::value_type>>,
21188 detail::negation<detail::is_basic_json<ValueType>>,
21189 detail::negation<std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>>,
21190 #if defined(JSON_HAS_CPP_17) && (defined(__GNUC__) || (defined(_MSC_VER) && _MSC_VER >= 1910 && _MSC_VER <= 1914))
21191 detail::negation<std::is_same<ValueType, std::string_view>>,
21192 #endif
21193 #if defined(JSON_HAS_CPP_17) && JSON_HAS_STATIC_RTTI
21194 detail::negation<std::is_same<ValueType, std::any>>,
21195 #endif
21196 detail::is_detected_lazy<detail::get_template_function, const basic_json_t&, ValueType>
21197 >::value, int >::type = 0 >
21198 JSON_EXPLICIT operator ValueType() const
21199 {
21200 // delegate the call to get<>() const
21201 return get<ValueType>();
21202 }
21203
21204 /// @brief get a binary value
21205 /// @sa https://json.nlohmann.me/api/basic_json/get_binary/
21206 binary_t& get_binary()
21207 {
21208 if (!is_binary())
21209 {
21210 JSON_THROW(type_error::create(302, detail::concat("type must be binary, but is ", type_name()), this));
21211 }
21212
21213 return *get_ptr<binary_t*>();
21214 }
21215
21216 /// @brief get a binary value
21217 /// @sa https://json.nlohmann.me/api/basic_json/get_binary/
21218 const binary_t& get_binary() const
21219 {
21220 if (!is_binary())
21221 {
21222 JSON_THROW(type_error::create(302, detail::concat("type must be binary, but is ", type_name()), this));
21223 }
21224
21225 return *get_ptr<const binary_t*>();
21226 }
21227
21228 /// @}
21229
21230 ////////////////////
21231 // element access //
21232 ////////////////////
21233
21234 /// @name element access
21235 /// Access to the JSON value.
21236 /// @{
21237
21238 /// @brief access specified array element with bounds checking
21239 /// @sa https://json.nlohmann.me/api/basic_json/at/
21240 reference at(size_type idx)
21241 {
21242 // at only works for arrays
21243 if (JSON_HEDLEY_LIKELY(is_array()))
21244 {
21245 JSON_TRY
21246 {
21247 return set_parent(m_data.m_value.array->at(idx));
21248 }
21249 JSON_CATCH (std::out_of_range&)
21250 {
21251 // create better exception explanation
21252 JSON_THROW(out_of_range::create(401, detail::concat("array index ", std::to_string(idx), " is out of range"), this));
21253 }
21254 }
21255 else
21256 {
21257 JSON_THROW(type_error::create(304, detail::concat("cannot use at() with ", type_name()), this));
21258 }
21259 }
21260
21261 /// @brief access specified array element with bounds checking
21262 /// @sa https://json.nlohmann.me/api/basic_json/at/
21263 const_reference at(size_type idx) const
21264 {
21265 // at only works for arrays
21266 if (JSON_HEDLEY_LIKELY(is_array()))
21267 {
21268 JSON_TRY
21269 {
21270 return m_data.m_value.array->at(idx);
21271 }
21272 JSON_CATCH (std::out_of_range&)
21273 {
21274 // create better exception explanation
21275 JSON_THROW(out_of_range::create(401, detail::concat("array index ", std::to_string(idx), " is out of range"), this));
21276 }
21277 }
21278 else
21279 {
21280 JSON_THROW(type_error::create(304, detail::concat("cannot use at() with ", type_name()), this));
21281 }
21282 }
21283
21284 /// @brief access specified object element with bounds checking
21285 /// @sa https://json.nlohmann.me/api/basic_json/at/
21286 reference at(const typename object_t::key_type& key)
21287 {
21288 // at only works for objects
21289 if (JSON_HEDLEY_UNLIKELY(!is_object()))
21290 {
21291 JSON_THROW(type_error::create(304, detail::concat("cannot use at() with ", type_name()), this));
21292 }
21293
21294 auto it = m_data.m_value.object->find(key);
21295 if (it == m_data.m_value.object->end())
21296 {
21297 JSON_THROW(out_of_range::create(403, detail::concat("key '", key, "' not found"), this));
21298 }
21299 return set_parent(it->second);
21300 }
21301
21302 /// @brief access specified object element with bounds checking
21303 /// @sa https://json.nlohmann.me/api/basic_json/at/
21304 template<class KeyType, detail::enable_if_t<
21305 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
21306 reference at(KeyType && key)
21307 {
21308 // at only works for objects
21309 if (JSON_HEDLEY_UNLIKELY(!is_object()))
21310 {
21311 JSON_THROW(type_error::create(304, detail::concat("cannot use at() with ", type_name()), this));
21312 }
21313
21314 auto it = m_data.m_value.object->find(std::forward<KeyType>(key));
21315 if (it == m_data.m_value.object->end())
21316 {
21317 JSON_THROW(out_of_range::create(403, detail::concat("key '", string_t(std::forward<KeyType>(key)), "' not found"), this));
21318 }
21319 return set_parent(it->second);
21320 }
21321
21322 /// @brief access specified object element with bounds checking
21323 /// @sa https://json.nlohmann.me/api/basic_json/at/
21324 const_reference at(const typename object_t::key_type& key) const
21325 {
21326 // at only works for objects
21327 if (JSON_HEDLEY_UNLIKELY(!is_object()))
21328 {
21329 JSON_THROW(type_error::create(304, detail::concat("cannot use at() with ", type_name()), this));
21330 }
21331
21332 auto it = m_data.m_value.object->find(key);
21333 if (it == m_data.m_value.object->end())
21334 {
21335 JSON_THROW(out_of_range::create(403, detail::concat("key '", key, "' not found"), this));
21336 }
21337 return it->second;
21338 }
21339
21340 /// @brief access specified object element with bounds checking
21341 /// @sa https://json.nlohmann.me/api/basic_json/at/
21342 template<class KeyType, detail::enable_if_t<
21343 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
21344 const_reference at(KeyType && key) const
21345 {
21346 // at only works for objects
21347 if (JSON_HEDLEY_UNLIKELY(!is_object()))
21348 {
21349 JSON_THROW(type_error::create(304, detail::concat("cannot use at() with ", type_name()), this));
21350 }
21351
21352 auto it = m_data.m_value.object->find(std::forward<KeyType>(key));
21353 if (it == m_data.m_value.object->end())
21354 {
21355 JSON_THROW(out_of_range::create(403, detail::concat("key '", string_t(std::forward<KeyType>(key)), "' not found"), this));
21356 }
21357 return it->second;
21358 }
21359
21360 /// @brief access specified array element
21361 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
21362 reference operator[](size_type idx)
21363 {
21364 // implicitly convert null value to an empty array
21365 if (is_null())
21366 {
21367 m_data.m_type = value_t::array;
21368 m_data.m_value.array = create<array_t>();
21369 assert_invariant();
21370 }
21371
21372 // operator[] only works for arrays
21373 if (JSON_HEDLEY_LIKELY(is_array()))
21374 {
21375 // fill up array with null values if given idx is outside range
21376 if (idx >= m_data.m_value.array->size())
21377 {
21378 #if JSON_DIAGNOSTICS
21379 // remember array size & capacity before resizing
21380 const auto old_size = m_data.m_value.array->size();
21381 const auto old_capacity = m_data.m_value.array->capacity();
21382 #endif
21383 m_data.m_value.array->resize(idx + 1);
21384
21385 #if JSON_DIAGNOSTICS
21386 if (JSON_HEDLEY_UNLIKELY(m_data.m_value.array->capacity() != old_capacity))
21387 {
21388 // capacity has changed: update all parents
21389 set_parents();
21390 }
21391 else
21392 {
21393 // set parent for values added above
21394 set_parents(begin() + static_cast<typename iterator::difference_type>(old_size), static_cast<typename iterator::difference_type>(idx + 1 - old_size));
21395 }
21396 #endif
21397 assert_invariant();
21398 }
21399
21400 return m_data.m_value.array->operator[](idx);
21401 }
21402
21403 JSON_THROW(type_error::create(305, detail::concat("cannot use operator[] with a numeric argument with ", type_name()), this));
21404 }
21405
21406 /// @brief access specified array element
21407 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
21408 const_reference operator[](size_type idx) const
21409 {
21410 // const operator[] only works for arrays
21411 if (JSON_HEDLEY_LIKELY(is_array()))
21412 {
21413 return m_data.m_value.array->operator[](idx);
21414 }
21415
21416 JSON_THROW(type_error::create(305, detail::concat("cannot use operator[] with a numeric argument with ", type_name()), this));
21417 }
21418
21419 /// @brief access specified object element
21420 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
21421 reference operator[](typename object_t::key_type key)
21422 {
21423 // implicitly convert null value to an empty object
21424 if (is_null())
21425 {
21426 m_data.m_type = value_t::object;
21427 m_data.m_value.object = create<object_t>();
21428 assert_invariant();
21429 }
21430
21431 // operator[] only works for objects
21432 if (JSON_HEDLEY_LIKELY(is_object()))
21433 {
21434 auto result = m_data.m_value.object->emplace(std::move(key), nullptr);
21435 return set_parent(result.first->second);
21436 }
21437
21438 JSON_THROW(type_error::create(305, detail::concat("cannot use operator[] with a string argument with ", type_name()), this));
21439 }
21440
21441 /// @brief access specified object element
21442 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
21443 const_reference operator[](const typename object_t::key_type& key) const
21444 {
21445 // const operator[] only works for objects
21446 if (JSON_HEDLEY_LIKELY(is_object()))
21447 {
21448 auto it = m_data.m_value.object->find(key);
21449 JSON_ASSERT(it != m_data.m_value.object->end());
21450 return it->second;
21451 }
21452
21453 JSON_THROW(type_error::create(305, detail::concat("cannot use operator[] with a string argument with ", type_name()), this));
21454 }
21455
21456 // these two functions resolve a (const) char * ambiguity affecting Clang and MSVC
21457 // (they seemingly cannot be constrained to resolve the ambiguity)
21458 template<typename T>
21459 reference operator[](T* key)
21460 {
21461 return operator[](typename object_t::key_type(key));
21462 }
21463
21464 template<typename T>
21465 const_reference operator[](T* key) const
21466 {
21467 return operator[](typename object_t::key_type(key));
21468 }
21469
21470 /// @brief access specified object element
21471 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
21472 template<class KeyType, detail::enable_if_t<
21473 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int > = 0 >
21474 reference operator[](KeyType && key)
21475 {
21476 // implicitly convert null value to an empty object
21477 if (is_null())
21478 {
21479 m_data.m_type = value_t::object;
21480 m_data.m_value.object = create<object_t>();
21481 assert_invariant();
21482 }
21483
21484 // operator[] only works for objects
21485 if (JSON_HEDLEY_LIKELY(is_object()))
21486 {
21487 auto result = m_data.m_value.object->emplace(std::forward<KeyType>(key), nullptr);
21488 return set_parent(result.first->second);
21489 }
21490
21491 JSON_THROW(type_error::create(305, detail::concat("cannot use operator[] with a string argument with ", type_name()), this));
21492 }
21493
21494 /// @brief access specified object element
21495 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
21496 template<class KeyType, detail::enable_if_t<
21497 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int > = 0 >
21498 const_reference operator[](KeyType && key) const
21499 {
21500 // const operator[] only works for objects
21501 if (JSON_HEDLEY_LIKELY(is_object()))
21502 {
21503 auto it = m_data.m_value.object->find(std::forward<KeyType>(key));
21504 JSON_ASSERT(it != m_data.m_value.object->end());
21505 return it->second;
21506 }
21507
21508 JSON_THROW(type_error::create(305, detail::concat("cannot use operator[] with a string argument with ", type_name()), this));
21509 }
21510
21511 private:
21512 template<typename KeyType>
21513 using is_comparable_with_object_key = detail::is_comparable <
21514 object_comparator_t, const typename object_t::key_type&, KeyType >;
21515
21516 template<typename ValueType>
21517 using value_return_type = std::conditional <
21518 detail::is_c_string_uncvref<ValueType>::value,
21519 string_t, typename std::decay<ValueType>::type >;
21520
21521 public:
21522 /// @brief access specified object element with default value
21523 /// @sa https://json.nlohmann.me/api/basic_json/value/
21524 template < class ValueType, detail::enable_if_t <
21525 !detail::is_transparent<object_comparator_t>::value
21526 && detail::is_getable<basic_json_t, ValueType>::value
21527 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21528 ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const
21529 {
21530 // value only works for objects
21531 if (JSON_HEDLEY_LIKELY(is_object()))
21532 {
21533 // if key is found, return value and given default value otherwise
21534 const auto it = find(key);
21535 if (it != end())
21536 {
21537 return it->template get<ValueType>();
21538 }
21539
21540 return default_value;
21541 }
21542
21543 JSON_THROW(type_error::create(306, detail::concat("cannot use value() with ", type_name()), this));
21544 }
21545
21546 /// @brief access specified object element with default value
21547 /// @sa https://json.nlohmann.me/api/basic_json/value/
21548 template < class ValueType, class ReturnType = typename value_return_type<ValueType>::type,
21549 detail::enable_if_t <
21550 !detail::is_transparent<object_comparator_t>::value
21551 && detail::is_getable<basic_json_t, ReturnType>::value
21552 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21553 ReturnType value(const typename object_t::key_type& key, ValueType && default_value) const
21554 {
21555 // value only works for objects
21556 if (JSON_HEDLEY_LIKELY(is_object()))
21557 {
21558 // if key is found, return value and given default value otherwise
21559 const auto it = find(key);
21560 if (it != end())
21561 {
21562 return it->template get<ReturnType>();
21563 }
21564
21565 return std::forward<ValueType>(default_value);
21566 }
21567
21568 JSON_THROW(type_error::create(306, detail::concat("cannot use value() with ", type_name()), this));
21569 }
21570
21571 /// @brief access specified object element with default value
21572 /// @sa https://json.nlohmann.me/api/basic_json/value/
21573 template < class ValueType, class KeyType, detail::enable_if_t <
21574 detail::is_transparent<object_comparator_t>::value
21575 && !detail::is_json_pointer<KeyType>::value
21576 && is_comparable_with_object_key<KeyType>::value
21577 && detail::is_getable<basic_json_t, ValueType>::value
21578 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21579 ValueType value(KeyType && key, const ValueType& default_value) const
21580 {
21581 // value only works for objects
21582 if (JSON_HEDLEY_LIKELY(is_object()))
21583 {
21584 // if key is found, return value and given default value otherwise
21585 const auto it = find(std::forward<KeyType>(key));
21586 if (it != end())
21587 {
21588 return it->template get<ValueType>();
21589 }
21590
21591 return default_value;
21592 }
21593
21594 JSON_THROW(type_error::create(306, detail::concat("cannot use value() with ", type_name()), this));
21595 }
21596
21597 /// @brief access specified object element via JSON Pointer with default value
21598 /// @sa https://json.nlohmann.me/api/basic_json/value/
21599 template < class ValueType, class KeyType, class ReturnType = typename value_return_type<ValueType>::type,
21600 detail::enable_if_t <
21601 detail::is_transparent<object_comparator_t>::value
21602 && !detail::is_json_pointer<KeyType>::value
21603 && is_comparable_with_object_key<KeyType>::value
21604 && detail::is_getable<basic_json_t, ReturnType>::value
21605 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21606 ReturnType value(KeyType && key, ValueType && default_value) const
21607 {
21608 // value only works for objects
21609 if (JSON_HEDLEY_LIKELY(is_object()))
21610 {
21611 // if key is found, return value and given default value otherwise
21612 const auto it = find(std::forward<KeyType>(key));
21613 if (it != end())
21614 {
21615 return it->template get<ReturnType>();
21616 }
21617
21618 return std::forward<ValueType>(default_value);
21619 }
21620
21621 JSON_THROW(type_error::create(306, detail::concat("cannot use value() with ", type_name()), this));
21622 }
21623
21624 /// @brief access specified object element via JSON Pointer with default value
21625 /// @sa https://json.nlohmann.me/api/basic_json/value/
21626 template < class ValueType, detail::enable_if_t <
21627 detail::is_getable<basic_json_t, ValueType>::value
21628 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21629 ValueType value(const json_pointer& ptr, const ValueType& default_value) const
21630 {
21631 // value only works for objects
21632 if (JSON_HEDLEY_LIKELY(is_object()))
21633 {
21634 // if pointer resolves a value, return it or use default value
21635 JSON_TRY
21636 {
21637 return ptr.get_checked(this).template get<ValueType>();
21638 }
21639 JSON_INTERNAL_CATCH (out_of_range&)
21640 {
21641 return default_value;
21642 }
21643 }
21644
21645 JSON_THROW(type_error::create(306, detail::concat("cannot use value() with ", type_name()), this));
21646 }
21647
21648 /// @brief access specified object element via JSON Pointer with default value
21649 /// @sa https://json.nlohmann.me/api/basic_json/value/
21650 template < class ValueType, class ReturnType = typename value_return_type<ValueType>::type,
21651 detail::enable_if_t <
