Mercurial > minori
view dep/fmt/test/gtest/gmock-gtest-all.cc @ 344:676b9967d8c6
CI: install cmake
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Thu, 20 Jun 2024 06:00:28 -0400 |
parents | 1faa72660932 |
children |
line wrap: on
line source
// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google C++ Testing and Mocking Framework (Google Test) // // Sometimes it's desirable to build Google Test by compiling a single file. // This file serves this purpose. // This line ensures that gtest.h can be compiled on its own, even // when it's fused. #include "gtest/gtest.h" // The following lines pull in the real gtest *.cc files. // Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Utilities for testing Google Test itself and code that uses Google Test // (e.g. frameworks built on top of Google Test). // GOOGLETEST_CM0004 DO NOT DELETE #ifndef GOOGLETEST_INCLUDE_GTEST_GTEST_SPI_H_ #define GOOGLETEST_INCLUDE_GTEST_GTEST_SPI_H_ GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // This helper class can be used to mock out Google Test failure reporting // so that we can test Google Test or code that builds on Google Test. // // An object of this class appends a TestPartResult object to the // TestPartResultArray object given in the constructor whenever a Google Test // failure is reported. It can either intercept only failures that are // generated in the same thread that created this object or it can intercept // all generated failures. The scope of this mock object can be controlled with // the second argument to the two arguments constructor. class GTEST_API_ ScopedFakeTestPartResultReporter : public TestPartResultReporterInterface { public: // The two possible mocking modes of this object. enum InterceptMode { INTERCEPT_ONLY_CURRENT_THREAD, // Intercepts only thread local failures. INTERCEPT_ALL_THREADS // Intercepts all failures. }; // The c'tor sets this object as the test part result reporter used // by Google Test. The 'result' parameter specifies where to report the // results. This reporter will only catch failures generated in the current // thread. DEPRECATED explicit ScopedFakeTestPartResultReporter(TestPartResultArray* result); // Same as above, but you can choose the interception scope of this object. ScopedFakeTestPartResultReporter(InterceptMode intercept_mode, TestPartResultArray* result); // The d'tor restores the previous test part result reporter. ~ScopedFakeTestPartResultReporter() override; // Appends the TestPartResult object to the TestPartResultArray // received in the constructor. // // This method is from the TestPartResultReporterInterface // interface. void ReportTestPartResult(const TestPartResult& result) override; private: void Init(); const InterceptMode intercept_mode_; TestPartResultReporterInterface* old_reporter_; TestPartResultArray* const result_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedFakeTestPartResultReporter); }; namespace internal { // A helper class for implementing EXPECT_FATAL_FAILURE() and // EXPECT_NONFATAL_FAILURE(). Its destructor verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. class GTEST_API_ SingleFailureChecker { public: // The constructor remembers the arguments. SingleFailureChecker(const TestPartResultArray* results, TestPartResult::Type type, const std::string& substr); ~SingleFailureChecker(); private: const TestPartResultArray* const results_; const TestPartResult::Type type_; const std::string substr_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SingleFailureChecker); }; } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 // A set of macros for testing Google Test assertions or code that's expected // to generate Google Test fatal failures. It verifies that the given // statement will cause exactly one fatal Google Test failure with 'substr' // being part of the failure message. // // There are two different versions of this macro. EXPECT_FATAL_FAILURE only // affects and considers failures generated in the current thread and // EXPECT_FATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. // // The verification of the assertion is done correctly even when the statement // throws an exception or aborts the current function. // // Known restrictions: // - 'statement' cannot reference local non-static variables or // non-static members of the current object. // - 'statement' cannot return a value. // - You cannot stream a failure message to this macro. // // Note that even though the implementations of the following two // macros are much alike, we cannot refactor them to use a common // helper macro, due to some peculiarity in how the preprocessor // works. The AcceptsMacroThatExpandsToUnprotectedComma test in // gtest_unittest.cc will fail to compile if we do that. #define EXPECT_FATAL_FAILURE(statement, substr) \ do { \ class GTestExpectFatalFailureHelper {\ public:\ static void Execute() { statement; }\ };\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ GTestExpectFatalFailureHelper::Execute();\ }\ } while (::testing::internal::AlwaysFalse()) #define EXPECT_FATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ do { \ class GTestExpectFatalFailureHelper {\ public:\ static void Execute() { statement; }\ };\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kFatalFailure, (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ALL_THREADS, >est_failures);\ GTestExpectFatalFailureHelper::Execute();\ }\ } while (::testing::internal::AlwaysFalse()) // A macro for testing Google Test assertions or code that's expected to // generate Google Test non-fatal failures. It asserts that the given // statement will cause exactly one non-fatal Google Test failure with 'substr' // being part of the failure message. // // There are two different versions of this macro. EXPECT_NONFATAL_FAILURE only // affects and considers failures generated in the current thread and // EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS does the same but for all threads. // // 'statement' is allowed to reference local variables and members of // the current object. // // The verification of the assertion is done correctly even when the statement // throws an exception or aborts the current function. // // Known restrictions: // - You cannot stream a failure message to this macro. // // Note that even though the implementations of the following two // macros are much alike, we cannot refactor them to use a common // helper macro, due to some peculiarity in how the preprocessor // works. If we do that, the code won't compile when the user gives // EXPECT_NONFATAL_FAILURE() a statement that contains a macro that // expands to code containing an unprotected comma. The // AcceptsMacroThatExpandsToUnprotectedComma test in gtest_unittest.cc // catches that. // // For the same reason, we have to write // if (::testing::internal::AlwaysTrue()) { statement; } // instead of // GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) // to avoid an MSVC warning on unreachable code. #define EXPECT_NONFATAL_FAILURE(statement, substr) \ do {\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter:: \ INTERCEPT_ONLY_CURRENT_THREAD, >est_failures);\ if (::testing::internal::AlwaysTrue()) { statement; }\ }\ } while (::testing::internal::AlwaysFalse()) #define EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(statement, substr) \ do {\ ::testing::TestPartResultArray gtest_failures;\ ::testing::internal::SingleFailureChecker gtest_checker(\ >est_failures, ::testing::TestPartResult::kNonFatalFailure, \ (substr));\ {\ ::testing::ScopedFakeTestPartResultReporter gtest_reporter(\ ::testing::ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, \ >est_failures);\ if (::testing::internal::AlwaysTrue()) { statement; }\ }\ } while (::testing::internal::AlwaysFalse()) #endif // GOOGLETEST_INCLUDE_GTEST_GTEST_SPI_H_ #include <ctype.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <time.h> #include <wchar.h> #include <wctype.h> #include <algorithm> #include <chrono> // NOLINT #include <cmath> #include <cstdint> #include <iomanip> #include <limits> #include <list> #include <map> #include <ostream> // NOLINT #include <sstream> #include <vector> #if GTEST_OS_LINUX # include <fcntl.h> // NOLINT # include <limits.h> // NOLINT # include <sched.h> // NOLINT // Declares vsnprintf(). This header is not available on Windows. # include <strings.h> // NOLINT # include <sys/mman.h> // NOLINT # include <sys/time.h> // NOLINT # include <unistd.h> // NOLINT # include <string> #elif GTEST_OS_ZOS # include <sys/time.h> // NOLINT // On z/OS we additionally need strings.h for strcasecmp. # include <strings.h> // NOLINT #elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE. # include <windows.h> // NOLINT # undef min #elif GTEST_OS_WINDOWS // We are on Windows proper. # include <windows.h> // NOLINT # undef min #ifdef _MSC_VER # include <crtdbg.h> // NOLINT #endif # include <io.h> // NOLINT # include <sys/timeb.h> // NOLINT # include <sys/types.h> // NOLINT # include <sys/stat.h> // NOLINT # if GTEST_OS_WINDOWS_MINGW # include <sys/time.h> // NOLINT # endif // GTEST_OS_WINDOWS_MINGW #else // cpplint thinks that the header is already included, so we want to // silence it. # include <sys/time.h> // NOLINT # include <unistd.h> // NOLINT #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS # include <stdexcept> #endif #if GTEST_CAN_STREAM_RESULTS_ # include <arpa/inet.h> // NOLINT # include <netdb.h> // NOLINT # include <sys/socket.h> // NOLINT # include <sys/types.h> // NOLINT #endif // Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Utility functions and classes used by the Google C++ testing framework.// // This file contains purely Google Test's internal implementation. Please // DO NOT #INCLUDE IT IN A USER PROGRAM. #ifndef GOOGLETEST_SRC_GTEST_INTERNAL_INL_H_ #define GOOGLETEST_SRC_GTEST_INTERNAL_INL_H_ #ifndef _WIN32_WCE # include <errno.h> #endif // !_WIN32_WCE #include <stddef.h> #include <stdlib.h> // For strtoll/_strtoul64/malloc/free. #include <string.h> // For memmove. #include <algorithm> #include <cstdint> #include <memory> #include <string> #include <vector> #if GTEST_CAN_STREAM_RESULTS_ # include <arpa/inet.h> // NOLINT # include <netdb.h> // NOLINT #endif #if GTEST_OS_WINDOWS # include <windows.h> // NOLINT #endif // GTEST_OS_WINDOWS GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // Declares the flags. // // We don't want the users to modify this flag in the code, but want // Google Test's own unit tests to be able to access it. Therefore we // declare it here as opposed to in gtest.h. GTEST_DECLARE_bool_(death_test_use_fork); namespace internal { // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). GTEST_API_ extern const TypeId kTestTypeIdInGoogleTest; // Names of the flags (needed for parsing Google Test flags). const char kAlsoRunDisabledTestsFlag[] = "also_run_disabled_tests"; const char kBreakOnFailureFlag[] = "break_on_failure"; const char kCatchExceptionsFlag[] = "catch_exceptions"; const char kColorFlag[] = "color"; const char kFailFast[] = "fail_fast"; const char kFilterFlag[] = "filter"; const char kListTestsFlag[] = "list_tests"; const char kOutputFlag[] = "output"; const char kBriefFlag[] = "brief"; const char kPrintTimeFlag[] = "print_time"; const char kPrintUTF8Flag[] = "print_utf8"; const char kRandomSeedFlag[] = "random_seed"; const char kRepeatFlag[] = "repeat"; const char kShuffleFlag[] = "shuffle"; const char kStackTraceDepthFlag[] = "stack_trace_depth"; const char kStreamResultToFlag[] = "stream_result_to"; const char kThrowOnFailureFlag[] = "throw_on_failure"; const char kFlagfileFlag[] = "flagfile"; // A valid random seed must be in [1, kMaxRandomSeed]. const int kMaxRandomSeed = 99999; // g_help_flag is true if and only if the --help flag or an equivalent form // is specified on the command line. GTEST_API_ extern bool g_help_flag; // Returns the current time in milliseconds. GTEST_API_ TimeInMillis GetTimeInMillis(); // Returns true if and only if Google Test should use colors in the output. GTEST_API_ bool ShouldUseColor(bool stdout_is_tty); // Formats the given time in milliseconds as seconds. GTEST_API_ std::string FormatTimeInMillisAsSeconds(TimeInMillis ms); // Converts the given time in milliseconds to a date string in the ISO 8601 // format, without the timezone information. N.B.: due to the use the // non-reentrant localtime() function, this function is not thread safe. Do // not use it in any code that can be called from multiple threads. GTEST_API_ std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms); // Parses a string for an Int32 flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. GTEST_API_ bool ParseInt32Flag( const char* str, const char* flag, int32_t* value); // Returns a random seed in range [1, kMaxRandomSeed] based on the // given --gtest_random_seed flag value. inline int GetRandomSeedFromFlag(int32_t random_seed_flag) { const unsigned int raw_seed = (random_seed_flag == 0) ? static_cast<unsigned int>(GetTimeInMillis()) : static_cast<unsigned int>(random_seed_flag); // Normalizes the actual seed to range [1, kMaxRandomSeed] such that // it's easy to type. const int normalized_seed = static_cast<int>((raw_seed - 1U) % static_cast<unsigned int>(kMaxRandomSeed)) + 1; return normalized_seed; } // Returns the first valid random seed after 'seed'. The behavior is // undefined if 'seed' is invalid. The seed after kMaxRandomSeed is // considered to be 1. inline int GetNextRandomSeed(int seed) { GTEST_CHECK_(1 <= seed && seed <= kMaxRandomSeed) << "Invalid random seed " << seed << " - must be in [1, " << kMaxRandomSeed << "]."; const int next_seed = seed + 1; return (next_seed > kMaxRandomSeed) ? 1 : next_seed; } // This class saves the values of all Google Test flags in its c'tor, and // restores them in its d'tor. class GTestFlagSaver { public: // The c'tor. GTestFlagSaver() { also_run_disabled_tests_ = GTEST_FLAG(also_run_disabled_tests); break_on_failure_ = GTEST_FLAG(break_on_failure); catch_exceptions_ = GTEST_FLAG(catch_exceptions); color_ = GTEST_FLAG(color); death_test_style_ = GTEST_FLAG(death_test_style); death_test_use_fork_ = GTEST_FLAG(death_test_use_fork); fail_fast_ = GTEST_FLAG(fail_fast); filter_ = GTEST_FLAG(filter); internal_run_death_test_ = GTEST_FLAG(internal_run_death_test); list_tests_ = GTEST_FLAG(list_tests); output_ = GTEST_FLAG(output); brief_ = GTEST_FLAG(brief); print_time_ = GTEST_FLAG(print_time); print_utf8_ = GTEST_FLAG(print_utf8); random_seed_ = GTEST_FLAG(random_seed); repeat_ = GTEST_FLAG(repeat); shuffle_ = GTEST_FLAG(shuffle); stack_trace_depth_ = GTEST_FLAG(stack_trace_depth); stream_result_to_ = GTEST_FLAG(stream_result_to); throw_on_failure_ = GTEST_FLAG(throw_on_failure); } // The d'tor is not virtual. DO NOT INHERIT FROM THIS CLASS. ~GTestFlagSaver() { GTEST_FLAG(also_run_disabled_tests) = also_run_disabled_tests_; GTEST_FLAG(break_on_failure) = break_on_failure_; GTEST_FLAG(catch_exceptions) = catch_exceptions_; GTEST_FLAG(color) = color_; GTEST_FLAG(death_test_style) = death_test_style_; GTEST_FLAG(death_test_use_fork) = death_test_use_fork_; GTEST_FLAG(filter) = filter_; GTEST_FLAG(fail_fast) = fail_fast_; GTEST_FLAG(internal_run_death_test) = internal_run_death_test_; GTEST_FLAG(list_tests) = list_tests_; GTEST_FLAG(output) = output_; GTEST_FLAG(brief) = brief_; GTEST_FLAG(print_time) = print_time_; GTEST_FLAG(print_utf8) = print_utf8_; GTEST_FLAG(random_seed) = random_seed_; GTEST_FLAG(repeat) = repeat_; GTEST_FLAG(shuffle) = shuffle_; GTEST_FLAG(stack_trace_depth) = stack_trace_depth_; GTEST_FLAG(stream_result_to) = stream_result_to_; GTEST_FLAG(throw_on_failure) = throw_on_failure_; } private: // Fields for saving the original values of flags. bool also_run_disabled_tests_; bool break_on_failure_; bool catch_exceptions_; std::string color_; std::string death_test_style_; bool death_test_use_fork_; bool fail_fast_; std::string filter_; std::string internal_run_death_test_; bool list_tests_; std::string output_; bool brief_; bool print_time_; bool print_utf8_; int32_t random_seed_; int32_t repeat_; bool shuffle_; int32_t stack_trace_depth_; std::string stream_result_to_; bool throw_on_failure_; } GTEST_ATTRIBUTE_UNUSED_; // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type UInt32 because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". GTEST_API_ std::string CodePointToUtf8(uint32_t code_point); // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. GTEST_API_ std::string WideStringToUtf8(const wchar_t* str, int num_chars); // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded(); // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (e.g., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. GTEST_API_ bool ShouldShard(const char* total_shards_str, const char* shard_index_str, bool in_subprocess_for_death_test); // Parses the environment variable var as a 32-bit integer. If it is unset, // returns default_val. If it is not a 32-bit integer, prints an error and // and aborts. GTEST_API_ int32_t Int32FromEnvOrDie(const char* env_var, int32_t default_val); // Given the total number of shards, the shard index, and the test id, // returns true if and only if the test should be run on this shard. The test id // is some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. GTEST_API_ bool ShouldRunTestOnShard( int total_shards, int shard_index, int test_id); // STL container utilities. // Returns the number of elements in the given container that satisfy // the given predicate. template <class Container, typename Predicate> inline int CountIf(const Container& c, Predicate predicate) { // Implemented as an explicit loop since std::count_if() in libCstd on // Solaris has a non-standard signature. int count = 0; for (typename Container::const_iterator it = c.begin(); it != c.end(); ++it) { if (predicate(*it)) ++count; } return count; } // Applies a function/functor to each element in the container. template <class Container, typename Functor> void ForEach(const Container& c, Functor functor) { std::for_each(c.begin(), c.end(), functor); } // Returns the i-th element of the vector, or default_value if i is not // in range [0, v.size()). template <typename E> inline E GetElementOr(const std::vector<E>& v, int i, E default_value) { return (i < 0 || i >= static_cast<int>(v.size())) ? default_value : v[static_cast<size_t>(i)]; } // Performs an in-place shuffle of a range of the vector's elements. // 'begin' and 'end' are element indices as an STL-style range; // i.e. [begin, end) are shuffled, where 'end' == size() means to // shuffle to the end of the vector. template <typename E> void ShuffleRange(internal::Random* random, int begin, int end, std::vector<E>* v) { const int size = static_cast<int>(v->size()); GTEST_CHECK_(0 <= begin && begin <= size) << "Invalid shuffle range start " << begin << ": must be in range [0, " << size << "]."; GTEST_CHECK_(begin <= end && end <= size) << "Invalid shuffle range finish " << end << ": must be in range [" << begin << ", " << size << "]."; // Fisher-Yates shuffle, from // http://en.wikipedia.org/wiki/Fisher-Yates_shuffle for (int range_width = end - begin; range_width >= 2; range_width--) { const int last_in_range = begin + range_width - 1; const int selected = begin + static_cast<int>(random->Generate(static_cast<uint32_t>(range_width))); std::swap((*v)[static_cast<size_t>(selected)], (*v)[static_cast<size_t>(last_in_range)]); } } // Performs an in-place shuffle of the vector's elements. template <typename E> inline void Shuffle(internal::Random* random, std::vector<E>* v) { ShuffleRange(random, 0, static_cast<int>(v->size()), v); } // A function for deleting an object. Handy for being used as a // functor. template <typename T> static void Delete(T* x) { delete x; } // A predicate that checks the key of a TestProperty against a known key. // // TestPropertyKeyIs is copyable. class TestPropertyKeyIs { public: // Constructor. // // TestPropertyKeyIs has NO default constructor. explicit TestPropertyKeyIs(const std::string& key) : key_(key) {} // Returns true if and only if the test name of test property matches on key_. bool operator()(const TestProperty& test_property) const { return test_property.key() == key_; } private: std::string key_; }; // Class UnitTestOptions. // // This class contains functions for processing options the user // specifies when running the tests. It has only static members. // // In most cases, the user can specify an option using either an // environment variable or a command line flag. E.g. you can set the // test filter using either GTEST_FILTER or --gtest_filter. If both // the variable and the flag are present, the latter overrides the // former. class GTEST_API_ UnitTestOptions { public: // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. static std::string GetOutputFormat(); // Returns the absolute path of the requested output file, or the // default (test_detail.xml in the original working directory) if // none was explicitly specified. static std::string GetAbsolutePathToOutputFile(); // Functions for processing the gtest_filter flag. // Returns true if and only if the user-specified filter matches the test // suite name and the test name. static bool FilterMatchesTest(const std::string& test_suite_name, const std::string& test_name); #if GTEST_OS_WINDOWS // Function for supporting the gtest_catch_exception flag. // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. static int GTestShouldProcessSEH(DWORD exception_code); #endif // GTEST_OS_WINDOWS // Returns true if "name" matches the ':' separated list of glob-style // filters in "filter". static bool MatchesFilter(const std::string& name, const char* filter); }; // Returns the current application's name, removing directory path if that // is present. Used by UnitTestOptions::GetOutputFile. GTEST_API_ FilePath GetCurrentExecutableName(); // The role interface for getting the OS stack trace as a string. class OsStackTraceGetterInterface { public: OsStackTraceGetterInterface() {} virtual ~OsStackTraceGetterInterface() {} // Returns the current OS stack trace as an std::string. Parameters: // // max_depth - the maximum number of stack frames to be included // in the trace. // skip_count - the number of top frames to be skipped; doesn't count // against max_depth. virtual std::string CurrentStackTrace(int max_depth, int skip_count) = 0; // UponLeavingGTest() should be called immediately before Google Test calls // user code. It saves some information about the current stack that // CurrentStackTrace() will use to find and hide Google Test stack frames. virtual void UponLeavingGTest() = 0; // This string is inserted in place of stack frames that are part of // Google Test's implementation. static const char* const kElidedFramesMarker; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetterInterface); }; // A working implementation of the OsStackTraceGetterInterface interface. class OsStackTraceGetter : public OsStackTraceGetterInterface { public: OsStackTraceGetter() {} std::string CurrentStackTrace(int max_depth, int skip_count) override; void UponLeavingGTest() override; private: #if GTEST_HAS_ABSL Mutex mutex_; // Protects all internal state. // We save the stack frame below the frame that calls user code. // We do this because the address of the frame immediately below // the user code changes between the call to UponLeavingGTest() // and any calls to the stack trace code from within the user code. void* caller_frame_ = nullptr; #endif // GTEST_HAS_ABSL GTEST_DISALLOW_COPY_AND_ASSIGN_(OsStackTraceGetter); }; // Information about a Google Test trace point. struct TraceInfo { const char* file; int line; std::string message; }; // This is the default global test part result reporter used in UnitTestImpl. // This class should only be used by UnitTestImpl. class DefaultGlobalTestPartResultReporter : public TestPartResultReporterInterface { public: explicit DefaultGlobalTestPartResultReporter(UnitTestImpl* unit_test); // Implements the TestPartResultReporterInterface. Reports the test part // result in the current test. void ReportTestPartResult(const TestPartResult& result) override; private: UnitTestImpl* const unit_test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultGlobalTestPartResultReporter); }; // This is the default per thread test part result reporter used in // UnitTestImpl. This class should only be used by UnitTestImpl. class DefaultPerThreadTestPartResultReporter : public TestPartResultReporterInterface { public: explicit DefaultPerThreadTestPartResultReporter(UnitTestImpl* unit_test); // Implements the TestPartResultReporterInterface. The implementation just // delegates to the current global test part result reporter of *unit_test_. void ReportTestPartResult(const TestPartResult& result) override; private: UnitTestImpl* const unit_test_; GTEST_DISALLOW_COPY_AND_ASSIGN_(DefaultPerThreadTestPartResultReporter); }; // The private implementation of the UnitTest class. We don't protect // the methods under a mutex, as this class is not accessible by a // user and the UnitTest class that delegates work to this class does // proper locking. class GTEST_API_ UnitTestImpl { public: explicit UnitTestImpl(UnitTest* parent); virtual ~UnitTestImpl(); // There are two different ways to register your own TestPartResultReporter. // You can register your own repoter to listen either only for test results // from the current thread or for results from all threads. // By default, each per-thread test result repoter just passes a new // TestPartResult to the global test result reporter, which registers the // test part result for the currently running test. // Returns the global test part result reporter. TestPartResultReporterInterface* GetGlobalTestPartResultReporter(); // Sets the global test part result reporter. void SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter); // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* GetTestPartResultReporterForCurrentThread(); // Sets the test part result reporter for the current thread. void SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter); // Gets the number of successful test suites. int successful_test_suite_count() const; // Gets the number of failed test suites. int failed_test_suite_count() const; // Gets the number of all test suites. int total_test_suite_count() const; // Gets the number of all test suites that contain at least one test // that should run. int test_suite_to_run_count() const; // Gets the number of successful tests. int successful_test_count() const; // Gets the number of skipped tests. int skipped_test_count() const; // Gets the number of failed tests. int failed_test_count() const; // Gets the number of disabled tests that will be reported in the XML report. int reportable_disabled_test_count() const; // Gets the number of disabled tests. int disabled_test_count() const; // Gets the number of tests to be printed in the XML report. int reportable_test_count() const; // Gets the number of all tests. int total_test_count() const; // Gets the number of tests that should run. int test_to_run_count() const; // Gets the time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp() const { return start_timestamp_; } // Gets the elapsed time, in