Mercurial > minori
view dep/fmt/include/fmt/chrono.h @ 343:1faa72660932
*: transfer back to cmake from autotools
autotools just made lots of things more complicated than
they should have and many things broke (i.e. translations)
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Thu, 20 Jun 2024 05:56:06 -0400 |
parents | 4aeffed717ef |
children |
line wrap: on
line source
// Formatting library for C++ - chrono support // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CHRONO_H_ #define FMT_CHRONO_H_ #include <algorithm> #include <chrono> #include <cmath> // std::isfinite #include <cstring> // std::memcpy #include <ctime> #include <iterator> #include <locale> #include <ostream> #include <type_traits> #include "ostream.h" // formatbuf FMT_BEGIN_NAMESPACE // Check if std::chrono::local_t is available. #ifndef FMT_USE_LOCAL_TIME # ifdef __cpp_lib_chrono # define FMT_USE_LOCAL_TIME (__cpp_lib_chrono >= 201907L) # else # define FMT_USE_LOCAL_TIME 0 # endif #endif // Check if std::chrono::utc_timestamp is available. #ifndef FMT_USE_UTC_TIME # ifdef __cpp_lib_chrono # define FMT_USE_UTC_TIME (__cpp_lib_chrono >= 201907L) # else # define FMT_USE_UTC_TIME 0 # endif #endif // Enable tzset. #ifndef FMT_USE_TZSET // UWP doesn't provide _tzset. # if FMT_HAS_INCLUDE("winapifamily.h") # include <winapifamily.h> # endif # if defined(_WIN32) && (!defined(WINAPI_FAMILY) || \ (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP)) # define FMT_USE_TZSET 1 # else # define FMT_USE_TZSET 0 # endif #endif // Enable safe chrono durations, unless explicitly disabled. #ifndef FMT_SAFE_DURATION_CAST # define FMT_SAFE_DURATION_CAST 1 #endif #if FMT_SAFE_DURATION_CAST // For conversion between std::chrono::durations without undefined // behaviour or erroneous results. // This is a stripped down version of duration_cast, for inclusion in fmt. // See https://github.com/pauldreik/safe_duration_cast // // Copyright Paul Dreik 2019 namespace safe_duration_cast { template <typename To, typename From, FMT_ENABLE_IF(!std::is_same<From, To>::value && std::numeric_limits<From>::is_signed == std::numeric_limits<To>::is_signed)> FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec) -> To { ec = 0; using F = std::numeric_limits<From>; using T = std::numeric_limits<To>; static_assert(F::is_integer, "From must be integral"); static_assert(T::is_integer, "To must be integral"); // A and B are both signed, or both unsigned. if (detail::const_check(F::digits <= T::digits)) { // From fits in To without any problem. } else { // From does not always fit in To, resort to a dynamic check. if (from < (T::min)() || from > (T::max)()) { // outside range. ec = 1; return {}; } } return static_cast<To>(from); } /** * converts From to To, without loss. If the dynamic value of from * can't be converted to To without loss, ec is set. */ template <typename To, typename From, FMT_ENABLE_IF(!std::is_same<From, To>::value && std::numeric_limits<From>::is_signed != std::numeric_limits<To>::is_signed)> FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec) -> To { ec = 0; using F = std::numeric_limits<From>; using T = std::numeric_limits<To>; static_assert(F::is_integer, "From must be integral"); static_assert(T::is_integer, "To must be integral"); if (detail::const_check(F::is_signed && !T::is_signed)) { // From may be negative, not allowed! if (fmt::detail::is_negative(from)) { ec = 1; return {}; } // From is positive. Can it always fit in To? if (detail::const_check(F::digits > T::digits) && from > static_cast<From>(detail::max_value<To>())) { ec = 1; return {}; } } if (detail::const_check(!F::is_signed && T::is_signed && F::digits >= T::digits) && from > static_cast<From>(detail::max_value<To>())) { ec = 1; return {}; } return static_cast<To>(from); // Lossless conversion. } template <typename To, typename From, FMT_ENABLE_IF(std::is_same<From, To>::value)> FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec) -> To { ec = 0; return from; } // function // clang-format off /** * converts From to To if possible, otherwise ec is set. * * input | output * ---------------------------------|--------------- * NaN | NaN * Inf | Inf * normal, fits in output | converted (possibly lossy) * normal, does not fit in output | ec is set * subnormal | best effort * -Inf | -Inf */ // clang-format on template <typename To, typename From, FMT_ENABLE_IF(!std::is_same<From, To>::value)> FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To { ec = 0; using T = std::numeric_limits<To>; static_assert(std::is_floating_point<From>::value, "From must be floating"); static_assert(std::is_floating_point<To>::value, "To must be floating"); // catch the only happy case if (std::isfinite(from)) { if (from >= T::lowest() && from <= (T::max)()) { return static_cast<To>(from); } // not within range. ec = 1; return {}; } // nan and inf will be preserved return static_cast<To>(from); } // function template <typename To, typename From, FMT_ENABLE_IF(std::is_same<From, To>::value)> FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To { ec = 0; static_assert(std::is_floating_point<From>::value, "From must be floating"); return from; } /** * safe duration cast between integral durations */ template <typename To, typename FromRep, typename FromPeriod, FMT_ENABLE_IF(std::is_integral<FromRep>::value), FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)> auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from, int& ec) -> To { using From = std::chrono::duration<FromRep, FromPeriod>; ec = 0; // the basic idea is that we need to convert from count() in the from type // to count() in the To type, by multiplying it with this: struct Factor : std::ratio_divide<typename From::period, typename To::period> {}; static_assert(Factor::num > 0, "num must be positive"); static_assert(Factor::den > 0, "den must be positive"); // the conversion is like this: multiply from.count() with Factor::num // /Factor::den and convert it to To::rep, all this without // overflow/underflow. let's start by finding a suitable type that can hold // both To, From and Factor::num using IntermediateRep = typename std::common_type<typename From::rep, typename To::rep, decltype(Factor::num)>::type; // safe conversion to IntermediateRep IntermediateRep count = lossless_integral_conversion<IntermediateRep>(from.count(), ec); if (ec) return {}; // multiply with Factor::num without overflow or underflow if (detail::const_check(Factor::num != 1)) { const auto max1 = detail::max_value<IntermediateRep>() / Factor::num; if (count > max1) { ec = 1; return {}; } const auto min1 = (std::numeric_limits<IntermediateRep>::min)() / Factor::num; if (detail::const_check(!std::is_unsigned<IntermediateRep>::value) && count < min1) { ec = 1; return {}; } count *= Factor::num; } if (detail::const_check(Factor::den != 1)) count /= Factor::den; auto tocount = lossless_integral_conversion<typename To::rep>(count, ec); return ec ? To() : To(tocount); } /** * safe duration_cast between floating point durations */ template <typename To, typename FromRep, typename FromPeriod, FMT_ENABLE_IF(std::is_floating_point<FromRep>::value), FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)> auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from, int& ec) -> To { using From = std::chrono::duration<FromRep, FromPeriod>; ec = 0; if (std::isnan(from.count())) { // nan in, gives nan out. easy. return To{std::numeric_limits<typename To::rep>::quiet_NaN()}; } // maybe we should also check if from is denormal, and decide what to do about // it. // +-inf should be preserved. if (std::isinf(from.count())) { return To{from.count()}; } // the basic idea is that we need to convert from count() in the from type // to count() in the To type, by multiplying it with this: struct Factor : std::ratio_divide<typename From::period, typename To::period> {}; static_assert(Factor::num > 0, "num must be positive"); static_assert(Factor::den > 