Mercurial > minori
view dep/fmt/include/fmt/printf.h @ 359:4e0e17d3c67a
CI/linux: ignore linuxdeployqt silently failing
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Mon, 15 Jul 2024 01:06:39 -0400 |
parents | 4aeffed717ef |
children |
line wrap: on
line source
// Formatting library for C++ - legacy printf implementation // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_PRINTF_H_ #define FMT_PRINTF_H_ #include <algorithm> // std::max #include <limits> // std::numeric_limits #include "format.h" FMT_BEGIN_NAMESPACE FMT_BEGIN_EXPORT template <typename T> struct printf_formatter { printf_formatter() = delete; }; template <typename Char> class basic_printf_context { private: detail::buffer_appender<Char> out_; basic_format_args<basic_printf_context> args_; static_assert(std::is_same<Char, char>::value || std::is_same<Char, wchar_t>::value, "Unsupported code unit type."); public: using char_type = Char; using parse_context_type = basic_format_parse_context<Char>; template <typename T> using formatter_type = printf_formatter<T>; /** \rst Constructs a ``printf_context`` object. References to the arguments are stored in the context object so make sure they have appropriate lifetimes. \endrst */ basic_printf_context(detail::buffer_appender<Char> out, basic_format_args<basic_printf_context> args) : out_(out), args_(args) {} auto out() -> detail::buffer_appender<Char> { return out_; } void advance_to(detail::buffer_appender<Char>) {} auto locale() -> detail::locale_ref { return {}; } auto arg(int id) const -> basic_format_arg<basic_printf_context> { return args_.get(id); } FMT_CONSTEXPR void on_error(const char* message) { detail::error_handler().on_error(message); } }; namespace detail { // Checks if a value fits in int - used to avoid warnings about comparing // signed and unsigned integers. template <bool IsSigned> struct int_checker { template <typename T> static auto fits_in_int(T value) -> bool { unsigned max = max_value<int>(); return value <= max; } static auto fits_in_int(bool) -> bool { return true; } }; template <> struct int_checker<true> { template <typename T> static auto fits_in_int(T value) -> bool { return value >= (std::numeric_limits<int>::min)() && value <= max_value<int>(); } static auto fits_in_int(int) -> bool { return true; } }; struct printf_precision_handler { template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> auto operator()(T value) -> int { if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value)) throw_format_error("number is too big"); return (std::max)(static_cast<int>(value), 0); } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> auto operator()(T) -> int { throw_format_error("precision is not integer"); return 0; } }; // An argument visitor that returns true iff arg is a zero integer. struct is_zero_int { template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> auto operator()(T value) -> bool { return value == 0; } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> auto operator()(T) -> bool { return false; } }; template <typename T> struct make_unsigned_or_bool : std::make_unsigned<T> {}; template <> struct make_unsigned_or_bool<bool> { using type = bool; }; template <typename T, typename Context> class arg_converter { private: using char_type = typename Context::char_type; basic_format_arg<Context>& arg_; char_type type_; public: arg_converter(basic_format_arg<Context>& arg, char_type type) : arg_(arg), type_(type) {} void operator()(bool value) { if (type_ != 's') operator()<bool>(value); } template <typename U, FMT_ENABLE_IF(std::is_integral<U>::value)> void operator()(U value) { bool is_signed = type_ == 'd' || type_ == 'i'; using target_type = conditional_t<std::is_same<T, void>::value, U, T>; if (const_check(sizeof(target_type) <= sizeof(int))) { // Extra casts are used to silence warnings. if (is_signed) { auto n = static_cast<int>(static_cast<target_type>(value)); arg_ = detail::make_arg<Context>(n); } else { using unsigned_type = typename make_unsigned_or_bool<target_type>::type; auto n = static_cast<unsigned>(static_cast<unsigned_type>(value)); arg_ = detail::make_arg<Context>(n); } } else { if (is_signed) { // glibc's printf doesn't sign extend arguments of smaller types: // std::printf("%lld", -42); // prints "4294967254" // but we don't have to do the same because it's a UB. auto n = static_cast<long long>(value); arg_ = detail::make_arg<Context>(n); } else { auto n = static_cast<typename make_unsigned_or_bool<U>::type>(value); arg_ = detail::make_arg<Context>(n); } } } template <typename U, FMT_ENABLE_IF(!std::is_integral<U>::value)> void operator()(U) {} // No conversion needed for non-integral types. }; // Converts