21652 detail::is_getable<basic_json_t, ReturnType>::value
21653 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21654 ReturnType value(const json_pointer& ptr, ValueType && default_value) const
21655 {
21656 // value only works for objects
21657 if (JSON_HEDLEY_LIKELY(is_object()))
21658 {
21659 // if pointer resolves a value, return it or use default value
21660 JSON_TRY
21661 {
21662 return ptr.get_checked(this).template get<ReturnType>();
21663 }
21664 JSON_INTERNAL_CATCH (out_of_range&)
21665 {
21666 return std::forward<ValueType>(default_value);
21667 }
21668 }
21669
21670 JSON_THROW(type_error::create(306, detail::concat("cannot use value() with ", type_name()), this));
21671 }
21672
21673 template < class ValueType, class BasicJsonType, detail::enable_if_t <
21674 detail::is_basic_json<BasicJsonType>::value
21675 && detail::is_getable<basic_json_t, ValueType>::value
21676 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21677 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
21678 ValueType value(const ::nlohmann::json_pointer<BasicJsonType>& ptr, const ValueType& default_value) const
21679 {
21680 return value(ptr.convert(), default_value);
21681 }
21682
21683 template < class ValueType, class BasicJsonType, class ReturnType = typename value_return_type<ValueType>::type,
21684 detail::enable_if_t <
21685 detail::is_basic_json<BasicJsonType>::value
21686 && detail::is_getable<basic_json_t, ReturnType>::value
21687 && !std::is_same<value_t, detail::uncvref_t<ValueType>>::value, int > = 0 >
21688 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
21689 ReturnType value(const ::nlohmann::json_pointer<BasicJsonType>& ptr, ValueType && default_value) const
21690 {
21691 return value(ptr.convert(), std::forward<ValueType>(default_value));
21692 }
21693
21694 /// @brief access the first element
21695 /// @sa https://json.nlohmann.me/api/basic_json/front/
21696 reference front()
21697 {
21698 return *begin();
21699 }
21700
21701 /// @brief access the first element
21702 /// @sa https://json.nlohmann.me/api/basic_json/front/
21703 const_reference front() const
21704 {
21705 return *cbegin();
21706 }
21707
21708 /// @brief access the last element
21709 /// @sa https://json.nlohmann.me/api/basic_json/back/
21710 reference back()
21711 {
21712 auto tmp = end();
21713 --tmp;
21714 return *tmp;
21715 }
21716
21717 /// @brief access the last element
21718 /// @sa https://json.nlohmann.me/api/basic_json/back/
21719 const_reference back() const
21720 {
21721 auto tmp = cend();
21722 --tmp;
21723 return *tmp;
21724 }
21725
21726 /// @brief remove element given an iterator
21727 /// @sa https://json.nlohmann.me/api/basic_json/erase/
21728 template < class IteratorType, detail::enable_if_t <
21729 std::is_same<IteratorType, typename basic_json_t::iterator>::value ||
21730 std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int > = 0 >
21731 IteratorType erase(IteratorType pos)
21732 {
21733 // make sure iterator fits the current value
21734 if (JSON_HEDLEY_UNLIKELY(this != pos.m_object))
21735 {
21736 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value", this));
21737 }
21738
21739 IteratorType result = end();
21740
21741 switch (m_data.m_type)
21742 {
21743 case value_t::boolean:
21744 case value_t::number_float:
21745 case value_t::number_integer:
21746 case value_t::number_unsigned:
21747 case value_t::string:
21748 case value_t::binary:
21749 {
21750 if (JSON_HEDLEY_UNLIKELY(!pos.m_it.primitive_iterator.is_begin()))
21751 {
21752 JSON_THROW(invalid_iterator::create(205, "iterator out of range", this));
21753 }
21754
21755 if (is_string())
21756 {
21757 AllocatorType<string_t> alloc;
21758 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_data.m_value.string);
21759 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_data.m_value.string, 1);
21760 m_data.m_value.string = nullptr;
21761 }
21762 else if (is_binary())
21763 {
21764 AllocatorType<binary_t> alloc;
21765 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_data.m_value.binary);
21766 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_data.m_value.binary, 1);
21767 m_data.m_value.binary = nullptr;
21768 }
21769
21770 m_data.m_type = value_t::null;
21771 assert_invariant();
21772 break;
21773 }
21774
21775 case value_t::object:
21776 {
21777 result.m_it.object_iterator = m_data.m_value.object->erase(pos.m_it.object_iterator);
21778 break;
21779 }
21780
21781 case value_t::array:
21782 {
21783 result.m_it.array_iterator = m_data.m_value.array->erase(pos.m_it.array_iterator);
21784 break;
21785 }
21786
21787 case value_t::null:
21788 case value_t::discarded:
21789 default:
21790 JSON_THROW(type_error::create(307, detail::concat("cannot use erase() with ", type_name()), this));
21791 }
21792
21793 return result;
21794 }
21795
21796 /// @brief remove elements given an iterator range
21797 /// @sa https://json.nlohmann.me/api/basic_json/erase/
21798 template < class IteratorType, detail::enable_if_t <
21799 std::is_same<IteratorType, typename basic_json_t::iterator>::value ||
21800 std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int > = 0 >
21801 IteratorType erase(IteratorType first, IteratorType last)
21802 {
21803 // make sure iterator fits the current value
21804 if (JSON_HEDLEY_UNLIKELY(this != first.m_object || this != last.m_object))
21805 {
21806 JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value", this));
21807 }
21808
21809 IteratorType result = end();
21810
21811 switch (m_data.m_type)
21812 {
21813 case value_t::boolean:
21814 case value_t::number_float:
21815 case value_t::number_integer:
21816 case value_t::number_unsigned:
21817 case value_t::string:
21818 case value_t::binary:
21819 {
21820 if (JSON_HEDLEY_LIKELY(!first.m_it.primitive_iterator.is_begin()
21821 || !last.m_it.primitive_iterator.is_end()))
21822 {
21823 JSON_THROW(invalid_iterator::create(204, "iterators out of range", this));
21824 }
21825
21826 if (is_string())
21827 {
21828 AllocatorType<string_t> alloc;
21829 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_data.m_value.string);
21830 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_data.m_value.string, 1);
21831 m_data.m_value.string = nullptr;
21832 }
21833 else if (is_binary())
21834 {
21835 AllocatorType<binary_t> alloc;
21836 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_data.m_value.binary);
21837 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_data.m_value.binary, 1);
21838 m_data.m_value.binary = nullptr;
21839 }
21840
21841 m_data.m_type = value_t::null;
21842 assert_invariant();
21843 break;
21844 }
21845
21846 case value_t::object:
21847 {
21848 result.m_it.object_iterator = m_data.m_value.object->erase(first.m_it.object_iterator,
21849 last.m_it.object_iterator);
21850 break;
21851 }
21852
21853 case value_t::array:
21854 {
21855 result.m_it.array_iterator = m_data.m_value.array->erase(first.m_it.array_iterator,
21856 last.m_it.array_iterator);
21857 break;
21858 }
21859
21860 case value_t::null:
21861 case value_t::discarded:
21862 default:
21863 JSON_THROW(type_error::create(307, detail::concat("cannot use erase() with ", type_name()), this));
21864 }
21865
21866 return result;
21867 }
21868
21869 private:
21870 template < typename KeyType, detail::enable_if_t <
21871 detail::has_erase_with_key_type<basic_json_t, KeyType>::value, int > = 0 >
21872 size_type erase_internal(KeyType && key)
21873 {
21874 // this erase only works for objects
21875 if (JSON_HEDLEY_UNLIKELY(!is_object()))
21876 {
21877 JSON_THROW(type_error::create(307, detail::concat("cannot use erase() with ", type_name()), this));
21878 }
21879
21880 return m_data.m_value.object->erase(std::forward<KeyType>(key));
21881 }
21882
21883 template < typename KeyType, detail::enable_if_t <
21884 !detail::has_erase_with_key_type<basic_json_t, KeyType>::value, int > = 0 >
21885 size_type erase_internal(KeyType && key)
21886 {
21887 // this erase only works for objects
21888 if (JSON_HEDLEY_UNLIKELY(!is_object()))
21889 {
21890 JSON_THROW(type_error::create(307, detail::concat("cannot use erase() with ", type_name()), this));
21891 }
21892
21893 const auto it = m_data.m_value.object->find(std::forward<KeyType>(key));
21894 if (it != m_data.m_value.object->end())
21895 {
21896 m_data.m_value.object->erase(it);
21897 return 1;
21898 }
21899 return 0;
21900 }
21901
21902 public:
21903
21904 /// @brief remove element from a JSON object given a key
21905 /// @sa https://json.nlohmann.me/api/basic_json/erase/
21906 size_type erase(const typename object_t::key_type& key)
21907 {
21908 // the indirection via erase_internal() is added to avoid making this
21909 // function a template and thus de-rank it during overload resolution
21910 return erase_internal(key);
21911 }
21912
21913 /// @brief remove element from a JSON object given a key
21914 /// @sa https://json.nlohmann.me/api/basic_json/erase/
21915 template<class KeyType, detail::enable_if_t<
21916 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
21917 size_type erase(KeyType && key)
21918 {
21919 return erase_internal(std::forward<KeyType>(key));
21920 }
21921
21922 /// @brief remove element from a JSON array given an index
21923 /// @sa https://json.nlohmann.me/api/basic_json/erase/
21924 void erase(const size_type idx)
21925 {
21926 // this erase only works for arrays
21927 if (JSON_HEDLEY_LIKELY(is_array()))
21928 {
21929 if (JSON_HEDLEY_UNLIKELY(idx >= size()))
21930 {
21931 JSON_THROW(out_of_range::create(401, detail::concat("array index ", std::to_string(idx), " is out of range"), this));
21932 }
21933
21934 m_data.m_value.array->erase(m_data.m_value.array->begin() + static_cast<difference_type>(idx));
21935 }
21936 else
21937 {
21938 JSON_THROW(type_error::create(307, detail::concat("cannot use erase() with ", type_name()), this));
21939 }
21940 }
21941
21942 /// @}
21943
21944 ////////////
21945 // lookup //
21946 ////////////
21947
21948 /// @name lookup
21949 /// @{
21950
21951 /// @brief find an element in a JSON object
21952 /// @sa https://json.nlohmann.me/api/basic_json/find/
21953 iterator find(const typename object_t::key_type& key)
21954 {
21955 auto result = end();
21956
21957 if (is_object())
21958 {
21959 result.m_it.object_iterator = m_data.m_value.object->find(key);
21960 }
21961
21962 return result;
21963 }
21964
21965 /// @brief find an element in a JSON object
21966 /// @sa https://json.nlohmann.me/api/basic_json/find/
21967 const_iterator find(const typename object_t::key_type& key) const
21968 {
21969 auto result = cend();
21970
21971 if (is_object())
21972 {
21973 result.m_it.object_iterator = m_data.m_value.object->find(key);
21974 }
21975
21976 return result;
21977 }
21978
21979 /// @brief find an element in a JSON object
21980 /// @sa https://json.nlohmann.me/api/basic_json/find/
21981 template<class KeyType, detail::enable_if_t<
21982 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
21983 iterator find(KeyType && key)
21984 {
21985 auto result = end();
21986
21987 if (is_object())
21988 {
21989 result.m_it.object_iterator = m_data.m_value.object->find(std::forward<KeyType>(key));
21990 }
21991
21992 return result;
21993 }
21994
21995 /// @brief find an element in a JSON object
21996 /// @sa https://json.nlohmann.me/api/basic_json/find/
21997 template<class KeyType, detail::enable_if_t<
21998 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
21999 const_iterator find(KeyType && key) const
22000 {
22001 auto result = cend();
22002
22003 if (is_object())
22004 {
22005 result.m_it.object_iterator = m_data.m_value.object->find(std::forward<KeyType>(key));
22006 }
22007
22008 return result;
22009 }
22010
22011 /// @brief returns the number of occurrences of a key in a JSON object
22012 /// @sa https://json.nlohmann.me/api/basic_json/count/
22013 size_type count(const typename object_t::key_type& key) const
22014 {
22015 // return 0 for all nonobject types
22016 return is_object() ? m_data.m_value.object->count(key) : 0;
22017 }
22018
22019 /// @brief returns the number of occurrences of a key in a JSON object
22020 /// @sa https://json.nlohmann.me/api/basic_json/count/
22021 template<class KeyType, detail::enable_if_t<
22022 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
22023 size_type count(KeyType && key) const
22024 {
22025 // return 0 for all nonobject types
22026 return is_object() ? m_data.m_value.object->count(std::forward<KeyType>(key)) : 0;
22027 }
22028
22029 /// @brief check the existence of an element in a JSON object
22030 /// @sa https://json.nlohmann.me/api/basic_json/contains/
22031 bool contains(const typename object_t::key_type& key) const
22032 {
22033 return is_object() && m_data.m_value.object->find(key) != m_data.m_value.object->end();
22034 }
22035
22036 /// @brief check the existence of an element in a JSON object
22037 /// @sa https://json.nlohmann.me/api/basic_json/contains/
22038 template<class KeyType, detail::enable_if_t<
22039 detail::is_usable_as_basic_json_key_type<basic_json_t, KeyType>::value, int> = 0>
22040 bool contains(KeyType && key) const
22041 {
22042 return is_object() && m_data.m_value.object->find(std::forward<KeyType>(key)) != m_data.m_value.object->end();
22043 }
22044
22045 /// @brief check the existence of an element in a JSON object given a JSON pointer
22046 /// @sa https://json.nlohmann.me/api/basic_json/contains/
22047 bool contains(const json_pointer& ptr) const
22048 {
22049 return ptr.contains(this);
22050 }
22051
22052 template<typename BasicJsonType, detail::enable_if_t<detail::is_basic_json<BasicJsonType>::value, int> = 0>
22053 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
22054 bool contains(const typename ::nlohmann::json_pointer<BasicJsonType>& ptr) const
22055 {
22056 return ptr.contains(this);
22057 }
22058
22059 /// @}
22060
22061 ///////////////
22062 // iterators //
22063 ///////////////
22064
22065 /// @name iterators
22066 /// @{
22067
22068 /// @brief returns an iterator to the first element
22069 /// @sa https://json.nlohmann.me/api/basic_json/begin/
22070 iterator begin() noexcept
22071 {
22072 iterator result(this);
22073 result.set_begin();
22074 return result;
22075 }
22076
22077 /// @brief returns an iterator to the first element
22078 /// @sa https://json.nlohmann.me/api/basic_json/begin/
22079 const_iterator begin() const noexcept
22080 {
22081 return cbegin();
22082 }
22083
22084 /// @brief returns a const iterator to the first element
22085 /// @sa https://json.nlohmann.me/api/basic_json/cbegin/
22086 const_iterator cbegin() const noexcept
22087 {
22088 const_iterator result(this);
22089 result.set_begin();
22090 return result;
22091 }
22092
22093 /// @brief returns an iterator to one past the last element
22094 /// @sa https://json.nlohmann.me/api/basic_json/end/
22095 iterator end() noexcept
22096 {
22097 iterator result(this);
22098 result.set_end();
22099 return result;
22100 }
22101
22102 /// @brief returns an iterator to one past the last element
22103 /// @sa https://json.nlohmann.me/api/basic_json/end/
22104 const_iterator end() const noexcept
22105 {
22106 return cend();
22107 }
22108
22109 /// @brief returns an iterator to one past the last element
22110 /// @sa https://json.nlohmann.me/api/basic_json/cend/
22111 const_iterator cend() const noexcept
22112 {
22113 const_iterator result(this);
22114 result.set_end();
22115 return result;
22116 }
22117
22118 /// @brief returns an iterator to the reverse-beginning
22119 /// @sa https://json.nlohmann.me/api/basic_json/rbegin/
22120 reverse_iterator rbegin() noexcept
22121 {
22122 return reverse_iterator(end());
22123 }
22124
22125 /// @brief returns an iterator to the reverse-beginning
22126 /// @sa https://json.nlohmann.me/api/basic_json/rbegin/
22127 const_reverse_iterator rbegin() const noexcept
22128 {
22129 return crbegin();
22130 }
22131
22132 /// @brief returns an iterator to the reverse-end
22133 /// @sa https://json.nlohmann.me/api/basic_json/rend/
22134 reverse_iterator rend() noexcept
22135 {
22136 return reverse_iterator(begin());
22137 }
22138
22139 /// @brief returns an iterator to the reverse-end
22140 /// @sa https://json.nlohmann.me/api/basic_json/rend/
22141 const_reverse_iterator rend() const noexcept
22142 {
22143 return crend();
22144 }
22145
22146 /// @brief returns a const reverse iterator to the last element
22147 /// @sa https://json.nlohmann.me/api/basic_json/crbegin/
22148 const_reverse_iterator crbegin() const noexcept
22149 {
22150 return const_reverse_iterator(cend());
22151 }
22152
22153 /// @brief returns a const reverse iterator to one before the first
22154 /// @sa https://json.nlohmann.me/api/basic_json/crend/
22155 const_reverse_iterator crend() const noexcept
22156 {
22157 return const_reverse_iterator(cbegin());
22158 }
22159
22160 public:
22161 /// @brief wrapper to access iterator member functions in range-based for
22162 /// @sa https://json.nlohmann.me/api/basic_json/items/
22163 /// @deprecated This function is deprecated since 3.1.0 and will be removed in
22164 /// version 4.0.0 of the library. Please use @ref items() instead;
22165 /// that is, replace `json::iterator_wrapper(j)` with `j.items()`.