milliseconds. TimeInMillis elapsed_time() const { return elapsed_time_; } // Returns true if and only if the unit test passed (i.e. all test suites // passed). bool Passed() const { return !Failed(); } // Returns true if and only if the unit test failed (i.e. some test suite // failed or something outside of all tests failed). bool Failed() const { return failed_test_suite_count() > 0 || ad_hoc_test_result()->Failed(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. const TestSuite* GetTestSuite(int i) const { const int index = GetElementOr(test_suite_indices_, i, -1); return index < 0 ? nullptr : test_suites_[static_cast<size_t>(i)]; } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* GetTestCase(int i) const { return GetTestSuite(i); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. TestSuite* GetMutableSuiteCase(int i) { const int index = GetElementOr(test_suite_indices_, i, -1); return index < 0 ? nullptr : test_suites_[static_cast<size_t>(index)]; } // Provides access to the event listener list. TestEventListeners* listeners() { return &listeners_; } // Returns the TestResult for the test that's currently running, or // the TestResult for the ad hoc test if no test is running. TestResult* current_test_result(); // Returns the TestResult for the ad hoc test. const TestResult* ad_hoc_test_result() const { return &ad_hoc_test_result_; } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter // are the same; otherwise, deletes the old getter and makes the // input the current getter. void set_os_stack_trace_getter(OsStackTraceGetterInterface* getter); // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* os_stack_trace_getter(); // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string CurrentOsStackTraceExceptTop(int skip_count) GTEST_NO_INLINE_; // Finds and returns a TestSuite with the given name. If one doesn't // exist, creates one and returns it. // // Arguments: // // test_suite_name: name of the test suite // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite* GetTestSuite(const char* test_suite_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ TestCase* GetTestCase(const char* test_case_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) { return GetTestSuite(test_case_name, type_param, set_up_tc, tear_down_tc); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Adds a TestInfo to the unit test. // // Arguments: // // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite // test_info: the TestInfo object void AddTestInfo(internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc, TestInfo* test_info) { #if GTEST_HAS_DEATH_TEST // In order to support thread-safe death tests, we need to // remember the original working directory when the test program // was first invoked. We cannot do this in RUN_ALL_TESTS(), as // the user may have changed the current directory before calling // RUN_ALL_TESTS(). Therefore we capture the current directory in // AddTestInfo(), which is called to register a TEST or TEST_F // before main() is reached. if (original_working_dir_.IsEmpty()) { original_working_dir_.Set(FilePath::GetCurrentDir()); GTEST_CHECK_(!original_working_dir_.IsEmpty()) << "Failed to get the current working directory."; } #endif // GTEST_HAS_DEATH_TEST GetTestSuite(test_info->test_suite_name(), test_info->type_param(), set_up_tc, tear_down_tc) ->AddTestInfo(test_info); } // Returns ParameterizedTestSuiteRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestSuiteRegistry& parameterized_test_registry() { return parameterized_test_registry_; } std::set<std::string>* ignored_parameterized_test_suites() { return &ignored_parameterized_test_suites_; } // Returns TypeParameterizedTestSuiteRegistry object used to keep track of // type-parameterized tests and instantiations of them. internal::TypeParameterizedTestSuiteRegistry& type_parameterized_test_registry() { return type_parameterized_test_registry_; } // Sets the TestSuite object for the test that's currently running. void set_current_test_suite(TestSuite* a_current_test_suite) { current_test_suite_ = a_current_test_suite; } // Sets the TestInfo object for the test that's currently running. If // current_test_info is NULL, the assertion results will be stored in // ad_hoc_test_result_. void set_current_test_info(TestInfo* a_current_test_info) { current_test_info_ = a_current_test_info; } // Registers all parameterized tests defined using TEST_P and // INSTANTIATE_TEST_SUITE_P, creating regular tests for each test/parameter // combination. This method can be called more then once; it has guards // protecting from registering the tests more then once. If // value-parameterized tests are disabled, RegisterParameterizedTests is // present but does nothing. void RegisterParameterizedTests(); // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, this test is considered to be failed, but // the rest of the tests will still be run. bool RunAllTests(); // Clears the results of all tests, except the ad hoc tests. void ClearNonAdHocTestResult() { ForEach(test_suites_, TestSuite::ClearTestSuiteResult); } // Clears the results of ad-hoc test assertions. void ClearAdHocTestResult() { ad_hoc_test_result_.Clear(); } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test or a test suite, or to the global property set. If the // result already contains a property with the same key, the value will be // updated. void RecordProperty(const TestProperty& test_property); enum ReactionToSharding { HONOR_SHARDING_PROTOCOL, IGNORE_SHARDING_PROTOCOL }; // Matches the full name of each test against the user-specified // filter to decide whether the test should run, then records the // result in each TestSuite and TestInfo object. // If shard_tests == HONOR_SHARDING_PROTOCOL, further filters tests // based on sharding variables in the environment. // Returns the number of tests that should run. int FilterTests(ReactionToSharding shard_tests); // Prints the names of the tests matching the user-specified filter flag. void ListTestsMatchingFilter(); const TestSuite* current_test_suite() const { return current_test_suite_; } TestInfo* current_test_info() { return current_test_info_; } const TestInfo* current_test_info() const { return current_test_info_; } // Returns the vector of environments that need to be set-up/torn-down // before/after the tests are run. std::vector<Environment*>& environments() { return environments_; } // Getters for the per-thread Google Test trace stack. std::vector<TraceInfo>& gtest_trace_stack() { return *(gtest_trace_stack_.pointer()); } const std::vector<TraceInfo>& gtest_trace_stack() const { return gtest_trace_stack_.get(); } #if GTEST_HAS_DEATH_TEST void InitDeathTestSubprocessControlInfo() { internal_run_death_test_flag_.reset(ParseInternalRunDeathTestFlag()); } // Returns a pointer to the parsed --gtest_internal_run_death_test // flag, or NULL if that flag was not specified. // This information is useful only in a death test child process. // Must not be called before a call to InitGoogleTest. const InternalRunDeathTestFlag* internal_run_death_test_flag() const { return internal_run_death_test_flag_.get(); } // Returns a pointer to the current death test factory. internal::DeathTestFactory* death_test_factory() { return death_test_factory_.get(); } void SuppressTestEventsIfInSubprocess(); friend class ReplaceDeathTestFactory; #endif // GTEST_HAS_DEATH_TEST // Initializes the event listener performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void ConfigureXmlOutput(); #if GTEST_CAN_STREAM_RESULTS_ // Initializes the event listener for streaming test results to a socket. // Must not be called before InitGoogleTest. void ConfigureStreamingOutput(); #endif // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void PostFlagParsingInit(); // Gets the random seed used at the start of the current test iteration. int random_seed() const { return random_seed_; } // Gets the random number generator. internal::Random* random() { return &random_; } // Shuffles all test suites, and the tests within each test suite, // making sure that death tests are still run first. void ShuffleTests(); // Restores the test suites and tests to their order before the first shuffle. void UnshuffleTests(); // Returns the value of GTEST_FLAG(catch_exceptions) at the moment // UnitTest::Run() starts. bool catch_exceptions() const { return catch_exceptions_; } private: friend class ::testing::UnitTest; // Used by UnitTest::Run() to capture the state of // GTEST_FLAG(catch_exceptions) at the moment it starts. void set_catch_exceptions(bool value) { catch_exceptions_ = value; } // The UnitTest object that owns this implementation object. UnitTest* const parent_; // The working directory when the first TEST() or TEST_F() was // executed. internal::FilePath original_working_dir_; // The default test part result reporters. DefaultGlobalTestPartResultReporter default_global_test_part_result_reporter_; DefaultPerThreadTestPartResultReporter default_per_thread_test_part_result_reporter_; // Points to (but doesn't own) the global test part result reporter. TestPartResultReporterInterface* global_test_part_result_repoter_; // Protects read and write access to global_test_part_result_reporter_. internal::Mutex global_test_part_result_reporter_mutex_; // Points to (but doesn't own) the per-thread test part result reporter. internal::ThreadLocal<TestPartResultReporterInterface*> per_thread_test_part_result_reporter_; // The vector of environments that need to be set-up/torn-down // before/after the tests are run. std::vector<Environment*> environments_; // The vector of TestSuites in their original order. It owns the // elements in the vector. std::vector<TestSuite*> test_suites_; // Provides a level of indirection for the test suite list to allow // easy shuffling and restoring the test suite order. The i-th // element of this vector is the index of the i-th test suite in the // shuffled order. std::vector<int> test_suite_indices_; // ParameterizedTestRegistry object used to register value-parameterized // tests. internal::ParameterizedTestSuiteRegistry parameterized_test_registry_; internal::TypeParameterizedTestSuiteRegistry type_parameterized_test_registry_; // The set holding the name of parameterized // test suites that may go uninstantiated. std::set<std::string> ignored_parameterized_test_suites_; // Indicates whether RegisterParameterizedTests() has been called already. bool parameterized_tests_registered_; // Index of the last death test suite registered. Initially -1. int last_death_test_suite_; // This points to the TestSuite for the currently running test. It // changes as Google Test goes through one test suite after another. // When no test is running, this is set to NULL and Google Test // stores assertion results in ad_hoc_test_result_. Initially NULL. TestSuite* current_test_suite_; // This points to the TestInfo for the currently running test. It // changes as Google Test goes through one test after another. When // no test is running, this is set to NULL and Google Test stores // assertion results in ad_hoc_test_result_. Initially NULL. TestInfo* current_test_info_; // Normally, a user only writes assertions inside a TEST or TEST_F, // or inside a function called by a TEST or TEST_F. Since Google // Test keeps track of which test is current running, it can // associate such an assertion with the test it belongs to. // // If an assertion is encountered when no TEST or TEST_F is running, // Google Test attributes the assertion result to an imaginary "ad hoc" // test, and records the result in ad_hoc_test_result_. TestResult ad_hoc_test_result_; // The list of event listeners that can be used to track events inside // Google Test. TestEventListeners listeners_; // The OS stack trace getter. Will be deleted when the UnitTest // object is destructed. By default, an OsStackTraceGetter is used, // but the user can set this field to use a custom getter if that is // desired. OsStackTraceGetterInterface* os_stack_trace_getter_; // True if and only if PostFlagParsingInit() has been called. bool post_flag_parse_init_performed_; // The random number seed used at the beginning of the test run. int random_seed_; // Our random number generator. internal::Random random_; // The time of the test program start, in ms from the start of the // UNIX epoch. TimeInMillis start_timestamp_; // How long the test took to run, in milliseconds. TimeInMillis elapsed_time_; #if GTEST_HAS_DEATH_TEST // The decomposed components of the gtest_internal_run_death_test flag, // parsed when RUN_ALL_TESTS is called. std::unique_ptr<InternalRunDeathTestFlag> internal_run_death_test_flag_; std::unique_ptr<internal::DeathTestFactory> death_test_factory_; #endif // GTEST_HAS_DEATH_TEST // A per-thread stack of traces created by the SCOPED_TRACE() macro. internal::ThreadLocal<std::vector<TraceInfo> > gtest_trace_stack_; // The value of GTEST_FLAG(catch_exceptions) at the moment RunAllTests() // starts. bool catch_exceptions_; GTEST_DISALLOW_COPY_AND_ASSIGN_(UnitTestImpl); }; // class UnitTestImpl // Convenience function for accessing the global UnitTest // implementation object. inline UnitTestImpl* GetUnitTestImpl() { return UnitTest::GetInstance()->impl(); } #if GTEST_USES_SIMPLE_RE // Internal helper functions for implementing the simple regular // expression matcher. GTEST_API_ bool IsInSet(char ch, const char* str); GTEST_API_ bool IsAsciiDigit(char ch); GTEST_API_ bool IsAsciiPunct(char ch); GTEST_API_ bool IsRepeat(char ch); GTEST_API_ bool IsAsciiWhiteSpace(char ch); GTEST_API_ bool IsAsciiWordChar(char ch); GTEST_API_ bool IsValidEscape(char ch); GTEST_API_ bool AtomMatchesChar(bool escaped, char pattern, char ch); GTEST_API_ bool ValidateRegex(const char* regex); GTEST_API_ bool MatchRegexAtHead(const char* regex, const char* str); GTEST_API_ bool MatchRepetitionAndRegexAtHead( bool escaped, char ch, char repeat, const char* regex, const char* str); GTEST_API_ bool MatchRegexAnywhere(const char* regex, const char* str); #endif // GTEST_USES_SIMPLE_RE // Parses the command line for Google Test flags, without initializing // other parts of Google Test. GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, char** argv); GTEST_API_ void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv); #if GTEST_HAS_DEATH_TEST // Returns the message describing the last system error, regardless of the // platform. GTEST_API_ std::string GetLastErrnoDescription(); // Attempts to parse a string into a positive integer pointed to by the // number parameter. Returns true if that is possible. // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we can use // it here. template <typename Integer> bool ParseNaturalNumber(const ::std::string& str, Integer* number) { // Fail fast if the given string does not begin with a digit; // this bypasses strtoXXX's "optional leading whitespace and plus // or minus sign" semantics, which are undesirable here. if (str.empty() || !IsDigit(str[0])) { return false; } errno = 0; char* end; // BiggestConvertible is the largest integer type that system-provided // string-to-number conversion routines can return. using BiggestConvertible = unsigned long long; // NOLINT const BiggestConvertible parsed = strtoull(str.c_str(), &end, 10); // NOLINT const bool parse_success = *end == '\0' && errno == 0; GTEST_CHECK_(sizeof(Integer) <= sizeof(parsed)); const Integer result = static_cast<Integer>(parsed); if (parse_success && static_cast<BiggestConvertible>(result) == parsed) { *number = result; return true; } return false; } #endif // GTEST_HAS_DEATH_TEST // TestResult contains some private methods that should be hidden from // Google Test user but are required for testing. This class allow our tests // to access them. // // This class is supplied only for the purpose of testing Google Test's own // constructs. Do not use it in user tests, either directly or indirectly. class TestResultAccessor { public: static void RecordProperty(TestResult* test_result, const std::string& xml_element, const TestProperty& property) { test_result->RecordProperty(xml_element, property); } static void ClearTestPartResults(TestResult* test_result) { test_result->ClearTestPartResults(); } static const std::vector<testing::TestPartResult>& test_part_results( const TestResult& test_result) { return test_result.test_part_results(); } }; #if GTEST_CAN_STREAM_RESULTS_ // Streams test results to the given port on the given host machine. class StreamingListener : public EmptyTestEventListener { public: // Abstract base class for writing strings to a socket. class AbstractSocketWriter { public: virtual ~AbstractSocketWriter() {} // Sends a string to the socket. virtual void Send(const std::string& message) = 0; // Closes the socket. virtual void CloseConnection() {} // Sends a string and a newline to the socket. void SendLn(const std::string& message) { Send(message + "\n"); } }; // Concrete class for actually writing strings to a socket. class SocketWriter : public AbstractSocketWriter { public: SocketWriter(const std::string& host, const std::string& port) : sockfd_(-1), host_name_(host), port_num_(port) { MakeConnection(); } ~SocketWriter() override { if (sockfd_ != -1) CloseConnection(); } // Sends a string to the socket. void Send(const std::string& message) override { GTEST_CHECK_(sockfd_ != -1) << "Send() can be called only when there is a connection."; const auto len = static_cast<size_t>(message.length()); if (write(sockfd_, message.c_str(), len) != static_cast<ssize_t>(len)) { GTEST_LOG_(WARNING) << "stream_result_to: failed to stream to " << host_name_ << ":" << port_num_; } } private: // Creates a client socket and connects to the server. void MakeConnection(); // Closes the socket. void CloseConnection() override { GTEST_CHECK_(sockfd_ != -1) << "CloseConnection() can be called only when there is a connection."; close(sockfd_); sockfd_ = -1; } int sockfd_; // socket file descriptor const std::string host_name_; const std::string port_num_; GTEST_DISALLOW_COPY_AND_ASSIGN_(SocketWriter); }; // class SocketWriter // Escapes '=', '&', '%', and '\n' characters in str as "%xx". static std::string UrlEncode(const char* str); StreamingListener(const std::string& host, const std::string& port) : socket_writer_(new SocketWriter(host, port)) { Start(); } explicit StreamingListener(AbstractSocketWriter* socket_writer) : socket_writer_(socket_writer) { Start(); } void OnTestProgramStart(const UnitTest& /* unit_test */) override { SendLn("event=TestProgramStart"); } void OnTestProgramEnd(const UnitTest& unit_test) override { // Note that Google Test current only report elapsed time for each // test iteration, not for the entire test program. SendLn("event=TestProgramEnd&passed=" + FormatBool(unit_test.Passed())); // Notify the streaming server to stop. socket_writer_->CloseConnection(); } void OnTestIterationStart(const UnitTest& /* unit_test */, int iteration) override { SendLn("event=TestIterationStart&iteration=" + StreamableToString(iteration)); } void OnTestIterationEnd(const UnitTest& unit_test, int /* iteration */) override { SendLn("event=TestIterationEnd&passed=" + FormatBool(unit_test.Passed()) + "&elapsed_time=" + StreamableToString(unit_test.elapsed_time()) + "ms"); } // Note that "event=TestCaseStart" is a wire format and has to remain // "case" for compatibility void OnTestCaseStart(const TestCase& test_case) override { SendLn(std::string("event=TestCaseStart&name=") + test_case.name()); } // Note that "event=TestCaseEnd" is a wire format and has to remain // "case" for compatibility void OnTestCaseEnd(const TestCase& test_case) override { SendLn("event=TestCaseEnd&passed=" + FormatBool(test_case.Passed()) + "&elapsed_time=" + StreamableToString(test_case.elapsed_time()) + "ms"); } void OnTestStart(const TestInfo& test_info) override { SendLn(std::string("event=TestStart&name=") + test_info.name()); } void OnTestEnd(const TestInfo& test_info) override { SendLn("event=TestEnd&passed=" + FormatBool((test_info.result())->Passed()) + "&elapsed_time=" + StreamableToString((test_info.result())->elapsed_time()) + "ms"); } void OnTestPartResult(const TestPartResult& test_part_result) override { const char* file_name = test_part_result.file_name(); if (file_name == nullptr) file_name = ""; SendLn("event=TestPartResult&file=" + UrlEncode(file_name) + "&line=" + StreamableToString(test_part_result.line_number()) + "&message=" + UrlEncode(test_part_result.message())); } private: // Sends the given message and a newline to the socket. void SendLn(const std::string& message) { socket_writer_->SendLn(message); } // Called at the start of streaming to notify the receiver what // protocol we are using. void Start() { SendLn("gtest_streaming_protocol_version=1.0"); } std::string FormatBool(bool value) { return value ? "1" : "0"; } const std::unique_ptr<AbstractSocketWriter> socket_writer_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener); }; // class StreamingListener #endif // GTEST_CAN_STREAM_RESULTS_ } // namespace internal } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GOOGLETEST_SRC_GTEST_INTERNAL_INL_H_ #if GTEST_OS_WINDOWS # define vsnprintf _vsnprintf #endif // GTEST_OS_WINDOWS #if GTEST_OS_MAC #ifndef GTEST_OS_IOS #include <crt_externs.h> #endif #endif #if GTEST_HAS_ABSL #include "absl/debugging/failure_signal_handler.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/strings/str_cat.h" #endif // GTEST_HAS_ABSL namespace testing { using internal::CountIf; using internal::ForEach; using internal::GetElementOr; using internal::Shuffle; // Constants. // A test whose test suite name or test name matches this filter is // disabled and not run. static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*"; // A test suite whose name matches this filter is considered a death // test suite and will be run before test suites whose name doesn't // match this filter. static const char kDeathTestSuiteFilter[] = "*DeathTest:*DeathTest/*"; // A test filter that matches everything. static const char kUniversalFilter[] = "*"; // The default output format. static const char kDefaultOutputFormat[] = "xml"; // The default output file. static const char kDefaultOutputFile[] = "test_detail"; // The environment variable name for the test shard index. static const char kTestShardIndex[] = "GTEST_SHARD_INDEX"; // The environment variable name for the total number of test shards. static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS"; // The environment variable name for the test shard status file. static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE"; namespace internal { // The text used in failure messages to indicate the start of the // stack trace. const char kStackTraceMarker[] = "\nStack trace:\n"; // g_help_flag is true if and only if the --help flag or an equivalent form // is specified on the command line. bool g_help_flag = false; // Utilty function to Open File for Writing static FILE* OpenFileForWriting(const std::string& output_file) { FILE* fileout = nullptr; FilePath output_file_path(output_file); FilePath output_dir(output_file_path.RemoveFileName()); if (output_dir.CreateDirectoriesRecursively()) { fileout = posix::FOpen(output_file.c_str(), "w"); } if (fileout == nullptr) { GTEST_LOG_(FATAL) << "Unable to open file \"" << output_file << "\""; } return fileout; } } // namespace internal // Bazel passes in the argument to '--test_filter' via the TESTBRIDGE_TEST_ONLY // environment variable. static const char* GetDefaultFilter() { const char* const testbridge_test_only = internal::posix::GetEnv("TESTBRIDGE_TEST_ONLY"); if (testbridge_test_only != nullptr) { return testbridge_test_only; } return kUniversalFilter; } // Bazel passes in the argument to '--test_runner_fail_fast' via the // TESTBRIDGE_TEST_RUNNER_FAIL_FAST environment variable. static bool GetDefaultFailFast() { const char* const testbridge_test_runner_fail_fast = internal::posix::GetEnv("TESTBRIDGE_TEST_RUNNER_FAIL_FAST"); if (testbridge_test_runner_fail_fast != nullptr) { return strcmp(testbridge_test_runner_fail_fast, "1") == 0; } return false; } GTEST_DEFINE_bool_( fail_fast, internal::BoolFromGTestEnv("fail_fast", GetDefaultFailFast()), "True if and only if a test failure should stop further test execution."); GTEST_DEFINE_bool_( also_run_disabled_tests, internal::BoolFromGTestEnv("also_run_disabled_tests", false), "Run disabled tests too, in addition to the tests normally being run."); GTEST_DEFINE_bool_( break_on_failure, internal::BoolFromGTestEnv("break_on_failure", false), "True if and only if a failed assertion should be a debugger " "break-point."); GTEST_DEFINE_bool_(catch_exceptions, internal::BoolFromGTestEnv("catch_exceptions", true), "True if and only if " GTEST_NAME_ " should catch exceptions and treat them as test failures."); GTEST_DEFINE_string_( color, internal::StringFromGTestEnv("color", "auto"), "Whether to use colors in the output. Valid values: yes, no, " "and auto. 