0, "den must be positive"); // the conversion is like this: multiply from.count() with Factor::num // /Factor::den and convert it to To::rep, all this without // overflow/underflow. let's start by finding a suitable type that can hold // both To, From and Factor::num using IntermediateRep = typename std::common_type<typename From::rep, typename To::rep, decltype(Factor::num)>::type; // force conversion of From::rep -> IntermediateRep to be safe, // even if it will never happen be narrowing in this context. IntermediateRep count = safe_float_conversion<IntermediateRep>(from.count(), ec); if (ec) { return {}; } // multiply with Factor::num without overflow or underflow if (detail::const_check(Factor::num != 1)) { constexpr auto max1 = detail::max_value<IntermediateRep>() / static_cast<IntermediateRep>(Factor::num); if (count > max1) { ec = 1; return {}; } constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() / static_cast<IntermediateRep>(Factor::num); if (count < min1) { ec = 1; return {}; } count *= static_cast<IntermediateRep>(Factor::num); } // this can't go wrong, right? den>0 is checked earlier. if (detail::const_check(Factor::den != 1)) { using common_t = typename std::common_type<IntermediateRep, intmax_t>::type; count /= static_cast<common_t>(Factor::den); } // convert to the to type, safely using ToRep = typename To::rep; const ToRep tocount = safe_float_conversion<ToRep>(count, ec); if (ec) { return {}; } return To{tocount}; } } // namespace safe_duration_cast #endif // Prevents expansion of a preceding token as a function-style macro. // Usage: f FMT_NOMACRO() #define FMT_NOMACRO namespace detail { template <typename T = void> struct null {}; inline auto localtime_r FMT_NOMACRO(...) -> null<> { return null<>(); } inline auto localtime_s(...) -> null<> { return null<>(); } inline auto gmtime_r(...) -> null<> { return null<>(); } inline auto gmtime_s(...) -> null<> { return null<>(); } inline auto get_classic_locale() -> const std::locale& { static const auto& locale = std::locale::classic(); return locale; } template <typename CodeUnit> struct codecvt_result { static constexpr const size_t max_size = 32; CodeUnit buf[max_size]; CodeUnit* end; }; template <typename CodeUnit> void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf, const std::locale& loc) { #if FMT_CLANG_VERSION # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wdeprecated" auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc); # pragma clang diagnostic pop #else auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc); #endif auto mb = std::mbstate_t(); const char* from_next = nullptr; auto result = f.in(mb, in_buf.begin(), in_buf.end(), from_next, std::begin(out.buf), std::end(out.buf), out.end); if (result != std::codecvt_base::ok) FMT_THROW(format_error("failed to format time")); } template <typename OutputIt> auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc) -> OutputIt { if (detail::is_utf8() && loc != get_classic_locale()) { // char16_t and char32_t codecvts are broken in MSVC (linkage errors) and // gcc-4. #if FMT_MSC_VERSION != 0 || \ (defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI)) // The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5 // and newer. using code_unit = wchar_t; #else using code_unit = char32_t; #endif using unit_t = codecvt_result<code_unit>; unit_t unit; write_codecvt(unit, in, loc); // In UTF-8 is used one to four one-byte code units. auto u = to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>(); if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)})) FMT_THROW(format_error("failed to format time")); return copy_str<char>(u.c_str(), u.c_str() + u.size(), out); } return copy_str<char>(in.data(), in.data() + in.size(), out); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc) -> OutputIt { codecvt_result<Char> unit; write_codecvt(unit, sv, loc); return copy_str<Char>(unit.buf, unit.end, out); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(std::is_same<Char, char>::value)> auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc) -> OutputIt { return write_encoded_tm_str(out, sv, loc); } template <typename Char> inline void do_write(buffer<Char>& buf, const std::tm& time, const std::locale& loc, char format, char modifier) { auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf); auto&& os = std::basic_ostream<Char>(&format_buf); os.imbue(loc); const auto& facet = std::use_facet<std::time_put<Char>>(loc); auto end = facet.put(os, os, Char(' '), &time, format, modifier); if (end.failed()) FMT_THROW(format_error("failed to format time")); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(!std::is_same<Char, char>::value)> auto write(OutputIt out, const std::tm& time, const std::locale& loc, char format, char modifier = 0) -> OutputIt { auto&& buf = get_buffer<Char>(out); do_write<Char>(buf, time, loc, format, modifier); return get_iterator(buf, out); } template <typename Char, typename OutputIt, FMT_ENABLE_IF(std::is_same<Char, char>::value)> auto write(OutputIt out, const std::tm& time, const std::locale& loc, char format, char modifier = 0) -> OutputIt { auto&& buf = basic_memory_buffer<Char>(); do_write<char>(buf, time, loc, format, modifier); return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc); } template <typename Rep1, typename Rep2> struct is_same_arithmetic_type : public std::integral_constant<bool, (std::is_integral<Rep1>::value && std::is_integral<Rep2>::value) || (std::is_floating_point<Rep1>::value && std::is_floating_point<Rep2>::value)> { }; template < typename To, typename FromRep, typename FromPeriod, FMT_ENABLE_IF(is_same_arithmetic_type<FromRep, typename To::rep>::value)> auto fmt_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To { #if FMT_SAFE_DURATION_CAST // Throwing version of safe_duration_cast is only available for // integer to integer or float to float casts. int ec; To to = safe_duration_cast::safe_duration_cast<To>(from, ec); if (ec) FMT_THROW(format_error("cannot format duration")); return to; #else // Standard duration cast, may overflow. return std::chrono::duration_cast<To>(from); #endif } template < typename To, typename FromRep, typename FromPeriod, FMT_ENABLE_IF(!is_same_arithmetic_type<FromRep, typename To::rep>::value)> auto fmt_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To { // Mixed integer <-> float cast is not supported by safe_duration_cast. return std::chrono::duration_cast<To>(from); } template <typename Duration> auto to_time_t( std::chrono::time_point<std::chrono::system_clock, Duration> time_point) -> std::time_t { // Cannot use std::chrono::system_clock::to_time_t since this would first // require a cast to std::chrono::system_clock::time_point, which could // overflow. return fmt_duration_cast<std::chrono::duration<std::time_t>>( time_point.time_since_epoch()) .count(); } } // namespace detail FMT_BEGIN_EXPORT /** Converts given time since epoch as ``std::time_t`` value into calendar time, expressed in local time. Unlike ``std::localtime``, this function is thread-safe on most platforms. */ inline auto localtime(std::time_t time) -> std::tm { struct dispatcher { std::time_t time_; std::tm tm_; dispatcher(std::time_t t) : time_(t) {} auto run() -> bool { using namespace fmt::detail; return handle(localtime_r(&time_, &tm_)); } auto handle(std::tm* tm) -> bool { return tm != nullptr; } auto handle(detail::null<>) -> bool { using namespace fmt::detail; return fallback(localtime_s(&tm_, &time_)); } auto fallback(int res) -> bool { return res == 0; } #if !FMT_MSC_VERSION auto fallback(detail::null<>) -> bool { using namespace fmt::detail; std::tm* tm = std::localtime(&time_); if (tm) tm_ = *tm; return tm != nullptr; } #endif }; dispatcher lt(time); // Too big time values may be unsupported. if (!lt.run()) FMT_THROW(format_error("time_t value out of range")); return lt.tm_; } #if FMT_USE_LOCAL_TIME template <typename Duration> inline auto