22166 JSON_HEDLEY_DEPRECATED_FOR(3.1.0, items())
22167 static iteration_proxy<iterator> iterator_wrapper(reference ref) noexcept
22168 {
22169 return ref.items();
22170 }
22171
22172 /// @brief wrapper to access iterator member functions in range-based for
22173 /// @sa https://json.nlohmann.me/api/basic_json/items/
22174 /// @deprecated This function is deprecated since 3.1.0 and will be removed in
22175 /// version 4.0.0 of the library. Please use @ref items() instead;
22176 /// that is, replace `json::iterator_wrapper(j)` with `j.items()`.
22177 JSON_HEDLEY_DEPRECATED_FOR(3.1.0, items())
22178 static iteration_proxy<const_iterator> iterator_wrapper(const_reference ref) noexcept
22179 {
22180 return ref.items();
22181 }
22182
22183 /// @brief helper to access iterator member functions in range-based for
22184 /// @sa https://json.nlohmann.me/api/basic_json/items/
22185 iteration_proxy<iterator> items() noexcept
22186 {
22187 return iteration_proxy<iterator>(*this);
22188 }
22189
22190 /// @brief helper to access iterator member functions in range-based for
22191 /// @sa https://json.nlohmann.me/api/basic_json/items/
22192 iteration_proxy<const_iterator> items() const noexcept
22193 {
22194 return iteration_proxy<const_iterator>(*this);
22195 }
22196
22197 /// @}
22198
22199 //////////////
22200 // capacity //
22201 //////////////
22202
22203 /// @name capacity
22204 /// @{
22205
22206 /// @brief checks whether the container is empty.
22207 /// @sa https://json.nlohmann.me/api/basic_json/empty/
22208 bool empty() const noexcept
22209 {
22210 switch (m_data.m_type)
22211 {
22212 case value_t::null:
22213 {
22214 // null values are empty
22215 return true;
22216 }
22217
22218 case value_t::array:
22219 {
22220 // delegate call to array_t::empty()
22221 return m_data.m_value.array->empty();
22222 }
22223
22224 case value_t::object:
22225 {
22226 // delegate call to object_t::empty()
22227 return m_data.m_value.object->empty();
22228 }
22229
22230 case value_t::string:
22231 case value_t::boolean:
22232 case value_t::number_integer:
22233 case value_t::number_unsigned:
22234 case value_t::number_float:
22235 case value_t::binary:
22236 case value_t::discarded:
22237 default:
22238 {
22239 // all other types are nonempty
22240 return false;
22241 }
22242 }
22243 }
22244
22245 /// @brief returns the number of elements
22246 /// @sa https://json.nlohmann.me/api/basic_json/size/
22247 size_type size() const noexcept
22248 {
22249 switch (m_data.m_type)
22250 {
22251 case value_t::null:
22252 {
22253 // null values are empty
22254 return 0;
22255 }
22256
22257 case value_t::array:
22258 {
22259 // delegate call to array_t::size()
22260 return m_data.m_value.array->size();
22261 }
22262
22263 case value_t::object:
22264 {
22265 // delegate call to object_t::size()
22266 return m_data.m_value.object->size();
22267 }
22268
22269 case value_t::string:
22270 case value_t::boolean:
22271 case value_t::number_integer:
22272 case value_t::number_unsigned:
22273 case value_t::number_float:
22274 case value_t::binary:
22275 case value_t::discarded:
22276 default:
22277 {
22278 // all other types have size 1
22279 return 1;
22280 }
22281 }
22282 }
22283
22284 /// @brief returns the maximum possible number of elements
22285 /// @sa https://json.nlohmann.me/api/basic_json/max_size/
22286 size_type max_size() const noexcept
22287 {
22288 switch (m_data.m_type)
22289 {
22290 case value_t::array:
22291 {
22292 // delegate call to array_t::max_size()
22293 return m_data.m_value.array->max_size();
22294 }
22295
22296 case value_t::object:
22297 {
22298 // delegate call to object_t::max_size()
22299 return m_data.m_value.object->max_size();
22300 }
22301
22302 case value_t::null:
22303 case value_t::string:
22304 case value_t::boolean:
22305 case value_t::number_integer:
22306 case value_t::number_unsigned:
22307 case value_t::number_float:
22308 case value_t::binary:
22309 case value_t::discarded:
22310 default:
22311 {
22312 // all other types have max_size() == size()
22313 return size();
22314 }
22315 }
22316 }
22317
22318 /// @}
22319
22320 ///////////////
22321 // modifiers //
22322 ///////////////
22323
22324 /// @name modifiers
22325 /// @{
22326
22327 /// @brief clears the contents
22328 /// @sa https://json.nlohmann.me/api/basic_json/clear/
22329 void clear() noexcept
22330 {
22331 switch (m_data.m_type)
22332 {
22333 case value_t::number_integer:
22334 {
22335 m_data.m_value.number_integer = 0;
22336 break;
22337 }
22338
22339 case value_t::number_unsigned:
22340 {
22341 m_data.m_value.number_unsigned = 0;
22342 break;
22343 }
22344
22345 case value_t::number_float:
22346 {
22347 m_data.m_value.number_float = 0.0;
22348 break;
22349 }
22350
22351 case value_t::boolean:
22352 {
22353 m_data.m_value.boolean = false;
22354 break;
22355 }
22356
22357 case value_t::string:
22358 {
22359 m_data.m_value.string->clear();
22360 break;
22361 }
22362
22363 case value_t::binary:
22364 {
22365 m_data.m_value.binary->clear();
22366 break;
22367 }
22368
22369 case value_t::array:
22370 {
22371 m_data.m_value.array->clear();
22372 break;
22373 }
22374
22375 case value_t::object:
22376 {
22377 m_data.m_value.object->clear();
22378 break;
22379 }
22380
22381 case value_t::null:
22382 case value_t::discarded:
22383 default:
22384 break;
22385 }
22386 }
22387
22388 /// @brief add an object to an array
22389 /// @sa https://json.nlohmann.me/api/basic_json/push_back/
22390 void push_back(basic_json&& val)
22391 {
22392 // push_back only works for null objects or arrays
22393 if (JSON_HEDLEY_UNLIKELY(!(is_null() || is_array())))
22394 {
22395 JSON_THROW(type_error::create(308, detail::concat("cannot use push_back() with ", type_name()), this));
22396 }
22397
22398 // transform null object into an array
22399 if (is_null())
22400 {
22401 m_data.m_type = value_t::array;
22402 m_data.m_value = value_t::array;
22403 assert_invariant();
22404 }
22405
22406 // add element to array (move semantics)
22407 const auto old_capacity = m_data.m_value.array->capacity();
22408 m_data.m_value.array->push_back(std::move(val));
22409 set_parent(m_data.m_value.array->back(), old_capacity);
22410 // if val is moved from, basic_json move constructor marks it null, so we do not call the destructor
22411 }
22412
22413 /// @brief add an object to an array
22414 /// @sa https://json.nlohmann.me/api/basic_json/operator+=/
22415 reference operator+=(basic_json&& val)
22416 {
22417 push_back(std::move(val));
22418 return *this;
22419 }
22420
22421 /// @brief add an object to an array
22422 /// @sa https://json.nlohmann.me/api/basic_json/push_back/
22423 void push_back(const basic_json& val)
22424 {
22425 // push_back only works for null objects or arrays
22426 if (JSON_HEDLEY_UNLIKELY(!(is_null() || is_array())))
22427 {
22428 JSON_THROW(type_error::create(308, detail::concat("cannot use push_back() with ", type_name()), this));
22429 }
22430
22431 // transform null object into an array
22432 if (is_null())
22433 {
22434 m_data.m_type = value_t::array;
22435 m_data.m_value = value_t::array;
22436 assert_invariant();
22437 }
22438
22439 // add element to array
22440 const auto old_capacity = m_data.m_value.array->capacity();
22441 m_data.m_value.array->push_back(val);
22442 set_parent(m_data.m_value.array->back(), old_capacity);
22443 }
22444
22445 /// @brief add an object to an array
22446 /// @sa https://json.nlohmann.me/api/basic_json/operator+=/
22447 reference operator+=(const basic_json& val)
22448 {
22449 push_back(val);
22450 return *this;
22451 }
22452
22453 /// @brief add an object to an object
22454 /// @sa https://json.nlohmann.me/api/basic_json/push_back/
22455 void push_back(const typename object_t::value_type& val)
22456 {
22457 // push_back only works for null objects or objects
22458 if (JSON_HEDLEY_UNLIKELY(!(is_null() || is_object())))
22459 {
22460 JSON_THROW(type_error::create(308, detail::concat("cannot use push_back() with ", type_name()), this));
22461 }
22462
22463 // transform null object into an object
22464 if (is_null())
22465 {
22466 m_data.m_type = value_t::object;
22467 m_data.m_value = value_t::object;
22468 assert_invariant();
22469 }
22470
22471 // add element to object
22472 auto res = m_data.m_value.object->insert(val);
22473 set_parent(res.first->second);
22474 }
22475
22476 /// @brief add an object to an object
22477 /// @sa https://json.nlohmann.me/api/basic_json/operator+=/
22478 reference operator+=(const typename object_t::value_type& val)
22479 {
22480 push_back(val);
22481 return *this;
22482 }
22483
22484 /// @brief add an object to an object
22485 /// @sa https://json.nlohmann.me/api/basic_json/push_back/
22486 void push_back(initializer_list_t init)
22487 {
22488 if (is_object() && init.size() == 2 && (*init.begin())->is_string())
22489 {
22490 basic_json&& key = init.begin()->moved_or_copied();
22491 push_back(typename object_t::value_type(
22492 std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied()));
22493 }
22494 else
22495 {
22496 push_back(basic_json(init));
22497 }
22498 }
22499
22500 /// @brief add an object to an object
22501 /// @sa https://json.nlohmann.me/api/basic_json/operator+=/
22502 reference operator+=(initializer_list_t init)
22503 {
22504 push_back(init);
22505 return *this;
22506 }
22507
22508 /// @brief add an object to an array
22509 /// @sa https://json.nlohmann.me/api/basic_json/emplace_back/
22510 template<class... Args>
22511 reference emplace_back(Args&& ... args)
22512 {
22513 // emplace_back only works for null objects or arrays
22514 if (JSON_HEDLEY_UNLIKELY(!(is_null() || is_array())))
22515 {
22516 JSON_THROW(type_error::create(311, detail::concat("cannot use emplace_back() with ", type_name()), this));
22517 }
22518
22519 // transform null object into an array
22520 if (is_null())
22521 {
22522 m_data.m_type = value_t::array;
22523 m_data.m_value = value_t::array;
22524 assert_invariant();
22525 }
22526
22527 // add element to array (perfect forwarding)
22528 const auto old_capacity = m_data.m_value.array->capacity();
22529 m_data.m_value.array->emplace_back(std::forward<Args>(args)...);
22530 return set_parent(m_data.m_value.array->back(), old_capacity);
22531 }
22532
22533 /// @brief add an object to an object if key does not exist
22534 /// @sa https://json.nlohmann.me/api/basic_json/emplace/
22535 template<class... Args>
22536 std::pair<iterator, bool> emplace(Args&& ... args)
22537 {
22538 // emplace only works for null objects or arrays
22539 if (JSON_HEDLEY_UNLIKELY(!(is_null() || is_object())))
22540 {
22541 JSON_THROW(type_error::create(311, detail::concat("cannot use emplace() with ", type_name()), this));
22542 }
22543
22544 // transform null object into an object
22545 if (is_null())
22546 {
22547 m_data.m_type = value_t::object;
22548 m_data.m_value = value_t::object;
22549 assert_invariant();
22550 }
22551
22552 // add element to array (perfect forwarding)
22553 auto res = m_data.m_value.object->emplace(std::forward<Args>(args)...);
22554 set_parent(res.first->second);
22555
22556 // create result iterator and set iterator to the result of emplace
22557 auto it = begin();
22558 it.m_it.object_iterator = res.first;
22559
22560 // return pair of iterator and boolean
22561 return {it, res.second};
22562 }
22563
22564 /// Helper for insertion of an iterator
22565 /// @note: This uses std::distance to support GCC 4.8,
22566 /// see https://github.com/nlohmann/json/pull/1257
22567 template<typename... Args>
22568 iterator insert_iterator(const_iterator pos, Args&& ... args)
22569 {
22570 iterator result(this);
22571 JSON_ASSERT(m_data.m_value.array != nullptr);
22572
22573 auto insert_pos = std::distance(m_data.m_value.array->begin(), pos.m_it.array_iterator);
22574 m_data.m_value.array->insert(pos.m_it.array_iterator, std::forward<Args>(args)...);
22575 result.m_it.array_iterator = m_data.m_value.array->begin() + insert_pos;
22576
22577 // This could have been written as:
22578 // result.m_it.array_iterator = m_data.m_value.array->insert(pos.m_it.array_iterator, cnt, val);
22579 // but the return value of insert is missing in GCC 4.8, so it is written this way instead.