'auto' means to use colors if the output is " "being sent to a terminal and the TERM environment variable " "is set to a terminal type that supports colors."); GTEST_DEFINE_string_( filter, internal::StringFromGTestEnv("filter", GetDefaultFilter()), "A colon-separated list of glob (not regex) patterns " "for filtering the tests to run, optionally followed by a " "'-' and a : separated list of negative patterns (tests to " "exclude). A test is run if it matches one of the positive " "patterns and does not match any of the negative patterns."); GTEST_DEFINE_bool_( install_failure_signal_handler, internal::BoolFromGTestEnv("install_failure_signal_handler", false), "If true and supported on the current platform, " GTEST_NAME_ " should " "install a signal handler that dumps debugging information when fatal " "signals are raised."); GTEST_DEFINE_bool_(list_tests, false, "List all tests without running them."); // The net priority order after flag processing is thus: // --gtest_output command line flag // GTEST_OUTPUT environment variable // XML_OUTPUT_FILE environment variable // '' GTEST_DEFINE_string_( output, internal::StringFromGTestEnv("output", internal::OutputFlagAlsoCheckEnvVar().c_str()), "A format (defaults to \"xml\" but can be specified to be \"json\"), " "optionally followed by a colon and an output file name or directory. " "A directory is indicated by a trailing pathname separator. " "Examples: \"xml:filename.xml\", \"xml::directoryname/\". " "If a directory is specified, output files will be created " "within that directory, with file-names based on the test " "executable's name and, if necessary, made unique by adding " "digits."); GTEST_DEFINE_bool_( brief, internal::BoolFromGTestEnv("brief", false), "True if only test failures should be displayed in text output."); GTEST_DEFINE_bool_(print_time, internal::BoolFromGTestEnv("print_time", true), "True if and only if " GTEST_NAME_ " should display elapsed time in text output."); GTEST_DEFINE_bool_(print_utf8, internal::BoolFromGTestEnv("print_utf8", true), "True if and only if " GTEST_NAME_ " prints UTF8 characters as text."); GTEST_DEFINE_int32_( random_seed, internal::Int32FromGTestEnv("random_seed", 0), "Random number seed to use when shuffling test orders. Must be in range " "[1, 99999], or 0 to use a seed based on the current time."); GTEST_DEFINE_int32_( repeat, internal::Int32FromGTestEnv("repeat", 1), "How many times to repeat each test. Specify a negative number " "for repeating forever. Useful for shaking out flaky tests."); GTEST_DEFINE_bool_(show_internal_stack_frames, false, "True if and only if " GTEST_NAME_ " should include internal stack frames when " "printing test failure stack traces."); GTEST_DEFINE_bool_(shuffle, internal::BoolFromGTestEnv("shuffle", false), "True if and only if " GTEST_NAME_ " should randomize tests' order on every run."); GTEST_DEFINE_int32_( stack_trace_depth, internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth), "The maximum number of stack frames to print when an " "assertion fails. The valid range is 0 through 100, inclusive."); GTEST_DEFINE_string_( stream_result_to, internal::StringFromGTestEnv("stream_result_to", ""), "This flag specifies the host name and the port number on which to stream " "test results. Example: \"localhost:555\". The flag is effective only on " "Linux."); GTEST_DEFINE_bool_( throw_on_failure, internal::BoolFromGTestEnv("throw_on_failure", false), "When this flag is specified, a failed assertion will throw an exception " "if exceptions are enabled or exit the program with a non-zero code " "otherwise. For use with an external test framework."); #if GTEST_USE_OWN_FLAGFILE_FLAG_ GTEST_DEFINE_string_( flagfile, internal::StringFromGTestEnv("flagfile", ""), "This flag specifies the flagfile to read command-line flags from."); #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ namespace internal { // Generates a random number from [0, range), using a Linear // Congruential Generator (LCG). Crashes if 'range' is 0 or greater // than kMaxRange. uint32_t Random::Generate(uint32_t range) { // These constants are the same as are used in glibc's rand(3). // Use wider types than necessary to prevent unsigned overflow diagnostics. state_ = static_cast<uint32_t>(1103515245ULL*state_ + 12345U) % kMaxRange; GTEST_CHECK_(range > 0) << "Cannot generate a number in the range [0, 0)."; GTEST_CHECK_(range <= kMaxRange) << "Generation of a number in [0, " << range << ") was requested, " << "but this can only generate numbers in [0, " << kMaxRange << ")."; // Converting via modulus introduces a bit of downward bias, but // it's simple, and a linear congruential generator isn't too good // to begin with. return state_ % range; } // GTestIsInitialized() returns true if and only if the user has initialized // Google Test. Useful for catching the user mistake of not initializing // Google Test before calling RUN_ALL_TESTS(). static bool GTestIsInitialized() { return GetArgvs().size() > 0; } // Iterates over a vector of TestSuites, keeping a running sum of the // results of calling a given int-returning method on each. // Returns the sum. static int SumOverTestSuiteList(const std::vector<TestSuite*>& case_list, int (TestSuite::*method)() const) { int sum = 0; for (size_t i = 0; i < case_list.size(); i++) { sum += (case_list[i]->*method)(); } return sum; } // Returns true if and only if the test suite passed. static bool TestSuitePassed(const TestSuite* test_suite) { return test_suite->should_run() && test_suite->Passed(); } // Returns true if and only if the test suite failed. static bool TestSuiteFailed(const TestSuite* test_suite) { return test_suite->should_run() && test_suite->Failed(); } // Returns true if and only if test_suite contains at least one test that // should run. static bool ShouldRunTestSuite(const TestSuite* test_suite) { return test_suite->should_run(); } // AssertHelper constructor. AssertHelper::AssertHelper(TestPartResult::Type type, const char* file, int line, const char* message) : data_(new AssertHelperData(type, file, line, message)) { } AssertHelper::~AssertHelper() { delete data_; } // Message assignment, for assertion streaming support. void AssertHelper::operator=(const Message& message) const { UnitTest::GetInstance()-> AddTestPartResult(data_->type, data_->file, data_->line, AppendUserMessage(data_->message, message), UnitTest::GetInstance()->impl() ->CurrentOsStackTraceExceptTop(1) // Skips the stack frame for this function itself. ); // NOLINT } namespace { // When TEST_P is found without a matching INSTANTIATE_TEST_SUITE_P // to creates test cases for it, a synthetic test case is // inserted to report ether an error or a log message. // // This configuration bit will likely be removed at some point. constexpr bool kErrorOnUninstantiatedParameterizedTest = true; constexpr bool kErrorOnUninstantiatedTypeParameterizedTest = true; // A test that fails at a given file/line location with a given message. class FailureTest : public Test { public: explicit FailureTest(const CodeLocation& loc, std::string error_message, bool as_error) : loc_(loc), error_message_(std::move(error_message)), as_error_(as_error) {} void TestBody() override { if (as_error_) { AssertHelper(TestPartResult::kNonFatalFailure, loc_.file.c_str(), loc_.line, "") = Message() << error_message_; } else { std::cout << error_message_ << std::endl; } } private: const CodeLocation loc_; const std::string error_message_; const bool as_error_; }; } // namespace std::set<std::string>* GetIgnoredParameterizedTestSuites() { return UnitTest::GetInstance()->impl()->ignored_parameterized_test_suites(); } // Add a given test_suit to the list of them allow to go un-instantiated. MarkAsIgnored::MarkAsIgnored(const char* test_suite) { GetIgnoredParameterizedTestSuites()->insert(test_suite); } // If this parameterized test suite has no instantiations (and that // has not been marked as okay), emit a test case reporting that. void InsertSyntheticTestCase(const std::string& name, CodeLocation location, bool has_test_p) { const auto& ignored = *GetIgnoredParameterizedTestSuites(); if (ignored.find(name) != ignored.end()) return; const char kMissingInstantiation[] = // " is defined via TEST_P, but never instantiated. None of the test cases " "will run. Either no INSTANTIATE_TEST_SUITE_P is provided or the only " "ones provided expand to nothing." "\n\n" "Ideally, TEST_P definitions should only ever be included as part of " "binaries that intend to use them. (As opposed to, for example, being " "placed in a library that may be linked in to get other utilities.)"; const char kMissingTestCase[] = // " is instantiated via INSTANTIATE_TEST_SUITE_P, but no tests are " "defined via TEST_P . No test cases will run." "\n\n" "Ideally, INSTANTIATE_TEST_SUITE_P should only ever be invoked from " "code that always depend on code that provides TEST_P. Failing to do " "so is often an indication of dead code, e.g. the last TEST_P was " "removed but the rest got left behind."; std::string message = "Parameterized test suite " + name + (has_test_p ? kMissingInstantiation : kMissingTestCase) + "\n\n" "To suppress this error for this test suite, insert the following line " "(in a non-header) in the namespace it is defined in:" "\n\n" "GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" + name + ");"; std::string full_name = "UninstantiatedParameterizedTestSuite<" + name + ">"; RegisterTest( // "GoogleTestVerification", full_name.c_str(), nullptr, // No type parameter. nullptr, // No value parameter. location.file.c_str(), location.line, [message, location] { return new FailureTest(location, message, kErrorOnUninstantiatedParameterizedTest); }); } void RegisterTypeParameterizedTestSuite(const char* test_suite_name, CodeLocation code_location) { GetUnitTestImpl()->type_parameterized_test_registry().RegisterTestSuite( test_suite_name, code_location); } void RegisterTypeParameterizedTestSuiteInstantiation(const char* case_name) { GetUnitTestImpl() ->type_parameterized_test_registry() .RegisterInstantiation(case_name); } void TypeParameterizedTestSuiteRegistry::RegisterTestSuite( const char* test_suite_name, CodeLocation code_location) { suites_.emplace(std::string(test_suite_name), TypeParameterizedTestSuiteInfo(code_location)); } void TypeParameterizedTestSuiteRegistry::RegisterInstantiation( const char* test_suite_name) { auto it = suites_.find(std::string(test_suite_name)); if (it != suites_.end()) { it->second.instantiated = true; } else { GTEST_LOG_(ERROR) << "Unknown type parameterized test suit '" << test_suite_name << "'"; } } void TypeParameterizedTestSuiteRegistry::CheckForInstantiations() { const auto& ignored = *GetIgnoredParameterizedTestSuites(); for (const auto& testcase : suites_) { if (testcase.second.instantiated) continue; if (ignored.find(testcase.first) != ignored.end()) continue; std::string message = "Type parameterized test suite " + testcase.first + " is defined via REGISTER_TYPED_TEST_SUITE_P, but never instantiated " "via INSTANTIATE_TYPED_TEST_SUITE_P. None of the test cases will run." "\n\n" "Ideally, TYPED_TEST_P definitions should only ever be included as " "part of binaries that intend to use them. (As opposed to, for " "example, being placed in a library that may be linked in to get other " "utilities.)" "\n\n" "To suppress this error for this test suite, insert the following line " "(in a non-header) in the namespace it is defined in:" "\n\n" "GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(" + testcase.first + ");"; std::string full_name = "UninstantiatedTypeParameterizedTestSuite<" + testcase.first + ">"; RegisterTest( // "GoogleTestVerification", full_name.c_str(), nullptr, // No type parameter. nullptr, // No value parameter. testcase.second.code_location.file.c_str(), testcase.second.code_location.line, [message, testcase] { return new FailureTest(testcase.second.code_location, message, kErrorOnUninstantiatedTypeParameterizedTest); }); } } // A copy of all command line arguments. Set by InitGoogleTest(). static ::std::vector<std::string> g_argvs; ::std::vector<std::string> GetArgvs() { #if defined(GTEST_CUSTOM_GET_ARGVS_) // GTEST_CUSTOM_GET_ARGVS_() may return a container of std::string or // ::string. This code converts it to the appropriate type. const auto& custom = GTEST_CUSTOM_GET_ARGVS_(); return ::std::vector<std::string>(custom.begin(), custom.end()); #else // defined(GTEST_CUSTOM_GET_ARGVS_) return g_argvs; #endif // defined(GTEST_CUSTOM_GET_ARGVS_) } // Returns the current application's name, removing directory path if that // is present. FilePath GetCurrentExecutableName() { FilePath result; #if GTEST_OS_WINDOWS || GTEST_OS_OS2 result.Set(FilePath(GetArgvs()[0]).RemoveExtension("exe")); #else result.Set(FilePath(GetArgvs()[0])); #endif // GTEST_OS_WINDOWS return result.RemoveDirectoryName(); } // Functions for processing the gtest_output flag. // Returns the output format, or "" for normal printed output. std::string UnitTestOptions::GetOutputFormat() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); const char* const colon = strchr(gtest_output_flag, ':'); return (colon == nullptr) ? std::string(gtest_output_flag) : std::string(gtest_output_flag, static_cast<size_t>(colon - gtest_output_flag)); } // Returns the name of the requested output file, or the default if none // was explicitly specified. std::string UnitTestOptions::GetAbsolutePathToOutputFile() { const char* const gtest_output_flag = GTEST_FLAG(output).c_str(); std::string format = GetOutputFormat(); if (format.empty()) format = std::string(kDefaultOutputFormat); const char* const colon = strchr(gtest_output_flag, ':'); if (colon == nullptr) return internal::FilePath::MakeFileName( internal::FilePath( UnitTest::GetInstance()->original_working_dir()), internal::FilePath(kDefaultOutputFile), 0, format.c_str()).string(); internal::FilePath output_name(colon + 1); if (!output_name.IsAbsolutePath()) output_name = internal::FilePath::ConcatPaths( internal::FilePath(UnitTest::GetInstance()->original_working_dir()), internal::FilePath(colon + 1)); if (!output_name.IsDirectory()) return output_name.string(); internal::FilePath result(internal::FilePath::GenerateUniqueFileName( output_name, internal::GetCurrentExecutableName(), GetOutputFormat().c_str())); return result.string(); } // Returns true if and only if the wildcard pattern matches the string. Each // pattern consists of regular characters, single-character wildcards (?), and // multi-character wildcards (*). // // This function implements a linear-time string globbing algorithm based on // https://research.swtch.com/glob. static bool PatternMatchesString(const std::string& name_str, const char* pattern, const char* pattern_end) { const char* name = name_str.c_str(); const char* const name_begin = name; const char* const name_end = name + name_str.size(); const char* pattern_next = pattern; const char* name_next = name; while (pattern < pattern_end || name < name_end) { if (pattern < pattern_end) { switch (*pattern) { default: // Match an ordinary character. if (name < name_end && *name == *pattern) { ++pattern; ++name; continue; } break; case '?': // Match any single character. if (name < name_end) { ++pattern; ++name; continue; } break; case '*': // Match zero or more characters. Start by skipping over the wildcard // and matching zero characters from name. If that fails, restart and // match one more character than the last attempt. pattern_next = pattern; name_next = name + 1; ++pattern; continue; } } // Failed to match a character. Restart if possible. if (name_begin < name_next && name_next <= name_end) { pattern = pattern_next; name = name_next; continue; } return false; } return true; } bool UnitTestOptions::MatchesFilter(const std::string& name_str, const char* filter) { // The filter is a list of patterns separated by colons (:). const char* pattern = filter; while (true) { // Find the bounds of this pattern. const char* const next_sep = strchr(pattern, ':'); const char* const pattern_end = next_sep != nullptr ? next_sep : pattern + strlen(pattern); // Check if this pattern matches name_str. if (PatternMatchesString(name_str, pattern, pattern_end)) { break; } // Give up on this pattern. However, if we found a pattern separator (:), // advance to the next pattern (skipping over the separator) and restart. if (next_sep == nullptr) { return false; } pattern = next_sep + 1; } return true; } // Returns true if and only if the user-specified filter matches the test // suite name and the test name. bool UnitTestOptions::FilterMatchesTest(const std::string& test_suite_name, const std::string& test_name) { const std::string& full_name = test_suite_name + "." + test_name.c_str(); // Split --gtest_filter at '-', if there is one, to separate into // positive filter and negative filter portions const char* const p = GTEST_FLAG(filter).c_str(); const char* const dash = strchr(p, '-'); std::string positive; std::string negative; if (dash == nullptr) { positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter negative = ""; } else { positive = std::string(p, dash); // Everything up to the dash negative = std::string(dash + 1); // Everything after the dash if (positive.empty()) { // Treat '-test1' as the same as '*-test1' positive = kUniversalFilter; } } // A filter is a colon-separated list of patterns. It matches a // test if any pattern in it matches the test. return (MatchesFilter(full_name, positive.c_str()) && !MatchesFilter(full_name, negative.c_str())); } #if GTEST_HAS_SEH // Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the // given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise. // This function is useful as an __except condition. int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) { // Google Test should handle a SEH exception if: // 1. the user wants it to, AND // 2. this is not a breakpoint exception, AND // 3. this is not a C++ exception (VC++ implements them via SEH, // apparently). // // SEH exception code for C++ exceptions. // (see http://support.microsoft.com/kb/185294 for more information). const DWORD kCxxExceptionCode = 0xe06d7363; bool should_handle = true; if (!GTEST_FLAG(catch_exceptions)) should_handle = false; else if (exception_code == EXCEPTION_BREAKPOINT) should_handle = false; else if (exception_code == kCxxExceptionCode) should_handle = false; return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH; } #endif // GTEST_HAS_SEH } // namespace internal // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. Intercepts only failures from the current thread. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( TestPartResultArray* result) : intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD), result_(result) { Init(); } // The c'tor sets this object as the test part result reporter used by // Google Test. The 'result' parameter specifies where to report the // results. ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter( InterceptMode intercept_mode, TestPartResultArray* result) : intercept_mode_(intercept_mode), result_(result) { Init(); } void ScopedFakeTestPartResultReporter::Init() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { old_reporter_ = impl->GetGlobalTestPartResultReporter(); impl->SetGlobalTestPartResultReporter(this); } else { old_reporter_ = impl->GetTestPartResultReporterForCurrentThread(); impl->SetTestPartResultReporterForCurrentThread(this); } } // The d'tor restores the test part result reporter used by Google Test // before. ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); if (intercept_mode_ == INTERCEPT_ALL_THREADS) { impl->SetGlobalTestPartResultReporter(old_reporter_); } else { impl->SetTestPartResultReporterForCurrentThread(old_reporter_); } } // Increments the test part result count and remembers the result. // This method is from the TestPartResultReporterInterface interface. void ScopedFakeTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { result_->Append(result); } namespace internal { // Returns the type ID of ::testing::Test. We should always call this // instead of GetTypeId< ::testing::Test>() to get the type ID of // testing::Test. This is to work around a suspected linker bug when // using Google Test as a framework on Mac OS X. The bug causes // GetTypeId< ::testing::Test>() to return different values depending // on whether the call is from the Google Test framework itself or // from user test code. GetTestTypeId() is guaranteed to always // return the same value, as it always calls GetTypeId<>() from the // gtest.cc, which is within the Google Test framework. TypeId GetTestTypeId() { return GetTypeId<Test>(); } // The value of GetTestTypeId() as seen from within the Google Test // library. This is solely for testing GetTestTypeId(). extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId(); // This predicate-formatter checks that 'results' contains a test part // failure of the given type and that the failure message contains the // given substring. static AssertionResult HasOneFailure(const char* /* results_expr */, const char* /* type_expr */, const char* /* substr_expr */, const TestPartResultArray& results, TestPartResult::Type type, const std::string& substr) { const std::string expected(type == TestPartResult::kFatalFailure ? "1 fatal failure" : "1 non-fatal failure"); Message msg; if (results.size() != 1) { msg << "Expected: " << expected << "\n" << " Actual: " << results.size() << " failures"; for (int i = 0; i < results.size(); i++) { msg << "\n" << results.GetTestPartResult(i); } return AssertionFailure() << msg; } const TestPartResult& r = results.GetTestPartResult(0); if (r.type() != type) { return AssertionFailure() << "Expected: " << expected << "\n" << " Actual:\n" << r; } if (strstr(r.message(), substr.c_str()) == nullptr) { return AssertionFailure() << "Expected: " << expected << " containing \"" << substr << "\"\n" << " Actual:\n" << r; } return AssertionSuccess(); } // The constructor of SingleFailureChecker remembers where to look up // test part results, what type of failure we expect, and what // substring the failure message should contain. SingleFailureChecker::SingleFailureChecker(const TestPartResultArray* results, TestPartResult::Type type, const std::string& substr) : results_(results), type_(type), substr_(substr) {} // The destructor of SingleFailureChecker verifies that the given // TestPartResultArray contains exactly one failure that has the given // type and contains the given substring. If that's not the case, a // non-fatal failure will be generated. SingleFailureChecker::~SingleFailureChecker() { EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_); } DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultGlobalTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->current_test_result()->AddTestPartResult(result); unit_test_->listeners()->repeater()->OnTestPartResult(result); } DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter( UnitTestImpl* unit_test) : unit_test_(unit_test) {} void DefaultPerThreadTestPartResultReporter::ReportTestPartResult( const TestPartResult& result) { unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result); } // Returns the global test part result reporter. TestPartResultReporterInterface* UnitTestImpl::GetGlobalTestPartResultReporter() { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); return global_test_part_result_repoter_; } // Sets the global test part result reporter. void UnitTestImpl::SetGlobalTestPartResultReporter( TestPartResultReporterInterface* reporter) { internal::MutexLock lock(&global_test_part_result_reporter_mutex_); global_test_part_result_repoter_ = reporter; } // Returns the test part result reporter for the current thread. TestPartResultReporterInterface* UnitTestImpl::GetTestPartResultReporterForCurrentThread() { return per_thread_test_part_result_reporter_.get(); } // Sets the test part result reporter for the current thread. void UnitTestImpl::SetTestPartResultReporterForCurrentThread( TestPartResultReporterInterface* reporter) { per_thread_test_part_result_reporter_.set(reporter); } // Gets the number of successful test suites. int UnitTestImpl::successful_test_suite_count() const { return CountIf(test_suites_, TestSuitePassed); } // Gets the number of failed test suites. int UnitTestImpl::failed_test_suite_count() const { return CountIf(test_suites_, TestSuiteFailed); } // Gets the number of all test suites. int UnitTestImpl::total_test_suite_count() const { return static_cast<int>(test_suites_.size()); } // Gets the number of all test suites that contain at least one test // that should run. int UnitTestImpl::test_suite_to_run_count() const { return CountIf(test_suites_, ShouldRunTestSuite); } // Gets the number of successful tests. int UnitTestImpl::successful_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::successful_test_count); } // Gets the number of skipped tests. int UnitTestImpl::skipped_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::skipped_test_count); } // Gets the number of failed tests. int UnitTestImpl::failed_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::failed_test_count); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTestImpl::reportable_disabled_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_disabled_test_count); } // Gets the number of disabled tests. int UnitTestImpl::disabled_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::disabled_test_count); } // Gets the number of tests to be printed in the XML report. int UnitTestImpl::reportable_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::reportable_test_count); } // Gets the number of all tests. int UnitTestImpl::total_test_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::total_test_count); } // Gets the number of tests that should run. int UnitTestImpl::test_to_run_count() const { return SumOverTestSuiteList(test_suites_, &TestSuite::test_to_run_count); } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // CurrentOsStackTraceExceptTop(1), Foo() will be included in the // trace but Bar() and CurrentOsStackTraceExceptTop() won't. std::string UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) { return os_stack_trace_getter()->CurrentStackTrace( static_cast<int>(GTEST_FLAG(stack_trace_depth)), skip_count + 1 // Skips the user-specified number of frames plus this function // itself. ); // NOLINT } // A helper class for measuring elapsed times. class Timer { public: Timer() : start_(std::chrono::steady_clock::now()) {} // Return time elapsed in milliseconds since the timer was created. TimeInMillis Elapsed() { return std::chrono::duration_cast<std::chrono::milliseconds>( std::chrono::steady_clock::now() - start_) .count(); } private: std::chrono::steady_clock::time_point start_; }; // Returns a timestamp as milliseconds since the epoch. Note this time may jump // around subject to adjustments by the system, to measure elapsed time use // Timer instead. TimeInMillis GetTimeInMillis() { return std::chrono::duration_cast<std::chrono::milliseconds>( std::chrono::system_clock::now() - std::chrono::system_clock::from_time_t(0)) .count(); } // Utilities // class String. #if GTEST_OS_WINDOWS_MOBILE // Creates a UTF-16 wide string from the given ANSI string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the wide string, or NULL if the // input is NULL. LPCWSTR String::AnsiToUtf16(const char* ansi) { if (!ansi) return nullptr; const int length = strlen(ansi); const int unicode_length = MultiByteToWideChar(CP_ACP, 0, ansi, length, nullptr, 0); WCHAR* unicode = new WCHAR[unicode_length + 1]; MultiByteToWideChar(CP_ACP, 0, ansi, length, unicode, unicode_length); unicode[unicode_length] = 0; return unicode; } // Creates an ANSI string from the given wide string, allocating // memory using new. The caller is responsible for deleting the return // value using delete[]. Returns the ANSI string, or NULL if the // input is NULL. const char* String::Utf16ToAnsi(LPCWSTR utf16_str) { if (!utf16_str) return nullptr; const int ansi_length = WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, nullptr, 0, nullptr, nullptr); char* ansi = new char[ansi_length + 1]; WideCharToMultiByte(CP_ACP, 0, utf16_str, -1, ansi, ansi_length, nullptr, nullptr); ansi[ansi_length] = 0; return ansi; } #endif // GTEST_OS_WINDOWS_MOBILE // Compares two C strings. Returns true if and only if they have the same // content. // // Unlike strcmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::CStringEquals(const char * lhs, const char * rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return strcmp(lhs, rhs) == 0; } #if GTEST_HAS_STD_WSTRING // Converts an array of wide chars to a narrow string using the UTF-8 // encoding, and streams the result to the given Message object. static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length, Message* msg) { for (size_t i = 0; i != length; ) { // NOLINT if (wstr[i] != L'\0') { *msg << WideStringToUtf8(wstr + i, static_cast<int>(length - i)); while (i != length && wstr[i] != L'\0') i++; } else { *msg << '\0'; i++; } } } #endif // GTEST_HAS_STD_WSTRING void SplitString(const ::std::string& str, char delimiter, ::std::vector< ::std::string>* dest) { ::std::vector< ::std::string> parsed; ::std::string::size_type pos = 0; while (::testing::internal::AlwaysTrue()) { const ::std::string::size_type colon = str.find(delimiter, pos); if (colon == ::std::string::npos) { parsed.push_back(str.substr(pos)); break; } else { parsed.push_back(str.substr(pos, colon - pos)); pos = colon + 1; } } dest->swap(parsed); } } // namespace internal // Constructs an empty Message. // We allocate the stringstream separately because otherwise each use of // ASSERT/EXPECT in a procedure adds over 200 bytes to the procedure's // stack frame leading to huge stack frames in some cases; gcc does not reuse // the stack space. Message::Message() : ss_(new ::std::stringstream) { // By default, we want there to be enough precision when printing // a double to a Message. *ss_ << std::setprecision(std::numeric_limits<double>::digits10 + 2); } // These two overloads allow streaming a wide C string to a Message // using the UTF-8 encoding. Message& Message::operator <<(const wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } Message& Message::operator <<(wchar_t* wide_c_str) { return *this << internal::String::ShowWideCString(wide_c_str); } #if GTEST_HAS_STD_WSTRING // Converts the given wide string to a narrow string using the UTF-8 // encoding, and streams the result to this Message object. Message& Message::operator <<(const ::std::wstring& wstr) { internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this); return *this; } #endif // GTEST_HAS_STD_WSTRING // Gets the text streamed to this object so far as an std::string. // Each '\0' character in the buffer is replaced with "\\0". std::string Message::GetString() const { return internal::StringStreamToString(ss_.get()); } // AssertionResult constructors. // Used in EXPECT_TRUE/FALSE(assertion_result). AssertionResult::AssertionResult(const AssertionResult& other) : success_(other.success_), message_(other.message_.get() != nullptr ? new ::std::string(*other.message_) : static_cast< ::std::string*>(nullptr)) {} // Swaps two AssertionResults. void AssertionResult::swap(AssertionResult& other) { using std::swap; swap(success_, other.success_); swap(message_, other.message_); } // Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE. AssertionResult AssertionResult::operator!