localtime(std::chrono::local_time<Duration> time) -> std::tm { return localtime( detail::to_time_t(std::chrono::current_zone()->to_sys(time))); } #endif /** Converts given time since epoch as ``std::time_t`` value into calendar time, expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this function is thread-safe on most platforms. */ inline auto gmtime(std::time_t time) -> std::tm { struct dispatcher { std::time_t time_; std::tm tm_; dispatcher(std::time_t t) : time_(t) {} auto run() -> bool { using namespace fmt::detail; return handle(gmtime_r(&time_, &tm_)); } auto handle(std::tm* tm) -> bool { return tm != nullptr; } auto handle(detail::null<>) -> bool { using namespace fmt::detail; return fallback(gmtime_s(&tm_, &time_)); } auto fallback(int res) -> bool { return res == 0; } #if !FMT_MSC_VERSION auto fallback(detail::null<>) -> bool { std::tm* tm = std::gmtime(&time_); if (tm) tm_ = *tm; return tm != nullptr; } #endif }; auto gt = dispatcher(time); // Too big time values may be unsupported. if (!gt.run()) FMT_THROW(format_error("time_t value out of range")); return gt.tm_; } template <typename Duration> inline auto gmtime( std::chrono::time_point<std::chrono::system_clock, Duration> time_point) -> std::tm { return gmtime(detail::to_time_t(time_point)); } namespace detail { // Writes two-digit numbers a, b and c separated by sep to buf. // The method by Pavel Novikov based on // https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/. inline void write_digit2_separated(char* buf, unsigned a, unsigned b, unsigned c, char sep) { unsigned long long digits = a | (b << 24) | (static_cast<unsigned long long>(c) << 48); // Convert each value to BCD. // We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b. // The difference is // y - x = a * 6 // a can be found from x: // a = floor(x / 10) // then // y = x + a * 6 = x + floor(x / 10) * 6 // floor(x / 10) is (x * 205) >> 11 (needs 16 bits). digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6; // Put low nibbles to high bytes and high nibbles to low bytes. digits = ((digits & 0x00f00000f00000f0) >> 4) | ((digits & 0x000f00000f00000f) << 8); auto usep = static_cast<unsigned long long>(sep); // Add ASCII '0' to each digit byte and insert separators. digits |= 0x3030003030003030 | (usep << 16) | (usep << 40); constexpr const size_t len = 8; if (const_check(is_big_endian())) { char tmp[len]; std::memcpy(tmp, &digits, len); std::reverse_copy(tmp, tmp + len, buf); } else { std::memcpy(buf, &digits, len); } } template <typename Period> FMT_CONSTEXPR inline auto get_units() -> const char* { if (std::is_same<Period, std::atto>::value) return "as"; if (std::is_same<Period, std::femto>::value) return "fs"; if (std::is_same<Period, std::pico>::value) return "ps"; if (std::is_same<Period, std::nano>::value) return "ns"; if (std::is_same<Period, std::micro>::value) return "µs"; if (std::is_same<Period, std::milli>::value) return "ms"; if (std::is_same<Period, std::centi>::value) return "cs"; if (std::is_same<Period, std::deci>::value) return "ds"; if (std::is_same<Period, std::ratio<1>>::value) return "s"; if (std::is_same<Period, std::deca>::value) return "das"; if (std::is_same<Period, std::hecto>::value) return "hs"; if (std::is_same<Period, std::kilo>::value) return "ks"; if (std::is_same<Period, std::mega>::value) return "Ms"; if (std::is_same<Period, std::giga>::value) return "Gs"; if (std::is_same<Period, std::tera>::value) return "Ts"; if (std::is_same<Period, std::peta>::value) return "Ps"; if (std::is_same<Period, std::exa>::value) return "Es"; if (std::is_same<Period, std::ratio<60>>::value) return "min"; if (std::is_same<Period, std::ratio<3600>>::value) return "h"; if (std::is_same<Period, std::ratio<86400>>::value) return "d"; return nullptr; } enum class numeric_system { standard, // Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale. alternative }; // Glibc extensions for formatting numeric values. enum class pad_type { unspecified, // Do not pad a numeric result string. none, // Pad a numeric result string with zeros even if the conversion specifier // character uses space-padding by default. zero, // Pad a numeric result string with spaces. space, }; template <typename OutputIt> auto write_padding(OutputIt out, pad_type pad, int width) -> OutputIt { if (pad == pad_type::none) return out; return std::fill_n(out, width, pad == pad_type::space ? ' ' : '0'); } template <typename OutputIt> auto write_padding(OutputIt out, pad_type pad) -> OutputIt { if (pad != pad_type::none) *out++ = pad == pad_type::space ? ' ' : '0'; return out; } // Parses a put_time-like format string and invokes handler actions. template <typename Char, typename Handler> FMT_CONSTEXPR auto parse_chrono_format(const Char* begin, const Char* end, Handler&& handler) -> const Char* { if (begin == end || *begin == '}') return begin; if (*begin != '%') FMT_THROW(format_error("invalid format")); auto ptr = begin; pad_type pad = pad_type::unspecified; while (ptr != end) { auto c = *ptr; if (c == '}') break; if (c != '%') { ++ptr; continue; } if (begin != ptr) handler.on_text(begin, ptr); ++ptr; // consume '%' if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr; switch (c) { case '_': pad = pad_type::space; ++ptr; break; case '-': pad = pad_type::none; ++ptr; break; case '0': pad = pad_type::zero; ++ptr; break; } if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr++; switch (c) { case '%': handler.on_text(ptr - 1, ptr); break; case 'n': { const Char newline[] = {'\n'}; handler.on_text(newline, newline + 1); break; } case 't': { const Char tab[] = {'\t'}; handler.on_text(tab, tab + 1); break; } // Year: case 'Y': handler.on_year(numeric_system::standard); break; case 'y': handler.on_short_year(numeric_system::standard); break; case 'C': handler.on_century(numeric_system::standard); break; case 'G': handler.on_iso_week_based_year(); break; case 'g': handler.on_iso_week_based_short_year(); break; // Day of the week: case 'a': handler.on_abbr_weekday(); break; case 'A': handler.on_full_weekday(); break; case 'w': handler.on_dec0_weekday(numeric_system::standard); break; case 'u': handler.on_dec1_weekday(numeric_system::standard); break; // Month: case 'b': case 'h': handler.on_abbr_month(); break; case 'B': handler.on_full_month(); break; case 'm': handler.on_dec_month(numeric_system::standard); break; // Day of the year/month: case 'U': handler.on_dec0_week_of_year(numeric_system::standard); break; case 'W': handler.on_dec1_week_of_year(numeric_system::standard); break; case 'V': handler.on_iso_week_of_year(numeric_system::standard); break; case 'j': handler.on_day_of_year(); break; case 'd': handler.on_day_of_month(numeric_system::standard); break; case 'e': handler.on_day_of_month_space(numeric_system::standard); break; // Hour, minute, second: case 'H': handler.on_24_hour(numeric_system::standard, pad); break; case 'I': handler.on_12_hour(numeric_system::standard, pad); break; case 'M': handler.on_minute(numeric_system::standard, pad); break; case 'S': handler.on_second(numeric_system::standard, pad); break; // Other: case 'c': handler.on_datetime(numeric_system::standard); break; case 'x': handler.on_loc_date(numeric_system::standard); break; case 'X': handler.on_loc_time(numeric_system::standard); break; case 'D': handler.on_us_date(); break; case 'F': handler.on_iso_date(); break; case 'r': handler.on_12_hour_time(); break; case 'R': handler.on_24_hour_time(); break; case 'T': handler.on_iso_time(); break; case 'p': handler.on_am_pm(); break; case 'Q': handler.on_duration_value(); break; case 'q': handler.on_duration_unit(); break; case 'z': handler.on_utc_offset(numeric_system::standard); break; case 'Z': handler.on_tz_name(); break; // Alternative representation: case 'E': { if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr++; switch (c) { case 'Y': handler.on_year(numeric_system::alternative); break; case 'y': handler.on_offset_year(); break; case 