22580
22581 set_parents();
22582 return result;
22583 }
22584
22585 /// @brief inserts element into array
22586 /// @sa https://json.nlohmann.me/api/basic_json/insert/
22587 iterator insert(const_iterator pos, const basic_json& val)
22588 {
22589 // insert only works for arrays
22590 if (JSON_HEDLEY_LIKELY(is_array()))
22591 {
22592 // check if iterator pos fits to this JSON value
22593 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
22594 {
22595 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value", this));
22596 }
22597
22598 // insert to array and return iterator
22599 return insert_iterator(pos, val);
22600 }
22601
22602 JSON_THROW(type_error::create(309, detail::concat("cannot use insert() with ", type_name()), this));
22603 }
22604
22605 /// @brief inserts element into array
22606 /// @sa https://json.nlohmann.me/api/basic_json/insert/
22607 iterator insert(const_iterator pos, basic_json&& val)
22608 {
22609 return insert(pos, val);
22610 }
22611
22612 /// @brief inserts copies of element into array
22613 /// @sa https://json.nlohmann.me/api/basic_json/insert/
22614 iterator insert(const_iterator pos, size_type cnt, const basic_json& val)
22615 {
22616 // insert only works for arrays
22617 if (JSON_HEDLEY_LIKELY(is_array()))
22618 {
22619 // check if iterator pos fits to this JSON value
22620 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
22621 {
22622 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value", this));
22623 }
22624
22625 // insert to array and return iterator
22626 return insert_iterator(pos, cnt, val);
22627 }
22628
22629 JSON_THROW(type_error::create(309, detail::concat("cannot use insert() with ", type_name()), this));
22630 }
22631
22632 /// @brief inserts range of elements into array
22633 /// @sa https://json.nlohmann.me/api/basic_json/insert/
22634 iterator insert(const_iterator pos, const_iterator first, const_iterator last)
22635 {
22636 // insert only works for arrays
22637 if (JSON_HEDLEY_UNLIKELY(!is_array()))
22638 {
22639 JSON_THROW(type_error::create(309, detail::concat("cannot use insert() with ", type_name()), this));
22640 }
22641
22642 // check if iterator pos fits to this JSON value
22643 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
22644 {
22645 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value", this));
22646 }
22647
22648 // check if range iterators belong to the same JSON object
22649 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
22650 {
22651 JSON_THROW(invalid_iterator::create(210, "iterators do not fit", this));
22652 }
22653
22654 if (JSON_HEDLEY_UNLIKELY(first.m_object == this))
22655 {
22656 JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container", this));
22657 }
22658
22659 // insert to array and return iterator
22660 return insert_iterator(pos, first.m_it.array_iterator, last.m_it.array_iterator);
22661 }
22662
22663 /// @brief inserts elements from initializer list into array
22664 /// @sa https://json.nlohmann.me/api/basic_json/insert/
22665 iterator insert(const_iterator pos, initializer_list_t ilist)
22666 {
22667 // insert only works for arrays
22668 if (JSON_HEDLEY_UNLIKELY(!is_array()))
22669 {
22670 JSON_THROW(type_error::create(309, detail::concat("cannot use insert() with ", type_name()), this));
22671 }
22672
22673 // check if iterator pos fits to this JSON value
22674 if (JSON_HEDLEY_UNLIKELY(pos.m_object != this))
22675 {
22676 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value", this));
22677 }
22678
22679 // insert to array and return iterator
22680 return insert_iterator(pos, ilist.begin(), ilist.end());
22681 }
22682
22683 /// @brief inserts range of elements into object
22684 /// @sa https://json.nlohmann.me/api/basic_json/insert/
22685 void insert(const_iterator first, const_iterator last)
22686 {
22687 // insert only works for objects
22688 if (JSON_HEDLEY_UNLIKELY(!is_object()))
22689 {
22690 JSON_THROW(type_error::create(309, detail::concat("cannot use insert() with ", type_name()), this));
22691 }
22692
22693 // check if range iterators belong to the same JSON object
22694 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
22695 {
22696 JSON_THROW(invalid_iterator::create(210, "iterators do not fit", this));
22697 }
22698
22699 // passed iterators must belong to objects
22700 if (JSON_HEDLEY_UNLIKELY(!first.m_object->is_object()))
22701 {
22702 JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects", this));
22703 }
22704
22705 m_data.m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator);
22706 }
22707
22708 /// @brief updates a JSON object from another object, overwriting existing keys
22709 /// @sa https://json.nlohmann.me/api/basic_json/update/
22710 void update(const_reference j, bool merge_objects = false)
22711 {
22712 update(j.begin(), j.end(), merge_objects);
22713 }
22714
22715 /// @brief updates a JSON object from another object, overwriting existing keys
22716 /// @sa https://json.nlohmann.me/api/basic_json/update/
22717 void update(const_iterator first, const_iterator last, bool merge_objects = false)
22718 {
22719 // implicitly convert null value to an empty object
22720 if (is_null())
22721 {
22722 m_data.m_type = value_t::object;
22723 m_data.m_value.object = create<object_t>();
22724 assert_invariant();
22725 }
22726
22727 if (JSON_HEDLEY_UNLIKELY(!is_object()))
22728 {
22729 JSON_THROW(type_error::create(312, detail::concat("cannot use update() with ", type_name()), this));
22730 }
22731
22732 // check if range iterators belong to the same JSON object
22733 if (JSON_HEDLEY_UNLIKELY(first.m_object != last.m_object))
22734 {
22735 JSON_THROW(invalid_iterator::create(210, "iterators do not fit", this));
22736 }
22737
22738 // passed iterators must belong to objects
22739 if (JSON_HEDLEY_UNLIKELY(!first.m_object->is_object()))
22740 {
22741 JSON_THROW(type_error::create(312, detail::concat("cannot use update() with ", first.m_object->type_name()), first.m_object));
22742 }
22743
22744 for (auto it = first; it != last; ++it)
22745 {
22746 if (merge_objects && it.value().is_object())
22747 {
22748 auto it2 = m_data.m_value.object->find(it.key());
22749 if (it2 != m_data.m_value.object->end())
22750 {
22751 it2->second.update(it.value(), true);
22752 continue;
22753 }
22754 }
22755 m_data.m_value.object->operator[](it.key()) = it.value();
22756 #if JSON_DIAGNOSTICS
22757 m_data.m_value.object->operator[](it.key()).m_parent = this;
22758 #endif
22759 }
22760 }
22761
22762 /// @brief exchanges the values
22763 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22764 void swap(reference other) noexcept (
22765 std::is_nothrow_move_constructible<value_t>::value&&
22766 std::is_nothrow_move_assignable<value_t>::value&&
22767 std::is_nothrow_move_constructible<json_value>::value&& // NOLINT(cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
22768 std::is_nothrow_move_assignable<json_value>::value
22769 )
22770 {
22771 std::swap(m_data.m_type, other.m_data.m_type);
22772 std::swap(m_data.m_value, other.m_data.m_value);
22773
22774 set_parents();
22775 other.set_parents();
22776 assert_invariant();
22777 }
22778
22779 /// @brief exchanges the values
22780 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22781 friend void swap(reference left, reference right) noexcept (
22782 std::is_nothrow_move_constructible<value_t>::value&&
22783 std::is_nothrow_move_assignable<value_t>::value&&
22784 std::is_nothrow_move_constructible<json_value>::value&& // NOLINT(cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
22785 std::is_nothrow_move_assignable<json_value>::value
22786 )
22787 {
22788 left.swap(right);
22789 }
22790
22791 /// @brief exchanges the values
22792 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22793 void swap(array_t& other) // NOLINT(bugprone-exception-escape,cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
22794 {
22795 // swap only works for arrays
22796 if (JSON_HEDLEY_LIKELY(is_array()))
22797 {
22798 using std::swap;
22799 swap(*(m_data.m_value.array), other);
22800 }
22801 else
22802 {
22803 JSON_THROW(type_error::create(310, detail::concat("cannot use swap(array_t&) with ", type_name()), this));
22804 }
22805 }
22806
22807 /// @brief exchanges the values
22808 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22809 void swap(object_t& other) // NOLINT(bugprone-exception-escape,cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
22810 {
22811 // swap only works for objects
22812 if (JSON_HEDLEY_LIKELY(is_object()))
22813 {
22814 using std::swap;
22815 swap(*(m_data.m_value.object), other);
22816 }
22817 else
22818 {
22819 JSON_THROW(type_error::create(310, detail::concat("cannot use swap(object_t&) with ", type_name()), this));
22820 }
22821 }
22822
22823 /// @brief exchanges the values
22824 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22825 void swap(string_t& other) // NOLINT(bugprone-exception-escape,cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
22826 {
22827 // swap only works for strings
22828 if (JSON_HEDLEY_LIKELY(is_string()))
22829 {
22830 using std::swap;
22831 swap(*(m_data.m_value.string), other);
22832 }
22833 else
22834 {
22835 JSON_THROW(type_error::create(310, detail::concat("cannot use swap(string_t&) with ", type_name()), this));
22836 }
22837 }
22838
22839 /// @brief exchanges the values
22840 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22841 void swap(binary_t& other) // NOLINT(bugprone-exception-escape,cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
22842 {
22843 // swap only works for strings
22844 if (JSON_HEDLEY_LIKELY(is_binary()))
22845 {
22846 using std::swap;
22847 swap(*(m_data.m_value.binary), other);
22848 }
22849 else
22850 {
22851 JSON_THROW(type_error::create(310, detail::concat("cannot use swap(binary_t&) with ", type_name()), this));
22852 }
22853 }
22854
22855 /// @brief exchanges the values
22856 /// @sa https://json.nlohmann.me/api/basic_json/swap/
22857 void swap(typename binary_t::container_type& other) // NOLINT(bugprone-exception-escape)
22858 {
22859 // swap only works for strings
22860 if (JSON_HEDLEY_LIKELY(is_binary()))
22861 {
22862 using std::swap;
22863 swap(*(m_data.m_value.binary), other);
22864 }
22865 else
22866 {
22867 JSON_THROW(type_error::create(310, detail::concat("cannot use swap(binary_t::container_type&) with ", type_name()), this));
22868 }
22869 }
22870
22871 /// @}
22872
22873 //////////////////////////////////////////
22874 // lexicographical comparison operators //
22875 //////////////////////////////////////////
22876
22877 /// @name lexicographical comparison operators
22878 /// @{
22879
22880 // note parentheses around operands are necessary; see
22881 // https://github.com/nlohmann/json/issues/1530
22882 #define JSON_IMPLEMENT_OPERATOR(op, null_result, unordered_result, default_result) \
22883 const auto lhs_type = lhs.type(); \
22884 const auto rhs_type = rhs.type(); \
22885 \
22886 if (lhs_type == rhs_type) /* NOLINT(readability/braces) */ \
22887 { \
22888 switch (lhs_type) \
22889 { \
22890 case value_t::array: \
22891 return (*lhs.m_data.m_value.array) op (*rhs.m_data.m_value.array); \
22892 \
22893 case value_t::object: \
22894 return (*lhs.m_data.m_value.object) op (*rhs.m_data.m_value.object); \
22895 \
22896 case value_t::null: \
22897 return (null_result); \
22898 \
22899 case value_t::string: \
22900 return (*lhs.m_data.m_value.string) op (*rhs.m_data.m_value.string); \
22901 \
22902 case value_t::boolean: \
22903 return (lhs.m_data.m_value.boolean) op (rhs.m_data.m_value.boolean); \
22904 \
22905 case value_t::number_integer: \
22906 return (lhs.m_data.m_value.number_integer) op (rhs.m_data.m_value.number_integer); \
22907 \
22908 case value_t::number_unsigned: \
22909 return (lhs.m_data.m_value.number_unsigned) op (rhs.m_data.m_value.number_unsigned); \
22910 \
22911 case value_t::number_float: \
22912 return (lhs.m_data.m_value.number_float) op (rhs.m_data.m_value.number_float); \
22913 \
22914 case value_t::binary: \
22915 return (*lhs.m_data.m_value.binary) op (*rhs.m_data.m_value.binary); \
22916 \
22917 case value_t::discarded: \
22918 default: \
22919 return (unordered_result); \
22920 } \
22921 } \
22922 else if (lhs_type == value_t::number_integer && rhs_type == value_t::number_float) \
22923 { \
22924 return static_cast<number_float_t>(lhs.m_data.m_value.number_integer) op rhs.m_data.m_value.number_float; \
22925 } \
22926 else if (lhs_type == value_t::number_float && rhs_type == value_t::number_integer) \
22927 { \
22928 return lhs.m_data.m_value.number_float op static_cast<number_float_t>(rhs.m_data.m_value.number_integer); \
22929 } \
22930 else if (lhs_type == value_t::number_unsigned && rhs_type == value_t::number_float) \
22931 { \
22932 return static_cast<number_float_t>(lhs.m_data.m_value.number_unsigned) op rhs.m_data.m_value.number_float; \
22933 } \
22934 else if (lhs_type == value_t::number_float && rhs_type == value_t::number_unsigned) \
22935 { \
22936 return lhs.m_data.m_value.number_float op static_cast<number_float_t>(rhs.m_data.m_value.number_unsigned); \
22937 } \
22938 else if (lhs_type == value_t::number_unsigned && rhs_type == value_t::number_integer) \
22939 { \
22940 return static_cast<number_integer_t>(lhs.m_data.m_value.number_unsigned) op rhs.m_data.m_value.number_integer; \
22941 } \
22942 else if (lhs_type == value_t::number_integer && rhs_type == value_t::number_unsigned) \
22943 { \
22944 return lhs.m_data.m_value.number_integer op static_cast<number_integer_t>(rhs.m_data.m_value.number_unsigned); \
22945 } \
22946 else if(compares_unordered(lhs, rhs))\
22947 {\
22948 return (unordered_result);\
22949 }\
22950 \
22951 return (default_result);
22952
22953 JSON_PRIVATE_UNLESS_TESTED:
22954 // returns true if:
22955 // - any operand is NaN and the other operand is of number type
22956 // - any operand is discarded
22957 // in legacy mode, discarded values are considered ordered if
22958 // an operation is computed as an odd number of inverses of others
22959 static bool compares_unordered(const_reference lhs, const_reference rhs, bool inverse = false) noexcept
22960 {
22961 if ((lhs.is_number_float() && std::isnan(lhs.m_data.m_value.number_float) && rhs.is_number())
22962 || (rhs.is_number_float() && std::isnan(rhs.m_data.m_value.number_float) && lhs.is_number()))
22963 {
22964 return true;
22965 }
22966 #if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
22967 return (lhs.is_discarded() || rhs.is_discarded()) && !inverse;
22968 #else
22969 static_cast<void>(inverse);
22970 return lhs.is_discarded() || rhs.is_discarded();
22971 #endif
22972 }
22973
22974 private:
22975 bool compares_unordered(const_reference rhs, bool inverse = false) const noexcept
22976 {
22977 return compares_unordered(*this, rhs, inverse);
22978 }
22979
22980 public:
22981 #if JSON_HAS_THREE_WAY_COMPARISON
22982 /// @brief comparison: equal
22983 /// @sa https://json.nlohmann.me/api/basic_json/operator_eq/
22984 bool operator==(const_reference rhs) const noexcept
22985 {
22986 #ifdef __GNUC__
22987 #pragma GCC diagnostic push
22988 #pragma GCC diagnostic ignored "-Wfloat-equal"
22989 #endif
22990 const_reference lhs = *this;
22991 JSON_IMPLEMENT_OPERATOR( ==, true, false, false)
22992 #ifdef __GNUC__
22993 #pragma GCC diagnostic pop
22994 #endif
22995 }
22996
22997 /// @brief comparison: equal
22998 /// @sa https://json.nlohmann.me/api/basic_json/operator_eq/
22999 template<typename ScalarType>
23000 requires std::is_scalar_v<ScalarType>
23001 bool operator==(ScalarType rhs) const noexcept
23002 {
23003 return *this == basic_json(rhs);
23004 }
23005
23006 /// @brief comparison: not equal
23007 /// @sa https://json.nlohmann.me/api/basic_json/operator_ne/
23008 bool operator!=(const_reference rhs) const noexcept
23009 {
23010 if (compares_unordered(rhs, true))
23011 {
23012 return false;
23013 }
23014 return !operator==(rhs);
23015 }
23016
23017 /// @brief comparison: 3-way
23018 /// @sa https://json.nlohmann.me/api/basic_json/operator_spaceship/
23019 std::partial_ordering operator<=>(const_reference rhs) const noexcept // *NOPAD*
23020 {
23021 const_reference lhs = *this;
23022 // default_result is used if we cannot compare values. In that case,
23023 // we compare types.
23024 JSON_IMPLEMENT_OPERATOR(<=>, // *NOPAD*
23025 std::partial_ordering::equivalent,
23026 std::partial_ordering::unordered,
23027 lhs_type <=> rhs_type) // *NOPAD*
23028 }
23029
23030 /// @brief comparison: 3-way
23031 /// @sa https://json.nlohmann.me/api/basic_json/operator_spaceship/
23032 template<typename ScalarType>
23033 requires std::is_scalar_v<ScalarType>
23034 std::partial_ordering operator<=>(ScalarType rhs) const noexcept // *NOPAD*
23035 {
23036 return *this <=> basic_json(rhs); // *NOPAD*
23037 }
23038
23039 #if JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
23040 // all operators that are computed as an odd number of inverses of others
23041 // need to be overloaded to emulate the legacy comparison behavior
23042
23043 /// @brief comparison: less than or equal
23044 /// @sa https://json.nlohmann.me/api/basic_json/operator_le/
23045 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, undef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON)
23046 bool operator<=(const_reference rhs) const noexcept
23047 {
23048 if (compares_unordered(rhs, true))
23049 {
23050 return false;
23051 }
23052 return !(rhs < *this);
23053 }
23054
23055 /// @brief comparison: less than or equal
23056 /// @sa https://json.nlohmann.me/api/basic_json/operator_le/
23057 template<typename ScalarType>
23058 requires std::is_scalar_v<ScalarType>
23059 bool operator<=(ScalarType rhs) const noexcept
23060 {
23061 return *this <= basic_json(rhs);
23062 }
23063
23064 /// @brief comparison: greater than or equal
23065 /// @sa https://json.nlohmann.me/api/basic_json/operator_ge/
23066 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, undef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON)
23067 bool operator>=(const_reference rhs) const noexcept
23068 {
23069 if (compares_unordered(rhs, true))
23070 {
23071 return false;
23072 }
23073 return !(*this < rhs);
23074 }
23075
23076 /// @brief comparison: greater than or equal
23077 /// @sa https://json.nlohmann.me/api/basic_json/operator_ge/
23078 template<typename ScalarType>
23079 requires std::is_scalar_v<ScalarType>
23080 bool operator>=(ScalarType rhs) const noexcept
23081 {
23082 return *this >= basic_json(rhs);
23083 }
23084 #endif
23085 #else
23086 /// @brief comparison: equal
23087 /// @sa https://json.nlohmann.me/api/basic_json/operator_eq/
23088 friend bool operator==(const_reference lhs, const_reference rhs) noexcept
23089 {
23090 #ifdef __GNUC__
23091 #pragma GCC diagnostic push
23092 #pragma GCC diagnostic ignored "-Wfloat-equal"
23093 #endif
23094 JSON_IMPLEMENT_OPERATOR( ==, true, false, false)
23095 #ifdef __GNUC__
23096 #pragma GCC diagnostic pop
23097 #endif
23098 }
23099
23100 /// @brief comparison: equal
23101 /// @sa https://json.nlohmann.me/api/basic_json/operator_eq/
23102 template<typename ScalarType, typename std::enable_if<
23103 std::is_scalar<ScalarType>::value, int>::type = 0>
23104 friend bool operator==(const_reference lhs, ScalarType rhs) noexcept
23105 {
23106 return lhs == basic_json(rhs);
23107 }
23108
23109 /// @brief comparison: equal
23110 /// @sa https://json.nlohmann.me/api/basic_json/operator_eq/
23111 template<typename ScalarType, typename std::enable_if<
23112 std::is_scalar<ScalarType>::value, int>::type = 0>
23113 friend bool operator==(ScalarType lhs, const_reference rhs) noexcept
23114 {
23115 return basic_json(lhs) == rhs;
23116 }
23117
23118 /// @brief comparison: not equal
23119 /// @sa https://json.nlohmann.me/api/basic_json/operator_ne/
23120 friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
23121 {
23122 if (compares_unordered(lhs, rhs, true))
23123 {
23124 return false;
23125 }
23126 return !(lhs == rhs);
23127 }
23128
23129 /// @brief comparison: not equal
23130 /// @sa https://json.nlohmann.me/api/basic_json/operator_ne/
23131 template<typename ScalarType, typename std::enable_if<
23132 std::is_scalar<ScalarType>::value, int>::type = 0>
23133 friend bool operator!=(const_reference lhs, ScalarType rhs) noexcept
23134 {
23135 return lhs != basic_json(rhs);
23136 }
23137
23138 /// @brief comparison: not equal
23139 /// @sa https://json.nlohmann.me/api/basic_json/operator_ne/
23140 template<typename ScalarType, typename std::enable_if<
23141 std::is_scalar<ScalarType>::value, int>::type = 0>
23142 friend bool operator!=(ScalarType lhs, const_reference rhs) noexcept
23143 {
23144 return basic_json(lhs) != rhs;
23145 }
23146
23147 /// @brief comparison: less than
23148 /// @sa https://json.nlohmann.me/api/basic_json/operator_lt/
23149 friend bool operator<(const_reference lhs, const_reference rhs) noexcept
23150 {
23151 // default_result is used if we cannot compare values. In that case,
23152 // we compare types. Note we have to call the operator explicitly,
23153 // because MSVC has problems otherwise.