() const { AssertionResult negation(!success_); if (message_.get() != nullptr) negation << *message_; return negation; } // Makes a successful assertion result. AssertionResult AssertionSuccess() { return AssertionResult(true); } // Makes a failed assertion result. AssertionResult AssertionFailure() { return AssertionResult(false); } // Makes a failed assertion result with the given failure message. // Deprecated; use AssertionFailure() << message. AssertionResult AssertionFailure(const Message& message) { return AssertionFailure() << message; } namespace internal { namespace edit_distance { std::vector<EditType> CalculateOptimalEdits(const std::vector<size_t>& left, const std::vector<size_t>& right) { std::vector<std::vector<double> > costs( left.size() + 1, std::vector<double>(right.size() + 1)); std::vector<std::vector<EditType> > best_move( left.size() + 1, std::vector<EditType>(right.size() + 1)); // Populate for empty right. for (size_t l_i = 0; l_i < costs.size(); ++l_i) { costs[l_i][0] = static_cast<double>(l_i); best_move[l_i][0] = kRemove; } // Populate for empty left. for (size_t r_i = 1; r_i < costs[0].size(); ++r_i) { costs[0][r_i] = static_cast<double>(r_i); best_move[0][r_i] = kAdd; } for (size_t l_i = 0; l_i < left.size(); ++l_i) { for (size_t r_i = 0; r_i < right.size(); ++r_i) { if (left[l_i] == right[r_i]) { // Found a match. Consume it. costs[l_i + 1][r_i + 1] = costs[l_i][r_i]; best_move[l_i + 1][r_i + 1] = kMatch; continue; } const double add = costs[l_i + 1][r_i]; const double remove = costs[l_i][r_i + 1]; const double replace = costs[l_i][r_i]; if (add < remove && add < replace) { costs[l_i + 1][r_i + 1] = add + 1; best_move[l_i + 1][r_i + 1] = kAdd; } else if (remove < add && remove < replace) { costs[l_i + 1][r_i + 1] = remove + 1; best_move[l_i + 1][r_i + 1] = kRemove; } else { // We make replace a little more expensive than add/remove to lower // their priority. costs[l_i + 1][r_i + 1] = replace + 1.00001; best_move[l_i + 1][r_i + 1] = kReplace; } } } // Reconstruct the best path. We do it in reverse order. std::vector<EditType> best_path; for (size_t l_i = left.size(), r_i = right.size(); l_i > 0 || r_i > 0;) { EditType move = best_move[l_i][r_i]; best_path.push_back(move); l_i -= move != kAdd; r_i -= move != kRemove; } std::reverse(best_path.begin(), best_path.end()); return best_path; } namespace { // Helper class to convert string into ids with deduplication. class InternalStrings { public: size_t GetId(const std::string& str) { IdMap::iterator it = ids_.find(str); if (it != ids_.end()) return it->second; size_t id = ids_.size(); return ids_[str] = id; } private: typedef std::map<std::string, size_t> IdMap; IdMap ids_; }; } // namespace std::vector<EditType> CalculateOptimalEdits( const std::vector<std::string>& left, const std::vector<std::string>& right) { std::vector<size_t> left_ids, right_ids; { InternalStrings intern_table; for (size_t i = 0; i < left.size(); ++i) { left_ids.push_back(intern_table.GetId(left[i])); } for (size_t i = 0; i < right.size(); ++i) { right_ids.push_back(intern_table.GetId(right[i])); } } return CalculateOptimalEdits(left_ids, right_ids); } namespace { // Helper class that holds the state for one hunk and prints it out to the // stream. // It reorders adds/removes when possible to group all removes before all // adds. It also adds the hunk header before printint into the stream. class Hunk { public: Hunk(size_t left_start, size_t right_start) : left_start_(left_start), right_start_(right_start), adds_(), removes_(), common_() {} void PushLine(char edit, const char* line) { switch (edit) { case ' ': ++common_; FlushEdits(); hunk_.push_back(std::make_pair(' ', line)); break; case '-': ++removes_; hunk_removes_.push_back(std::make_pair('-', line)); break; case '+': ++adds_; hunk_adds_.push_back(std::make_pair('+', line)); break; } } void PrintTo(std::ostream* os) { PrintHeader(os); FlushEdits(); for (std::list<std::pair<char, const char*> >::const_iterator it = hunk_.begin(); it != hunk_.end(); ++it) { *os << it->first << it->second << "\n"; } } bool has_edits() const { return adds_ || removes_; } private: void FlushEdits() { hunk_.splice(hunk_.end(), hunk_removes_); hunk_.splice(hunk_.end(), hunk_adds_); } // Print a unified diff header for one hunk. // The format is // "@@ -<left_start>,<left_length> +<right_start>,<right_length> @@" // where the left/right parts are omitted if unnecessary. void PrintHeader(std::ostream* ss) const { *ss << "@@ "; if (removes_) { *ss << "-" << left_start_ << "," << (removes_ + common_); } if (removes_ && adds_) { *ss << " "; } if (adds_) { *ss << "+" << right_start_ << "," << (adds_ + common_); } *ss << " @@\n"; } size_t left_start_, right_start_; size_t adds_, removes_, common_; std::list<std::pair<char, const char*> > hunk_, hunk_adds_, hunk_removes_; }; } // namespace // Create a list of diff hunks in Unified diff format. // Each hunk has a header generated by PrintHeader above plus a body with // lines prefixed with ' ' for no change, '-' for deletion and '+' for // addition. // 'context' represents the desired unchanged prefix/suffix around the diff. // If two hunks are close enough that their contexts overlap, then they are // joined into one hunk. std::string CreateUnifiedDiff(const std::vector<std::string>& left, const std::vector<std::string>& right, size_t context) { const std::vector<EditType> edits = CalculateOptimalEdits(left, right); size_t l_i = 0, r_i = 0, edit_i = 0; std::stringstream ss; while (edit_i < edits.size()) { // Find first edit. while (edit_i < edits.size() && edits[edit_i] == kMatch) { ++l_i; ++r_i; ++edit_i; } // Find the first line to include in the hunk. const size_t prefix_context = std::min(l_i, context); Hunk hunk(l_i - prefix_context + 1, r_i - prefix_context + 1); for (size_t i = prefix_context; i > 0; --i) { hunk.PushLine(' ', left[l_i - i].c_str()); } // Iterate the edits until we found enough suffix for the hunk or the input // is over. size_t n_suffix = 0; for (; edit_i < edits.size(); ++edit_i) { if (n_suffix >= context) { // Continue only if the next hunk is very close. auto it = edits.begin() + static_cast<int>(edit_i); while (it != edits.end() && *it == kMatch) ++it; if (it == edits.end() || static_cast<size_t>(it - edits.begin()) - edit_i >= context) { // There is no next edit or it is too far away. break; } } EditType edit = edits[edit_i]; // Reset count when a non match is found. n_suffix = edit == kMatch ? n_suffix + 1 : 0; if (edit == kMatch || edit == kRemove || edit == kReplace) { hunk.PushLine(edit == kMatch ? ' ' : '-', left[l_i].c_str()); } if (edit == kAdd || edit == kReplace) { hunk.PushLine('+', right[r_i].c_str()); } // Advance indices, depending on edit type. l_i += edit != kAdd; r_i += edit != kRemove; } if (!hunk.has_edits()) { // We are done. We don't want this hunk. break; } hunk.PrintTo(&ss); } return ss.str(); } } // namespace edit_distance namespace { // The string representation of the values received in EqFailure() are already // escaped. Split them on escaped '\n' boundaries. Leave all other escaped // characters the same. std::vector<std::string> SplitEscapedString(const std::string& str) { std::vector<std::string> lines; size_t start = 0, end = str.size(); if (end > 2 && str[0] == '"' && str[end - 1] == '"') { ++start; --end; } bool escaped = false; for (size_t i = start; i + 1 < end; ++i) { if (escaped) { escaped = false; if (str[i] == 'n') { lines.push_back(str.substr(start, i - start - 1)); start = i + 1; } } else { escaped = str[i] == '\\'; } } lines.push_back(str.substr(start, end - start)); return lines; } } // namespace // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // lhs_expression: "foo" // rhs_expression: "bar" // lhs_value: "5" // rhs_value: "6" // // The ignoring_case parameter is true if and only if the assertion is a // *_STRCASEEQ*. When it's true, the string "Ignoring case" will // be inserted into the message. AssertionResult EqFailure(const char* lhs_expression, const char* rhs_expression, const std::string& lhs_value, const std::string& rhs_value, bool ignoring_case) { Message msg; msg << "Expected equality of these values:"; msg << "\n " << lhs_expression; if (lhs_value != lhs_expression) { msg << "\n Which is: " << lhs_value; } msg << "\n " << rhs_expression; if (rhs_value != rhs_expression) { msg << "\n Which is: " << rhs_value; } if (ignoring_case) { msg << "\nIgnoring case"; } if (!lhs_value.empty() && !rhs_value.empty()) { const std::vector<std::string> lhs_lines = SplitEscapedString(lhs_value); const std::vector<std::string> rhs_lines = SplitEscapedString(rhs_value); if (lhs_lines.size() > 1 || rhs_lines.size() > 1) { msg << "\nWith diff:\n" << edit_distance::CreateUnifiedDiff(lhs_lines, rhs_lines); } } return AssertionFailure() << msg; } // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value) { const char* actual_message = assertion_result.message(); Message msg; msg << "Value of: " << expression_text << "\n Actual: " << actual_predicate_value; if (actual_message[0] != '\0') msg << " (" << actual_message << ")"; msg << "\nExpected: " << expected_predicate_value; return msg.GetString(); } // Helper function for implementing ASSERT_NEAR. AssertionResult DoubleNearPredFormat(const char* expr1, const char* expr2, const char* abs_error_expr, double val1, double val2, double abs_error) { const double diff = fabs(val1 - val2); if (diff <= abs_error) return AssertionSuccess(); // Find the value which is closest to zero. const double min_abs = std::min(fabs(val1), fabs(val2)); // Find the distance to the next double from that value. const double epsilon = nextafter(min_abs, std::numeric_limits<double>::infinity()) - min_abs; // Detect the case where abs_error is so small that EXPECT_NEAR is // effectively the same as EXPECT_EQUAL, and give an informative error // message so that the situation can be more easily understood without // requiring exotic floating-point knowledge. // Don't do an epsilon check if abs_error is zero because that implies // that an equality check was actually intended. if (!(std::isnan)(val1) && !(std::isnan)(val2) && abs_error > 0 && abs_error < epsilon) { return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ".\nThe abs_error parameter " << abs_error_expr << " evaluates to " << abs_error << " which is smaller than the minimum distance between doubles for " "numbers of this magnitude which is " << epsilon << ", thus making this EXPECT_NEAR check equivalent to " "EXPECT_EQUAL. Consider using EXPECT_DOUBLE_EQ instead."; } return AssertionFailure() << "The difference between " << expr1 << " and " << expr2 << " is " << diff << ", which exceeds " << abs_error_expr << ", where\n" << expr1 << " evaluates to " << val1 << ",\n" << expr2 << " evaluates to " << val2 << ", and\n" << abs_error_expr << " evaluates to " << abs_error << "."; } // Helper template for implementing FloatLE() and DoubleLE(). template <typename RawType> AssertionResult FloatingPointLE(const char* expr1, const char* expr2, RawType val1, RawType val2) { // Returns success if val1 is less than val2, if (val1 < val2) { return AssertionSuccess(); } // or if val1 is almost equal to val2. const FloatingPoint<RawType> lhs(val1), rhs(val2); if (lhs.AlmostEquals(rhs)) { return AssertionSuccess(); } // Note that the above two checks will both fail if either val1 or // val2 is NaN, as the IEEE floating-point standard requires that // any predicate involving a NaN must return false. ::std::stringstream val1_ss; val1_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2) << val1; ::std::stringstream val2_ss; val2_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2) << val2; return AssertionFailure() << "Expected: (" << expr1 << ") <= (" << expr2 << ")\n" << " Actual: " << StringStreamToString(&val1_ss) << " vs " << StringStreamToString(&val2_ss); } } // namespace internal // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult FloatLE(const char* expr1, const char* expr2, float val1, float val2) { return internal::FloatingPointLE<float>(expr1, expr2, val1, val2); } // Asserts that val1 is less than, or almost equal to, val2. Fails // otherwise. In particular, it fails if either val1 or val2 is NaN. AssertionResult DoubleLE(const char* expr1, const char* expr2, double val1, double val2) { return internal::FloatingPointLE<double>(expr1, expr2, val1, val2); } namespace internal { // The helper function for {ASSERT|EXPECT}_STREQ. AssertionResult CmpHelperSTREQ(const char* lhs_expression, const char* rhs_expression, const char* lhs, const char* rhs) { if (String::CStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), false); } // The helper function for {ASSERT|EXPECT}_STRCASEEQ. AssertionResult CmpHelperSTRCASEEQ(const char* lhs_expression, const char* rhs_expression, const char* lhs, const char* rhs) { if (String::CaseInsensitiveCStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), true); } // The helper function for {ASSERT|EXPECT}_STRNE. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } // The helper function for {ASSERT|EXPECT}_STRCASENE. AssertionResult CmpHelperSTRCASENE(const char* s1_expression, const char* s2_expression, const char* s1, const char* s2) { if (!String::CaseInsensitiveCStringEquals(s1, s2)) { return AssertionSuccess(); } else { return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << ") (ignoring case), actual: \"" << s1 << "\" vs \"" << s2 << "\""; } } } // namespace internal namespace { // Helper functions for implementing IsSubString() and IsNotSubstring(). // This group of overloaded functions return true if and only if needle // is a substring of haystack. NULL is considered a substring of // itself only. bool IsSubstringPred(const char* needle, const char* haystack) { if (needle == nullptr || haystack == nullptr) return needle == haystack; return strstr(haystack, needle) != nullptr; } bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) { if (needle == nullptr || haystack == nullptr) return needle == haystack; return wcsstr(haystack, needle) != nullptr; } // StringType here can be either ::std::string or ::std::wstring. template <typename StringType> bool IsSubstringPred(const StringType& needle, const StringType& haystack) { return haystack.find(needle) != StringType::npos; } // This function implements either IsSubstring() or IsNotSubstring(), // depending on the value of the expected_to_be_substring parameter. // StringType here can be const char*, const wchar_t*, ::std::string, // or ::std::wstring. template <typename StringType> AssertionResult IsSubstringImpl( bool expected_to_be_substring, const char* needle_expr, const char* haystack_expr, const StringType& needle, const StringType& haystack) { if (IsSubstringPred(needle, haystack) == expected_to_be_substring) return AssertionSuccess(); const bool is_wide_string = sizeof(needle[0]) > 1; const char* const begin_string_quote = is_wide_string ? "L\"" : "\""; return AssertionFailure() << "Value of: " << needle_expr << "\n" << " Actual: " << begin_string_quote << needle << "\"\n" << "Expected: " << (expected_to_be_substring ? "" : "not ") << "a substring of " << haystack_expr << "\n" << "Which is: " << begin_string_quote << haystack << "\""; } } // namespace // IsSubstring() and IsNotSubstring() check whether needle is a // substring of haystack (NULL is considered a substring of itself // only), and return an appropriate error message when they fail. AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const char* needle, const char* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const wchar_t* needle, const wchar_t* haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::string& needle, const ::std::string& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #if GTEST_HAS_STD_WSTRING AssertionResult IsSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack); } AssertionResult IsNotSubstring( const char* needle_expr, const char* haystack_expr, const ::std::wstring& needle, const ::std::wstring& haystack) { return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack); } #endif // GTEST_HAS_STD_WSTRING namespace internal { #if GTEST_OS_WINDOWS namespace { // Helper function for IsHRESULT{SuccessFailure} predicates AssertionResult HRESULTFailureHelper(const char* expr, const char* expected, long hr) { // NOLINT # if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_TV_TITLE // Windows CE doesn't support FormatMessage. const char error_text[] = ""; # else // Looks up the human-readable system message for the HRESULT code // and since we're not passing any params to FormatMessage, we don't // want inserts expanded. const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS; const DWORD kBufSize = 4096; // Gets the system's human readable message string for this HRESULT. char error_text[kBufSize] = { '\0' }; DWORD message_length = ::FormatMessageA(kFlags, 0, // no source, we're asking system static_cast<DWORD>(hr), // the error 0, // no line width restrictions error_text, // output buffer kBufSize, // buf size nullptr); // no arguments for inserts // Trims tailing white space (FormatMessage leaves a trailing CR-LF) for (; message_length && IsSpace(error_text[message_length - 1]); --message_length) { error_text[message_length - 1] = '\0'; } # endif // GTEST_OS_WINDOWS_MOBILE const std::string error_hex("0x" + String::FormatHexInt(hr)); return ::testing::AssertionFailure() << "Expected: " << expr << " " << expected << ".\n" << " Actual: " << error_hex << " " << error_text << "\n"; } } // namespace AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT if (SUCCEEDED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "succeeds", hr); } AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT if (FAILED(hr)) { return AssertionSuccess(); } return HRESULTFailureHelper(expr, "fails", hr); } #endif // GTEST_OS_WINDOWS // Utility functions for encoding Unicode text (wide strings) in // UTF-8. // A Unicode code-point can have up to 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding // 0 - 7 bits 0xxxxxxx // 8 - 11 bits 110xxxxx 10xxxxxx // 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx // 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // The maximum code-point a one-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint1 = (static_cast<uint32_t>(1) << 7) - 1; // The maximum code-point a two-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint2 = (static_cast<uint32_t>(1) << (5 + 6)) - 1; // The maximum code-point a three-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint3 = (static_cast<uint32_t>(1) << (4 + 2*6)) - 1; // The maximum code-point a four-byte UTF-8 sequence can represent. constexpr uint32_t kMaxCodePoint4 = (static_cast<uint32_t>(1) << (3 + 3*6)) - 1; // Chops off the n lowest bits from a bit pattern. Returns the n // lowest bits. As a side effect, the original bit pattern will be // shifted to the right by n bits. inline uint32_t ChopLowBits(uint32_t* bits, int n) { const uint32_t low_bits = *bits & ((static_cast<uint32_t>(1) << n) - 1); *bits >>= n; return low_bits; } // Converts a Unicode code point to a narrow string in UTF-8 encoding. // code_point parameter is of type uint32_t because wchar_t may not be // wide enough to contain a code point. // If the code_point is not a valid Unicode code point // (i.e. outside of Unicode range U+0 to U+10FFFF) it will be converted // to "(Invalid Unicode 0xXXXXXXXX)". std::string CodePointToUtf8(uint32_t code_point) { if (code_point > kMaxCodePoint4) { return "(Invalid Unicode 0x" + String::FormatHexUInt32(code_point) + ")"; } char str[5]; // Big enough for the largest valid code point. if (code_point <= kMaxCodePoint1) { str[1] = '\0'; str[0] = static_cast<char>(code_point); // 0xxxxxxx } else if (code_point <= kMaxCodePoint2) { str[2] = '\0'; str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast<char>(0xC0 | code_point); // 110xxxxx } else if (code_point <= kMaxCodePoint3) { str[3] = '\0'; str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast<char>(0xE0 | code_point); // 1110xxxx } else { // code_point <= kMaxCodePoint4 str[4] = '\0'; str[3] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx str[0] = static_cast<char>(0xF0 | code_point); // 11110xxx } return str; } // The following two functions only make sense if the system // uses UTF-16 for wide string encoding. All supported systems // with 16 bit wchar_t (Windows, Cygwin) do use UTF-16. // Determines if the arguments constitute UTF-16 surrogate pair // and thus should be combined into a single Unicode code point // using CreateCodePointFromUtf16SurrogatePair. inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) { return sizeof(wchar_t) == 2 && (first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00; } // Creates a Unicode code point from UTF16 surrogate pair. inline uint32_t CreateCodePointFromUtf16SurrogatePair(wchar_t first, wchar_t second) { const auto first_u = static_cast<uint32_t>(first); const auto second_u = static_cast<uint32_t>(second); const uint32_t mask = (1 << 10) - 1; return (sizeof(wchar_t) == 2) ? (((first_u & mask) << 10) | (second_u & mask)) + 0x10000 : // This function should not be called when the condition is // false, but we provide a sensible default in case it is. first_u; } // Converts a wide string to a narrow string in UTF-8 encoding. // The wide string is assumed to have the following encoding: // UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin) // UTF-32 if sizeof(wchar_t) == 4 (on Linux) // Parameter str points to a null-terminated wide string. // Parameter num_chars may additionally limit the number // of wchar_t characters processed. -1 is used when the entire string // should be processed. // If the string contains code points that are not valid Unicode code points // (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output // as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding // and contains invalid UTF-16 surrogate pairs, values in those pairs // will be encoded as individual Unicode characters from Basic Normal Plane. std::string WideStringToUtf8(const wchar_t* str, int num_chars) { if (num_chars == -1) num_chars = static_cast<int>(wcslen(str)); ::std::stringstream stream; for (int i = 0; i < num_chars; ++i) { uint32_t unicode_code_point; if (str[i] == L'\0') { break; } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) { unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]); i++; } else { unicode_code_point = static_cast<uint32_t>(str[i]); } stream << CodePointToUtf8(unicode_code_point); } return StringStreamToString(&stream); } // Converts a wide C string to an std::string using the UTF-8 encoding. // NULL will be converted to "(null)". std::string String::ShowWideCString(const wchar_t * wide_c_str) { if (wide_c_str == nullptr) return "(null)"; return internal::WideStringToUtf8(wide_c_str, -1); } // Compares two wide C strings. Returns true if and only if they have the // same content. // // Unlike wcscmp(), this function can handle NULL argument(s). A NULL // C string is considered different to any non-NULL C string, // including the empty string. bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return wcscmp(lhs, rhs) == 0; } // Helper function for *_STREQ on wide strings. AssertionResult CmpHelperSTREQ(const char* lhs_expression, const char* rhs_expression, const wchar_t* lhs, const wchar_t* rhs) { if (String::WideCStringEquals(lhs, rhs)) { return AssertionSuccess(); } return EqFailure(lhs_expression, rhs_expression, PrintToString(lhs), PrintToString(rhs), false); } // Helper function for *_STRNE on wide strings. AssertionResult CmpHelperSTRNE(const char* s1_expression, const char* s2_expression, const wchar_t* s1, const wchar_t* s2) { if (!String::WideCStringEquals(s1, s2)) { return AssertionSuccess(); } return AssertionFailure() << "Expected: (" << s1_expression << ") != (" << s2_expression << "), actual: " << PrintToString(s1) << " vs " << PrintToString(s2); } // Compares two C strings, ignoring case. Returns true if and only if they have // the same content. // // Unlike strcasecmp(), this function can handle NULL argument(s). A // NULL C string is considered different to any non-NULL C string, // including the empty string. bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; return posix::StrCaseCmp(lhs, rhs) == 0; } // Compares two wide C strings, ignoring case. Returns true if and only if they // have the same content. // // Unlike wcscasecmp(), this function can handle NULL argument(s). // A NULL C string is considered different to any non-NULL wide C string, // including the empty string. // NB: The implementations on different platforms slightly differ. // On windows, this method uses _wcsicmp which compares according to LC_CTYPE // environment variable. On GNU platform this method uses wcscasecmp // which compares according to LC_CTYPE category of the current locale. // On MacOS X, it uses towlower, which also uses LC_CTYPE category of the // current locale. bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { if (lhs == nullptr) return rhs == nullptr; if (rhs == nullptr) return false; #if GTEST_OS_WINDOWS return _wcsicmp(lhs, rhs) == 0; #elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID return wcscasecmp(lhs, rhs) == 0; #else // Android, Mac OS X and Cygwin don't