'C': handler.on_century(numeric_system::alternative); break; case 'c': handler.on_datetime(numeric_system::alternative); break; case 'x': handler.on_loc_date(numeric_system::alternative); break; case 'X': handler.on_loc_time(numeric_system::alternative); break; case 'z': handler.on_utc_offset(numeric_system::alternative); break; default: FMT_THROW(format_error("invalid format")); } break; } case 'O': if (ptr == end) FMT_THROW(format_error("invalid format")); c = *ptr++; switch (c) { case 'y': handler.on_short_year(numeric_system::alternative); break; case 'm': handler.on_dec_month(numeric_system::alternative); break; case 'U': handler.on_dec0_week_of_year(numeric_system::alternative); break; case 'W': handler.on_dec1_week_of_year(numeric_system::alternative); break; case 'V': handler.on_iso_week_of_year(numeric_system::alternative); break; case 'd': handler.on_day_of_month(numeric_system::alternative); break; case 'e': handler.on_day_of_month_space(numeric_system::alternative); break; case 'w': handler.on_dec0_weekday(numeric_system::alternative); break; case 'u': handler.on_dec1_weekday(numeric_system::alternative); break; case 'H': handler.on_24_hour(numeric_system::alternative, pad); break; case 'I': handler.on_12_hour(numeric_system::alternative, pad); break; case 'M': handler.on_minute(numeric_system::alternative, pad); break; case 'S': handler.on_second(numeric_system::alternative, pad); break; case 'z': handler.on_utc_offset(numeric_system::alternative); break; default: FMT_THROW(format_error("invalid format")); } break; default: FMT_THROW(format_error("invalid format")); } begin = ptr; } if (begin != ptr) handler.on_text(begin, ptr); return ptr; } template <typename Derived> struct null_chrono_spec_handler { FMT_CONSTEXPR void unsupported() { static_cast<Derived*>(this)->unsupported(); } FMT_CONSTEXPR void on_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_offset_year() { unsupported(); } FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); } FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); } FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); } FMT_CONSTEXPR void on_full_weekday() { unsupported(); } FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_abbr_month() { unsupported(); } FMT_CONSTEXPR void on_full_month() { unsupported(); } FMT_CONSTEXPR void on_dec_month(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_day_of_year() { unsupported(); } FMT_CONSTEXPR void on_day_of_month(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_day_of_month_space(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_us_date() { unsupported(); } FMT_CONSTEXPR void on_iso_date() { unsupported(); } FMT_CONSTEXPR void on_12_hour_time() { unsupported(); } FMT_CONSTEXPR void on_24_hour_time() { unsupported(); } FMT_CONSTEXPR void on_iso_time() { unsupported(); } FMT_CONSTEXPR void on_am_pm() { unsupported(); } FMT_CONSTEXPR void on_duration_value() { unsupported(); } FMT_CONSTEXPR void on_duration_unit() { unsupported(); } FMT_CONSTEXPR void on_utc_offset(numeric_system) { unsupported(); } FMT_CONSTEXPR void on_tz_name() { unsupported(); } }; struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> { FMT_NORETURN void unsupported() { FMT_THROW(format_error("no format")); } template <typename Char> FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR void on_year(numeric_system) {} FMT_CONSTEXPR void on_short_year(numeric_system) {} FMT_CONSTEXPR void on_offset_year() {} FMT_CONSTEXPR void on_century(numeric_system) {} FMT_CONSTEXPR void on_iso_week_based_year() {} FMT_CONSTEXPR void on_iso_week_based_short_year() {} FMT_CONSTEXPR void on_abbr_weekday() {} FMT_CONSTEXPR void on_full_weekday() {} FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {} FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {} FMT_CONSTEXPR void on_abbr_month() {} FMT_CONSTEXPR void on_full_month() {} FMT_CONSTEXPR void on_dec_month(numeric_system) {} FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) {} FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) {} FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) {} FMT_CONSTEXPR void on_day_of_year() {} FMT_CONSTEXPR void on_day_of_month(numeric_system) {} FMT_CONSTEXPR void on_day_of_month_space(numeric_system) {} FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {} FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {} FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {} FMT_CONSTEXPR void on_second(numeric_system, pad_type) {} FMT_CONSTEXPR void on_datetime(numeric_system) {} FMT_CONSTEXPR void on_loc_date(numeric_system) {} FMT_CONSTEXPR void on_loc_time(numeric_system) {} FMT_CONSTEXPR void on_us_date() {} FMT_CONSTEXPR void on_iso_date() {} FMT_CONSTEXPR void on_12_hour_time() {} FMT_CONSTEXPR void on_24_hour_time() {} FMT_CONSTEXPR void on_iso_time() {} FMT_CONSTEXPR void on_am_pm() {} FMT_CONSTEXPR void on_utc_offset(numeric_system) {} FMT_CONSTEXPR void on_tz_name() {} }; inline auto tm_wday_full_name(int wday) -> const char* { static constexpr const char* full_name_list[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"}; return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?"; } inline auto tm_wday_short_name(int wday) -> const char* { static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???"; } inline auto tm_mon_full_name(int mon) -> const char* { static constexpr const char* full_name_list[] = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"}; return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?"; } inline auto tm_mon_short_name(int mon) -> const char* { static constexpr const char* short_name_list[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", }; return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???"; } template <typename T, typename = void> struct has_member_data_tm_gmtoff : std::false_type {}; template <typename T> struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>> : std::true_type {}; template <typename T, typename = void> struct has_member_data_tm_zone : std::false_type {}; template <typename T> struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>> : std::true_type {}; #if FMT_USE_TZSET inline void tzset_once() { static bool init = []() -> bool { _tzset(); return true; }(); ignore_unused(init); } #endif // Converts value to Int and checks that it's in the range [0, upper). template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)> inline auto to_nonnegative_int(T value, Int upper) -> Int { if (!std::is_unsigned<Int>::value && (value < 0 || to_unsigned(value) > to_unsigned(upper))) { FMT_THROW(fmt::format_error("chrono value is out of range")); } return static_cast<Int>(value); } template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)> inline auto to_nonnegative_int(T value, Int upper) -> Int { if (value < 0 || value > static_cast<T>(upper)) FMT_THROW(format_error("invalid value")); return static_cast<Int>(value); } constexpr auto pow10(std::uint32_t n) -> long long { return n == 0 ? 