an integer argument to T for printf, if T is an integral type. // If T is void, the argument is converted to corresponding signed or unsigned // type depending on the type specifier: 'd' and 'i' - signed, other - // unsigned). template <typename T, typename Context, typename Char> void convert_arg(basic_format_arg<Context>& arg, Char type) { visit_format_arg(arg_converter<T, Context>(arg, type), arg); } // Converts an integer argument to char for printf. template <typename Context> class char_converter { private: basic_format_arg<Context>& arg_; public: explicit char_converter(basic_format_arg<Context>& arg) : arg_(arg) {} template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> void operator()(T value) { auto c = static_cast<typename Context::char_type>(value); arg_ = detail::make_arg<Context>(c); } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> void operator()(T) {} // No conversion needed for non-integral types. }; // An argument visitor that return a pointer to a C string if argument is a // string or null otherwise. template <typename Char> struct get_cstring { template <typename T> auto operator()(T) -> const Char* { return nullptr; } auto operator()(const Char* s) -> const Char* { return s; } }; // Checks if an argument is a valid printf width specifier and sets // left alignment if it is negative. template <typename Char> class printf_width_handler { private: format_specs<Char>& specs_; public: explicit printf_width_handler(format_specs<Char>& specs) : specs_(specs) {} template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> auto operator()(T value) -> unsigned { auto width = static_cast<uint32_or_64_or_128_t<T>>(value); if (detail::is_negative(value)) { specs_.align = align::left; width = 0 - width; } unsigned int_max = max_value<int>(); if (width > int_max) throw_format_error("number is too big"); return static_cast<unsigned>(width); } template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)> auto operator()(T) -> unsigned { throw_format_error("width is not integer"); return 0; } }; // Workaround for a bug with the XL compiler when initializing // printf_arg_formatter's base class. template <typename Char> auto make_arg_formatter(buffer_appender<Char> iter, format_specs<Char>& s) -> arg_formatter<Char> { return {iter, s, locale_ref()}; } // The ``printf`` argument formatter. template <typename Char> class printf_arg_formatter : public arg_formatter<Char> { private: using base = arg_formatter<Char>; using context_type = basic_printf_context<Char>; context_type& context_; void write_null_pointer(bool is_string = false) { auto s = this->specs; s.type = presentation_type::none; write_bytes(this->out, is_string ? "(null)" : "(nil)", s); } public: printf_arg_formatter(buffer_appender<Char> iter, format_specs<Char>& s, context_type& ctx) : base(make_arg_formatter(iter, s)), context_(ctx) {} void operator()(monostate value) { base::operator()(value); } template <typename T, FMT_ENABLE_IF(detail::is_integral<T>::value)> void operator()(T value) { // MSVC2013 fails to compile separate overloads for bool and Char so use // std::is_same instead. if (!std::is_same<T, Char>::value) { base::operator()(value); return; } format_specs<Char> fmt_specs = this->specs; if (fmt_specs.type != presentation_type::none && fmt_specs.type != presentation_type::chr) { return (*this)(static_cast<int>(value)); } fmt_specs.sign = sign::none; fmt_specs.alt = false; fmt_specs.fill[0] = ' '; // Ignore '0' flag for char types. // align::numeric needs to be overwritten here since the '0' flag is // ignored for non-numeric types if (fmt_specs.align == align::none || fmt_specs.align == align::numeric) fmt_specs.align = align::right; write<Char>(this->out, static_cast<Char>(value), fmt_specs); } template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)> void operator()(T value) { base::operator()(value); } /** Formats a null-terminated C string. */ void operator()(const char* value) { if (value) base::operator()(value); else write_null_pointer(this->specs.type != presentation_type::pointer); } /** Formats a null-terminated wide C string. */ void operator()(const wchar_t* value) { if (value) base::operator()(value); else write_null_pointer(this->specs.type != presentation_type::pointer); } void operator()(basic_string_view<Char> value) { base::operator()(value); } /** Formats a pointer. */ void operator()(const void* value) { if (value) base::operator()(value); else write_null_pointer(); } /** Formats an argument of a custom (user-defined) type. */ void operator()(typename basic_format_arg<context_type>::handle handle) { auto parse_ctx = basic_format_parse_context<Char>({}); handle.format(parse_ctx, context_); } }; template <typename Char> void parse_flags(format_specs<Char>& specs, const Char*& it, const Char* end) { for (; it != end; ++it) { switch (*it) { case '-': specs.align = align::left; break; case '+': specs.sign = sign::plus; break; case '0': specs.fill[0] = '0'; break; case ' ': if (specs.sign != sign::plus) specs.sign = sign::space; break; case '#': specs.alt = true; break; default: return; } } } template <typename Char, typename GetArg> auto parse_header(const Char*& it, const Char* end, format_specs<Char>& specs, GetArg get_arg) -> int { int arg_index = -1; Char c = *it; if (c >= '0' && c <= '9') { // Parse an argument index (if followed by '$') or a width possibly // preceded with '0' flag(s). int value = parse_nonnegative_int(it, end, -1); if (it != end && *it == '$') { // value is an argument index ++it; arg_index = value != -1 ? value : max_value<int>(); } else { if (c == '0') specs.fill[0] = '0'; if (value != 0) { // Nonzero value means that we parsed width and don't need to // parse it or flags again, so return now. if (value == -1) throw_format_error("number is too big"); specs.width = value; return arg_index; } } } parse_flags(specs, it, end); // Parse width. if (it != end) { if (*it >= '0' && *it <= '9') { specs.width = parse_nonnegative_int(it, end, -1); if (specs.width == -1) throw_format_error("number is too big"); } else if (*it == '*') { ++it; specs.width = static_cast<int>(visit_format_arg( detail::printf_width_handler<Char>(specs), get_arg(-1))); } } return arg_index; } inline auto parse_printf_presentation_type(char c, type t) -> presentation_type { using pt = presentation_type; constexpr auto integral_set = sint_set | uint_set | bool_set | char_set; switch (c) { case 'd': return in(t, integral_set) ? pt::dec : pt::none; case 'o': return in(t, integral_set) ? pt::oct : pt::none; case 'x': return in(t, integral_set) ? pt::hex_lower : pt::none; case 'X': return in(t, integral_set) ? pt::hex_upper : pt::none; case 'a': return in(t, float_set) ? pt::hexfloat_lower : pt::none; case 'A': return in(t, float_set) ? pt::hexfloat_upper : pt::none; case 'e': return in(t, float_set) ? pt::exp_lower : pt::none; case 'E': return in(t, float_set) ? pt::exp_upper : pt::none; case 'f': return in(t, float_set) ? pt::fixed_lower : pt::none; case 'F': return in(t, float_set) ? pt::fixed_upper : pt::none; case 'g': return in(t, float_set) ? pt::general_lower : pt::none; case 'G': return in(t, float_set) ? pt::general_upper : pt::none; case 'c': return in(t, integral_set) ? pt::chr : pt::none; case 's': return in(t, string_set | cstring_set) ? pt::string : pt::none; case 'p': return in(t, pointer_set | cstring_set) ? pt::pointer : pt::none; default: return pt::none; } } template <typename Char, typename Context> void vprintf(buffer<Char>& buf, basic_string_view<Char> format, basic_format_args<Context> args) { using iterator = buffer_appender<Char>; auto out = iterator(buf); auto context = basic_printf_context<Char>(out, args); auto parse_ctx = basic_format_parse_context<Char>(format); // Returns the argument with specified index or, if arg_index is -1, the next // argument. auto get_arg = [&](int arg_index) { if (arg_index < 0) arg_index = parse_ctx.next_arg_id(); else parse_ctx.check_arg_id(--arg_index); return detail::get_arg(context, arg_index); }; const Char* start = parse_ctx.begin(); const Char* end = parse_ctx.end(); auto it = start; while (it != end) { if (!find<false, Char>(it, end, '%', it)) { it = end; // find leaves it == nullptr if it doesn't find '%'. break; } Char c = *it++; if (it != end && *it == c) { write(out, basic_string_view<Char>(start, to_unsigned(it - start))); start = ++it; continue; } write(out, basic_string_view<Char>(start, to_unsigned(it - 1 - start))); auto specs = format_specs<Char>(); specs.align = align::right; // Parse argument index, flags and width. int arg_index = parse_header(it, end, specs, get_arg); if (arg_index == 0) throw_format_error("argument not found"); // Parse precision. if (it != end && *it == '.') { ++it; c = it != end ? *it : 0; if ('0' <= c && c <= '9') { specs.precision = parse_nonnegative_int(it, end, 0); } else if (c == '*') { ++it; specs.precision = static_cast<int>( visit_format_arg(printf_precision_handler(), get_arg(-1))); } else { specs.precision = 0; } } auto arg = get_arg(arg_index); // For d, i, o, u, x, and X conversion specifiers, if a precision is // specified, the '0' flag is ignored if (specs.precision >= 0 && arg.is_integral()) { // Ignore '0' for non-numeric types or if '-' present. specs.fill[0] = ' '; } if (specs.precision >= 0 && arg.type() == type::cstring_type) { auto str = visit_format_arg(get_cstring<Char>(), arg); auto str_end = str + specs.precision; auto nul = std::find(str, str_end, Char()); auto sv = basic_string_view<Char>( str, to_unsigned(nul != str_end ? nul - str : specs.precision)); arg = make_arg<basic_printf_context<Char>>(sv); } if (specs.alt && visit_format_arg(is_zero_int(), arg)) specs.alt = false; if (specs.fill[0] == '0') { if (arg.is_arithmetic() && specs.align != align::left) specs.align = align::numeric; else specs.fill[0] = ' '; // Ignore '0' flag for non-numeric types or if '-' // flag is also present. } // Parse length and convert the argument to the required type. c = it != end ? *it++ : 0; Char t = it != end ? *it : 0; switch (c) { case 'h': if (t == 'h') { ++it; t = it != end ? *it : 0; convert_arg<signed char>(arg, t); } else { convert_arg<short>(arg, t); } break; case 'l': if (t == 'l') { ++it; t = it != end ? *it : 0; convert_arg<long long>(arg, t); } else { convert_arg<long>(arg, t); } break; case 'j': convert_arg<intmax_t>(arg, t); break; case 'z': convert_arg<size_t>(arg, t); break; case 't': convert_arg<std::ptrdiff_t>(arg, t); break; case 'L': // printf produces garbage when 'L' is omitted for long double, no // need to do the same. break; default: --it; convert_arg<void>(arg, c); } // Parse type. if (it == end) throw_format_error("invalid format string"); char type = static_cast<char>(*it++); if (arg.is_integral()) { // Normalize type. switch (type) { case 'i': case 'u': type = 'd'; break; case 'c': visit_format_arg(char_converter<basic_printf_context<Char>>(arg), arg); break; } } specs.type = parse_printf_presentation_type(type, arg.type()); if (specs.type == presentation_type::none) throw_format_error("invalid format specifier"); start = it; // Format argument. visit_format_arg(printf_arg_formatter<Char>(out, specs, context), arg); } write(out, basic_string_view<Char>(start, to_unsigned(it - start))); } } // namespace detail using printf_context = basic_printf_context<char>; using wprintf_context = basic_printf_context<wchar_t>; using printf_args = basic_format_args<printf_context>; using wprintf_args = basic_format_args<wprintf_context>; /** \rst Constructs an `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::printf_args`. \endrst */ template <typename... T> inline auto make_printf_args(const T&... args) -> format_arg_store<printf_context, T...> { return {args...}; } // DEPRECATED! template <typename... T> inline auto make_wprintf_args(const T&... args) -> format_arg_store<wprintf_context, T...> { return {args...}; } template <typename Char> inline auto vsprintf( basic_string_view<Char> fmt, basic_format_args<basic_printf_context<type_identity_t<Char>>> args) -> std::basic_string<Char> { auto buf = basic_memory_buffer<Char>(); detail::vprintf(buf, fmt, args); return to_string(buf); } /** \rst Formats arguments and returns the result as a string. **Example**:: std::string message = fmt::sprintf("The answer is %d", 42); \endrst */ template <typename S, typename... T, typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>> inline auto sprintf(const S& fmt, const T&... args) -> std::basic_string<Char> { return vsprintf(detail::to_string_view(fmt), fmt::make_format_args<basic_printf_context<Char>>(args...)); } template <typename Char> inline auto vfprintf( std::FILE* f, basic_string_view<Char> fmt, basic_format_args<basic_printf_context<type_identity_t<Char>>> args) -> int { auto buf = basic_memory_buffer<Char>(); detail::vprintf(buf, fmt, args); size_t size = buf.size(); return std::fwrite(buf.data(), sizeof(Char), size, f) < size ? -1 : static_cast<int>(size); } /** \rst Prints formatted data to the file *f*. **Example**:: fmt::fprintf(stderr, "Don't %s!", "panic"); \endrst */ template <typename S, typename... T, typename Char = char_t<S>> inline auto fprintf(std::FILE* f, const S& fmt, const T&... args) -> int { return vfprintf(f, detail::to_string_view(fmt), fmt::make_format_args<basic_printf_context<Char>>(args...)); } template <typename Char> FMT_DEPRECATED inline auto vprintf( basic_string_view<Char> fmt, basic_format_args<basic_printf_context<type_identity_t<Char>>> args) -> int { return vfprintf(stdout, fmt, args); } /** \rst Prints formatted data to ``stdout``. **Example**:: fmt::printf("Elapsed time: %.2f seconds", 1.23); \endrst */ template <typename... T> inline auto printf(string_view fmt, const T&... args) -> int { return vfprintf(stdout, fmt, make_printf_args(args...)); } template <typename... T> FMT_DEPRECATED inline auto printf(basic_string_view<wchar_t> fmt, const T&... args) -> int { return vfprintf(stdout, fmt, make_wprintf_args(args...)); } FMT_END_EXPORT FMT_END_NAMESPACE #endif // FMT_PRINTF_H_