define wcscasecmp. // Other unknown OSes may not define it either. wint_t left, right; do { left = towlower(static_cast<wint_t>(*lhs++)); right = towlower(static_cast<wint_t>(*rhs++)); } while (left && left == right); return left == right; #endif // OS selector } // Returns true if and only if str ends with the given suffix, ignoring case. // Any string is considered to end with an empty suffix. bool String::EndsWithCaseInsensitive( const std::string& str, const std::string& suffix) { const size_t str_len = str.length(); const size_t suffix_len = suffix.length(); return (str_len >= suffix_len) && CaseInsensitiveCStringEquals(str.c_str() + str_len - suffix_len, suffix.c_str()); } // Formats an int value as "%02d". std::string String::FormatIntWidth2(int value) { return FormatIntWidthN(value, 2); } // Formats an int value to given width with leading zeros. std::string String::FormatIntWidthN(int value, int width) { std::stringstream ss; ss << std::setfill('0') << std::setw(width) << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexUInt32(uint32_t value) { std::stringstream ss; ss << std::hex << std::uppercase << value; return ss.str(); } // Formats an int value as "%X". std::string String::FormatHexInt(int value) { return FormatHexUInt32(static_cast<uint32_t>(value)); } // Formats a byte as "%02X". std::string String::FormatByte(unsigned char value) { std::stringstream ss; ss << std::setfill('0') << std::setw(2) << std::hex << std::uppercase << static_cast<unsigned int>(value); return ss.str(); } // Converts the buffer in a stringstream to an std::string, converting NUL // bytes to "\\0" along the way. std::string StringStreamToString(::std::stringstream* ss) { const ::std::string& str = ss->str(); const char* const start = str.c_str(); const char* const end = start + str.length(); std::string result; result.reserve(static_cast<size_t>(2 * (end - start))); for (const char* ch = start; ch != end; ++ch) { if (*ch == '\0') { result += "\\0"; // Replaces NUL with "\\0"; } else { result += *ch; } } return result; } // Appends the user-supplied message to the Google-Test-generated message. std::string AppendUserMessage(const std::string& gtest_msg, const Message& user_msg) { // Appends the user message if it's non-empty. const std::string user_msg_string = user_msg.GetString(); if (user_msg_string.empty()) { return gtest_msg; } if (gtest_msg.empty()) { return user_msg_string; } return gtest_msg + "\n" + user_msg_string; } } // namespace internal // class TestResult // Creates an empty TestResult. TestResult::TestResult() : death_test_count_(0), start_timestamp_(0), elapsed_time_(0) {} // D'tor. TestResult::~TestResult() { } // Returns the i-th test part result among all the results. i can // range from 0 to total_part_count() - 1. If i is not in that range, // aborts the program. const TestPartResult& TestResult::GetTestPartResult(int i) const { if (i < 0 || i >= total_part_count()) internal::posix::Abort(); return test_part_results_.at(static_cast<size_t>(i)); } // Returns the i-th test property. i can range from 0 to // test_property_count() - 1. If i is not in that range, aborts the // program. const TestProperty& TestResult::GetTestProperty(int i) const { if (i < 0 || i >= test_property_count()) internal::posix::Abort(); return test_properties_.at(static_cast<size_t>(i)); } // Clears the test part results. void TestResult::ClearTestPartResults() { test_part_results_.clear(); } // Adds a test part result to the list. void TestResult::AddTestPartResult(const TestPartResult& test_part_result) { test_part_results_.push_back(test_part_result); } // Adds a test property to the list. If a property with the same key as the // supplied property is already represented, the value of this test_property // replaces the old value for that key. void TestResult::RecordProperty(const std::string& xml_element, const TestProperty& test_property) { if (!ValidateTestProperty(xml_element, test_property)) { return; } internal::MutexLock lock(&test_properties_mutex_); const std::vector<TestProperty>::iterator property_with_matching_key = std::find_if(test_properties_.begin(), test_properties_.end(), internal::TestPropertyKeyIs(test_property.key())); if (property_with_matching_key == test_properties_.end()) { test_properties_.push_back(test_property); return; } property_with_matching_key->SetValue(test_property.value()); } // The list of reserved attributes used in the <testsuites> element of XML // output. static const char* const kReservedTestSuitesAttributes[] = { "disabled", "errors", "failures", "name", "random_seed", "tests", "time", "timestamp" }; // The list of reserved attributes used in the <testsuite> element of XML // output. static const char* const kReservedTestSuiteAttributes[] = { "disabled", "errors", "failures", "name", "tests", "time", "timestamp", "skipped"}; // The list of reserved attributes used in the <testcase> element of XML output. static const char* const kReservedTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param", "file", "line"}; // Use a slightly different set for allowed output to ensure existing tests can // still RecordProperty("result") or "RecordProperty(timestamp") static const char* const kReservedOutputTestCaseAttributes[] = { "classname", "name", "status", "time", "type_param", "value_param", "file", "line", "result", "timestamp"}; template <size_t kSize> std::vector<std::string> ArrayAsVector(const char* const (&array)[kSize]) { return std::vector<std::string>(array, array + kSize); } static std::vector<std::string> GetReservedAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector<std::string>(); } // TODO(jdesprez): Merge the two getReserved attributes once skip is improved static std::vector<std::string> GetReservedOutputAttributesForElement( const std::string& xml_element) { if (xml_element == "testsuites") { return ArrayAsVector(kReservedTestSuitesAttributes); } else if (xml_element == "testsuite") { return ArrayAsVector(kReservedTestSuiteAttributes); } else if (xml_element == "testcase") { return ArrayAsVector(kReservedOutputTestCaseAttributes); } else { GTEST_CHECK_(false) << "Unrecognized xml_element provided: " << xml_element; } // This code is unreachable but some compilers may not realizes that. return std::vector<std::string>(); } static std::string FormatWordList(const std::vector<std::string>& words) { Message word_list; for (size_t i = 0; i < words.size(); ++i) { if (i > 0 && words.size() > 2) { word_list << ", "; } if (i == words.size() - 1) { word_list << "and "; } word_list << "'" << words[i] << "'"; } return word_list.GetString(); } static bool ValidateTestPropertyName( const std::string& property_name, const std::vector<std::string>& reserved_names) { if (std::find(reserved_names.begin(), reserved_names.end(), property_name) != reserved_names.end()) { ADD_FAILURE() << "Reserved key used in RecordProperty(): " << property_name << " (" << FormatWordList(reserved_names) << " are reserved by " << GTEST_NAME_ << ")"; return false; } return true; } // Adds a failure if the key is a reserved attribute of the element named // xml_element. Returns true if the property is valid. bool TestResult::ValidateTestProperty(const std::string& xml_element, const TestProperty& test_property) { return ValidateTestPropertyName(test_property.key(), GetReservedAttributesForElement(xml_element)); } // Clears the object. void TestResult::Clear() { test_part_results_.clear(); test_properties_.clear(); death_test_count_ = 0; elapsed_time_ = 0; } // Returns true off the test part was skipped. static bool TestPartSkipped(const TestPartResult& result) { return result.skipped(); } // Returns true if and only if the test was skipped. bool TestResult::Skipped() const { return !Failed() && CountIf(test_part_results_, TestPartSkipped) > 0; } // Returns true if and only if the test failed. bool TestResult::Failed() const { for (int i = 0; i < total_part_count(); ++i) { if (GetTestPartResult(i).failed()) return true; } return false; } // Returns true if and only if the test part fatally failed. static bool TestPartFatallyFailed(const TestPartResult& result) { return result.fatally_failed(); } // Returns true if and only if the test fatally failed. bool TestResult::HasFatalFailure() const { return CountIf(test_part_results_, TestPartFatallyFailed) > 0; } // Returns true if and only if the test part non-fatally failed. static bool TestPartNonfatallyFailed(const TestPartResult& result) { return result.nonfatally_failed(); } // Returns true if and only if the test has a non-fatal failure. bool TestResult::HasNonfatalFailure() const { return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0; } // Gets the number of all test parts. This is the sum of the number // of successful test parts and the number of failed test parts. int TestResult::total_part_count() const { return static_cast<int>(test_part_results_.size()); } // Returns the number of the test properties. int TestResult::test_property_count() const { return static_cast<int>(test_properties_.size()); } // class Test // Creates a Test object. // The c'tor saves the states of all flags. Test::Test() : gtest_flag_saver_(new GTEST_FLAG_SAVER_) { } // The d'tor restores the states of all flags. The actual work is // done by the d'tor of the gtest_flag_saver_ field, and thus not // visible here. Test::~Test() { } // Sets up the test fixture. // // A sub-class may override this. void Test::SetUp() { } // Tears down the test fixture. // // A sub-class may override this. void Test::TearDown() { } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, const std::string& value) { UnitTest::GetInstance()->RecordProperty(key, value); } // Allows user supplied key value pairs to be recorded for later output. void Test::RecordProperty(const std::string& key, int value) { Message value_message; value_message << value; RecordProperty(key, value_message.GetString().c_str()); } namespace internal { void ReportFailureInUnknownLocation(TestPartResult::Type result_type, const std::string& message) { // This function is a friend of UnitTest and as such has access to // AddTestPartResult. UnitTest::GetInstance()->AddTestPartResult( result_type, nullptr, // No info about the source file where the exception occurred. -1, // We have no info on which line caused the exception. message, ""); // No stack trace, either. } } // namespace internal // Google Test requires all tests in the same test suite to use the same test // fixture class. This function checks if the current test has the // same fixture class as the first test in the current test suite. If // yes, it returns true; otherwise it generates a Google Test failure and // returns false. bool Test::HasSameFixtureClass() { internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); const TestSuite* const test_suite = impl->current_test_suite(); // Info about the first test in the current test suite. const TestInfo* const first_test_info = test_suite->test_info_list()[0]; const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_; const char* const first_test_name = first_test_info->name(); // Info about the current test. const TestInfo* const this_test_info = impl->current_test_info(); const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_; const char* const this_test_name = this_test_info->name(); if (this_fixture_id != first_fixture_id) { // Is the first test defined using TEST? const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId(); // Is this test defined using TEST? const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId(); if (first_is_TEST || this_is_TEST) { // Both TEST and TEST_F appear in same test suite, which is incorrect. // Tell the user how to fix this. // Gets the name of the TEST and the name of the TEST_F. Note // that first_is_TEST and this_is_TEST cannot both be true, as // the fixture IDs are different for the two tests. const char* const TEST_name = first_is_TEST ? first_test_name : this_test_name; const char* const TEST_F_name = first_is_TEST ? this_test_name : first_test_name; ADD_FAILURE() << "All tests in the same test suite must use the same test fixture\n" << "class, so mixing TEST_F and TEST in the same test suite is\n" << "illegal. In test suite " << this_test_info->test_suite_name() << ",\n" << "test " << TEST_F_name << " is defined using TEST_F but\n" << "test " << TEST_name << " is defined using TEST. You probably\n" << "want to change the TEST to TEST_F or move it to another test\n" << "case."; } else { // Two fixture classes with the same name appear in two different // namespaces, which is not allowed. Tell the user how to fix this. ADD_FAILURE() << "All tests in the same test suite must use the same test fixture\n" << "class. However, in test suite " << this_test_info->test_suite_name() << ",\n" << "you defined test " << first_test_name << " and test " << this_test_name << "\n" << "using two different test fixture classes. This can happen if\n" << "the two classes are from different namespaces or translation\n" << "units and have the same name. You should probably rename one\n" << "of the classes to put the tests into different test suites."; } return false; } return true; } #if GTEST_HAS_SEH // Adds an "exception thrown" fatal failure to the current test. This // function returns its result via an output parameter pointer because VC++ // prohibits creation of objects with destructors on stack in functions // using __try (see error C2712). static std::string* FormatSehExceptionMessage(DWORD exception_code, const char* location) { Message message; message << "SEH exception with code 0x" << std::setbase(16) << exception_code << std::setbase(10) << " thrown in " << location << "."; return new std::string(message.GetString()); } #endif // GTEST_HAS_SEH namespace internal { #if GTEST_HAS_EXCEPTIONS // Adds an "exception thrown" fatal failure to the current test. static std::string FormatCxxExceptionMessage(const char* description, const char* location) { Message message; if (description != nullptr) { message << "C++ exception with description \"" << description << "\""; } else { message << "Unknown C++ exception"; } message << " thrown in " << location << "."; return message.GetString(); } static std::string PrintTestPartResultToString( const TestPartResult& test_part_result); GoogleTestFailureException::GoogleTestFailureException( const TestPartResult& failure) : ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {} #endif // GTEST_HAS_EXCEPTIONS // We put these helper functions in the internal namespace as IBM's xlC // compiler rejects the code if they were declared static. // Runs the given method and handles SEH exceptions it throws, when // SEH is supported; returns the 0-value for type Result in case of an // SEH exception. (Microsoft compilers cannot handle SEH and C++ // exceptions in the same function. Therefore, we provide a separate // wrapper function for handling SEH exceptions.) template <class T, typename Result> Result HandleSehExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { #if GTEST_HAS_SEH __try { return (object->*method)(); } __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT GetExceptionCode())) { // We create the exception message on the heap because VC++ prohibits // creation of objects with destructors on stack in functions using __try // (see error C2712). std::string* exception_message = FormatSehExceptionMessage( GetExceptionCode(), location); internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure, *exception_message); delete exception_message; return static_cast<Result>(0); } #else (void)location; return (object->*method)(); #endif // GTEST_HAS_SEH } // Runs the given method and catches and reports C++ and/or SEH-style // exceptions, if they are supported; returns the 0-value for type // Result in case of an SEH exception. template <class T, typename Result> Result HandleExceptionsInMethodIfSupported( T* object, Result (T::*method)(), const char* location) { // NOTE: The user code can affect the way in which Google Test handles // exceptions by setting GTEST_FLAG(catch_exceptions), but only before // RUN_ALL_TESTS() starts. It is technically possible to check the flag // after the exception is caught and either report or re-throw the // exception based on the flag's value: // // try { // // Perform the test method. // } catch (...) { // if (GTEST_FLAG(catch_exceptions)) // // Report the exception as failure. // else // throw; // Re-throws the original exception. // } // // However, the purpose of this flag is to allow the program to drop into // the debugger when the exception is thrown. On most platforms, once the // control enters the catch block, the exception origin information is // lost and the debugger will stop the program at the point of the // re-throw in this function -- instead of at the point of the original // throw statement in the code under test. For this reason, we perform // the check early, sacrificing the ability to affect Google Test's // exception handling in the method where the exception is thrown. if (internal::GetUnitTestImpl()->catch_exceptions()) { #if GTEST_HAS_EXCEPTIONS try { return HandleSehExceptionsInMethodIfSupported(object, method, location); } catch (const AssertionException&) { // NOLINT // This failure was reported already. } catch (const internal::GoogleTestFailureException&) { // NOLINT // This exception type can only be thrown by a failed Google // Test assertion with the intention of letting another testing // framework catch it. Therefore we just re-throw it. throw; } catch (const std::exception& e) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(e.what(), location)); } catch (...) { // NOLINT internal::ReportFailureInUnknownLocation( TestPartResult::kFatalFailure, FormatCxxExceptionMessage(nullptr, location)); } return static_cast<Result>(0); #else return HandleSehExceptionsInMethodIfSupported(object, method, location); #endif // GTEST_HAS_EXCEPTIONS } else { return (object->*method)(); } } } // namespace internal // Runs the test and updates the test result. void Test::Run() { if (!HasSameFixtureClass()) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()"); // We will run the test only if SetUp() was successful and didn't call // GTEST_SKIP(). if (!HasFatalFailure() && !IsSkipped()) { impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TestBody, "the test body"); } // However, we want to clean up as much as possible. Hence we will // always call TearDown(), even if SetUp() or the test body has // failed. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &Test::TearDown, "TearDown()"); } // Returns true if and only if the current test has a fatal failure. bool Test::HasFatalFailure() { return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure(); } // Returns true if and only if the current test has a non-fatal failure. bool Test::HasNonfatalFailure() { return internal::GetUnitTestImpl()->current_test_result()-> HasNonfatalFailure(); } // Returns true if and only if the current test was skipped. bool Test::IsSkipped() { return internal::GetUnitTestImpl()->current_test_result()->Skipped(); } // class TestInfo // Constructs a TestInfo object. It assumes ownership of the test factory // object. TestInfo::TestInfo(const std::string& a_test_suite_name, const std::string& a_name, const char* a_type_param, const char* a_value_param, internal::CodeLocation a_code_location, internal::TypeId fixture_class_id, internal::TestFactoryBase* factory) : test_suite_name_(a_test_suite_name), name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : nullptr), value_param_(a_value_param ? new std::string(a_value_param) : nullptr), location_(a_code_location), fixture_class_id_(fixture_class_id), should_run_(false), is_disabled_(false), matches_filter_(false), is_in_another_shard_(false), factory_(factory), result_() {} // Destructs a TestInfo object. TestInfo::~TestInfo() { delete factory_; } namespace internal { // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_suite_name: name of the test suite // name: name of the test // type_param: the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param: text representation of the test's value parameter, // or NULL if this is not a value-parameterized test. // code_location: code location where the test is defined // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. TestInfo* MakeAndRegisterTestInfo( const char* test_suite_name, const char* name, const char* type_param, const char* value_param, CodeLocation code_location, TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory) { TestInfo* const test_info = new TestInfo(test_suite_name, name, type_param, value_param, code_location, fixture_class_id, factory); GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info); return test_info; } void ReportInvalidTestSuiteType(const char* test_suite_name, CodeLocation code_location) { Message errors; errors << "Attempted redefinition of test suite " << test_suite_name << ".\n" << "All tests in the same test suite must use the same test fixture\n" << "class. However, in test suite " << test_suite_name << ", you tried\n" << "to define a test using a fixture class different from the one\n" << "used earlier. This can happen if the two fixture classes are\n" << "from different namespaces and have the same name. You should\n" << "probably rename one of the classes to put the tests into different\n" << "test suites."; GTEST_LOG_(ERROR) << FormatFileLocation(code_location.file.c_str(), code_location.line) << " " << errors.GetString(); } } // namespace internal namespace { // A predicate that checks the test name of a TestInfo against a known // value. // // This is used for implementation of the TestSuite class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestNameIs is copyable. class TestNameIs { public: // Constructor. // // TestNameIs has NO default constructor. explicit TestNameIs(const char* name) : name_(name) {} // Returns true if and only if the test name of test_info matches name_. bool operator()(const TestInfo * test_info) const { return test_info && test_info->name() == name_; } private: std::string name_; }; } // namespace namespace internal { // This method expands all parameterized tests registered with macros TEST_P // and INSTANTIATE_TEST_SUITE_P into regular tests and registers those. // This will be done just once during the program runtime. void UnitTestImpl::RegisterParameterizedTests() { if (!parameterized_tests_registered_) { parameterized_test_registry_.RegisterTests(); type_parameterized_test_registry_.CheckForInstantiations(); parameterized_tests_registered_ = true; } } } // namespace internal // Creates the test object, runs it, records its result, and then // deletes it. void TestInfo::Run() { if (!should_run_) return; // Tells UnitTest where to store test result. internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); result_.set_start_timestamp(internal::GetTimeInMillis()); internal::Timer timer; impl->os_stack_trace_getter()->UponLeavingGTest(); // Creates the test object. Test* const test = internal::HandleExceptionsInMethodIfSupported( factory_, &internal::TestFactoryBase::CreateTest, "the test fixture's constructor"); // Runs the test if the constructor didn't generate a fatal failure or invoke // GTEST_SKIP(). // Note that the object will not be null if (!Test::HasFatalFailure() && !Test::IsSkipped()) { // This doesn't throw as all user code that can throw are wrapped into // exception handling code. test->Run(); } if (test != nullptr) { // Deletes the test object. impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( test, &Test::DeleteSelf_, "the test fixture's destructor"); } result_.set_elapsed_time(timer.Elapsed()); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); // Tells UnitTest to stop associating assertion results to this // test. impl->set_current_test_info(nullptr); } // Skip and records a skipped test result for this object. void TestInfo::Skip() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_info(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Notifies the unit test event listeners that a test is about to start. repeater->OnTestStart(*this); const TestPartResult test_part_result = TestPartResult(TestPartResult::kSkip, this->file(), this->line(), ""); impl->GetTestPartResultReporterForCurrentThread()->ReportTestPartResult( test_part_result); // Notifies the unit test event listener that a test has just finished. repeater->OnTestEnd(*this); impl->set_current_test_info(nullptr); } // class TestSuite // Gets the number of successful tests in this test suite. int TestSuite::successful_test_count() const { return CountIf(test_info_list_, TestPassed); } // Gets the number of successful tests in this test suite. int TestSuite::skipped_test_count() const { return CountIf(test_info_list_, TestSkipped); } // Gets the number of failed tests in this test suite. int TestSuite::failed_test_count() const { return CountIf(test_info_list_, TestFailed); } // Gets the number of disabled tests that will be reported in the XML report. int TestSuite::reportable_disabled_test_count() const { return CountIf(test_info_list_, TestReportableDisabled); } // Gets the number of disabled tests in this test suite. int TestSuite::disabled_test_count() const { return CountIf(test_info_list_, TestDisabled); } // Gets the number of tests to be printed in the XML report. int TestSuite::reportable_test_count() const { return CountIf(test_info_list_, TestReportable); } // Get the number of tests in this test suite that should run. int TestSuite::test_to_run_count() const { return CountIf(test_info_list_, ShouldRunTest); } // Gets the number of all tests. int TestSuite::total_test_count() const { return static_cast<int>(test_info_list_.size()); } // Creates a TestSuite with the given name. // // Arguments: // // a_name: name of the test suite // a_type_param: the name of the test suite's type parameter, or NULL if // this is not a typed or a type-parameterized test suite. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite::TestSuite(const char* a_name, const char* a_type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) : name_(a_name), type_param_(a_type_param ? new std::string(a_type_param) : nullptr), set_up_tc_(set_up_tc), tear_down_tc_(tear_down_tc), should_run_(false), start_timestamp_(0), elapsed_time_(0) {} // Destructor of TestSuite. TestSuite::~TestSuite() { // Deletes every Test in the collection. ForEach(test_info_list_, internal::Delete<TestInfo>); } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. const TestInfo* TestSuite::GetTestInfo(int i) const { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? nullptr : test_info_list_[static_cast<size_t>(index)]; } // Returns the i-th test among all the tests. i can range from 0 to // total_test_count() - 1. If i is not in that range, returns NULL. TestInfo* TestSuite::GetMutableTestInfo(int i) { const int index = GetElementOr(test_indices_, i, -1); return index < 0 ? nullptr : test_info_list_[static_cast<size_t>(index)]; } // Adds a test to this test suite. Will delete the test upon // destruction of the TestSuite object. void TestSuite::AddTestInfo(TestInfo* test_info) { test_info_list_.push_back(test_info); test_indices_.push_back(static_cast<int>(test_indices_.size())); } // Runs every test in this TestSuite. void TestSuite::Run() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_suite(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Call both legacy and the new API repeater->OnTestSuiteStart(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseStart(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestSuite::RunSetUpTestSuite, "SetUpTestSuite()"); start_timestamp_ = internal::GetTimeInMillis(); internal::Timer timer; for (int i = 0; i < total_test_count(); i++) { GetMutableTestInfo(i)->Run(); if (GTEST_FLAG(fail_fast) && GetMutableTestInfo(i)->result()->Failed()) { for (int j = i + 1; j < total_test_count(); j++) { GetMutableTestInfo(j)->Skip(); } break; } } elapsed_time_ = timer.Elapsed(); impl->os_stack_trace_getter()->UponLeavingGTest(); internal::HandleExceptionsInMethodIfSupported( this, &TestSuite::RunTearDownTestSuite, "TearDownTestSuite()"); // Call both legacy and the new API repeater->OnTestSuiteEnd(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseEnd(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ impl->set_current_test_suite(nullptr); } // Skips all tests under this TestSuite. void TestSuite::Skip() { if (!should_run_) return; internal::UnitTestImpl* const impl = internal::GetUnitTestImpl(); impl->set_current_test_suite(this); TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater(); // Call both legacy and the new API repeater->OnTestSuiteStart(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseStart(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ for (int i = 0; i < total_test_count(); i++) { GetMutableTestInfo(i)->Skip(); } // Call both legacy and the new API repeater->OnTestSuiteEnd(*this); // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ repeater->OnTestCaseEnd(*this); #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ impl->set_current_test_suite(nullptr); } // Clears the results of all tests in this test suite. void TestSuite::ClearResult() { ad_hoc_test_result_.Clear(); ForEach(test_info_list_, TestInfo::ClearTestResult); } // Shuffles the tests in this test suite. void TestSuite::ShuffleTests(internal::Random* random) { Shuffle(random, &test_indices_); } // Restores the test order to before the first shuffle. void TestSuite::UnshuffleTests() { for (size_t i = 0; i < test_indices_.size(); i++) { test_indices_[i] = static_cast<int>(i); } } // Formats a countable noun. Depending on its quantity, either the // singular form or the plural form is used. e.g. // // FormatCountableNoun(1, "formula", "formuli") returns "1 formula". // FormatCountableNoun(5, "book", "books") returns "5 books". static std::string FormatCountableNoun(int count, const char * singular_form, const char * plural_form) { return internal::StreamableToString(count) + " " + (count == 1 ? singular_form : plural_form); } // Formats the count of tests. static std::string FormatTestCount(int test_count) { return FormatCountableNoun(test_count, "test", "tests"); } // Formats the count of test suites. static std::string FormatTestSuiteCount(int test_suite_count) { return FormatCountableNoun(test_suite_count, "test suite", "test suites"); } // Converts a TestPartResult::Type enum to human-friendly string // representation. Both kNonFatalFailure and kFatalFailure are translated // to "Failure", as the user usually doesn't care about the difference // between the two when viewing the test result. static const char * TestPartResultTypeToString(TestPartResult::Type type) { switch (type) { case TestPartResult::kSkip: return "Skipped\n"; case TestPartResult::kSuccess: return "Success"; case TestPartResult::kNonFatalFailure: case TestPartResult::kFatalFailure: #ifdef _MSC_VER return "error: "; #else return "Failure\n"; #endif default: return "Unknown result type"; } } namespace internal { namespace { enum class GTestColor { kDefault, kRed, kGreen, kYellow }; } // namespace // Prints a TestPartResult to an std::string. static std::string PrintTestPartResultToString( const TestPartResult& test_part_result) { return (Message() << internal::FormatFileLocation(test_part_result.file_name(), test_part_result.line_number()) << " " << TestPartResultTypeToString(test_part_result.type()) << test_part_result.message()).GetString(); } // Prints a TestPartResult. static void PrintTestPartResult(const TestPartResult& test_part_result) { const std::string& result = PrintTestPartResultToString(test_part_result); printf("%s\n", result.c_str()); fflush(stdout); // If the test program runs in Visual Studio or a debugger, the // following statements add the test part result message to the Output // window such that the user can double-click on it to jump to the // corresponding source code location; otherwise they do nothing. #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // We don't call OutputDebugString*() on Windows Mobile, as printing // to stdout is done by OutputDebugString() there already - we don't // want the same message printed twice. ::OutputDebugStringA(result.c_str()); ::OutputDebugStringA("\n"); #endif } // class PrettyUnitTestResultPrinter #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW // Returns the character attribute for the given color. static WORD GetColorAttribute(GTestColor color) { switch (color) { case GTestColor::kRed: return FOREGROUND_RED; case GTestColor::kGreen: return FOREGROUND_GREEN; case GTestColor::kYellow: return FOREGROUND_RED | FOREGROUND_GREEN; default: return 0; } } static int GetBitOffset(WORD color_mask) { if (color_mask == 0) return 0; int bitOffset = 0; while ((color_mask & 1) == 0) { color_mask >>= 1; ++bitOffset; } return bitOffset; } static WORD GetNewColor(GTestColor color, WORD old_color_attrs) { // Let's reuse the BG static const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_INTENSITY; static const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY; const WORD existing_bg = old_color_attrs & background_mask; WORD new_color = GetColorAttribute(color) | existing_bg | FOREGROUND_INTENSITY; static const int bg_bitOffset = GetBitOffset(background_mask); static const int fg_bitOffset = GetBitOffset(foreground_mask); if (((new_color & background_mask) >> bg_bitOffset) == ((new_color & foreground_mask) >> fg_bitOffset)) { new_color ^= FOREGROUND_INTENSITY; // invert intensity } return new_color; } #else // Returns the ANSI color code for the given color. GTestColor::kDefault is // an invalid input. static const char* GetAnsiColorCode(GTestColor color) { switch (color) { case GTestColor::kRed: return "1"; case GTestColor::kGreen: return "2"; case GTestColor::kYellow: return "3"; default: return nullptr; } } #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE // Returns true if and only if Google Test should use colors in the output. bool ShouldUseColor(bool stdout_is_tty) { const char* const gtest_color = GTEST_FLAG(color).c_str(); if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) { #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW // On Windows the TERM variable is usually not set, but the // console there does support colors. return stdout_is_tty; #else // On non-Windows platforms, we rely on the TERM variable. const char* const term = posix::GetEnv("TERM"); const bool term_supports_color = String::CStringEquals(term, "xterm") || String::CStringEquals(term, "xterm-color") || String::CStringEquals(term, "xterm-256color") || String::CStringEquals(term, "screen") || String::CStringEquals(term, "screen-256color") || String::CStringEquals(term, "tmux") || String::CStringEquals(term, "tmux-256color") || String::CStringEquals(term, "rxvt-unicode") || String::CStringEquals(term, "rxvt-unicode-256color") || String::CStringEquals(term, "linux") || String::CStringEquals(term, "cygwin"); return stdout_is_tty && term_supports_color; #endif // GTEST_OS_WINDOWS } return String::CaseInsensitiveCStringEquals(gtest_color, "yes") || String::CaseInsensitiveCStringEquals(gtest_color, "true") || String::CaseInsensitiveCStringEquals(gtest_color, "t") || String::CStringEquals(gtest_color, "1"); // We take "yes", "true", "t", and "1" as meaning "yes". If the // value is neither one of these nor "auto", we treat it as "no" to // be conservative. } // Helpers for printing colored strings to stdout. Note that on Windows, we // cannot simply emit special characters and have the terminal change colors. // This routine must actually emit the characters rather than return a string // that would be colored when printed, as can be done on Linux. GTEST_ATTRIBUTE_PRINTF_(2, 3) static void ColoredPrintf(GTestColor color, const char *fmt, ...) { va_list args; va_start(args, fmt); #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_ZOS || GTEST_OS_IOS || \ GTEST_OS_WINDOWS_PHONE || GTEST_OS_WINDOWS_RT || defined(ESP_PLATFORM) const bool use_color = AlwaysFalse(); #else static const bool in_color_mode = ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0); const bool use_color = in_color_mode && (color != GTestColor::kDefault); #endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_ZOS if (!use_color) { vprintf(fmt, args); va_end(args); return; } #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE && \ !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT && !GTEST_OS_WINDOWS_MINGW const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE); // Gets the current text color. CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(stdout_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; const WORD new_color = GetNewColor(color, old_color_attrs); // We need to flush the stream buffers into the console before each // SetConsoleTextAttribute call lest it affect the text that is already // printed but has not yet reached the console. fflush(stdout); SetConsoleTextAttribute(stdout_handle, new_color); vprintf(fmt, args); fflush(stdout); // Restores the text color. SetConsoleTextAttribute(stdout_handle, old_color_attrs); #else printf("\033[0;3%sm", GetAnsiColorCode(color)); vprintf(fmt, args); printf("\033[m"); // Resets the terminal to default. #endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE va_end(args); } // Text printed in Google Test's text output and --gtest_list_tests // output to label the type parameter and value parameter for a test. static const char kTypeParamLabel[] = "TypeParam"; static const char kValueParamLabel[] = "GetParam()"; static void PrintFullTestCommentIfPresent(const TestInfo& test_info) { const char* const type_param = test_info.type_param(); const char* const value_param = test_info.value_param(); if (type_param != nullptr || value_param != nullptr) { printf(", where "); if (type_param != nullptr) { printf("%s = %s", kTypeParamLabel, type_param); if (value_param != nullptr) printf(" and "); } if (value_param != nullptr) { printf("%s = %s", kValueParamLabel, value_param); } } } // This class implements the TestEventListener interface. // // Class PrettyUnitTestResultPrinter is copyable. class PrettyUnitTestResultPrinter : public TestEventListener { public: PrettyUnitTestResultPrinter() {} static void PrintTestName(const char* test_suite, const char* test) { printf("%s.%s", test_suite, test); } // The following methods override what's in the TestEventListener class. void OnTestProgramStart(const UnitTest& /*unit_test*/) override {} void OnTestIterationStart(const UnitTest& unit_test, int iteration) override; void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override; void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {} #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& test_case) override; #else void OnTestSuiteStart(const TestSuite& test_suite) override; #endif // OnTestCaseStart void OnTestStart(const TestInfo& test_info) override; void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& test_case) override; #else void OnTestSuiteEnd(const TestSuite& test_suite) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override; void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {} void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {} private: static void PrintFailedTests(const UnitTest& unit_test); static void PrintFailedTestSuites(const UnitTest& unit_test); static void PrintSkippedTests(const UnitTest& unit_test); }; // Fired before each iteration of tests starts. void PrettyUnitTestResultPrinter::OnTestIterationStart( const UnitTest& unit_test, int iteration) { if (GTEST_FLAG(repeat) != 1) printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1); const char* const filter = GTEST_FLAG(filter).c_str(); // Prints the filter if it's not *. This reminds the user that some // tests may be skipped. if (!String::CStringEquals(filter, kUniversalFilter)) { ColoredPrintf(GTestColor::kYellow, "Note: %s filter = %s\n", GTEST_NAME_, filter); } if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) { const int32_t shard_index = Int32FromEnvOrDie(kTestShardIndex, -1); ColoredPrintf(GTestColor::kYellow, "Note: This is test shard %d of %s.\n", static_cast<int>(shard_index) + 1, internal::posix::GetEnv(kTestTotalShards)); } if (GTEST_FLAG(shuffle)) { ColoredPrintf(GTestColor::kYellow, "Note: Randomizing tests' orders with a seed of %d .\n", unit_test.random_seed()); } ColoredPrintf(GTestColor::kGreen, "[==========] "); printf("Running %s from %s.\n", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); fflush(stdout); } void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart( const UnitTest& /*unit_test*/) { ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("Global test environment set-up.\n"); fflush(stdout); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) { const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s", counts.c_str(), test_case.name()); if (test_case.type_param() == nullptr) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_case.type_param()); } fflush(stdout); } #else void PrettyUnitTestResultPrinter::OnTestSuiteStart( const TestSuite& test_suite) { const std::string counts = FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s", counts.c_str(), test_suite.name()); if (test_suite.type_param() == nullptr) { printf("\n"); } else { printf(", where %s = %s\n", kTypeParamLabel, test_suite.type_param()); } fflush(stdout); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) { ColoredPrintf(GTestColor::kGreen, "[ RUN ] "); PrintTestName(test_info.test_suite_name(), test_info.name()); printf("\n"); fflush(stdout); } // Called after an assertion failure. void PrettyUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { switch (result.type()) { // If the test part succeeded, we don't need to do anything. case TestPartResult::kSuccess: return; default: // Print failure message from the assertion // (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } } void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Passed()) { ColoredPrintf(GTestColor::kGreen, "[ OK ] "); } else if (test_info.result()->Skipped()) { ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); } else { ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); } PrintTestName(test_info.test_suite_name(), test_info.name()); if (test_info.result()->Failed()) PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG(print_time)) { printf(" (%s ms)\n", internal::StreamableToString( test_info.result()->elapsed_time()).c_str()); } else { printf("\n"); } fflush(stdout); } #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) { if (!GTEST_FLAG(print_time)) return; const std::string counts = FormatCountableNoun(test_case.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_case.name(), internal::StreamableToString(test_case.elapsed_time()).c_str()); fflush(stdout); } #else void PrettyUnitTestResultPrinter::OnTestSuiteEnd(const TestSuite& test_suite) { if (!GTEST_FLAG(print_time)) return; const std::string counts = FormatCountableNoun(test_suite.test_to_run_count(), "test", "tests"); ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("%s from %s (%s ms total)\n\n", counts.c_str(), test_suite.name(), internal::StreamableToString(test_suite.elapsed_time()).c_str()); fflush(stdout); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart( const UnitTest& /*unit_test*/) { ColoredPrintf(GTestColor::kGreen, "[----------] "); printf("Global test environment tear-down\n"); fflush(stdout); } // Internal helper for printing the list of failed tests. void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) { const int failed_test_count = unit_test.failed_test_count(); ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str()); for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run() || (test_suite.failed_test_count() == 0)) { continue; } for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); if (!test_info.should_run() || !test_info.result()->Failed()) { continue; } ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); printf("%s.%s", test_suite.name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); printf("\n"); } } printf("\n%2d FAILED %s\n", failed_test_count, failed_test_count == 1 ? "TEST" : "TESTS"); } // Internal helper for printing the list of test suite failures not covered by // PrintFailedTests. void PrettyUnitTestResultPrinter::PrintFailedTestSuites( const UnitTest& unit_test) { int suite_failure_count = 0; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run()) { continue; } if (test_suite.ad_hoc_test_result().Failed()) { ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); printf("%s: SetUpTestSuite or TearDownTestSuite\n", test_suite.name()); ++suite_failure_count; } } if (suite_failure_count > 0) { printf("\n%2d FAILED TEST %s\n", suite_failure_count, suite_failure_count == 1 ? "SUITE" : "SUITES"); } } // Internal helper for printing the list of skipped tests. void PrettyUnitTestResultPrinter::PrintSkippedTests(const UnitTest& unit_test) { const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count == 0) { return; } for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { const TestSuite& test_suite = *unit_test.GetTestSuite(i); if (!test_suite.should_run() || (test_suite.skipped_test_count() == 0)) { continue; } for (int j = 0; j < test_suite.total_test_count(); ++j) { const TestInfo& test_info = *test_suite.GetTestInfo(j); if (!test_info.should_run() || !test_info.result()->Skipped()) { continue; } ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); printf("%s.%s", test_suite.name(), test_info.name()); printf("\n"); } } } void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(GTestColor::kGreen, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); if (GTEST_FLAG(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(GTestColor::kGreen, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count > 0) { ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); printf("%s, listed below:\n", FormatTestCount(skipped_test_count).c_str()); PrintSkippedTests(unit_test); } if (!unit_test.Passed()) { PrintFailedTests(unit_test); PrintFailedTestSuites(unit_test); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) { if (unit_test.Passed()) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End PrettyUnitTestResultPrinter // This class implements the TestEventListener interface. // // Class BriefUnitTestResultPrinter is copyable. class BriefUnitTestResultPrinter : public TestEventListener { public: BriefUnitTestResultPrinter() {} static void PrintTestName(const char* test_suite, const char* test) { printf("%s.%s", test_suite, test); } // The following methods override what's in the TestEventListener class. void OnTestProgramStart(const UnitTest& /*unit_test*/) override {} void OnTestIterationStart(const UnitTest& /*unit_test*/, int /*iteration*/) override {} void OnEnvironmentsSetUpStart(const UnitTest& /*unit_test*/) override {} void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) override {} #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestCase& /*test_case*/) override {} #else void OnTestSuiteStart(const TestSuite& /*test_suite*/) override {} #endif // OnTestCaseStart void OnTestStart(const TestInfo& /*test_info*/) override {} void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& /*test_case*/) override {} #else void OnTestSuiteEnd(const TestSuite& /*test_suite*/) override {} #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnEnvironmentsTearDownStart(const UnitTest& /*unit_test*/) override {} void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) override {} void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& /*unit_test*/) override {} }; // Called after an assertion failure. void BriefUnitTestResultPrinter::OnTestPartResult( const TestPartResult& result) { switch (result.type()) { // If the test part succeeded, we don't need to do anything. case TestPartResult::kSuccess: return; default: // Print failure message from the assertion // (e.g. expected this and got that). PrintTestPartResult(result); fflush(stdout); } } void BriefUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) { if (test_info.result()->Failed()) { ColoredPrintf(GTestColor::kRed, "[ FAILED ] "); PrintTestName(test_info.test_suite_name(), test_info.name()); PrintFullTestCommentIfPresent(test_info); if (GTEST_FLAG(print_time)) { printf(" (%s ms)\n", internal::StreamableToString(test_info.result()->elapsed_time()) .c_str()); } else { printf("\n"); } fflush(stdout); } } void BriefUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { ColoredPrintf(GTestColor::kGreen, "[==========] "); printf("%s from %s ran.", FormatTestCount(unit_test.test_to_run_count()).c_str(), FormatTestSuiteCount(unit_test.test_suite_to_run_count()).c_str()); if (GTEST_FLAG(print_time)) { printf(" (%s ms total)", internal::StreamableToString(unit_test.elapsed_time()).c_str()); } printf("\n"); ColoredPrintf(GTestColor::kGreen, "[ PASSED ] "); printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str()); const int skipped_test_count = unit_test.skipped_test_count(); if (skipped_test_count > 0) { ColoredPrintf(GTestColor::kGreen, "[ SKIPPED ] "); printf("%s.\n", FormatTestCount(skipped_test_count).c_str()); } int num_disabled = unit_test.reportable_disabled_test_count(); if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) { if (unit_test.Passed()) { printf("\n"); // Add a spacer if no FAILURE banner is displayed. } ColoredPrintf(GTestColor::kYellow, " YOU HAVE %d DISABLED %s\n\n", num_disabled, num_disabled == 1 ? "TEST" : "TESTS"); } // Ensure that Google Test output is printed before, e.g., heapchecker output. fflush(stdout); } // End BriefUnitTestResultPrinter // class TestEventRepeater // // This class forwards events to other event listeners. class TestEventRepeater : public TestEventListener { public: TestEventRepeater() : forwarding_enabled_(true) {} ~TestEventRepeater() override; void Append(TestEventListener *listener); TestEventListener* Release(TestEventListener* listener); // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled() const { return forwarding_enabled_; } void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; } void OnTestProgramStart(const UnitTest& unit_test) override; void OnTestIterationStart(const UnitTest& unit_test, int iteration) override; void OnEnvironmentsSetUpStart(const UnitTest& unit_test) override; void OnEnvironmentsSetUpEnd(const UnitTest& unit_test) override; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseStart(const TestSuite& parameter) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestSuiteStart(const TestSuite& parameter) override; void OnTestStart(const TestInfo& test_info) override; void OnTestPartResult(const TestPartResult& result) override; void OnTestEnd(const TestInfo& test_info) override; // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestCaseEnd(const TestCase& parameter) override; #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ void OnTestSuiteEnd(const TestSuite& parameter) override; void OnEnvironmentsTearDownStart(const UnitTest& unit_test) override; void OnEnvironmentsTearDownEnd(const UnitTest& unit_test) override; void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void OnTestProgramEnd(const UnitTest& unit_test) override; private: // Controls whether events will be forwarded to listeners_. Set to false // in death test child processes. bool forwarding_enabled_; // The list of listeners that receive events. std::vector<TestEventListener*> listeners_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater); }; TestEventRepeater::~TestEventRepeater() { ForEach(listeners_, Delete<TestEventListener>); } void TestEventRepeater::Append(TestEventListener *listener) { listeners_.push_back(listener); } TestEventListener* TestEventRepeater::Release(TestEventListener *listener) { for (size_t i = 0; i < listeners_.size(); ++i) { if (listeners_[i] == listener) { listeners_.erase(listeners_.begin() + static_cast<int>(i)); return listener; } } return nullptr; } // Since most methods are very similar, use macros to reduce boilerplate. // This defines a member that forwards the call to all listeners. #define GTEST_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = 0; i < listeners_.size(); i++) { \ listeners_[i]->Name(parameter); \ } \ } \ } // This defines a member that forwards the call to all listeners in reverse // order. #define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \ void TestEventRepeater::Name(const Type& parameter) { \ if (forwarding_enabled_) { \ for (size_t i = listeners_.size(); i != 0; i--) { \ listeners_[i - 1]->Name(parameter); \ } \ } \ } GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest) GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REPEATER_METHOD_(OnTestCaseStart, TestSuite) #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REPEATER_METHOD_(OnTestSuiteStart, TestSuite) GTEST_REPEATER_METHOD_(OnTestStart, TestInfo) GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult) GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest) GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo) // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestSuite) #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ GTEST_REVERSE_REPEATER_METHOD_(OnTestSuiteEnd, TestSuite) GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest) #undef GTEST_REPEATER_METHOD_ #undef GTEST_REVERSE_REPEATER_METHOD_ void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = 0; i < listeners_.size(); i++) { listeners_[i]->OnTestIterationStart(unit_test, iteration); } } } void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test, int iteration) { if (forwarding_enabled_) { for (size_t i = listeners_.size(); i > 0; i--) { listeners_[i - 1]->OnTestIterationEnd(unit_test, iteration); } } } // End TestEventRepeater // This class generates an XML output file. class XmlUnitTestResultPrinter : public EmptyTestEventListener { public: explicit XmlUnitTestResultPrinter(const char* output_file); void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; void ListTestsMatchingFilter(const std::vector<TestSuite*>& test_suites); // Prints an XML summary of all unit tests. static void PrintXmlTestsList(std::ostream* stream, const std::vector<TestSuite*>& test_suites); private: // Is c a whitespace character that is normalized to a space character // when it appears in an XML attribute value? static bool IsNormalizableWhitespace(char c) { return c == 0x9 || c == 0xA || c == 0xD; } // May c appear in a well-formed XML document? static bool IsValidXmlCharacter(char c) { return IsNormalizableWhitespace(c) || c >= 0x20; } // Returns an XML-escaped copy of the input string str. If // is_attribute is true, the text is meant to appear as an attribute // value, and normalizable whitespace is preserved by replacing it // with character references. static std::string EscapeXml(const std::string& str, bool is_attribute); // Returns the given string with all characters invalid in XML removed. static std::string RemoveInvalidXmlCharacters(const std::string& str); // Convenience wrapper around EscapeXml when str is an attribute value. static std::string EscapeXmlAttribute(const std::string& str) { return EscapeXml(str, true); } // Convenience wrapper around EscapeXml when str is not an attribute value. static std::string EscapeXmlText(const char* str) { return EscapeXml(str, false); } // Verifies that the given attribute belongs to the given element and // streams the attribute as XML. static void OutputXmlAttribute(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value); // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. static void OutputXmlCDataSection(::std::ostream* stream, const char* data); // Streams a test suite XML stanza containing the given test result. // // Requires: result.Failed() static void OutputXmlTestSuiteForTestResult(::std::ostream* stream, const TestResult& result); // Streams an XML representation of a TestResult object. static void OutputXmlTestResult(::std::ostream* stream, const TestResult& result); // Streams an XML representation of a TestInfo object. static void OutputXmlTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info); // Prints an XML representation of a TestSuite object static void PrintXmlTestSuite(::std::ostream* stream, const TestSuite& test_suite); // Prints an XML summary of unit_test to output stream out. static void PrintXmlUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. // When the std::string is not empty, it includes a space at the beginning, // to delimit this attribute from prior attributes. static std::string TestPropertiesAsXmlAttributes(const TestResult& result); // Streams an XML representation of the test properties of a TestResult // object. static void OutputXmlTestProperties(std::ostream* stream, const TestResult& result); // The output file. const std::string output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter); }; // Creates a new XmlUnitTestResultPrinter. XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.empty()) { GTEST_LOG_(FATAL) << "XML output file may not be null"; } } // Called after the unit test ends. void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* xmlout = OpenFileForWriting(output_file_); std::stringstream stream; PrintXmlUnitTest(&stream, unit_test); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } void XmlUnitTestResultPrinter::ListTestsMatchingFilter( const std::vector<TestSuite*>& test_suites) { FILE* xmlout = OpenFileForWriting(output_file_); std::stringstream stream; PrintXmlTestsList(&stream, test_suites); fprintf(xmlout, "%s", StringStreamToString(&stream).c_str()); fclose(xmlout); } // Returns an XML-escaped copy of the input string str. If is_attribute // is true, the text is meant to appear as an attribute value, and // normalizable whitespace is preserved by replacing it with character // references. // // Invalid XML characters in str, if any, are stripped from the output. // It is expected that most, if not all, of the text processed by this // module will consist of ordinary English text. // If this module is ever modified to produce version 1.1 XML output, // most invalid characters can be retained using character references. std::string XmlUnitTestResultPrinter::EscapeXml( const std::string& str, bool is_attribute) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '<': m << "<"; break; case '>': m << ">"; break; case '&': m << "&"; break; case '\'': if (is_attribute) m << "'"; else m << '\''; break; case '"': if (is_attribute) m << """; else m << '"'; break; default: if (IsValidXmlCharacter(ch)) { if (is_attribute && IsNormalizableWhitespace(ch)) m << "&#x" << String::FormatByte(static_cast<unsigned char>(ch)) << ";"; else m << ch; } break; } } return m.GetString(); } // Returns the given string with all characters invalid in XML removed. // Currently invalid characters are dropped from the string. An // alternative is to replace them with certain characters such as . or ?. std::string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters( const std::string& str) { std::string output; output.reserve(str.size()); for (std::string::const_iterator it = str.begin(); it != str.end(); ++it) if (IsValidXmlCharacter(*it)) output.push_back(*it); return output; } // The following routines generate an XML representation of a UnitTest // object. // GOOGLETEST_CM0009 DO NOT DELETE // // This is how Google Test concepts map to the DTD: // // <testsuites name="AllTests"> <-- corresponds to a UnitTest object // <testsuite name="testcase-name"> <-- corresponds to a TestSuite object // <testcase name="test-name"> <-- corresponds to a TestInfo object // <failure message="...">...</failure> // <failure message="...">...</failure> // <failure message="...">...</failure> // <-- individual assertion failures // </testcase> // </testsuite> // </testsuites> // Formats the given time in milliseconds as seconds. std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) { ::std::stringstream ss; ss << (static_cast<double>(ms) * 1e-3); return ss.str(); } static bool PortableLocaltime(time_t seconds, struct tm* out) { #if defined(_MSC_VER) return localtime_s(out, &seconds) == 0; #elif defined(__MINGW32__) || defined(__MINGW64__) // MINGW <time.h> provides neither localtime_r nor localtime_s, but uses // Windows' localtime(), which has a thread-local tm buffer. struct tm* tm_ptr = localtime(&seconds); // NOLINT if (tm_ptr == nullptr) return false; *out = *tm_ptr; return true; #elif defined(__STDC_LIB_EXT1__) // Uses localtime_s when available as localtime_r is only available from // C23 standard. return localtime_s(&seconds, out) != nullptr; #else return localtime_r(&seconds, out) != nullptr; #endif } // Converts the given epoch time in milliseconds to a date string in the ISO // 8601 format, without the timezone information. std::string FormatEpochTimeInMillisAsIso8601(TimeInMillis ms) { struct tm time_struct; if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct)) return ""; // YYYY-MM-DDThh:mm:ss.sss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec) + "." + String::FormatIntWidthN(static_cast<int>(ms % 1000), 3); } // Streams an XML CDATA section, escaping invalid CDATA sequences as needed. void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream, const char* data) { const char* segment = data; *stream << "<![CDATA["; for (;;) { const char* const next_segment = strstr(segment, "]]>"); if (next_segment != nullptr) { stream->write( segment, static_cast<std::streamsize>(next_segment - segment)); *stream << "]]>]]><![CDATA["; segment = next_segment + strlen("]]>"); } else { *stream << segment; break; } } *stream << "]]>"; } void XmlUnitTestResultPrinter::OutputXmlAttribute( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value) { const std::vector<std::string>& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Attribute " << name << " is not allowed for element <" << element_name << ">."; *stream << " " << name << "=\"" << EscapeXmlAttribute(value) << "\""; } // Streams a test suite XML stanza containing the given test result. void XmlUnitTestResultPrinter::OutputXmlTestSuiteForTestResult( ::std::ostream* stream, const TestResult& result) { // Output the boilerplate for a minimal test suite with one test. *stream << " <testsuite"; OutputXmlAttribute(stream, "testsuite", "name", "NonTestSuiteFailure"); OutputXmlAttribute(stream, "testsuite", "tests", "1"); OutputXmlAttribute(stream, "testsuite", "failures", "1"); OutputXmlAttribute(stream, "testsuite", "disabled", "0"); OutputXmlAttribute(stream, "testsuite", "skipped", "0"); OutputXmlAttribute(stream, "testsuite", "errors", "0"); OutputXmlAttribute(stream, "testsuite", "time", FormatTimeInMillisAsSeconds(result.elapsed_time())); OutputXmlAttribute( stream, "testsuite", "timestamp", FormatEpochTimeInMillisAsIso8601(result.start_timestamp())); *stream << ">"; // Output the boilerplate for a minimal test case with a single test. *stream << " <testcase"; OutputXmlAttribute(stream, "testcase", "name", ""); OutputXmlAttribute(stream, "testcase", "status", "run"); OutputXmlAttribute(stream, "testcase", "result", "completed"); OutputXmlAttribute(stream, "testcase", "classname", ""); OutputXmlAttribute(stream, "testcase", "time", FormatTimeInMillisAsSeconds(result.elapsed_time())); OutputXmlAttribute( stream, "testcase", "timestamp", FormatEpochTimeInMillisAsIso8601(result.start_timestamp())); // Output the actual test result. OutputXmlTestResult(stream, result); // Complete the test suite. *stream << " </testsuite>\n"; } // Prints an XML representation of a TestInfo object. void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestsuite = "testcase"; if (test_info.is_in_another_shard()) { return; } *stream << " <testcase"; OutputXmlAttribute(stream, kTestsuite, "name", test_info.name()); if (test_info.value_param() != nullptr) { OutputXmlAttribute(stream, kTestsuite, "value_param", test_info.value_param()); } if (test_info.type_param() != nullptr) { OutputXmlAttribute(stream, kTestsuite, "type_param", test_info.type_param()); } if (GTEST_FLAG(list_tests)) { OutputXmlAttribute(stream, kTestsuite, "file", test_info.file()); OutputXmlAttribute(stream, kTestsuite, "line", StreamableToString(test_info.line())); *stream << " />\n"; return; } OutputXmlAttribute(stream, kTestsuite, "status", test_info.should_run() ? "run" : "notrun"); OutputXmlAttribute(stream, kTestsuite, "result", test_info.should_run() ? (result.Skipped() ? "skipped" : "completed") : "suppressed"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(result.elapsed_time())); OutputXmlAttribute( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsIso8601(result.start_timestamp())); OutputXmlAttribute(stream, kTestsuite, "classname", test_suite_name); OutputXmlTestResult(stream, result); } void XmlUnitTestResultPrinter::OutputXmlTestResult(::std::ostream* stream, const TestResult& result) { int failures = 0; int skips = 0; for (int i = 0; i < result.total_part_count(); ++i) { const TestPartResult& part = result.GetTestPartResult(i); if (part.failed()) { if (++failures == 1 && skips == 0) { *stream << ">\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string summary = location + "\n" + part.summary(); *stream << " <failure message=\"" << EscapeXmlAttribute(summary) << "\" type=\"\">"; const std::string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "</failure>\n"; } else if (part.skipped()) { if (++skips == 1 && failures == 0) { *stream << ">\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string summary = location + "\n" + part.summary(); *stream << " <skipped message=\"" << EscapeXmlAttribute(summary.c_str()) << "\">"; const std::string detail = location + "\n" + part.message(); OutputXmlCDataSection(stream, RemoveInvalidXmlCharacters(detail).c_str()); *stream << "</skipped>\n"; } } if (failures == 0 && skips == 0 && result.test_property_count() == 0) { *stream << " />\n"; } else { if (failures == 0 && skips == 0) { *stream << ">\n"; } OutputXmlTestProperties(stream, result); *stream << " </testcase>\n"; } } // Prints an XML representation of a TestSuite object void XmlUnitTestResultPrinter::PrintXmlTestSuite(std::ostream* stream, const TestSuite& test_suite) { const std::string kTestsuite = "testsuite"; *stream << " <" << kTestsuite; OutputXmlAttribute(stream, kTestsuite, "name", test_suite.name()); OutputXmlAttribute(stream, kTestsuite, "tests", StreamableToString(test_suite.reportable_test_count())); if (!GTEST_FLAG(list_tests)) { OutputXmlAttribute(stream, kTestsuite, "failures", StreamableToString(test_suite.failed_test_count())); OutputXmlAttribute( stream, kTestsuite, "disabled", StreamableToString(test_suite.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuite, "skipped", StreamableToString(test_suite.skipped_test_count())); OutputXmlAttribute(stream, kTestsuite, "errors", "0"); OutputXmlAttribute(stream, kTestsuite, "time", FormatTimeInMillisAsSeconds(test_suite.elapsed_time())); OutputXmlAttribute( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsIso8601(test_suite.start_timestamp())); *stream << TestPropertiesAsXmlAttributes(test_suite.ad_hoc_test_result()); } *stream << ">\n"; for (int i = 0; i < test_suite.total_test_count(); ++i) { if (test_suite.GetTestInfo(i)->is_reportable()) OutputXmlTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i)); } *stream << " </" << kTestsuite << ">\n"; } // Prints an XML summary of unit_test to output stream out. void XmlUnitTestResultPrinter::PrintXmlUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; *stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"; *stream << "<" << kTestsuites; OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(unit_test.reportable_test_count())); OutputXmlAttribute(stream, kTestsuites, "failures", StreamableToString(unit_test.failed_test_count())); OutputXmlAttribute( stream, kTestsuites, "disabled", StreamableToString(unit_test.reportable_disabled_test_count())); OutputXmlAttribute(stream, kTestsuites, "errors", "0"); OutputXmlAttribute(stream, kTestsuites, "time", FormatTimeInMillisAsSeconds(unit_test.elapsed_time())); OutputXmlAttribute( stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsIso8601(unit_test.start_timestamp())); if (GTEST_FLAG(shuffle)) { OutputXmlAttribute(stream, kTestsuites, "random_seed", StreamableToString(unit_test.random_seed())); } *stream << TestPropertiesAsXmlAttributes(unit_test.ad_hoc_test_result()); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) PrintXmlTestSuite(stream, *unit_test.GetTestSuite(i)); } // If there was a test failure outside of one of the test suites (like in a // test environment) include that in the output. if (unit_test.ad_hoc_test_result().Failed()) { OutputXmlTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result()); } *stream << "</" << kTestsuites << ">\n"; } void XmlUnitTestResultPrinter::PrintXmlTestsList( std::ostream* stream, const std::vector<TestSuite*>& test_suites) { const std::string kTestsuites = "testsuites"; *stream << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"; *stream << "<" << kTestsuites; int total_tests = 0; for (auto test_suite : test_suites) { total_tests += test_suite->total_test_count(); } OutputXmlAttribute(stream, kTestsuites, "tests", StreamableToString(total_tests)); OutputXmlAttribute(stream, kTestsuites, "name", "AllTests"); *stream << ">\n"; for (auto test_suite : test_suites) { PrintXmlTestSuite(stream, *test_suite); } *stream << "</" << kTestsuites << ">\n"; } // Produces a string representing the test properties in a result as space // delimited XML attributes based on the property key="value" pairs. std::string XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes( const TestResult& result) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << " " << property.key() << "=" << "\"" << EscapeXmlAttribute(property.value()) << "\""; } return attributes.GetString(); } void XmlUnitTestResultPrinter::OutputXmlTestProperties( std::ostream* stream, const TestResult& result) { const std::string kProperties = "properties"; const std::string kProperty = "property"; if (result.test_property_count() <= 0) { return; } *stream << "<" << kProperties << ">\n"; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); *stream << "<" << kProperty; *stream << " name=\"" << EscapeXmlAttribute(property.key()) << "\""; *stream << " value=\"" << EscapeXmlAttribute(property.value()) << "\""; *stream << "/>\n"; } *stream << "</" << kProperties << ">\n"; } // End XmlUnitTestResultPrinter // This class generates an JSON output file. class JsonUnitTestResultPrinter : public EmptyTestEventListener { public: explicit JsonUnitTestResultPrinter(const char* output_file); void OnTestIterationEnd(const UnitTest& unit_test, int iteration) override; // Prints an JSON summary of all unit tests. static void PrintJsonTestList(::std::ostream* stream, const std::vector<TestSuite*>& test_suites); private: // Returns an JSON-escaped copy of the input string str. static std::string EscapeJson(const std::string& str); //// Verifies that the given attribute belongs to the given element and //// streams the attribute as JSON. static void OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value, const std::string& indent, bool comma = true); static void OutputJsonKey(std::ostream* stream, const std::string& element_name, const std::string& name, int value, const std::string& indent, bool comma = true); // Streams a test suite JSON stanza containing the given test result. // // Requires: result.Failed() static void OutputJsonTestSuiteForTestResult(::std::ostream* stream, const TestResult& result); // Streams a JSON representation of a TestResult object. static void OutputJsonTestResult(::std::ostream* stream, const TestResult& result); // Streams a JSON representation of a TestInfo object. static void OutputJsonTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info); // Prints a JSON representation of a TestSuite object static void PrintJsonTestSuite(::std::ostream* stream, const TestSuite& test_suite); // Prints a JSON summary of unit_test to output stream out. static void PrintJsonUnitTest(::std::ostream* stream, const UnitTest& unit_test); // Produces a string representing the test properties in a result as // a JSON dictionary. static std::string TestPropertiesAsJson(const TestResult& result, const std::string& indent); // The output file. const std::string output_file_; GTEST_DISALLOW_COPY_AND_ASSIGN_(JsonUnitTestResultPrinter); }; // Creates a new JsonUnitTestResultPrinter. JsonUnitTestResultPrinter::JsonUnitTestResultPrinter(const char* output_file) : output_file_(output_file) { if (output_file_.empty()) { GTEST_LOG_(FATAL) << "JSON output file may not be null"; } } void JsonUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test, int /*iteration*/) { FILE* jsonout = OpenFileForWriting(output_file_); std::stringstream stream; PrintJsonUnitTest(&stream, unit_test); fprintf(jsonout, "%s", StringStreamToString(&stream).c_str()); fclose(jsonout); } // Returns an JSON-escaped copy of the input string str. std::string JsonUnitTestResultPrinter::EscapeJson(const std::string& str) { Message m; for (size_t i = 0; i < str.size(); ++i) { const char ch = str[i]; switch (ch) { case '\\': case '"': case '/': m << '\\' << ch; break; case '\b': m << "\\b"; break; case '\t': m << "\\t"; break; case '\n': m << "\\n"; break; case '\f': m << "\\f"; break; case '\r': m << "\\r"; break; default: if (ch < ' ') { m << "\\u00" << String::FormatByte(static_cast<unsigned char>(ch)); } else { m << ch; } break; } } return m.GetString(); } // The following routines generate an JSON representation of a UnitTest // object. // Formats the given time in milliseconds as seconds. static std::string FormatTimeInMillisAsDuration(TimeInMillis ms) { ::std::stringstream ss; ss << (static_cast<double>(ms) * 1e-3) << "s"; return ss.str(); } // Converts the given epoch time in milliseconds to a date string in the // RFC3339 format, without the timezone information. static std::string FormatEpochTimeInMillisAsRFC3339(TimeInMillis ms) { struct tm time_struct; if (!PortableLocaltime(static_cast<time_t>(ms / 1000), &time_struct)) return ""; // YYYY-MM-DDThh:mm:ss return StreamableToString(time_struct.tm_year + 1900) + "-" + String::FormatIntWidth2(time_struct.tm_mon + 1) + "-" + String::FormatIntWidth2(time_struct.tm_mday) + "T" + String::FormatIntWidth2(time_struct.tm_hour) + ":" + String::FormatIntWidth2(time_struct.tm_min) + ":" + String::FormatIntWidth2(time_struct.tm_sec) + "Z"; } static inline std::string Indent(size_t width) { return std::string(width, ' '); } void JsonUnitTestResultPrinter::OutputJsonKey( std::ostream* stream, const std::string& element_name, const std::string& name, const std::string& value, const std::string& indent, bool comma) { const std::vector<std::string>& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Key \"" << name << "\" is not allowed for value \"" << element_name << "\"."; *stream << indent << "\"" << name << "\": \"" << EscapeJson(value) << "\""; if (comma) *stream << ",\n"; } void JsonUnitTestResultPrinter::OutputJsonKey( std::ostream* stream, const std::string& element_name, const std::string& name, int value, const std::string& indent, bool comma) { const std::vector<std::string>& allowed_names = GetReservedOutputAttributesForElement(element_name); GTEST_CHECK_(std::find(allowed_names.begin(), allowed_names.end(), name) != allowed_names.end()) << "Key \"" << name << "\" is not allowed for value \"" << element_name << "\"."; *stream << indent << "\"" << name << "\": " << StreamableToString(value); if (comma) *stream << ",\n"; } // Streams a test suite JSON stanza containing the given test result. void JsonUnitTestResultPrinter::OutputJsonTestSuiteForTestResult( ::std::ostream* stream, const TestResult& result) { // Output the boilerplate for a new test suite. *stream << Indent(4) << "{\n"; OutputJsonKey(stream, "testsuite", "name", "NonTestSuiteFailure", Indent(6)); OutputJsonKey(stream, "testsuite", "tests", 1, Indent(6)); if (!GTEST_FLAG(list_tests)) { OutputJsonKey(stream, "testsuite", "failures", 1, Indent(6)); OutputJsonKey(stream, "testsuite", "disabled", 0, Indent(6)); OutputJsonKey(stream, "testsuite", "skipped", 0, Indent(6)); OutputJsonKey(stream, "testsuite", "errors", 0, Indent(6)); OutputJsonKey(stream, "testsuite", "time", FormatTimeInMillisAsDuration(result.elapsed_time()), Indent(6)); OutputJsonKey(stream, "testsuite", "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), Indent(6)); } *stream << Indent(6) << "\"testsuite\": [\n"; // Output the boilerplate for a new test case. *stream << Indent(8) << "{\n"; OutputJsonKey(stream, "testcase", "name", "", Indent(10)); OutputJsonKey(stream, "testcase", "status", "RUN", Indent(10)); OutputJsonKey(stream, "testcase", "result", "COMPLETED", Indent(10)); OutputJsonKey(stream, "testcase", "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), Indent(10)); OutputJsonKey(stream, "testcase", "time", FormatTimeInMillisAsDuration(result.elapsed_time()), Indent(10)); OutputJsonKey(stream, "testcase", "classname", "", Indent(10), false); *stream << TestPropertiesAsJson(result, Indent(10)); // Output the actual test result. OutputJsonTestResult(stream, result); // Finish the test suite. *stream << "\n" << Indent(6) << "]\n" << Indent(4) << "}"; } // Prints a JSON representation of a TestInfo object. void JsonUnitTestResultPrinter::OutputJsonTestInfo(::std::ostream* stream, const char* test_suite_name, const TestInfo& test_info) { const TestResult& result = *test_info.result(); const std::string kTestsuite = "testcase"; const std::string kIndent = Indent(10); *stream << Indent(8) << "{\n"; OutputJsonKey(stream, kTestsuite, "name", test_info.name(), kIndent); if (test_info.value_param() != nullptr) { OutputJsonKey(stream, kTestsuite, "value_param", test_info.value_param(), kIndent); } if (test_info.type_param() != nullptr) { OutputJsonKey(stream, kTestsuite, "type_param", test_info.type_param(), kIndent); } if (GTEST_FLAG(list_tests)) { OutputJsonKey(stream, kTestsuite, "file", test_info.file(), kIndent); OutputJsonKey(stream, kTestsuite, "line", test_info.line(), kIndent, false); *stream << "\n" << Indent(8) << "}"; return; } OutputJsonKey(stream, kTestsuite, "status", test_info.should_run() ? "RUN" : "NOTRUN", kIndent); OutputJsonKey(stream, kTestsuite, "result", test_info.should_run() ? (result.Skipped() ? "SKIPPED" : "COMPLETED") : "SUPPRESSED", kIndent); OutputJsonKey(stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsRFC3339(result.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuite, "time", FormatTimeInMillisAsDuration(result.elapsed_time()), kIndent); OutputJsonKey(stream, kTestsuite, "classname", test_suite_name, kIndent, false); *stream << TestPropertiesAsJson(result, kIndent); OutputJsonTestResult(stream, result); } void JsonUnitTestResultPrinter::OutputJsonTestResult(::std::ostream* stream, const TestResult& result) { const std::string kIndent = Indent(10); int failures = 0; for (int i = 0; i < result.total_part_count(); ++i) { const TestPartResult& part = result.GetTestPartResult(i); if (part.failed()) { *stream << ",\n"; if (++failures == 1) { *stream << kIndent << "\"" << "failures" << "\": [\n"; } const std::string location = internal::FormatCompilerIndependentFileLocation(part.file_name(), part.line_number()); const std::string message = EscapeJson(location + "\n" + part.message()); *stream << kIndent << " {\n" << kIndent << " \"failure\": \"" << message << "\",\n" << kIndent << " \"type\": \"\"\n" << kIndent << " }"; } } if (failures > 0) *stream << "\n" << kIndent << "]"; *stream << "\n" << Indent(8) << "}"; } // Prints an JSON representation of a TestSuite object void JsonUnitTestResultPrinter::PrintJsonTestSuite( std::ostream* stream, const TestSuite& test_suite) { const std::string kTestsuite = "testsuite"; const std::string kIndent = Indent(6); *stream << Indent(4) << "{\n"; OutputJsonKey(stream, kTestsuite, "name", test_suite.name(), kIndent); OutputJsonKey(stream, kTestsuite, "tests", test_suite.reportable_test_count(), kIndent); if (!GTEST_FLAG(list_tests)) { OutputJsonKey(stream, kTestsuite, "failures", test_suite.failed_test_count(), kIndent); OutputJsonKey(stream, kTestsuite, "disabled", test_suite.reportable_disabled_test_count(), kIndent); OutputJsonKey(stream, kTestsuite, "errors", 0, kIndent); OutputJsonKey( stream, kTestsuite, "timestamp", FormatEpochTimeInMillisAsRFC3339(test_suite.