1 : 10 * pow10(n - 1); } // Counts the number of fractional digits in the range [0, 18] according to the // C++20 spec. If more than 18 fractional digits are required then returns 6 for // microseconds precision. template <long long Num, long long Den, int N = 0, bool Enabled = (N < 19) && (Num <= max_value<long long>() / 10)> struct count_fractional_digits { static constexpr int value = Num % Den == 0 ? N : count_fractional_digits<Num * 10, Den, N + 1>::value; }; // Base case that doesn't instantiate any more templates // in order to avoid overflow. template <long long Num, long long Den, int N> struct count_fractional_digits<Num, Den, N, false> { static constexpr int value = (Num % Den == 0) ? N : 6; }; // Format subseconds which are given as an integer type with an appropriate // number of digits. template <typename Char, typename OutputIt, typename Duration> void write_fractional_seconds(OutputIt& out, Duration d, int precision = -1) { constexpr auto num_fractional_digits = count_fractional_digits<Duration::period::num, Duration::period::den>::value; using subsecond_precision = std::chrono::duration< typename std::common_type<typename Duration::rep, std::chrono::seconds::rep>::type, std::ratio<1, detail::pow10(num_fractional_digits)>>; const auto fractional = d - fmt_duration_cast<std::chrono::seconds>(d); const auto subseconds = std::chrono::treat_as_floating_point< typename subsecond_precision::rep>::value ? fractional.count() : fmt_duration_cast<subsecond_precision>(fractional).count(); auto n = static_cast<uint32_or_64_or_128_t<long long>>(subseconds); const int num_digits = detail::count_digits(n); int leading_zeroes = (std::max)(0, num_fractional_digits - num_digits); if (precision < 0) { FMT_ASSERT(!std::is_floating_point<typename Duration::rep>::value, ""); if (std::ratio_less<typename subsecond_precision::period, std::chrono::seconds::period>::value) { *out++ = '.'; out = std::fill_n(out, leading_zeroes, '0'); out = format_decimal<Char>(out, n, num_digits).end; } } else { *out++ = '.'; leading_zeroes = (std::min)(leading_zeroes, precision); out = std::fill_n(out, leading_zeroes, '0'); int remaining = precision - leading_zeroes; if (remaining != 0 && remaining < num_digits) { n /= to_unsigned(detail::pow10(to_unsigned(num_digits - remaining))); out = format_decimal<Char>(out, n, remaining).end; return; } out = format_decimal<Char>(out, n, num_digits).end; remaining -= num_digits; out = std::fill_n(out, remaining, '0'); } } // Format subseconds which are given as a floating point type with an // appropriate number of digits. We cannot pass the Duration here, as we // explicitly need to pass the Rep value in the chrono_formatter. template <typename Duration> void write_floating_seconds(memory_buffer& buf, Duration duration, int num_fractional_digits = -1) { using rep = typename Duration::rep; FMT_ASSERT(std::is_floating_point<rep>::value, ""); auto val = duration.count(); if (num_fractional_digits < 0) { // For `std::round` with fallback to `round`: // On some toolchains `std::round` is not available (e.g. GCC 6). using namespace std; num_fractional_digits = count_fractional_digits<Duration::period::num, Duration::period::den>::value; if (num_fractional_digits < 6 && static_cast<rep>(round(val)) != val) num_fractional_digits = 6; } fmt::format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"), std::fmod(val * static_cast<rep>(Duration::period::num) / static_cast<rep>(Duration::period::den), static_cast<rep>(60)), num_fractional_digits); } template <typename OutputIt, typename Char, typename Duration = std::chrono::seconds> class tm_writer { private: static constexpr int days_per_week = 7; const std::locale& loc_; const bool is_classic_; OutputIt out_; const Duration* subsecs_; const std::tm& tm_; auto tm_sec() const noexcept -> int { FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, ""); return tm_.tm_sec; } auto tm_min() const noexcept -> int { FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, ""); return tm_.tm_min; } auto tm_hour() const noexcept -> int { FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, ""); return tm_.tm_hour; } auto tm_mday() const noexcept -> int { FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, ""); return tm_.tm_mday; } auto tm_mon() const noexcept -> int { FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, ""); return tm_.tm_mon; } auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; } auto tm_wday() const noexcept -> int { FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, ""); return tm_.tm_wday; } auto tm_yday() const noexcept -> int { FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, ""); return tm_.tm_yday; } auto tm_hour12() const noexcept -> int { const auto h = tm_hour(); const auto z = h < 12 ? h : h - 12; return z == 0 ? 12 : z; } // POSIX and the C Standard are unclear or inconsistent about what %C and %y // do if the year is negative or exceeds 9999. Use the convention that %C // concatenated with %y yields the same output as %Y, and that %Y contains at // least 4 characters, with more only if necessary. auto split_year_lower(long long year) const noexcept -> int { auto l = year % 100; if (l < 0) l = -l; // l in [0, 99] return static_cast<int>(l); } // Algorithm: https://en.wikipedia.org/wiki/ISO_week_date. auto iso_year_weeks(long long curr_year) const noexcept -> int { const auto prev_year = curr_year - 1; const auto curr_p = (curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) % days_per_week; const auto prev_p = (prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) % days_per_week; return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0); } auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int { return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) / days_per_week; } auto tm_iso_week_year() const noexcept -> long long { const auto year = tm_year(); const auto w = iso_week_num(tm_yday(), tm_wday()); if (w < 1) return year - 1; if (w > iso_year_weeks(year)) return year + 1; return year; } auto tm_iso_week_of_year() const noexcept -> int { const auto year = tm_year(); const auto w = iso_week_num(tm_yday(), tm_wday()); if (w < 1) return iso_year_weeks(year - 1); if (w > iso_year_weeks(year)) return 1; return w; } void write1(int value) { *out_++ = static_cast<char>('0' + to_unsigned(value) % 10); } void write2(int value) { const char* d = digits2(to_unsigned(value) % 100); *out_++ = *d++; *out_++ = *d; } void write2(int value, pad_type pad) { unsigned int v = to_unsigned(value) % 100; if (v >= 10) { const char* d = digits2(v); *out_++ = *d++; *out_++ = *d; } else { out_ = detail::write_padding(out_, pad); *out_++ = static_cast<char>('0' + v); } } void write_year_extended(long long year) { // At least 4 characters. int width = 4; if (year < 0) { *out_++ = '-'; year = 0 - year; --width; } uint32_or_64_or_128_t<long long> n = to_unsigned(year); const int num_digits = count_digits(n); if (width > num_digits) out_ = std::fill_n(out_, width - num_digits, '0'); out_ = format_decimal<Char>(out_, n, num_digits).end; } void write_year(long long year) { if (year >= 0 && year < 10000) { write2(static_cast<int>(year / 100)); write2(static_cast<int>(year % 100)); } else { write_year_extended(year); } } void write_utc_offset(long offset, numeric_system ns) { if (offset < 0) { *out_++ = '-'; offset = -offset; } else { *out_++ = '+'; } offset /= 60; write2(static_cast<int>(offset / 60)); if (ns != numeric_system::standard) *out_++ = ':'; write2(static_cast<int>(offset % 60)); } template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)> void format_utc_offset_impl(const T& tm, numeric_system ns) { write_utc_offset(tm.tm_gmtoff, ns); } template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)> void format_utc_offset_impl(const T& tm, numeric_system ns) { #if defined(_WIN32) && defined(_UCRT) # if FMT_USE_TZSET tzset_once(); # endif long offset = 0; _get_timezone(&offset); if (tm.tm_isdst) { long dstbias = 0; _get_dstbias(&dstbias); offset += dstbias; } write_utc_offset(-offset, ns); #else if (ns == numeric_system::standard) return format_localized('z'); // Extract timezone offset from timezone conversion functions. std::tm gtm = tm; std::time_t gt = std::mktime(>m); std::tm ltm = gmtime(gt); std::time_t lt = std::mktime(<m); long offset = gt - lt; write_utc_offset(offset, ns); #endif } template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)> void format_tz_name_impl(const T& tm) { if (is_classic_) out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_); else format_localized('Z'); } template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)> void format_tz_name_impl(const T&) { format_localized('Z'); } void format_localized(char format, char modifier = 0) { out_ = write<Char>(out_, tm_, loc_, format, modifier); } public: tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm, const Duration* subsecs = nullptr) : loc_(loc), is_classic_(loc_ == get_classic_locale()), out_(out), subsecs_(subsecs), tm_(tm) {} auto out() const -> OutputIt { return out_; } FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) { out_ = copy_str<Char>(begin, end, out_); } void on_abbr_weekday() { if (is_classic_) out_ = write(out_, tm_wday_short_name(tm_wday())); else format_localized('a'); } void on_full_weekday() { if (is_classic_) out_ = write(out_, tm_wday_full_name(tm_wday())); else format_localized('A'); } void on_dec0_weekday(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday()); format_localized('w', 'O'); } void on_dec1_weekday(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto wday = tm_wday(); write1(wday == 0 ? days_per_week : wday); } else { format_localized('u', 'O'); } } void on_abbr_month() { if (is_classic_) out_ = write(out_, tm_mon_short_name(tm_mon())); else format_localized('b'); } void on_full_month() { if (is_classic_) out_ = write(out_, tm_mon_full_name(tm_mon())); else format_localized('B'); } void on_datetime(numeric_system ns) { if (is_classic_) { on_abbr_weekday(); *out_++ = ' '; on_abbr_month(); *out_++ = ' '; on_day_of_month_space(numeric_system::standard); *out_++ = ' '; on_iso_time(); *out_++ = ' '; on_year(numeric_system::standard); } else { format_localized('c', ns == numeric_system::standard ? '\0' : 'E'); } } void on_loc_date(numeric_system ns) { if (is_classic_) on_us_date(); else format_localized('x', ns == numeric_system::standard ? '\0' : 'E'); } void on_loc_time(numeric_system ns) { if (is_classic_) on_iso_time(); else format_localized('X', ns == numeric_system::standard ? '\0' : 'E'); } void on_us_date() { char buf[8]; write_digit2_separated(buf, to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()), to_unsigned(split_year_lower(tm_year())), '/'); out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_); } void on_iso_date() { auto year = tm_year(); char buf[10]; size_t offset = 0; if (year >= 0 && year < 10000) { copy2(buf, digits2(static_cast<size_t>(year / 100))); } else { offset = 4; write_year_extended(year); year = 0; } write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100), to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()), '-'); out_ = copy_str<Char>(std::begin(buf) + offset, std::end(buf), out_); } void on_utc_offset(numeric_system ns) { format_utc_offset_impl(tm_, ns); } void on_tz_name() { format_tz_name_impl(tm_); } void on_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write_year(tm_year()); format_localized('Y', 'E'); } void on_short_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(split_year_lower(tm_year())); format_localized('y', 'O'); } void on_offset_year() { if (is_classic_) return write2(split_year_lower(tm_year())); format_localized('y', 'E'); } void on_century(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto year = tm_year(); auto upper = year / 100; if (year >= -99 && year < 0) { // Zero upper on negative year. *out_++ = '-'; *out_++ = '0'; } else if (upper >= 0 && upper < 100) { write2(static_cast<int>(upper)); } else { out_ = write<Char>(out_, upper); } } else { format_localized('C', 'E'); } } void on_dec_month(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_mon() + 1); format_localized('m', 'O'); } void on_dec0_week_of_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week); format_localized('U', 'O'); } void on_dec1_week_of_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto wday = tm_wday(); write2((tm_yday() + days_per_week - (wday == 0 ? (days_per_week - 1) : (wday - 1))) / days_per_week); } else { format_localized('W', 'O'); } } void on_iso_week_of_year(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_iso_week_of_year()); format_localized('V', 'O'); } void on_iso_week_based_year() { write_year(tm_iso_week_year()); } void on_iso_week_based_short_year() { write2(split_year_lower(tm_iso_week_year())); } void on_day_of_year() { auto yday = tm_yday() + 1; write1(yday / 100); write2(yday % 100); } void on_day_of_month(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_mday()); format_localized('d', 'O'); } void on_day_of_month_space(numeric_system ns) { if (is_classic_ || ns == numeric_system::standard) { auto mday = to_unsigned(tm_mday()) % 100; const char* d2 = digits2(mday); *out_++ = mday < 10 ? ' ' : d2[0]; *out_++ = d2[1]; } else { format_localized('e', 'O'); } } void on_24_hour(numeric_system ns, pad_type pad) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_hour(), pad); format_localized('H', 'O'); } void on_12_hour(numeric_system ns, pad_type pad) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_hour12(), pad); format_localized('I', 'O'); } void on_minute(numeric_system ns, pad_type pad) { if (is_classic_ || ns == numeric_system::standard) return write2(tm_min(), pad); format_localized('M', 'O'); } void on_second(numeric_system ns, pad_type pad) { if (is_classic_ || ns == numeric_system::standard) { write2(tm_sec(), pad); if (subsecs_) { if (std::is_floating_point<typename Duration::rep>::value) { auto buf = memory_buffer(); write_floating_seconds(buf, *subsecs_); if (buf.size() > 1) { // Remove the leading "0", write something like ".123". out_ = std::copy(buf.begin() + 1, buf.end(), out_); } } else { write_fractional_seconds<Char>(out_, *subsecs_); } } } else { // Currently no formatting of subseconds when a locale is set. format_localized('S', 'O'); } } void on_12_hour_time() { if (is_classic_) { char buf[8]; write_digit2_separated(buf, to_unsigned(tm_hour12()), to_unsigned(tm_min()), to_unsigned(tm_sec()), ':'); out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_); *out_++ = ' '; on_am_pm(); } else { format_localized('r'); } } void on_24_hour_time() { write2(tm_hour()); *out_++ = ':'; write2(tm_min()); } void on_iso_time() { on_24_hour_time(); *out_++ = ':'; on_second(numeric_system::standard, pad_type::unspecified); } void on_am_pm() { if (is_classic_) { *out_++ = tm_hour() < 12 ? 'A' : 'P'; *out_++ = 'M'; } else { format_localized('p'); } } // These apply to chrono durations but not tm. void on_duration_value() {} void on_duration_unit() {} }; struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> { bool has_precision_integral = false; FMT_NORETURN void unsupported() { FMT_THROW(format_error("no date")); } template <typename Char> FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR void on_day_of_year() {} FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {} FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {} FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {} FMT_CONSTEXPR void on_second(numeric_system, pad_type) {} FMT_CONSTEXPR void on_12_hour_time() {} FMT_CONSTEXPR void on_24_hour_time() {} FMT_CONSTEXPR void on_iso_time() {} FMT_CONSTEXPR void on_am_pm() {} FMT_CONSTEXPR void on_duration_value() const { if (has_precision_integral) { FMT_THROW(format_error("precision not allowed for this argument type")); } } FMT_CONSTEXPR void on_duration_unit() {} }; template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value&& has_isfinite<T>::value)> inline auto isfinite(T) -> bool { return true; } template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> inline auto mod(T x, int y) -> T { return x % static_cast<T>(y); } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> inline auto mod(T x, int y) -> T { return std::fmod(x, static_cast<T>(y)); } // If T is an integral type, maps T to its unsigned counterpart, otherwise // leaves it unchanged (unlike std::make_unsigned). template <typename T, bool INTEGRAL = std::is_integral<T>::value> struct make_unsigned_or_unchanged { using type = T; }; template <typename T> struct make_unsigned_or_unchanged<T, true> { using type = typename std::make_unsigned<T>::type; }; template <typename Rep, typename Period, FMT_ENABLE_IF(std::is_integral<Rep>::value)> inline auto get_milliseconds(std::chrono::duration<Rep, Period> d) -> std::chrono::duration<Rep, std::milli> { // this