23154 JSON_IMPLEMENT_OPERATOR( <, false, false, operator<(lhs_type, rhs_type))
23155 }
23156
23157 /// @brief comparison: less than
23158 /// @sa https://json.nlohmann.me/api/basic_json/operator_lt/
23159 template<typename ScalarType, typename std::enable_if<
23160 std::is_scalar<ScalarType>::value, int>::type = 0>
23161 friend bool operator<(const_reference lhs, ScalarType rhs) noexcept
23162 {
23163 return lhs < basic_json(rhs);
23164 }
23165
23166 /// @brief comparison: less than
23167 /// @sa https://json.nlohmann.me/api/basic_json/operator_lt/
23168 template<typename ScalarType, typename std::enable_if<
23169 std::is_scalar<ScalarType>::value, int>::type = 0>
23170 friend bool operator<(ScalarType lhs, const_reference rhs) noexcept
23171 {
23172 return basic_json(lhs) < rhs;
23173 }
23174
23175 /// @brief comparison: less than or equal
23176 /// @sa https://json.nlohmann.me/api/basic_json/operator_le/
23177 friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
23178 {
23179 if (compares_unordered(lhs, rhs, true))
23180 {
23181 return false;
23182 }
23183 return !(rhs < lhs);
23184 }
23185
23186 /// @brief comparison: less than or equal
23187 /// @sa https://json.nlohmann.me/api/basic_json/operator_le/
23188 template<typename ScalarType, typename std::enable_if<
23189 std::is_scalar<ScalarType>::value, int>::type = 0>
23190 friend bool operator<=(const_reference lhs, ScalarType rhs) noexcept
23191 {
23192 return lhs <= basic_json(rhs);
23193 }
23194
23195 /// @brief comparison: less than or equal
23196 /// @sa https://json.nlohmann.me/api/basic_json/operator_le/
23197 template<typename ScalarType, typename std::enable_if<
23198 std::is_scalar<ScalarType>::value, int>::type = 0>
23199 friend bool operator<=(ScalarType lhs, const_reference rhs) noexcept
23200 {
23201 return basic_json(lhs) <= rhs;
23202 }
23203
23204 /// @brief comparison: greater than
23205 /// @sa https://json.nlohmann.me/api/basic_json/operator_gt/
23206 friend bool operator>(const_reference lhs, const_reference rhs) noexcept
23207 {
23208 // double inverse
23209 if (compares_unordered(lhs, rhs))
23210 {
23211 return false;
23212 }
23213 return !(lhs <= rhs);
23214 }
23215
23216 /// @brief comparison: greater than
23217 /// @sa https://json.nlohmann.me/api/basic_json/operator_gt/
23218 template<typename ScalarType, typename std::enable_if<
23219 std::is_scalar<ScalarType>::value, int>::type = 0>
23220 friend bool operator>(const_reference lhs, ScalarType rhs) noexcept
23221 {
23222 return lhs > basic_json(rhs);
23223 }
23224
23225 /// @brief comparison: greater than
23226 /// @sa https://json.nlohmann.me/api/basic_json/operator_gt/
23227 template<typename ScalarType, typename std::enable_if<
23228 std::is_scalar<ScalarType>::value, int>::type = 0>
23229 friend bool operator>(ScalarType lhs, const_reference rhs) noexcept
23230 {
23231 return basic_json(lhs) > rhs;
23232 }
23233
23234 /// @brief comparison: greater than or equal
23235 /// @sa https://json.nlohmann.me/api/basic_json/operator_ge/
23236 friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
23237 {
23238 if (compares_unordered(lhs, rhs, true))
23239 {
23240 return false;
23241 }
23242 return !(lhs < rhs);
23243 }
23244
23245 /// @brief comparison: greater than or equal
23246 /// @sa https://json.nlohmann.me/api/basic_json/operator_ge/
23247 template<typename ScalarType, typename std::enable_if<
23248 std::is_scalar<ScalarType>::value, int>::type = 0>
23249 friend bool operator>=(const_reference lhs, ScalarType rhs) noexcept
23250 {
23251 return lhs >= basic_json(rhs);
23252 }
23253
23254 /// @brief comparison: greater than or equal
23255 /// @sa https://json.nlohmann.me/api/basic_json/operator_ge/
23256 template<typename ScalarType, typename std::enable_if<
23257 std::is_scalar<ScalarType>::value, int>::type = 0>
23258 friend bool operator>=(ScalarType lhs, const_reference rhs) noexcept
23259 {
23260 return basic_json(lhs) >= rhs;
23261 }
23262 #endif
23263
23264 #undef JSON_IMPLEMENT_OPERATOR
23265
23266 /// @}
23267
23268 ///////////////////
23269 // serialization //
23270 ///////////////////
23271
23272 /// @name serialization
23273 /// @{
23274 #ifndef JSON_NO_IO
23275 /// @brief serialize to stream
23276 /// @sa https://json.nlohmann.me/api/basic_json/operator_ltlt/
23277 friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
23278 {
23279 // read width member and use it as indentation parameter if nonzero
23280 const bool pretty_print = o.width() > 0;
23281 const auto indentation = pretty_print ? o.width() : 0;
23282
23283 // reset width to 0 for subsequent calls to this stream
23284 o.width(0);
23285
23286 // do the actual serialization
23287 serializer s(detail::output_adapter<char>(o), o.fill());
23288 s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation));
23289 return o;
23290 }
23291
23292 /// @brief serialize to stream
23293 /// @sa https://json.nlohmann.me/api/basic_json/operator_ltlt/
23294 /// @deprecated This function is deprecated since 3.0.0 and will be removed in
23295 /// version 4.0.0 of the library. Please use
23296 /// operator<<(std::ostream&, const basic_json&) instead; that is,
23297 /// replace calls like `j >> o;` with `o << j;`.
23298 JSON_HEDLEY_DEPRECATED_FOR(3.0.0, operator<<(std::ostream&, const basic_json&))
23299 friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
23300 {
23301 return o << j;
23302 }
23303 #endif // JSON_NO_IO
23304 /// @}
23305
23306 /////////////////////
23307 // deserialization //
23308 /////////////////////
23309
23310 /// @name deserialization
23311 /// @{
23312
23313 /// @brief deserialize from a compatible input
23314 /// @sa https://json.nlohmann.me/api/basic_json/parse/
23315 template<typename InputType>
23316 JSON_HEDLEY_WARN_UNUSED_RESULT
23317 static basic_json parse(InputType&& i,
23318 const parser_callback_t cb = nullptr,
23319 const bool allow_exceptions = true,
23320 const bool ignore_comments = false)
23321 {
23322 basic_json result;
23323 parser(detail::input_adapter(std::forward<InputType>(i)), cb, allow_exceptions, ignore_comments).parse(true, result);
23324 return result;
23325 }
23326
23327 /// @brief deserialize from a pair of character iterators
23328 /// @sa https://json.nlohmann.me/api/basic_json/parse/
23329 template<typename IteratorType>
23330 JSON_HEDLEY_WARN_UNUSED_RESULT
23331 static basic_json parse(IteratorType first,
23332 IteratorType last,
23333 const parser_callback_t cb = nullptr,
23334 const bool allow_exceptions = true,
23335 const bool ignore_comments = false)
23336 {
23337 basic_json result;
23338 parser(detail::input_adapter(std::move(first), std::move(last)), cb, allow_exceptions, ignore_comments).parse(true, result);
23339 return result;
23340 }
23341
23342 JSON_HEDLEY_WARN_UNUSED_RESULT
23343 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, parse(ptr, ptr + len))
23344 static basic_json parse(detail::span_input_adapter&& i,
23345 const parser_callback_t cb = nullptr,
23346 const bool allow_exceptions = true,
23347 const bool ignore_comments = false)
23348 {
23349 basic_json result;
23350 parser(i.get(), cb, allow_exceptions, ignore_comments).parse(true, result);
23351 return result;
23352 }
23353
23354 /// @brief check if the input is valid JSON
23355 /// @sa https://json.nlohmann.me/api/basic_json/accept/
23356 template<typename InputType>
23357 static bool accept(InputType&& i,
23358 const bool ignore_comments = false)
23359 {
23360 return parser(detail::input_adapter(std::forward<InputType>(i)), nullptr, false, ignore_comments).accept(true);
23361 }
23362
23363 /// @brief check if the input is valid JSON
23364 /// @sa https://json.nlohmann.me/api/basic_json/accept/
23365 template<typename IteratorType>
23366 static bool accept(IteratorType first, IteratorType last,
23367 const bool ignore_comments = false)
23368 {
23369 return parser(detail::input_adapter(std::move(first), std::move(last)), nullptr, false, ignore_comments).accept(true);
23370 }
23371
23372 JSON_HEDLEY_WARN_UNUSED_RESULT
23373 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, accept(ptr, ptr + len))
23374 static bool accept(detail::span_input_adapter&& i,
23375 const bool ignore_comments = false)
23376 {
23377 return parser(i.get(), nullptr, false, ignore_comments).accept(true);
23378 }
23379
23380 /// @brief generate SAX events
23381 /// @sa https://json.nlohmann.me/api/basic_json/sax_parse/
23382 template <typename InputType, typename SAX>
23383 JSON_HEDLEY_NON_NULL(2)
23384 static bool sax_parse(InputType&& i, SAX* sax,
23385 input_format_t format = input_format_t::json,
23386 const bool strict = true,
23387 const bool ignore_comments = false)
23388 {
23389 auto ia = detail::input_adapter(std::forward<InputType>(i));
23390 return format == input_format_t::json
23391 ? parser(std::move(ia), nullptr, true, ignore_comments).sax_parse(sax, strict)
23392 : detail::binary_reader<basic_json, decltype(ia), SAX>(std::move(ia), format).sax_parse(format, sax, strict);
23393 }
23394
23395 /// @brief generate SAX events
23396 /// @sa https://json.nlohmann.me/api/basic_json/sax_parse/
23397 template<class IteratorType, class SAX>
23398 JSON_HEDLEY_NON_NULL(3)
23399 static bool sax_parse(IteratorType first, IteratorType last, SAX* sax,
23400 input_format_t format = input_format_t::json,
23401 const bool strict = true,
23402 const bool ignore_comments = false)
23403 {
23404 auto ia = detail::input_adapter(std::move(first), std::move(last));
23405 return format == input_format_t::json
23406 ? parser(std::move(ia), nullptr, true, ignore_comments).sax_parse(sax, strict)
23407 : detail::binary_reader<basic_json, decltype(ia), SAX>(std::move(ia), format).sax_parse(format, sax, strict);
23408 }
23409
23410 /// @brief generate SAX events
23411 /// @sa https://json.nlohmann.me/api/basic_json/sax_parse/
23412 /// @deprecated This function is deprecated since 3.8.0 and will be removed in
23413 /// version 4.0.0 of the library. Please use
23414 /// sax_parse(ptr, ptr + len) instead.
23415 template <typename SAX>
23416 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, sax_parse(ptr, ptr + len, ...))
23417 JSON_HEDLEY_NON_NULL(2)
23418 static bool sax_parse(detail::span_input_adapter&& i, SAX* sax,
23419 input_format_t format = input_format_t::json,
23420 const bool strict = true,
23421 const bool ignore_comments = false)
23422 {
23423 auto ia = i.get();
23424 return format == input_format_t::json
23425 // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg)
23426 ? parser(std::move(ia), nullptr, true, ignore_comments).sax_parse(sax, strict)
23427 // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg)
23428 : detail::binary_reader<basic_json, decltype(ia), SAX>(std::move(ia), format).sax_parse(format, sax, strict);
23429 }
23430 #ifndef JSON_NO_IO
23431 /// @brief deserialize from stream
23432 /// @sa https://json.nlohmann.me/api/basic_json/operator_gtgt/
23433 /// @deprecated This stream operator is deprecated since 3.0.0 and will be removed in
23434 /// version 4.0.0 of the library. Please use
23435 /// operator>>(std::istream&, basic_json&) instead; that is,
23436 /// replace calls like `j << i;` with `i >> j;`.