may overflow and/or the result may not fit in the // target type. #if FMT_SAFE_DURATION_CAST using CommonSecondsType = typename std::common_type<decltype(d), std::chrono::seconds>::type; const auto d_as_common = fmt_duration_cast<CommonSecondsType>(d); const auto d_as_whole_seconds = fmt_duration_cast<std::chrono::seconds>(d_as_common); // this conversion should be nonproblematic const auto diff = d_as_common - d_as_whole_seconds; const auto ms = fmt_duration_cast<std::chrono::duration<Rep, std::milli>>(diff); return ms; #else auto s = fmt_duration_cast<std::chrono::seconds>(d); return fmt_duration_cast<std::chrono::milliseconds>(d - s); #endif } template <typename Char, typename Rep, typename OutputIt, FMT_ENABLE_IF(std::is_integral<Rep>::value)> auto format_duration_value(OutputIt out, Rep val, int) -> OutputIt { return write<Char>(out, val); } template <typename Char, typename Rep, typename OutputIt, FMT_ENABLE_IF(std::is_floating_point<Rep>::value)> auto format_duration_value(OutputIt out, Rep val, int precision) -> OutputIt { auto specs = format_specs<Char>(); specs.precision = precision; specs.type = precision >= 0 ? presentation_type::fixed_lower : presentation_type::general_lower; return write<Char>(out, val, specs); } template <typename Char, typename OutputIt> auto copy_unit(string_view unit, OutputIt out, Char) -> OutputIt { return std::copy(unit.begin(), unit.end(), out); } template <typename OutputIt> auto copy_unit(string_view unit, OutputIt out, wchar_t) -> OutputIt { // This works when wchar_t is UTF-32 because units only contain characters // that have the same representation in UTF-16 and UTF-32. utf8_to_utf16 u(unit); return std::copy(u.c_str(), u.c_str() + u.size(), out); } template <typename Char, typename Period, typename OutputIt> auto format_duration_unit(OutputIt out) -> OutputIt { if (const char* unit = get_units<Period>()) return copy_unit(string_view(unit), out, Char()); *out++ = '['; out = write<Char>(out, Period::num); if (const_check(Period::den != 1)) { *out++ = '/'; out = write<Char>(out, Period::den); } *out++ = ']'; *out++ = 's'; return out; } class get_locale { private: union { std::locale locale_; }; bool has_locale_ = false; public: get_locale(bool localized, locale_ref loc) : has_locale_(localized) { if (localized) ::new (&locale_) std::locale(loc.template get<std::locale>()); } ~get_locale() { if (has_locale_) locale_.~locale(); } operator const std::locale&() const { return has_locale_ ? locale_ : get_classic_locale(); } }; template <typename FormatContext, typename OutputIt, typename Rep, typename Period> struct chrono_formatter { FormatContext& context; OutputIt out; int precision; bool localized = false; // rep is unsigned to avoid overflow. using rep = conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int), unsigned, typename make_unsigned_or_unchanged<Rep>::type>; rep val; using seconds = std::chrono::duration<rep>; seconds s; using milliseconds = std::chrono::duration<rep, std::milli>; bool negative; using char_type = typename FormatContext::char_type; using tm_writer_type = tm_writer<OutputIt, char_type>; chrono_formatter(FormatContext& ctx, OutputIt o, std::chrono::duration<Rep, Period> d) : context(ctx), out(o), val(static_cast<rep>(d.count())), negative(false) { if (d.count() < 0) { val = 0 - val; negative = true; } // this may overflow and/or the result may not fit in the // target type. // might need checked conversion (rep!=Rep) s = fmt_duration_cast<seconds>(std::chrono::duration<rep, Period>(val)); } // returns true if nan or inf, writes to out. auto handle_nan_inf() -> bool { if (isfinite(val)) { return false; } if (isnan(val)) { write_nan(); return true; } // must be +-inf if (val > 0) { write_pinf(); } else { write_ninf(); } return true; } auto days() const -> Rep { return static_cast<Rep>(s.count() / 86400); } auto hour() const -> Rep { return static_cast<Rep>(mod((s.count() / 3600), 24)); } auto hour12() const -> Rep { Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12)); return hour <= 0 ? 12 : hour; } auto minute() const -> Rep { return static_cast<Rep>(mod((s.count() / 60), 60)); } auto second() const -> Rep { return static_cast<Rep>(mod(s.count(), 60)); } auto time() const -> std::tm { auto time = std::tm(); time.tm_hour = to_nonnegative_int(hour(), 24); time.tm_min = to_nonnegative_int(minute(), 60); time.tm_sec = to_nonnegative_int(second(), 60); return time; } void write_sign() { if (negative) { *out++ = '-'; negative = false; } } void write(Rep value, int width, pad_type pad = pad_type::unspecified) { write_sign(); if (isnan(value)) return write_nan(); uint32_or_64_or_128_t<int> n = to_unsigned(to_nonnegative_int(value, max_value<int>())); int num_digits = detail::count_digits(n); if (width > num_digits) { out = detail::write_padding(out, pad, width - num_digits); } out = format_decimal<char_type>(out, n, num_digits).end; } void write_nan() { std::copy_n("nan", 3, out); } void write_pinf() { std::copy_n("inf", 3, out); } void write_ninf() { std::copy_n("-inf", 4, out); } template <typename Callback, typename... Args> void format_tm(const tm& time, Callback cb, Args... args) { if (isnan(val)) return write_nan(); get_locale loc(localized, context.locale()); auto w = tm_writer_type(loc, out, time); (w.*cb)(args...); out = w.out(); } void on_text(const char_type* begin, const char_type* end) { std::copy(begin, end, out); } // These are not implemented because durations don't have date information. void on_abbr_weekday() {} void on_full_weekday() {} void on_dec0_weekday(numeric_system) {} void on_dec1_weekday(numeric_system) {} void on_abbr_month() {} void on_full_month() {} void on_datetime(numeric_system) {} void on_loc_date(numeric_system) {} void on_loc_time(numeric_system) {} void on_us_date() {} void on_iso_date() {} void on_utc_offset(numeric_system) {} void on_tz_name() {} void on_year(numeric_system) {} void on_short_year(numeric_system) {} void on_offset_year() {} void on_century(numeric_system) {} void on_iso_week_based_year() {} void on_iso_week_based_short_year() {} void on_dec_month(numeric_system) {} void on_dec0_week_of_year(numeric_system) {} void on_dec1_week_of_year(numeric_system) {} void on_iso_week_of_year(numeric_system) {} void on_day_of_month(numeric_system) {} void on_day_of_month_space(numeric_system) {} void on_day_of_year() { if (handle_nan_inf()) return; write(days(), 0); } void on_24_hour(numeric_system ns, pad_type pad) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) return write(hour(), 2, pad); auto time = tm(); time.tm_hour = to_nonnegative_int(hour(), 24); format_tm(time, &tm_writer_type::on_24_hour, ns, pad); } void on_12_hour(numeric_system ns, pad_type pad) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) return write(hour12(), 2, pad); auto time = tm(); time.tm_hour = to_nonnegative_int(hour12(), 12); format_tm(time, &tm_writer_type::on_12_hour, ns, pad); } void on_minute(numeric_system ns, pad_type pad) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) return write(minute(), 2, pad); auto time = tm(); time.tm_min = to_nonnegative_int(minute(), 60); format_tm(time, &tm_writer_type::on_minute, ns, pad); } void on_second(numeric_system ns, pad_type pad) { if (handle_nan_inf()) return; if (ns == numeric_system::standard) { if (std::is_floating_point<rep>::value) { auto buf = memory_buffer(); write_floating_seconds(buf, std::chrono::duration<rep, Period>(val), precision); if (negative) *out++ = '-'; if (buf.size() < 2 || buf[1] == '.') { out = detail::write_padding(out, pad); } out = std::copy(buf.begin(), buf.end(), out); } else { write(second(), 2, pad); write_fractional_seconds<char_type>( out, std::chrono::duration<rep, Period>(val), precision); } return; } auto time = tm(); time.tm_sec = to_nonnegative_int(second(), 60); format_tm(time, &tm_writer_type::on_second, ns, pad); } void on_12_hour_time() { if (handle_nan_inf()) return; format_tm(time(), &tm_writer_type::on_12_hour_time); } void on_24_hour_time() { if (handle_nan_inf()) { *out++ = ':'; handle_nan_inf(); return; } write(hour(), 2); *out++ = ':'; write(minute(), 2); } void on_iso_time() { on_24_hour_time(); *out++ = ':'; if (handle_nan_inf()) return; on_second(numeric_system::standard, pad_type::unspecified); } void on_am_pm() { if (handle_nan_inf()) return; format_tm(time(), &tm_writer_type::on_am_pm); } void on_duration_value() { if (handle_nan_inf()) return; write_sign(); out = format_duration_value<char_type>(out, val, precision); } void on_duration_unit() { out = format_duration_unit<char_type, Period>(out); } }; } // namespace detail #if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907 using weekday = std::chrono::weekday; #else // A fallback version of weekday. class weekday { private: unsigned char value; public: weekday() = default; explicit constexpr weekday(unsigned wd) noexcept : value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {} constexpr auto c_encoding() const noexcept -> unsigned { return value; } }; class year_month_day {}; #endif // A rudimentary weekday formatter. template <typename Char> struct formatter<weekday, Char> { private: bool localized = false; public: FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) -> decltype(ctx.begin()) { auto begin = ctx.begin(), end = ctx.end(); if (begin != end && *begin == 'L') { ++begin; localized = true; } return begin; } template <typename FormatContext> auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) { auto time = std::tm(); time.tm_wday = static_cast<int>(wd.c_encoding()); detail::get_locale loc(localized, ctx.locale()); auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time); w.on_abbr_weekday(); return w.out(); } }; template <typename Rep, typename Period, typename Char> struct formatter<std::chrono::duration<Rep, Period>, Char> { private: format_specs<Char> specs_; detail::arg_ref<Char> width_ref_; detail::arg_ref<Char> precision_ref_; bool localized_ = false; basic_string_view<Char> format_str_; public: FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) -> decltype(ctx.begin()) { auto it = ctx.begin(), end = ctx.end(); if (it == end || *it == '}') return it; it = detail::parse_align(it, end, specs_); if (it == end) return it; it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx); if (it == end) return it; auto checker = detail::chrono_format_checker(); if (*it == '.') { checker.has_precision_integral = !std::is_floating_point<Rep>::value; it = detail::parse_precision(it, end, specs_.precision, precision_ref_, ctx); } if (it != end && *it == 'L') { localized_ = true; ++it; } end = detail::parse_chrono_format(it, end, checker); format_str_ = {it, detail::to_unsigned(end - it)}; return end; } template <typename FormatContext> auto format(std::chrono::duration<Rep, Period> d, FormatContext& ctx) const -> decltype(ctx.out()) { auto specs = specs_; auto precision = specs.precision; specs.precision = -1; auto begin = format_str_.begin(), end = format_str_.end(); // As a possible future optimization, we could avoid extra copying if width // is not specified. auto buf = basic_memory_buffer<Char>(); auto out = std::back_inserter(buf); detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_, ctx); detail::handle_dynamic_spec<detail::precision_checker>(precision, precision_ref_, ctx); if (begin == end || *begin == '}') { out = detail::format_duration_value<Char>(out, d.count(), precision); detail::format_duration_unit<Char, Period>(out); } else { using chrono_formatter = detail::chrono_formatter<FormatContext, decltype(out), Rep, Period>; auto f = chrono_formatter(ctx, out, d); f.precision = precision; f.localized = localized_; detail::parse_chrono_format(begin, end, f); } return detail::write( ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs); } }; template <typename Char, typename Duration> struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>, Char> : formatter<std::tm, Char> { FMT_CONSTEXPR formatter() { this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{}; } template <typename FormatContext> auto format(std::chrono::time_point<std::chrono::system_clock, Duration> val, FormatContext& ctx) const -> decltype(ctx.out()) { using period = typename Duration::period; if (detail::const_check( period::num != 1 || period::den != 1 || std::is_floating_point<typename Duration::rep>::value)) { const auto epoch = val.time_since_epoch(); auto subsecs = detail::fmt_duration_cast<Duration>( epoch - detail::fmt_duration_cast<std::chrono::seconds>(epoch)); if (subsecs.count() < 0) { auto second = detail::fmt_duration_cast<Duration>(std::chrono::seconds(1)); if (epoch.count() < ((Duration::min)() + second).count()) FMT_THROW(format_error("duration is too small")); subsecs += second; val -= second; } return formatter<std::tm, Char>::do_format(gmtime(val), ctx, &subsecs); } return formatter<std::tm, Char>::format(gmtime(val), ctx); } }; #if FMT_USE_LOCAL_TIME template <typename Char, typename Duration> struct formatter<std::chrono::local_time<Duration>, Char> : formatter<std::tm, Char> { FMT_CONSTEXPR formatter() { this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{}; } template <typename FormatContext> auto format(std::chrono::local_time<Duration> val, FormatContext& ctx) const -> decltype(ctx.out()) { using period = typename Duration::period; if (period::num != 1 || period::den != 1 || std::is_floating_point<typename Duration::rep>::value) { const auto epoch = val.time_since_epoch(); const auto subsecs = detail::fmt_duration_cast<Duration>( epoch - detail::fmt_duration_cast<std::chrono::seconds>(epoch)); return formatter<std::tm, Char>::do_format(localtime(val), ctx, &subsecs); } return formatter<std::tm, Char>::format(localtime(val), ctx); } }; #endif #if FMT_USE_UTC_TIME template <typename Char, typename Duration> struct formatter<std::chrono::time_point<std::chrono::utc_clock, Duration>, Char> : formatter<std::chrono::time_point<std::chrono::system_clock, Duration>, Char> { template <typename FormatContext> auto format(std::chrono::time_point<std::chrono::utc_clock, Duration> val, FormatContext& ctx) const -> decltype(ctx.out()) { return formatter< std::chrono::time_point<std::chrono::system_clock, Duration>, Char>::format(std::chrono::utc_clock::to_sys(val), ctx); } }; #endif template <typename Char> struct formatter<std::tm, Char> { private: format_specs<Char> specs_; detail::arg_ref<Char> width_ref_; protected: basic_string_view<Char> format_str_; template <typename FormatContext, typename Duration> auto do_format(const std::tm& tm, FormatContext& ctx, const Duration* subsecs) const -> decltype(ctx.out()) { auto specs = specs_; auto buf = basic_memory_buffer<Char>(); auto out = std::back_inserter(buf); detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_, ctx); auto loc_ref = ctx.locale(); detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref); auto w = detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs); detail::parse_chrono_format(format_str_.begin(), format_str_.end(), w); return detail::write( ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs); } public: FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx) -> decltype(ctx.begin()) { auto it = ctx.begin(), end = ctx.end(); if (it == end || *it == '}') return it; it = detail::parse_align(it, end, specs_); if (it == end) return it; it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx); if (it == end) return it; end = detail::parse_chrono_format(it, end, detail::tm_format_checker()); // Replace the default format_str only if the new spec is not empty. if (end != it) format_str_ = {it, detail::to_unsigned(end - it)}; return end; } template <typename FormatContext> auto format(const std::tm& tm, FormatContext& ctx) const -> decltype(ctx.out()) { return do_format<FormatContext, std::chrono::seconds>(tm, ctx, nullptr); } }; FMT_END_EXPORT FMT_END_NAMESPACE #endif // FMT_CHRONO_H_