23437 JSON_HEDLEY_DEPRECATED_FOR(3.0.0, operator>>(std::istream&, basic_json&))
23438 friend std::istream& operator<<(basic_json& j, std::istream& i)
23439 {
23440 return operator>>(i, j);
23441 }
23442
23443 /// @brief deserialize from stream
23444 /// @sa https://json.nlohmann.me/api/basic_json/operator_gtgt/
23445 friend std::istream& operator>>(std::istream& i, basic_json& j)
23446 {
23447 parser(detail::input_adapter(i)).parse(false, j);
23448 return i;
23449 }
23450 #endif // JSON_NO_IO
23451 /// @}
23452
23453 ///////////////////////////
23454 // convenience functions //
23455 ///////////////////////////
23456
23457 /// @brief return the type as string
23458 /// @sa https://json.nlohmann.me/api/basic_json/type_name/
23459 JSON_HEDLEY_RETURNS_NON_NULL
23460 const char* type_name() const noexcept
23461 {
23462 switch (m_data.m_type)
23463 {
23464 case value_t::null:
23465 return "null";
23466 case value_t::object:
23467 return "object";
23468 case value_t::array:
23469 return "array";
23470 case value_t::string:
23471 return "string";
23472 case value_t::boolean:
23473 return "boolean";
23474 case value_t::binary:
23475 return "binary";
23476 case value_t::discarded:
23477 return "discarded";
23478 case value_t::number_integer:
23479 case value_t::number_unsigned:
23480 case value_t::number_float:
23481 default:
23482 return "number";
23483 }
23484 }
23485
23486 JSON_PRIVATE_UNLESS_TESTED:
23487 //////////////////////
23488 // member variables //
23489 //////////////////////
23490
23491 struct data
23492 {
23493 /// the type of the current element
23494 value_t m_type = value_t::null;
23495
23496 /// the value of the current element
23497 json_value m_value = {};
23498
23499 data(const value_t v)
23500 : m_type(v), m_value(v)
23501 {
23502 }
23503
23504 data(size_type cnt, const basic_json& val)
23505 : m_type(value_t::array)
23506 {
23507 m_value.array = create<array_t>(cnt, val);
23508 }
23509
23510 data() noexcept = default;
23511 data(data&&) noexcept = default;
23512 data(const data&) noexcept = delete;
23513 data& operator=(data&&) noexcept = delete;
23514 data& operator=(const data&) noexcept = delete;
23515
23516 ~data() noexcept
23517 {
23518 m_value.destroy(m_type);
23519 }
23520 };
23521
23522 data m_data = {};
23523
23524 #if JSON_DIAGNOSTICS
23525 /// a pointer to a parent value (for debugging purposes)
23526 basic_json* m_parent = nullptr;
23527 #endif
23528
23529 //////////////////////////////////////////
23530 // binary serialization/deserialization //
23531 //////////////////////////////////////////
23532
23533 /// @name binary serialization/deserialization support
23534 /// @{
23535
23536 public:
23537 /// @brief create a CBOR serialization of a given JSON value
23538 /// @sa https://json.nlohmann.me/api/basic_json/to_cbor/
23539 static std::vector<std::uint8_t> to_cbor(const basic_json& j)
23540 {
23541 std::vector<std::uint8_t> result;
23542 to_cbor(j, result);
23543 return result;
23544 }
23545
23546 /// @brief create a CBOR serialization of a given JSON value
23547 /// @sa https://json.nlohmann.me/api/basic_json/to_cbor/
23548 static void to_cbor(const basic_json& j, detail::output_adapter<std::uint8_t> o)
23549 {
23550 binary_writer<std::uint8_t>(o).write_cbor(j);
23551 }
23552
23553 /// @brief create a CBOR serialization of a given JSON value
23554 /// @sa https://json.nlohmann.me/api/basic_json/to_cbor/
23555 static void to_cbor(const basic_json& j, detail::output_adapter<char> o)
23556 {
23557 binary_writer<char>(o).write_cbor(j);
23558 }
23559
23560 /// @brief create a MessagePack serialization of a given JSON value
23561 /// @sa https://json.nlohmann.me/api/basic_json/to_msgpack/
23562 static std::vector<std::uint8_t> to_msgpack(const basic_json& j)
23563 {
23564 std::vector<std::uint8_t> result;
23565 to_msgpack(j, result);
23566 return result;
23567 }
23568
23569 /// @brief create a MessagePack serialization of a given JSON value
23570 /// @sa https://json.nlohmann.me/api/basic_json/to_msgpack/
23571 static void to_msgpack(const basic_json& j, detail::output_adapter<std::uint8_t> o)
23572 {
23573 binary_writer<std::uint8_t>(o).write_msgpack(j);
23574 }
23575
23576 /// @brief create a MessagePack serialization of a given JSON value
23577 /// @sa https://json.nlohmann.me/api/basic_json/to_msgpack/
23578 static void to_msgpack(const basic_json& j, detail::output_adapter<char> o)
23579 {
23580 binary_writer<char>(o).write_msgpack(j);
23581 }
23582
23583 /// @brief create a UBJSON serialization of a given JSON value
23584 /// @sa https://json.nlohmann.me/api/basic_json/to_ubjson/
23585 static std::vector<std::uint8_t> to_ubjson(const basic_json& j,
23586 const bool use_size = false,
23587 const bool use_type = false)
23588 {
23589 std::vector<std::uint8_t> result;
23590 to_ubjson(j, result, use_size, use_type);
23591 return result;
23592 }
23593
23594 /// @brief create a UBJSON serialization of a given JSON value
23595 /// @sa https://json.nlohmann.me/api/basic_json/to_ubjson/
23596 static void to_ubjson(const basic_json& j, detail::output_adapter<std::uint8_t> o,
23597 const bool use_size = false, const bool use_type = false)
23598 {
23599 binary_writer<std::uint8_t>(o).write_ubjson(j, use_size, use_type);
23600 }
23601
23602 /// @brief create a UBJSON serialization of a given JSON value
23603 /// @sa https://json.nlohmann.me/api/basic_json/to_ubjson/
23604 static void to_ubjson(const basic_json& j, detail::output_adapter<char> o,
23605 const bool use_size = false, const bool use_type = false)
23606 {
23607 binary_writer<char>(o).write_ubjson(j, use_size, use_type);
23608 }
23609
23610 /// @brief create a BJData serialization of a given JSON value
23611 /// @sa https://json.nlohmann.me/api/basic_json/to_bjdata/
23612 static std::vector<std::uint8_t> to_bjdata(const basic_json& j,
23613 const bool use_size = false,
23614 const bool use_type = false)
23615 {
23616 std::vector<std::uint8_t> result;
23617 to_bjdata(j, result, use_size, use_type);
23618 return result;
23619 }
23620
23621 /// @brief create a BJData serialization of a given JSON value
23622 /// @sa https://json.nlohmann.me/api/basic_json/to_bjdata/
23623 static void to_bjdata(const basic_json& j, detail::output_adapter<std::uint8_t> o,
23624 const bool use_size = false, const bool use_type = false)
23625 {
23626 binary_writer<std::uint8_t>(o).write_ubjson(j, use_size, use_type, true, true);
23627 }
23628
23629 /// @brief create a BJData serialization of a given JSON value
23630 /// @sa https://json.nlohmann.me/api/basic_json/to_bjdata/
23631 static void to_bjdata(const basic_json& j, detail::output_adapter<char> o,
23632 const bool use_size = false, const bool use_type = false)
23633 {
23634 binary_writer<char>(o).write_ubjson(j, use_size, use_type, true, true);
23635 }
23636
23637 /// @brief create a BSON serialization of a given JSON value
23638 /// @sa https://json.nlohmann.me/api/basic_json/to_bson/
23639 static std::vector<std::uint8_t> to_bson(const basic_json& j)
23640 {
23641 std::vector<std::uint8_t> result;
23642 to_bson(j, result);
23643 return result;
23644 }
23645
23646 /// @brief create a BSON serialization of a given JSON value
23647 /// @sa https://json.nlohmann.me/api/basic_json/to_bson/
23648 static void to_bson(const basic_json& j, detail::output_adapter<std::uint8_t> o)
23649 {
23650 binary_writer<std::uint8_t>(o).write_bson(j);
23651 }
23652
23653 /// @brief create a BSON serialization of a given JSON value
23654 /// @sa https://json.nlohmann.me/api/basic_json/to_bson/
23655 static void to_bson(const basic_json& j, detail::output_adapter<char> o)
23656 {
23657 binary_writer<char>(o).write_bson(j);
23658 }
23659
23660 /// @brief create a JSON value from an input in CBOR format
23661 /// @sa https://json.nlohmann.me/api/basic_json/from_cbor/
23662 template<typename InputType>
23663 JSON_HEDLEY_WARN_UNUSED_RESULT
23664 static basic_json from_cbor(InputType&& i,
23665 const bool strict = true,
23666 const bool allow_exceptions = true,
23667 const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error)
23668 {
23669 basic_json result;
23670 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23671 auto ia = detail::input_adapter(std::forward<InputType>(i));
23672 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler);
23673 return res ? result : basic_json(value_t::discarded);
23674 }
23675
23676 /// @brief create a JSON value from an input in CBOR format
23677 /// @sa https://json.nlohmann.me/api/basic_json/from_cbor/
23678 template<typename IteratorType>
23679 JSON_HEDLEY_WARN_UNUSED_RESULT
23680 static basic_json from_cbor(IteratorType first, IteratorType last,
23681 const bool strict = true,
23682 const bool allow_exceptions = true,
23683 const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error)
23684 {
23685 basic_json result;
23686 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23687 auto ia = detail::input_adapter(std::move(first), std::move(last));
23688 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler);
23689 return res ? result : basic_json(value_t::discarded);
23690 }
23691
23692 template<typename T>
23693 JSON_HEDLEY_WARN_UNUSED_RESULT
23694 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_cbor(ptr, ptr + len))
23695 static basic_json from_cbor(const T* ptr, std::size_t len,
23696 const bool strict = true,
23697 const bool allow_exceptions = true,
23698 const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error)
23699 {
23700 return from_cbor(ptr, ptr + len, strict, allow_exceptions, tag_handler);
23701 }
23702
23703 JSON_HEDLEY_WARN_UNUSED_RESULT
23704 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_cbor(ptr, ptr + len))
23705 static basic_json from_cbor(detail::span_input_adapter&& i,
23706 const bool strict = true,
23707 const bool allow_exceptions = true,
23708 const cbor_tag_handler_t tag_handler = cbor_tag_handler_t::error)
23709 {
23710 basic_json result;
23711 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23712 auto ia = i.get();
23713 // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg)
23714 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::cbor).sax_parse(input_format_t::cbor, &sdp, strict, tag_handler);
23715 return res ? result : basic_json(value_t::discarded);
23716 }
23717
23718 /// @brief create a JSON value from an input in MessagePack format
23719 /// @sa https://json.nlohmann.me/api/basic_json/from_msgpack/
23720 template<typename InputType>
23721 JSON_HEDLEY_WARN_UNUSED_RESULT
23722 static basic_json from_msgpack(InputType&& i,
23723 const bool strict = true,
23724 const bool allow_exceptions = true)
23725 {
23726 basic_json result;
23727 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23728 auto ia = detail::input_adapter(std::forward<InputType>(i));
23729 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict);
23730 return res ? result : basic_json(value_t::discarded);
23731 }
23732
23733 /// @brief create a JSON value from an input in MessagePack format
23734 /// @sa https://json.nlohmann.me/api/basic_json/from_msgpack/
23735 template<typename IteratorType>
23736 JSON_HEDLEY_WARN_UNUSED_RESULT
23737 static basic_json from_msgpack(IteratorType first, IteratorType last,
23738 const bool strict = true,
23739 const bool allow_exceptions = true)
23740 {
23741 basic_json result;
23742 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23743 auto ia = detail::input_adapter(std::move(first), std::move(last));
23744 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict);
23745 return res ? result : basic_json(value_t::discarded);
23746 }
23747
23748 template<typename T>
23749 JSON_HEDLEY_WARN_UNUSED_RESULT
23750 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_msgpack(ptr, ptr + len))
23751 static basic_json from_msgpack(const T* ptr, std::size_t len,
23752 const bool strict = true,
23753 const bool allow_exceptions = true)
23754 {
23755 return from_msgpack(ptr, ptr + len, strict, allow_exceptions);
23756 }
23757
23758 JSON_HEDLEY_WARN_UNUSED_RESULT
23759 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_msgpack(ptr, ptr + len))
23760 static basic_json from_msgpack(detail::span_input_adapter&& i,
23761 const bool strict = true,
23762 const bool allow_exceptions = true)
23763 {
23764 basic_json result;
23765 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23766 auto ia = i.get();
23767 // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg)
23768 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::msgpack).sax_parse(input_format_t::msgpack, &sdp, strict);
23769 return res ? result : basic_json(value_t::discarded);
23770 }
23771
23772 /// @brief create a JSON value from an input in UBJSON format
23773 /// @sa https://json.nlohmann.me/api/basic_json/from_ubjson/
23774 template<typename InputType>
23775 JSON_HEDLEY_WARN_UNUSED_RESULT
23776 static basic_json from_ubjson(InputType&& i,
23777 const bool strict = true,
23778 const bool allow_exceptions = true)
23779 {
23780 basic_json result;
23781 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23782 auto ia = detail::input_adapter(std::forward<InputType>(i));
23783 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict);
23784 return res ? result : basic_json(value_t::discarded);
23785 }
23786
23787 /// @brief create a JSON value from an input in UBJSON format
23788 /// @sa https://json.nlohmann.me/api/basic_json/from_ubjson/
23789 template<typename IteratorType>
23790 JSON_HEDLEY_WARN_UNUSED_RESULT
23791 static basic_json from_ubjson(IteratorType first, IteratorType last,
23792 const bool strict = true,
23793 const bool allow_exceptions = true)
23794 {
23795 basic_json result;
23796 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23797 auto ia = detail::input_adapter(std::move(first), std::move(last));
23798 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict);
23799 return res ? result : basic_json(value_t::discarded);
23800 }
23801
23802 template<typename T>
23803 JSON_HEDLEY_WARN_UNUSED_RESULT
23804 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_ubjson(ptr, ptr + len))
23805 static basic_json from_ubjson(const T* ptr, std::size_t len,
23806 const bool strict = true,
23807 const bool allow_exceptions = true)
23808 {
23809 return from_ubjson(ptr, ptr + len, strict, allow_exceptions);
23810 }
23811
23812 JSON_HEDLEY_WARN_UNUSED_RESULT
23813 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_ubjson(ptr, ptr + len))
23814 static basic_json from_ubjson(detail::span_input_adapter&& i,
23815 const bool strict = true,
23816 const bool allow_exceptions = true)
23817 {
23818 basic_json result;
23819 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23820 auto ia = i.get();
23821 // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg)
23822 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::ubjson).sax_parse(input_format_t::ubjson, &sdp, strict);
23823 return res ? result : basic_json(value_t::discarded);
23824 }
23825
23826 /// @brief create a JSON value from an input in BJData format
23827 /// @sa https://json.nlohmann.me/api/basic_json/from_bjdata/
23828 template<typename InputType>
23829 JSON_HEDLEY_WARN_UNUSED_RESULT
23830 static basic_json from_bjdata(InputType&& i,
23831 const bool strict = true,
23832 const bool allow_exceptions = true)
23833 {
23834 basic_json result;
23835 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23836 auto ia = detail::input_adapter(std::forward<InputType>(i));
23837 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::bjdata).sax_parse(input_format_t::bjdata, &sdp, strict);
23838 return res ? result : basic_json(value_t::discarded);
23839 }
23840
23841 /// @brief create a JSON value from an input in BJData format
23842 /// @sa https://json.nlohmann.me/api/basic_json/from_bjdata/
23843 template<typename IteratorType>
23844 JSON_HEDLEY_WARN_UNUSED_RESULT
23845 static basic_json from_bjdata(IteratorType first, IteratorType last,
23846 const bool strict = true,
23847 const bool allow_exceptions = true)
23848 {
23849 basic_json result;
23850 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23851 auto ia = detail::input_adapter(std::move(first), std::move(last));
23852 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::bjdata).sax_parse(input_format_t::bjdata, &sdp, strict);
23853 return res ? result : basic_json(value_t::discarded);
23854 }
23855
23856 /// @brief create a JSON value from an input in BSON format
23857 /// @sa https://json.nlohmann.me/api/basic_json/from_bson/
23858 template<typename InputType>
23859 JSON_HEDLEY_WARN_UNUSED_RESULT
23860 static basic_json from_bson(InputType&& i,
23861 const bool strict = true,
23862 const bool allow_exceptions = true)
23863 {
23864 basic_json result;
23865 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23866 auto ia = detail::input_adapter(std::forward<InputType>(i));
23867 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict);
23868 return res ? result : basic_json(value_t::discarded);
23869 }
23870
23871 /// @brief create a JSON value from an input in BSON format
23872 /// @sa https://json.nlohmann.me/api/basic_json/from_bson/
23873 template<typename IteratorType>
23874 JSON_HEDLEY_WARN_UNUSED_RESULT
23875 static basic_json from_bson(IteratorType first, IteratorType last,
23876 const bool strict = true,
23877 const bool allow_exceptions = true)
23878 {
23879 basic_json result;
23880 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23881 auto ia = detail::input_adapter(std::move(first), std::move(last));
23882 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict);
23883 return res ? result : basic_json(value_t::discarded);
23884 }
23885
23886 template<typename T>
23887 JSON_HEDLEY_WARN_UNUSED_RESULT
23888 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_bson(ptr, ptr + len))
23889 static basic_json from_bson(const T* ptr, std::size_t len,
23890 const bool strict = true,
23891 const bool allow_exceptions = true)
23892 {
23893 return from_bson(ptr, ptr + len, strict, allow_exceptions);
23894 }
23895
23896 JSON_HEDLEY_WARN_UNUSED_RESULT
23897 JSON_HEDLEY_DEPRECATED_FOR(3.8.0, from_bson(ptr, ptr + len))
23898 static basic_json from_bson(detail::span_input_adapter&& i,
23899 const bool strict = true,
23900 const bool allow_exceptions = true)
23901 {
23902 basic_json result;
23903 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
23904 auto ia = i.get();
23905 // NOLINTNEXTLINE(hicpp-move-const-arg,performance-move-const-arg)
23906 const bool res = binary_reader<decltype(ia)>(std::move(ia), input_format_t::bson).sax_parse(input_format_t::bson, &sdp, strict);
23907 return res ? result : basic_json(value_t::discarded);
23908 }
23909 /// @}
23910
23911 //////////////////////////
23912 // JSON Pointer support //
23913 //////////////////////////
23914
23915 /// @name JSON Pointer functions
23916 /// @{
23917
23918 /// @brief access specified element via JSON Pointer
23919 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
23920 reference operator[](const json_pointer& ptr)
23921 {
23922 return ptr.get_unchecked(this);
23923 }
23924
23925 template<typename BasicJsonType, detail::enable_if_t<detail::is_basic_json<BasicJsonType>::value, int> = 0>
23926 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
23927 reference operator[](const ::nlohmann::json_pointer<BasicJsonType>& ptr)
23928 {
23929 return ptr.get_unchecked(this);
23930 }
23931
23932 /// @brief access specified element via JSON Pointer
23933 /// @sa https://json.nlohmann.me/api/basic_json/operator%5B%5D/
23934 const_reference operator[](const json_pointer& ptr) const
23935 {
23936 return ptr.get_unchecked(this);
23937 }
23938
23939 template<typename BasicJsonType, detail::enable_if_t<detail::is_basic_json<BasicJsonType>::value, int> = 0>
23940 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
23941 const_reference operator[](const ::nlohmann::json_pointer<BasicJsonType>& ptr) const
23942 {
23943 return ptr.get_unchecked(this);
23944 }
23945
23946 /// @brief access specified element via JSON Pointer
23947 /// @sa https://json.nlohmann.me/api/basic_json/at/
23948 reference at(const json_pointer& ptr)
23949 {
23950 return ptr.get_checked(this);
23951 }
23952
23953 template<typename BasicJsonType, detail::enable_if_t<detail::is_basic_json<BasicJsonType>::value, int> = 0>
23954 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
23955 reference at(const ::nlohmann::json_pointer<BasicJsonType>& ptr)
23956 {
23957 return ptr.get_checked(this);
23958 }
23959
23960 /// @brief access specified element via JSON Pointer
23961 /// @sa https://json.nlohmann.me/api/basic_json/at/
23962 const_reference at(const json_pointer& ptr) const
23963 {
23964 return ptr.get_checked(this);
23965 }
23966
23967 template<typename BasicJsonType, detail::enable_if_t<detail::is_basic_json<BasicJsonType>::value, int> = 0>
23968 JSON_HEDLEY_DEPRECATED_FOR(3.11.0, basic_json::json_pointer or nlohmann::json_pointer<basic_json::string_t>) // NOLINT(readability/alt_tokens)
23969 const_reference at(const ::nlohmann::json_pointer<BasicJsonType>& ptr) const
23970 {
23971 return ptr.get_checked(this);
23972 }
23973
23974 /// @brief return flattened JSON value
23975 /// @sa https://json.nlohmann.me/api/basic_json/flatten/
23976 basic_json flatten() const
23977 {
23978 basic_json result(value_t::object);
23979 json_pointer::flatten("", *this, result);
23980 return result;
23981 }
23982
23983 /// @brief unflatten a previously flattened JSON value
23984 /// @sa https://json.nlohmann.me/api/basic_json/unflatten/
23985 basic_json unflatten() const
23986 {
23987 return json_pointer::unflatten(*this);
23988 }
23989
23990 /// @}
23991
23992 //////////////////////////
23993 // JSON Patch functions //
23994 //////////////////////////
23995
23996 /// @name JSON Patch functions
23997 /// @{
23998
23999 /// @brief applies a JSON patch in-place without copying the object
24000 /// @sa https://json.nlohmann.me/api/basic_json/patch/
24001 void patch_inplace(const basic_json& json_patch)
24002 {
24003 basic_json& result = *this;
24004 // the valid JSON Patch operations
24005 enum class patch_operations {add, remove, replace, move, copy, test, invalid};
24006
24007 const auto get_op = [](const std::string & op)
24008 {
24009 if (op == "add")
24010 {
24011 return patch_operations::add;
24012 }
24013 if (op == "remove")
24014 {
24015 return patch_operations::remove;
24016 }
24017 if (op == "replace")
24018 {
24019 return patch_operations::replace;
24020 }
24021 if (op == "move")
24022 {
24023 return patch_operations::move;
24024 }
24025 if (op == "copy")
24026 {
24027 return patch_operations::copy;
24028 }
24029 if (op == "test")
24030 {
24031 return patch_operations::test;
24032 }
24033
24034 return patch_operations::invalid;
24035 };
24036
24037 // wrapper for "add" operation; add value at ptr
24038 const auto operation_add = [&result](json_pointer & ptr, basic_json val)
24039 {
24040 // adding to the root of the target document means replacing it
24041 if (ptr.empty())
24042 {
24043 result = val;
24044 return;
24045 }
24046
24047 // make sure the top element of the pointer exists
24048 json_pointer const top_pointer = ptr.top();
24049 if (top_pointer != ptr)
24050 {
24051 result.at(top_pointer);
24052 }
24053
24054 // get reference to parent of JSON pointer ptr
24055 const auto last_path = ptr.back();
24056 ptr.pop_back();
24057 // parent must exist when performing patch add per RFC6902 specs
24058 basic_json& parent = result.at(ptr);
24059
24060 switch (parent.m_data.m_type)
24061 {
24062 case value_t::null:
24063 case value_t::object:
24064 {
24065 // use operator[] to add value
24066 parent[last_path] = val;
24067 break;
24068 }
24069
24070 case value_t::array:
24071 {
24072 if (last_path == "-")
24073 {
24074 // special case: append to back
24075 parent.push_back(val);
24076 }
24077 else
24078 {
24079 const auto idx = json_pointer::template array_index<basic_json_t>(last_path);
24080 if (JSON_HEDLEY_UNLIKELY(idx > parent.size()))
24081 {
24082 // avoid undefined behavior
24083 JSON_THROW(out_of_range::create(401, detail::concat("array index ", std::to_string(idx), " is out of range"), &parent));
24084 }
24085
24086 // default case: insert add offset
24087 parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
24088 }
24089 break;
24090 }
24091
24092 // if there exists a parent it cannot be primitive
24093 case value_t::string: // LCOV_EXCL_LINE
24094 case value_t::boolean: // LCOV_EXCL_LINE
24095 case value_t::number_integer: // LCOV_EXCL_LINE
24096 case value_t::number_unsigned: // LCOV_EXCL_LINE
24097 case value_t::number_float: // LCOV_EXCL_LINE
24098 case value_t::binary: // LCOV_EXCL_LINE
24099 case value_t::discarded: // LCOV_EXCL_LINE
24100 default: // LCOV_EXCL_LINE
24101 JSON_ASSERT(false); // NOLINT(cert-dcl03-c,hicpp-static-assert,misc-static-assert) LCOV_EXCL_LINE
24102 }
24103 };
24104
24105 // wrapper for "remove" operation; remove value at ptr
24106 const auto operation_remove = [this, & result](json_pointer & ptr)
24107 {
24108 // get reference to parent of JSON pointer ptr
24109 const auto last_path = ptr.back();
24110 ptr.pop_back();
24111 basic_json& parent = result.at(ptr);
24112
24113 // remove child
24114 if (parent.is_object())
24115 {
24116 // perform range check
24117 auto it = parent.find(last_path);
24118 if (JSON_HEDLEY_LIKELY(it != parent.end()))
24119 {
24120 parent.erase(it);
24121 }
24122 else
24123 {
24124 JSON_THROW(out_of_range::create(403, detail::concat("key '", last_path, "' not found"), this));
24125 }
24126 }
24127 else if (parent.is_array())
24128 {
24129 // note erase performs range check
24130 parent.erase(json_pointer::template array_index<basic_json_t>(last_path));
24131 }
24132 };
24133
24134 // type check: top level value must be an array
24135 if (JSON_HEDLEY_UNLIKELY(!json_patch.is_array()))
24136 {
24137 JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects", &json_patch));
24138 }
24139
24140 // iterate and apply the operations
24141 for (const auto& val : json_patch)
24142 {
24143 // wrapper to get a value for an operation
24144 const auto get_value = [&val](const std::string & op,
24145 const std::string & member,
24146 bool string_type) -> basic_json &
24147 {
24148 // find value
24149 auto it = val.m_data.m_value.object->find(member);
24150
24151 // context-sensitive error message
24152 const auto error_msg = (op == "op") ? "operation" : detail::concat("operation '", op, '\'');
24153
24154 // check if desired value is present
24155 if (JSON_HEDLEY_UNLIKELY(it == val.m_data.m_value.object->end()))
24156 {
24157 // NOLINTNEXTLINE(performance-inefficient-string-concatenation)
24158 JSON_THROW(parse_error::create(105, 0, detail::concat(error_msg, " must have member '", member, "'"), &val));
24159 }
24160
24161 // check if result is of type string
24162 if (JSON_HEDLEY_UNLIKELY(string_type && !it->second.is_string()))
24163 {
24164 // NOLINTNEXTLINE(performance-inefficient-string-concatenation)
24165 JSON_THROW(parse_error::create(105, 0, detail::concat(error_msg, " must have string member '", member, "'"), &val));
24166 }
24167
24168 // no error: return value
24169 return it->second;
24170 };
24171
24172 // type check: every element of the array must be an object
24173 if (JSON_HEDLEY_UNLIKELY(!val.is_object()))
24174 {
24175 JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects", &val));
24176 }
24177
24178 // collect mandatory members
24179 const auto op = get_value("op", "op", true).template get<std::string>();
24180 const auto path = get_value(op, "path", true).template get<std::string>();
24181 json_pointer ptr(path);
24182
24183 switch (get_op(op))
24184 {
24185 case patch_operations::add:
24186 {
24187 operation_add(ptr, get_value("add", "value", false));
24188 break;
24189 }
24190
24191 case patch_operations::remove:
24192 {
24193 operation_remove(ptr);
24194 break;
24195 }
24196
24197 case patch_operations::replace:
24198 {
24199 // the "path" location must exist - use at()
24200 result.at(ptr) = get_value("replace", "value", false);
24201 break;
24202 }
24203
24204 case patch_operations::move:
24205 {
24206 const auto from_path = get_value("move", "from", true).template get<std::string>();
24207 json_pointer from_ptr(from_path);
24208
24209 // the "from" location must exist - use at()
24210 basic_json const v = result.at(from_ptr);
24211
24212 // The move operation is functionally identical to a
24213 // "remove" operation on the "from" location, followed
24214 // immediately by an "add" operation at the target
24215 // location with the value that was just removed.
24216 operation_remove(from_ptr);
24217 operation_add(ptr, v);
24218 break;
24219 }
24220
24221 case patch_operations::copy:
24222 {
24223 const auto from_path = get_value("copy", "from", true).template get<std::string>();
24224 const json_pointer from_ptr(from_path);
24225
24226 // the "from" location must exist - use at()
24227 basic_json const v = result.at(from_ptr);
24228
24229 // The copy is functionally identical to an "add"
24230 // operation at the target location using the value
24231 // specified in the "from" member.
24232 operation_add(ptr, v);
24233 break;
24234 }
24235
24236 case patch_operations::test:
24237 {
24238 bool success = false;
24239 JSON_TRY
24240 {
24241 // check if "value" matches the one at "path"
24242 // the "path" location must exist - use at()
24243 success = (result.at(ptr) == get_value("test", "value", false));
24244 }
24245 JSON_INTERNAL_CATCH (out_of_range&)
24246 {
24247 // ignore out of range errors: success remains false
24248 }
24249
24250 // throw an exception if test fails
24251 if (JSON_HEDLEY_UNLIKELY(!success))
24252 {
24253 JSON_THROW(other_error::create(501, detail::concat("unsuccessful: ", val.dump()), &val));
24254 }
24255
24256 break;
24257 }
24258
24259 case patch_operations::invalid:
24260 default:
24261 {
24262 // op must be "add", "remove", "replace", "move", "copy", or
24263 // "test"
24264 JSON_THROW(parse_error::create(105, 0, detail::concat("operation value '", op, "' is invalid"), &val));
24265 }
24266 }
24267 }
24268 }
24269
24270 /// @brief applies a JSON patch to a copy of the current object
24271 /// @sa https://json.nlohmann.me/api/basic_json/patch/
24272 basic_json patch(const basic_json& json_patch) const
24273 {
24274 basic_json result = *this;
24275 result.patch_inplace(json_patch);
24276 return result;
24277 }
24278
24279 /// @brief creates a diff as a JSON patch
24280 /// @sa https://json.nlohmann.me/api/basic_json/diff/
24281 JSON_HEDLEY_WARN_UNUSED_RESULT
24282 static basic_json diff(const basic_json& source, const basic_json& target,
24283 const std::string& path = "")
24284 {
24285 // the patch
24286 basic_json result(value_t::array);
24287
24288 // if the values are the same, return empty patch
24289 if (source == target)
24290 {
24291 return result;
24292 }
24293
24294 if (source.type() != target.type())
24295 {
24296 // different types: replace value
24297 result.push_back(
24298 {
24299 {"op", "replace"}, {"path", path}, {"value", target}
24300 });
24301 return result;
24302 }
24303
24304 switch (source.type())
24305 {
24306 case value_t::array:
24307 {
24308 // first pass: traverse common elements
24309 std::size_t i = 0;
24310 while (i < source.size() && i < target.size())
24311 {
24312 // recursive call to compare array values at index i
24313 auto temp_diff = diff(source[i], target[i], detail::concat(path, '/', std::to_string(i)));
24314 result.insert(result.end(), temp_diff.begin(), temp_diff.end());
24315 ++i;
24316 }
24317
24318 // We now reached the end of at least one array
24319 // in a second pass, traverse the remaining elements
24320
24321 // remove my remaining elements
24322 const auto end_index = static_cast<difference_type>(result.size());
24323 while (i < source.size())
24324 {
24325 // add operations in reverse order to avoid invalid
24326 // indices
24327 result.insert(result.begin() + end_index, object(
24328 {
24329 {"op", "remove"},
24330 {"path", detail::concat(path, '/', std::to_string(i))}
24331 }));
24332 ++i;
24333 }
24334
24335 // add other remaining elements
24336 while (i < target.size())
24337 {
24338 result.push_back(
24339 {
24340 {"op", "add"},
24341 {"path", detail::concat(path, "/-")},
24342 {"value", target[i]}
24343 });
24344 ++i;
24345 }
24346
24347 break;
24348 }
24349
24350 case value_t::object:
24351 {
24352 // first pass: traverse this object's elements
24353 for (auto it = source.cbegin(); it != source.cend(); ++it)
24354 {
24355 // escape the key name to be used in a JSON patch
24356 const auto path_key = detail::concat(path, '/', detail::escape(it.key()));
24357
24358 if (target.find(it.key()) != target.end())
24359 {
24360 // recursive call to compare object values at key it
24361 auto temp_diff = diff(it.value(), target[it.key()], path_key);
24362 result.insert(result.end(), temp_diff.begin(), temp_diff.end());
24363 }
24364 else
24365 {
24366 // found a key that is not in o -> remove it
24367 result.push_back(object(
24368 {
24369 {"op", "remove"}, {"path", path_key}
24370 }));
24371 }
24372 }
24373
24374 // second pass: traverse other object's elements
24375 for (auto it = target.cbegin(); it != target.cend(); ++it)
24376 {
24377 if (source.find(it.key()) == source.end())
24378 {
24379 // found a key that is not in this -> add it
24380 const auto path_key = detail::concat(path, '/', detail::escape(it.key()));
24381 result.push_back(
24382 {
24383 {"op", "add"}, {"path", path_key},
24384 {"value", it.value()}
24385 });
24386 }
24387 }
24388
24389 break;
24390 }
24391
24392 case value_t::null:
24393 case value_t::string:
24394 case value_t::boolean:
24395 case value_t::number_integer:
24396 case value_t::number_unsigned:
24397 case value_t::number_float:
24398 case value_t::binary:
24399 case value_t::discarded:
24400 default:
24401 {
24402 // both primitive type: replace value
24403 result.push_back(
24404 {
24405 {"op", "replace"}, {"path", path}, {"value", target}
24406 });
24407 break;
24408 }
24409 }
24410
24411 return result;
24412 }
24413 /// @}
24414
24415 ////////////////////////////////
24416 // JSON Merge Patch functions //
24417 ////////////////////////////////
24418
24419 /// @name JSON Merge Patch functions
24420 /// @{
24421
24422 /// @brief applies a JSON Merge Patch
24423 /// @sa https://json.nlohmann.me/api/basic_json/merge_patch/
24424 void merge_patch(const basic_json& apply_patch)
24425 {
24426 if (apply_patch.is_object())
24427 {
24428 if (!is_object())
24429 {
24430 *this = object();
24431 }
24432 for (auto it = apply_patch.begin(); it != apply_patch.end(); ++it)
24433 {
24434 if (it.value().is_null())
24435 {
24436 erase(it.key());
24437 }
24438 else
24439 {
24440 operator[](it.key()).merge_patch(it.value());
24441 }
24442 }
24443 }
24444 else
24445 {
24446 *this = apply_patch;
24447 }
24448 }
24449
24450 /// @}
24451 };
24452
24453 /// @brief user-defined to_string function for JSON values
24454 /// @sa https://json.nlohmann.me/api/basic_json/to_string/
24455 NLOHMANN_BASIC_JSON_TPL_DECLARATION
24456 std::string to_string(const NLOHMANN_BASIC_JSON_TPL& j)
24457 {
24458 return j.dump();
24459 }
24460
24461 inline namespace literals
24462 {
24463 inline namespace json_literals
24464 {
24465
24466 /// @brief user-defined string literal for JSON values
24467 /// @sa https://json.nlohmann.me/api/basic_json/operator_literal_json/
24468 JSON_HEDLEY_NON_NULL(1)
24469 #if !defined(JSON_HEDLEY_GCC_VERSION) || JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0)
24470 inline nlohmann::json operator ""_json(const char* s, std::size_t n)
24471 #else
24472 inline nlohmann::json operator "" _json(const char* s, std::size_t n)
24473 #endif
24474 {
24475 return nlohmann::json::parse(s, s + n);
24476 }
24477
24478 /// @brief user-defined string literal for JSON pointer
24479 /// @sa https://json.nlohmann.me/api/basic_json/operator_literal_json_pointer/
24480 JSON_HEDLEY_NON_NULL(1)
24481 #if !defined(JSON_HEDLEY_GCC_VERSION) || JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0)
24482 inline nlohmann::json::json_pointer operator ""_json_pointer(const char* s, std::size_t n)
24483 #else
24484 inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
24485 #endif
24486 {
24487 return nlohmann::json::json_pointer(std::string(s, n));
24488 }
24489
24490 } // namespace json_literals
24491 } // namespace literals
24492 NLOHMANN_JSON_NAMESPACE_END
24493
24494 ///////////////////////
24495 // nonmember support //
24496 ///////////////////////
24497
24498 namespace std // NOLINT(cert-dcl58-cpp)
24499 {
24500
24501 /// @brief hash value for JSON objects
24502 /// @sa https://json.nlohmann.me/api/basic_json/std_hash/
24503 NLOHMANN_BASIC_JSON_TPL_DECLARATION
24504 struct hash<nlohmann::NLOHMANN_BASIC_JSON_TPL> // NOLINT(cert-dcl58-cpp)
24505 {
24506 std::size_t operator()(const nlohmann::NLOHMANN_BASIC_JSON_TPL& j) const
24507 {
24508 return nlohmann::detail::hash(j);
24509 }
24510 };
24511
24512 // specialization for std::less<value_t>
24513 template<>
24514 struct less< ::nlohmann::detail::value_t> // do not remove the space after '<', see https://github.com/nlohmann/json/pull/679
24515 {
24516 /*!
24517 @brief compare two value_t enum values
24518 @since version 3.0.0
24519 */
24520 bool operator()(::nlohmann::detail::value_t lhs,
24521 ::nlohmann::detail::value_t rhs) const noexcept
24522 {
24523 #if JSON_HAS_THREE_WAY_COMPARISON
24524 return std::is_lt(lhs <=> rhs); // *NOPAD*
24525 #else
24526 return ::nlohmann::detail::operator<(lhs, rhs);
24527 #endif
24528 }
24529 };
24530
24531 // C++20 prohibit function specialization in the std namespace.
24532 #ifndef JSON_HAS_CPP_20
24533
24534 /// @brief exchanges the values of two JSON objects
24535 /// @sa https://json.nlohmann.me/api/basic_json/std_swap/
24536 NLOHMANN_BASIC_JSON_TPL_DECLARATION
24537 inline void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL& j1, nlohmann::NLOHMANN_BASIC_JSON_TPL& j2) noexcept( // NOLINT(readability-inconsistent-declaration-parameter-name, cert-dcl58-cpp)
24538 is_nothrow_move_constructible<nlohmann::NLOHMANN_BASIC_JSON_TPL>::value&& // NOLINT(misc-redundant-expression,cppcoreguidelines-noexcept-swap,performance-noexcept-swap)
24539 is_nothrow_move_assignable<nlohmann::NLOHMANN_BASIC_JSON_TPL>::value)
24540 {
24541 j1.swap(j2);
24542 }
24543
24544 #endif
24545
24546 } // namespace std
24547
24548 #if JSON_USE_GLOBAL_UDLS
24549 #if !defined(JSON_HEDLEY_GCC_VERSION) || JSON_HEDLEY_GCC_VERSION_CHECK(4,9,0)
24550 using nlohmann::literals::json_literals::operator ""_json; // NOLINT(misc-unused-using-decls,google-global-names-in-headers)
24551 using nlohmann::literals::json_literals::operator ""_json_pointer; //NOLINT(misc-unused-using-decls,google-global-names-in-headers)
24552 #else
24553 using nlohmann::literals::json_literals::operator "" _json; // NOLINT(misc-unused-using-decls,google-global-names-in-headers)
24554 using nlohmann::literals::json_literals::operator "" _json_pointer; //NOLINT(misc-unused-using-decls,google-global-names-in-headers)
24555 #endif
24556 #endif
24557
24558 // #include <nlohmann/detail/macro_unscope.hpp>
24559 // __ _____ _____ _____
24560 // __| | __| | | | JSON for Modern C++
24561 // | | |__ | | | | | | version 3.11.3
24562 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
24563 //
24564 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
24565 // SPDX-License-Identifier: MIT
24566
24567
24568
24569 // restore clang diagnostic settings
24570 #if defined(__clang__)
24571 #pragma clang diagnostic pop
24572 #endif
24573
24574 // clean up
24575 #undef JSON_ASSERT
24576 #undef JSON_INTERNAL_CATCH
24577 #undef JSON_THROW
24578 #undef JSON_PRIVATE_UNLESS_TESTED
24579 #undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
24580 #undef NLOHMANN_BASIC_JSON_TPL
24581 #undef JSON_EXPLICIT
24582 #undef NLOHMANN_CAN_CALL_STD_FUNC_IMPL
24583 #undef JSON_INLINE_VARIABLE
24584 #undef JSON_NO_UNIQUE_ADDRESS
24585 #undef JSON_DISABLE_ENUM_SERIALIZATION
24586 #undef JSON_USE_GLOBAL_UDLS
24587
24588 #ifndef JSON_TEST_KEEP_MACROS
24589 #undef JSON_CATCH
24590 #undef JSON_TRY
24591 #undef JSON_HAS_CPP_11
24592 #undef JSON_HAS_CPP_14
24593 #undef JSON_HAS_CPP_17
24594 #undef JSON_HAS_CPP_20
24595 #undef JSON_HAS_FILESYSTEM
24596 #undef JSON_HAS_EXPERIMENTAL_FILESYSTEM
24597 #undef JSON_HAS_THREE_WAY_COMPARISON
24598 #undef JSON_HAS_RANGES
24599 #undef JSON_HAS_STATIC_RTTI
24600 #undef JSON_USE_LEGACY_DISCARDED_VALUE_COMPARISON
24601 #endif
24602
24603 // #include <nlohmann/thirdparty/hedley/hedley_undef.hpp>
24604 // __ _____ _____ _____
24605 // __| | __| | | | JSON for Modern C++
24606 // | | |__ | | | | | | version 3.11.3
24607 // |_____|_____|_____|_|___| https://github.com/nlohmann/json
24608 //
24609 // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
24610 // SPDX-License-Identifier: MIT
24611
24612
24613
24614 #undef JSON_HEDLEY_ALWAYS_INLINE
24615 #undef JSON_HEDLEY_ARM_VERSION
24616 #undef JSON_HEDLEY_ARM_VERSION_CHECK
24617 #undef JSON_HEDLEY_ARRAY_PARAM
24618 #undef JSON_HEDLEY_ASSUME
24619 #undef JSON_HEDLEY_BEGIN_C_DECLS
24620 #undef JSON_HEDLEY_CLANG_HAS_ATTRIBUTE
24621 #undef JSON_HEDLEY_CLANG_HAS_BUILTIN
24622 #undef JSON_HEDLEY_CLANG_HAS_CPP_ATTRIBUTE
24623 #undef JSON_HEDLEY_CLANG_HAS_DECLSPEC_DECLSPEC_ATTRIBUTE
24624 #undef JSON_HEDLEY_CLANG_HAS_EXTENSION
24625 #undef JSON_HEDLEY_CLANG_HAS_FEATURE
24626 #undef JSON_HEDLEY_CLANG_HAS_WARNING
24627 #undef JSON_HEDLEY_COMPCERT_VERSION
24628 #undef JSON_HEDLEY_COMPCERT_VERSION_CHECK
24629 #undef JSON_HEDLEY_CONCAT
24630 #undef JSON_HEDLEY_CONCAT3
24631 #undef JSON_HEDLEY_CONCAT3_EX
24632 #undef JSON_HEDLEY_CONCAT_EX
24633 #undef JSON_HEDLEY_CONST
24634 #undef JSON_HEDLEY_CONSTEXPR
24635 #undef JSON_HEDLEY_CONST_CAST
24636 #undef JSON_HEDLEY_CPP_CAST
24637 #undef JSON_HEDLEY_CRAY_VERSION
24638 #undef JSON_HEDLEY_CRAY_VERSION_CHECK
24639 #undef JSON_HEDLEY_C_DECL
24640 #undef JSON_HEDLEY_DEPRECATED
24641 #undef JSON_HEDLEY_DEPRECATED_FOR
24642 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CAST_QUAL
24643 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_CPP98_COMPAT_WRAP_
24644 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_DEPRECATED
24645 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_CPP_ATTRIBUTES
24646 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNKNOWN_PRAGMAS
24647 #undef JSON_HEDLEY_DIAGNOSTIC_DISABLE_UNUSED_FUNCTION
24648 #undef JSON_HEDLEY_DIAGNOSTIC_POP
24649 #undef JSON_HEDLEY_DIAGNOSTIC_PUSH
24650 #undef JSON_HEDLEY_DMC_VERSION
24651 #undef JSON_HEDLEY_DMC_VERSION_CHECK
24652 #undef JSON_HEDLEY_EMPTY_BASES
24653 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION
24654 #undef JSON_HEDLEY_EMSCRIPTEN_VERSION_CHECK
24655 #undef JSON_HEDLEY_END_C_DECLS
24656 #undef JSON_HEDLEY_FLAGS
24657 #undef JSON_HEDLEY_FLAGS_CAST
24658 #undef JSON_HEDLEY_GCC_HAS_ATTRIBUTE
24659 #undef JSON_HEDLEY_GCC_HAS_BUILTIN
24660 #undef JSON_HEDLEY_GCC_HAS_CPP_ATTRIBUTE
24661 #undef JSON_HEDLEY_GCC_HAS_DECLSPEC_ATTRIBUTE
24662 #undef JSON_HEDLEY_GCC_HAS_EXTENSION
24663 #undef JSON_HEDLEY_GCC_HAS_FEATURE
24664 #undef JSON_HEDLEY_GCC_HAS_WARNING
24665 #undef JSON_HEDLEY_GCC_NOT_CLANG_VERSION_CHECK
24666 #undef JSON_HEDLEY_GCC_VERSION
24667 #undef JSON_HEDLEY_GCC_VERSION_CHECK
24668 #undef JSON_HEDLEY_GNUC_HAS_ATTRIBUTE
24669 #undef JSON_HEDLEY_GNUC_HAS_BUILTIN
24670 #undef JSON_HEDLEY_GNUC_HAS_CPP_ATTRIBUTE
24671 #undef JSON_HEDLEY_GNUC_HAS_DECLSPEC_ATTRIBUTE
24672 #undef JSON_HEDLEY_GNUC_HAS_EXTENSION
24673 #undef JSON_HEDLEY_GNUC_HAS_FEATURE
24674 #undef JSON_HEDLEY_GNUC_HAS_WARNING
24675 #undef JSON_HEDLEY_GNUC_VERSION
24676 #undef JSON_HEDLEY_GNUC_VERSION_CHECK
24677 #undef JSON_HEDLEY_HAS_ATTRIBUTE
24678 #undef JSON_HEDLEY_HAS_BUILTIN
24679 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE
24680 #undef JSON_HEDLEY_HAS_CPP_ATTRIBUTE_NS
24681 #undef JSON_HEDLEY_HAS_DECLSPEC_ATTRIBUTE
24682 #undef JSON_HEDLEY_HAS_EXTENSION
24683 #undef JSON_HEDLEY_HAS_FEATURE
24684 #undef JSON_HEDLEY_HAS_WARNING
24685 #undef JSON_HEDLEY_IAR_VERSION
24686 #undef JSON_HEDLEY_IAR_VERSION_CHECK
24687 #undef JSON_HEDLEY_IBM_VERSION
24688 #undef JSON_HEDLEY_IBM_VERSION_CHECK
24689 #undef JSON_HEDLEY_IMPORT
24690 #undef JSON_HEDLEY_INLINE
24691 #undef JSON_HEDLEY_INTEL_CL_VERSION
24692 #undef JSON_HEDLEY_INTEL_CL_VERSION_CHECK
24693 #undef JSON_HEDLEY_INTEL_VERSION
24694 #undef JSON_HEDLEY_INTEL_VERSION_CHECK
24695 #undef JSON_HEDLEY_IS_CONSTANT
24696 #undef JSON_HEDLEY_IS_CONSTEXPR_
24697 #undef JSON_HEDLEY_LIKELY
24698 #undef JSON_HEDLEY_MALLOC
24699 #undef JSON_HEDLEY_MCST_LCC_VERSION
24700 #undef JSON_HEDLEY_MCST_LCC_VERSION_CHECK
24701 #undef JSON_HEDLEY_MESSAGE
24702 #undef JSON_HEDLEY_MSVC_VERSION
24703 #undef JSON_HEDLEY_MSVC_VERSION_CHECK
24704 #undef JSON_HEDLEY_NEVER_INLINE
24705 #undef JSON_HEDLEY_NON_NULL
24706 #undef JSON_HEDLEY_NO_ESCAPE
24707 #undef JSON_HEDLEY_NO_RETURN
24708 #undef JSON_HEDLEY_NO_THROW
24709 #undef JSON_HEDLEY_NULL
24710 #undef JSON_HEDLEY_PELLES_VERSION
24711 #undef JSON_HEDLEY_PELLES_VERSION_CHECK
24712 #undef JSON_HEDLEY_PGI_VERSION
24713 #undef JSON_HEDLEY_PGI_VERSION_CHECK
24714 #undef JSON_HEDLEY_PREDICT
24715 #undef JSON_HEDLEY_PRINTF_FORMAT
24716 #undef JSON_HEDLEY_PRIVATE
24717 #undef JSON_HEDLEY_PUBLIC
24718 #undef JSON_HEDLEY_PURE
24719 #undef JSON_HEDLEY_REINTERPRET_CAST
24720 #undef JSON_HEDLEY_REQUIRE
24721 #undef JSON_HEDLEY_REQUIRE_CONSTEXPR
24722 #undef JSON_HEDLEY_REQUIRE_MSG
24723 #undef JSON_HEDLEY_RESTRICT
24724 #undef JSON_HEDLEY_RETURNS_NON_NULL
24725 #undef JSON_HEDLEY_SENTINEL
24726 #undef JSON_HEDLEY_STATIC_ASSERT
24727 #undef JSON_HEDLEY_STATIC_CAST
24728 #undef JSON_HEDLEY_STRINGIFY
24729 #undef JSON_HEDLEY_STRINGIFY_EX
24730 #undef JSON_HEDLEY_SUNPRO_VERSION
24731 #undef JSON_HEDLEY_SUNPRO_VERSION_CHECK
24732 #undef JSON_HEDLEY_TINYC_VERSION
24733 #undef JSON_HEDLEY_TINYC_VERSION_CHECK
24734 #undef JSON_HEDLEY_TI_ARMCL_VERSION
24735 #undef JSON_HEDLEY_TI_ARMCL_VERSION_CHECK
24736 #undef JSON_HEDLEY_TI_CL2000_VERSION
24737 #undef JSON_HEDLEY_TI_CL2000_VERSION_CHECK
24738 #undef JSON_HEDLEY_TI_CL430_VERSION
24739 #undef JSON_HEDLEY_TI_CL430_VERSION_CHECK
24740 #undef JSON_HEDLEY_TI_CL6X_VERSION
24741 #undef JSON_HEDLEY_TI_CL6X_VERSION_CHECK
24742 #undef JSON_HEDLEY_TI_CL7X_VERSION
24743 #undef JSON_HEDLEY_TI_CL7X_VERSION_CHECK
24744 #undef JSON_HEDLEY_TI_CLPRU_VERSION
24745 #undef JSON_HEDLEY_TI_CLPRU_VERSION_CHECK
24746 #undef JSON_HEDLEY_TI_VERSION
24747 #undef JSON_HEDLEY_TI_VERSION_CHECK
24748 #undef JSON_HEDLEY_UNAVAILABLE
24749 #undef JSON_HEDLEY_UNLIKELY
24750 #undef JSON_HEDLEY_UNPREDICTABLE
24751 #undef JSON_HEDLEY_UNREACHABLE
24752 #undef JSON_HEDLEY_UNREACHABLE_RETURN
24753 #undef JSON_HEDLEY_VERSION
24754 #undef JSON_HEDLEY_VERSION_DECODE_MAJOR
24755 #undef JSON_HEDLEY_VERSION_DECODE_MINOR
24756 #undef JSON_HEDLEY_VERSION_DECODE_REVISION
24757 #undef JSON_HEDLEY_VERSION_ENCODE
24758 #undef JSON_HEDLEY_WARNING
24759 #undef JSON_HEDLEY_WARN_UNUSED_RESULT
24760 #undef JSON_HEDLEY_WARN_UNUSED_RESULT_MSG
24761 #undef JSON_HEDLEY_FALL_THROUGH
24762
24763
24764
24765 #endif // INCLUDE_NLOHMANN_JSON_HPP_