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuite, "time", FormatTimeInMillisAsDuration(test_suite.elapsed_time()), kIndent, false); *stream << TestPropertiesAsJson(test_suite.ad_hoc_test_result(), kIndent) << ",\n"; } *stream << kIndent << "\"" << kTestsuite << "\": [\n"; bool comma = false; for (int i = 0; i < test_suite.total_test_count(); ++i) { if (test_suite.GetTestInfo(i)->is_reportable()) { if (comma) { *stream << ",\n"; } else { comma = true; } OutputJsonTestInfo(stream, test_suite.name(), *test_suite.GetTestInfo(i)); } } *stream << "\n" << kIndent << "]\n" << Indent(4) << "}"; } // Prints a JSON summary of unit_test to output stream out. void JsonUnitTestResultPrinter::PrintJsonUnitTest(std::ostream* stream, const UnitTest& unit_test) { const std::string kTestsuites = "testsuites"; const std::string kIndent = Indent(2); *stream << "{\n"; OutputJsonKey(stream, kTestsuites, "tests", unit_test.reportable_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "failures", unit_test.failed_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "disabled", unit_test.reportable_disabled_test_count(), kIndent); OutputJsonKey(stream, kTestsuites, "errors", 0, kIndent); if (GTEST_FLAG(shuffle)) { OutputJsonKey(stream, kTestsuites, "random_seed", unit_test.random_seed(), kIndent); } OutputJsonKey(stream, kTestsuites, "timestamp", FormatEpochTimeInMillisAsRFC3339(unit_test.start_timestamp()), kIndent); OutputJsonKey(stream, kTestsuites, "time", FormatTimeInMillisAsDuration(unit_test.elapsed_time()), kIndent, false); *stream << TestPropertiesAsJson(unit_test.ad_hoc_test_result(), kIndent) << ",\n"; OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent); *stream << kIndent << "\"" << kTestsuites << "\": [\n"; bool comma = false; for (int i = 0; i < unit_test.total_test_suite_count(); ++i) { if (unit_test.GetTestSuite(i)->reportable_test_count() > 0) { if (comma) { *stream << ",\n"; } else { comma = true; } PrintJsonTestSuite(stream, *unit_test.GetTestSuite(i)); } } // If there was a test failure outside of one of the test suites (like in a // test environment) include that in the output. if (unit_test.ad_hoc_test_result().Failed()) { OutputJsonTestSuiteForTestResult(stream, unit_test.ad_hoc_test_result()); } *stream << "\n" << kIndent << "]\n" << "}\n"; } void JsonUnitTestResultPrinter::PrintJsonTestList( std::ostream* stream, const std::vector<TestSuite*>& test_suites) { const std::string kTestsuites = "testsuites"; const std::string kIndent = Indent(2); *stream << "{\n"; int total_tests = 0; for (auto test_suite : test_suites) { total_tests += test_suite->total_test_count(); } OutputJsonKey(stream, kTestsuites, "tests", total_tests, kIndent); OutputJsonKey(stream, kTestsuites, "name", "AllTests", kIndent); *stream << kIndent << "\"" << kTestsuites << "\": [\n"; for (size_t i = 0; i < test_suites.size(); ++i) { if (i != 0) { *stream << ",\n"; } PrintJsonTestSuite(stream, *test_suites[i]); } *stream << "\n" << kIndent << "]\n" << "}\n"; } // Produces a string representing the test properties in a result as // a JSON dictionary. std::string JsonUnitTestResultPrinter::TestPropertiesAsJson( const TestResult& result, const std::string& indent) { Message attributes; for (int i = 0; i < result.test_property_count(); ++i) { const TestProperty& property = result.GetTestProperty(i); attributes << ",\n" << indent << "\"" << property.key() << "\": " << "\"" << EscapeJson(property.value()) << "\""; } return attributes.GetString(); } // End JsonUnitTestResultPrinter #if GTEST_CAN_STREAM_RESULTS_ // Checks if str contains '=', '&', '%' or '\n' characters. If yes, // replaces them by "%xx" where xx is their hexadecimal value. For // example, replaces "=" with "%3D". This algorithm is O(strlen(str)) // in both time and space -- important as the input str may contain an // arbitrarily long test failure message and stack trace. std::string StreamingListener::UrlEncode(const char* str) { std::string result; result.reserve(strlen(str) + 1); for (char ch = *str; ch != '\0'; ch = *++str) { switch (ch) { case '%': case '=': case '&': case '\n': result.append("%" + String::FormatByte(static_cast<unsigned char>(ch))); break; default: result.push_back(ch); break; } } return result; } void StreamingListener::SocketWriter::MakeConnection() { GTEST_CHECK_(sockfd_ == -1) << "MakeConnection() can't be called when there is already a connection."; addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses. hints.ai_socktype = SOCK_STREAM; addrinfo* servinfo = nullptr; // Use the getaddrinfo() to get a linked list of IP addresses for // the given host name. const int error_num = getaddrinfo( host_name_.c_str(), port_num_.c_str(), &hints, &servinfo); if (error_num != 0) { GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: " << gai_strerror(error_num); } // Loop through all the results and connect to the first we can. for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != nullptr; cur_addr = cur_addr->ai_next) { sockfd_ = socket( cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol); if (sockfd_ != -1) { // Connect the client socket to the server socket. if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) { close(sockfd_); sockfd_ = -1; } } } freeaddrinfo(servinfo); // all done with this structure if (sockfd_ == -1) { GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to " << host_name_ << ":" << port_num_; } } // End of class Streaming Listener #endif // GTEST_CAN_STREAM_RESULTS__ // class OsStackTraceGetter const char* const OsStackTraceGetterInterface::kElidedFramesMarker = "... " GTEST_NAME_ " internal frames ..."; std::string OsStackTraceGetter::CurrentStackTrace(int max_depth, int skip_count) GTEST_LOCK_EXCLUDED_(mutex_) { #if GTEST_HAS_ABSL std::string result; if (max_depth <= 0) { return result; } max_depth = std::min(max_depth, kMaxStackTraceDepth); std::vector<void*> raw_stack(max_depth); // Skips the frames requested by the caller, plus this function. const int raw_stack_size = absl::GetStackTrace(&raw_stack[0], max_depth, skip_count + 1); void* caller_frame = nullptr; { MutexLock lock(&mutex_); caller_frame = caller_frame_; } for (int i = 0; i < raw_stack_size; ++i) { if (raw_stack[i] == caller_frame && !GTEST_FLAG(show_internal_stack_frames)) { // Add a marker to the trace and stop adding frames. absl::StrAppend(&result, kElidedFramesMarker, "\n"); break; } char tmp[1024]; const char* symbol = "(unknown)"; if (absl::Symbolize(raw_stack[i], tmp, sizeof(tmp))) { symbol = tmp; } char line[1024]; snprintf(line, sizeof(line), " %p: %s\n", raw_stack[i], symbol); result += line; } return result; #else // !GTEST_HAS_ABSL static_cast<void>(max_depth); static_cast<void>(skip_count); return ""; #endif // GTEST_HAS_ABSL } void OsStackTraceGetter::UponLeavingGTest() GTEST_LOCK_EXCLUDED_(mutex_) { #if GTEST_HAS_ABSL void* caller_frame = nullptr; if (absl::GetStackTrace(&caller_frame, 1, 3) <= 0) { caller_frame = nullptr; } MutexLock lock(&mutex_); caller_frame_ = caller_frame; #endif // GTEST_HAS_ABSL } // A helper class that creates the premature-exit file in its // constructor and deletes the file in its destructor. class ScopedPrematureExitFile { public: explicit ScopedPrematureExitFile(const char* premature_exit_filepath) : premature_exit_filepath_(premature_exit_filepath ? premature_exit_filepath : "") { // If a path to the premature-exit file is specified... if (!premature_exit_filepath_.empty()) { // create the file with a single "0" character in it. I/O // errors are ignored as there's nothing better we can do and we // don't want to fail the test because of this. FILE* pfile = posix::FOpen(premature_exit_filepath, "w"); fwrite("0", 1, 1, pfile); fclose(pfile); } } ~ScopedPrematureExitFile() { #if !defined GTEST_OS_ESP8266 if (!premature_exit_filepath_.empty()) { int retval = remove(premature_exit_filepath_.c_str()); if (retval) { GTEST_LOG_(ERROR) << "Failed to remove premature exit filepath \"" << premature_exit_filepath_ << "\" with error " << retval; } } #endif } private: const std::string premature_exit_filepath_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedPrematureExitFile); }; } // namespace internal // class TestEventListeners TestEventListeners::TestEventListeners() : repeater_(new internal::TestEventRepeater()), default_result_printer_(nullptr), default_xml_generator_(nullptr) {} TestEventListeners::~TestEventListeners() { delete repeater_; } // Returns the standard listener responsible for the default console // output. Can be removed from the listeners list to shut down default // console output. Note that removing this object from the listener list // with Release transfers its ownership to the user. void TestEventListeners::Append(TestEventListener* listener) { repeater_->Append(listener); } // Removes the given event listener from the list and returns it. It then // becomes the caller's responsibility to delete the listener. Returns // NULL if the listener is not found in the list. TestEventListener* TestEventListeners::Release(TestEventListener* listener) { if (listener == default_result_printer_) default_result_printer_ = nullptr; else if (listener == default_xml_generator_) default_xml_generator_ = nullptr; return repeater_->Release(listener); } // Returns repeater that broadcasts the TestEventListener events to all // subscribers. TestEventListener* TestEventListeners::repeater() { return repeater_; } // Sets the default_result_printer attribute to the provided listener. // The listener is also added to the listener list and previous // default_result_printer is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) { if (default_result_printer_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_result_printer_); default_result_printer_ = listener; if (listener != nullptr) Append(listener); } } // Sets the default_xml_generator attribute to the provided listener. The // listener is also added to the listener list and previous // default_xml_generator is removed from it and deleted. The listener can // also be NULL in which case it will not be added to the list. Does // nothing if the previous and the current listener objects are the same. void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) { if (default_xml_generator_ != listener) { // It is an error to pass this method a listener that is already in the // list. delete Release(default_xml_generator_); default_xml_generator_ = listener; if (listener != nullptr) Append(listener); } } // Controls whether events will be forwarded by the repeater to the // listeners in the list. bool TestEventListeners::EventForwardingEnabled() const { return repeater_->forwarding_enabled(); } void TestEventListeners::SuppressEventForwarding() { repeater_->set_forwarding_enabled(false); } // class UnitTest // Gets the singleton UnitTest object. The first time this method is // called, a UnitTest object is constructed and returned. Consecutive // calls will return the same object. // // We don't protect this under mutex_ as a user is not supposed to // call this before main() starts, from which point on the return // value will never change. UnitTest* UnitTest::GetInstance() { // CodeGear C++Builder insists on a public destructor for the // default implementation. Use this implementation to keep good OO // design with private destructor. #if defined(__BORLANDC__) static UnitTest* const instance = new UnitTest; return instance; #else static UnitTest instance; return &instance; #endif // defined(__BORLANDC__) } // Gets the number of successful test suites. int UnitTest::successful_test_suite_count() const { return impl()->successful_test_suite_count(); } // Gets the number of failed test suites. int UnitTest::failed_test_suite_count() const { return impl()->failed_test_suite_count(); } // Gets the number of all test suites. int UnitTest::total_test_suite_count() const { return impl()->total_test_suite_count(); } // Gets the number of all test suites that contain at least one test // that should run. int UnitTest::test_suite_to_run_count() const { return impl()->test_suite_to_run_count(); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ int UnitTest::successful_test_case_count() const { return impl()->successful_test_suite_count(); } int UnitTest::failed_test_case_count() const { return impl()->failed_test_suite_count(); } int UnitTest::total_test_case_count() const { return impl()->total_test_suite_count(); } int UnitTest::test_case_to_run_count() const { return impl()->test_suite_to_run_count(); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Gets the number of successful tests. int UnitTest::successful_test_count() const { return impl()->successful_test_count(); } // Gets the number of skipped tests. int UnitTest::skipped_test_count() const { return impl()->skipped_test_count(); } // Gets the number of failed tests. int UnitTest::failed_test_count() const { return impl()->failed_test_count(); } // Gets the number of disabled tests that will be reported in the XML report. int UnitTest::reportable_disabled_test_count() const { return impl()->reportable_disabled_test_count(); } // Gets the number of disabled tests. int UnitTest::disabled_test_count() const { return impl()->disabled_test_count(); } // Gets the number of tests to be printed in the XML report. int UnitTest::reportable_test_count() const { return impl()->reportable_test_count(); } // Gets the number of all tests. int UnitTest::total_test_count() const { return impl()->total_test_count(); } // Gets the number of tests that should run. int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); } // Gets the time of the test program start, in ms from the start of the // UNIX epoch. internal::TimeInMillis UnitTest::start_timestamp() const { return impl()->start_timestamp(); } // Gets the elapsed time, in milliseconds. internal::TimeInMillis UnitTest::elapsed_time() const { return impl()->elapsed_time(); } // Returns true if and only if the unit test passed (i.e. all test suites // passed). bool UnitTest::Passed() const { return impl()->Passed(); } // Returns true if and only if the unit test failed (i.e. some test suite // failed or something outside of all tests failed). bool UnitTest::Failed() const { return impl()->Failed(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. const TestSuite* UnitTest::GetTestSuite(int i) const { return impl()->GetTestSuite(i); } // Legacy API is deprecated but still available #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* UnitTest::GetTestCase(int i) const { return impl()->GetTestCase(i); } #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ // Returns the TestResult containing information on test failures and // properties logged outside of individual test suites. const TestResult& UnitTest::ad_hoc_test_result() const { return *impl()->ad_hoc_test_result(); } // Gets the i-th test suite among all the test suites. i can range from 0 to // total_test_suite_count() - 1. If i is not in that range, returns NULL. TestSuite* UnitTest::GetMutableTestSuite(int i) { return impl()->GetMutableSuiteCase(i); } // Returns the list of event listeners that can be used to track events // inside Google Test. TestEventListeners& UnitTest::listeners() { return *impl()->listeners(); } // Registers and returns a global test environment. When a test // program is run, all global test environments will be set-up in the // order they were registered. After all tests in the program have // finished, all global test environments will be torn-down in the // *reverse* order they were registered. // // The UnitTest object takes ownership of the given environment. // // We don't protect this under mutex_, as we only support calling it // from the main thread. Environment* UnitTest::AddEnvironment(Environment* env) { if (env == nullptr) { return nullptr; } impl_->environments().push_back(env); return env; } // Adds a TestPartResult to the current TestResult object. All Google Test // assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call // this to report their results. The user code should use the // assertion macros instead of calling this directly. void UnitTest::AddTestPartResult( TestPartResult::Type result_type, const char* file_name, int line_number, const std::string& message, const std::string& os_stack_trace) GTEST_LOCK_EXCLUDED_(mutex_) { Message msg; msg << message; internal::MutexLock lock(&mutex_); if (impl_->gtest_trace_stack().size() > 0) { msg << "\n" << GTEST_NAME_ << " trace:"; for (size_t i = impl_->gtest_trace_stack().size(); i > 0; --i) { const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1]; msg << "\n" << internal::FormatFileLocation(trace.file, trace.line) << " " << trace.message; } } if (os_stack_trace.c_str() != nullptr && !os_stack_trace.empty()) { msg << internal::kStackTraceMarker << os_stack_trace; } const TestPartResult result = TestPartResult( result_type, file_name, line_number, msg.GetString().c_str()); impl_->GetTestPartResultReporterForCurrentThread()-> ReportTestPartResult(result); if (result_type != TestPartResult::kSuccess && result_type != TestPartResult::kSkip) { // gtest_break_on_failure takes precedence over // gtest_throw_on_failure. This allows a user to set the latter // in the code (perhaps in order to use Google Test assertions // with another testing framework) and specify the former on the // command line for debugging. if (GTEST_FLAG(break_on_failure)) { #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // Using DebugBreak on Windows allows gtest to still break into a debugger // when a failure happens and both the --gtest_break_on_failure and // the --gtest_catch_exceptions flags are specified. DebugBreak(); #elif (!defined(__native_client__)) && \ ((defined(__clang__) || defined(__GNUC__)) && \ (defined(__x86_64__) || defined(__i386__))) // with clang/gcc we can achieve the same effect on x86 by invoking int3 asm("int3"); #else // Dereference nullptr through a volatile pointer to prevent the compiler // from removing. We use this rather than abort() or __builtin_trap() for // portability: some debuggers don't correctly trap abort(). *static_cast<volatile int*>(nullptr) = 1; #endif // GTEST_OS_WINDOWS } else if (GTEST_FLAG(throw_on_failure)) { #if GTEST_HAS_EXCEPTIONS throw internal::GoogleTestFailureException(result); #else // We cannot call abort() as it generates a pop-up in debug mode // that cannot be suppressed in VC 7.1 or below. exit(1); #endif } } } // Adds a TestProperty to the current TestResult object when invoked from // inside a test, to current TestSuite's ad_hoc_test_result_ when invoked // from SetUpTestSuite or TearDownTestSuite, or to the global property set // when invoked elsewhere. If the result already contains a property with // the same key, the value will be updated. void UnitTest::RecordProperty(const std::string& key, const std::string& value) { impl_->RecordProperty(TestProperty(key, value)); } // Runs all tests in this UnitTest object and prints the result. // Returns 0 if successful, or 1 otherwise. // // We don't protect this under mutex_, as we only support calling it // from the main thread. int UnitTest::Run() { const bool in_death_test_child_process = internal::GTEST_FLAG(internal_run_death_test).length() > 0; // Google Test implements this protocol for catching that a test // program exits before returning control to Google Test: // // 1. Upon start, Google Test creates a file whose absolute path // is specified by the environment variable // TEST_PREMATURE_EXIT_FILE. // 2. When Google Test has finished its work, it deletes the file. // // This allows a test runner to set TEST_PREMATURE_EXIT_FILE before // running a Google-Test-based test program and check the existence // of the file at the end of the test execution to see if it has // exited prematurely. // If we are in the child process of a death test, don't // create/delete the premature exit file, as doing so is unnecessary // and will confuse the parent process. Otherwise, create/delete // the file upon entering/leaving this function. If the program // somehow exits before this function has a chance to return, the // premature-exit file will be left undeleted, causing a test runner // that understands the premature-exit-file protocol to report the // test as having failed. const internal::ScopedPrematureExitFile premature_exit_file( in_death_test_child_process ? nullptr : internal::posix::GetEnv("TEST_PREMATURE_EXIT_FILE")); // Captures the value of GTEST_FLAG(catch_exceptions). This value will be // used for the duration of the program. impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions)); #if GTEST_OS_WINDOWS // Either the user wants Google Test to catch exceptions thrown by the // tests or this is executing in the context of death test child // process. In either case the user does not want to see pop-up dialogs // about crashes - they are expected. if (impl()->catch_exceptions() || in_death_test_child_process) { # if !GTEST_OS_WINDOWS_MOBILE && !GTEST_OS_WINDOWS_PHONE && !GTEST_OS_WINDOWS_RT // SetErrorMode doesn't exist on CE. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); # endif // !GTEST_OS_WINDOWS_MOBILE # if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE // Death test children can be terminated with _abort(). On Windows, // _abort() can show a dialog with a warning message. This forces the // abort message to go to stderr instead. _set_error_mode(_OUT_TO_STDERR); # endif # if defined(_MSC_VER) && !GTEST_OS_WINDOWS_MOBILE // In the debug version, Visual Studio pops up a separate dialog // offering a choice to debug the aborted program. We need to suppress // this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement // executed. Google Test will notify the user of any unexpected // failure via stderr. if (!GTEST_FLAG(break_on_failure)) _set_abort_behavior( 0x0, // Clear the following flags: _WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump. // In debug mode, the Windows CRT can crash with an assertion over invalid // input (e.g. passing an invalid file descriptor). The default handling // for these assertions is to pop up a dialog and wait for user input. // Instead ask the CRT to dump such assertions to stderr non-interactively. if (!IsDebuggerPresent()) { (void)_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE | _CRTDBG_MODE_DEBUG); (void)_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR); } # endif } #endif // GTEST_OS_WINDOWS return internal::HandleExceptionsInMethodIfSupported( impl(), &internal::UnitTestImpl::RunAllTests, "auxiliary test code (environments or event listeners)") ? 0 : 1; } // Returns the working directory when the first TEST() or TEST_F() was // executed. const char* UnitTest::original_working_dir() const { return impl_->original_working_dir_.c_str(); } // Returns the TestSuite object for the test that's currently running, // or NULL if no test is running. const TestSuite* UnitTest::current_test_suite() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_suite(); } // Legacy API is still available but deprecated #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ const TestCase* UnitTest::current_test_case() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_suite(); } #endif // Returns the TestInfo object for the test that's currently running, // or NULL if no test is running. const TestInfo* UnitTest::current_test_info() const GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); return impl_->current_test_info(); } // Returns the random seed used at the start of the current test run. int UnitTest::random_seed() const { return impl_->random_seed(); } // Returns ParameterizedTestSuiteRegistry object used to keep track of // value-parameterized tests and instantiate and register them. internal::ParameterizedTestSuiteRegistry& UnitTest::parameterized_test_registry() GTEST_LOCK_EXCLUDED_(mutex_) { return impl_->parameterized_test_registry(); } // Creates an empty UnitTest. UnitTest::UnitTest() { impl_ = new internal::UnitTestImpl(this); } // Destructor of UnitTest. UnitTest::~UnitTest() { delete impl_; } // Pushes a trace defined by SCOPED_TRACE() on to the per-thread // Google Test trace stack. void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().push_back(trace); } // Pops a trace from the per-thread Google Test trace stack. void UnitTest::PopGTestTrace() GTEST_LOCK_EXCLUDED_(mutex_) { internal::MutexLock lock(&mutex_); impl_->gtest_trace_stack().pop_back(); } namespace internal { UnitTestImpl::UnitTestImpl(UnitTest* parent) : parent_(parent), GTEST_DISABLE_MSC_WARNINGS_PUSH_(4355 /* using this in initializer */) default_global_test_part_result_reporter_(this), default_per_thread_test_part_result_reporter_(this), GTEST_DISABLE_MSC_WARNINGS_POP_() global_test_part_result_repoter_( &default_global_test_part_result_reporter_), per_thread_test_part_result_reporter_( &default_per_thread_test_part_result_reporter_), parameterized_test_registry_(), parameterized_tests_registered_(false), last_death_test_suite_(-1), current_test_suite_(nullptr), current_test_info_(nullptr), ad_hoc_test_result_(), os_stack_trace_getter_(nullptr), post_flag_parse_init_performed_(false), random_seed_(0), // Will be overridden by the flag before first use. random_(0), // Will be reseeded before first use. start_timestamp_(0), elapsed_time_(0), #if GTEST_HAS_DEATH_TEST death_test_factory_(new DefaultDeathTestFactory), #endif // Will be overridden by the flag before first use. catch_exceptions_(false) { listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter); } UnitTestImpl::~UnitTestImpl() { // Deletes every TestSuite. ForEach(test_suites_, internal::Delete<TestSuite>); // Deletes every Environment. ForEach(environments_, internal::Delete<Environment>); delete os_stack_trace_getter_; } // Adds a TestProperty to the current TestResult object when invoked in a // context of a test, to current test suite's ad_hoc_test_result when invoke // from SetUpTestSuite/TearDownTestSuite, or to the global property set // otherwise. If the result already contains a property with the same key, // the value will be updated. void UnitTestImpl::RecordProperty(const TestProperty& test_property) { std::string xml_element; TestResult* test_result; // TestResult appropriate for property recording. if (current_test_info_ != nullptr) { xml_element = "testcase"; test_result = &(current_test_info_->result_); } else if (current_test_suite_ != nullptr) { xml_element = "testsuite"; test_result = &(current_test_suite_->ad_hoc_test_result_); } else { xml_element = "testsuites"; test_result = &ad_hoc_test_result_; } test_result->RecordProperty(xml_element, test_property); } #if GTEST_HAS_DEATH_TEST // Disables event forwarding if the control is currently in a death test // subprocess. Must not be called before InitGoogleTest. void UnitTestImpl::SuppressTestEventsIfInSubprocess() { if (internal_run_death_test_flag_.get() != nullptr) listeners()->SuppressEventForwarding(); } #endif // GTEST_HAS_DEATH_TEST // Initializes event listeners performing XML output as specified by // UnitTestOptions. Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureXmlOutput() { const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml") { listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format == "json") { listeners()->SetDefaultXmlGenerator(new JsonUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str())); } else if (output_format != "") { GTEST_LOG_(WARNING) << "WARNING: unrecognized output format \"" << output_format << "\" ignored."; } } #if GTEST_CAN_STREAM_RESULTS_ // Initializes event listeners for streaming test results in string form. // Must not be called before InitGoogleTest. void UnitTestImpl::ConfigureStreamingOutput() { const std::string& target = GTEST_FLAG(stream_result_to); if (!target.empty()) { const size_t pos = target.find(':'); if (pos != std::string::npos) { listeners()->Append(new StreamingListener(target.substr(0, pos), target.substr(pos+1))); } else { GTEST_LOG_(WARNING) << "unrecognized streaming target \"" << target << "\" ignored."; } } } #endif // GTEST_CAN_STREAM_RESULTS_ // Performs initialization dependent upon flag values obtained in // ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to // ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest // this function is also called from RunAllTests. Since this function can be // called more than once, it has to be idempotent. void UnitTestImpl::PostFlagParsingInit() { // Ensures that this function does not execute more than once. if (!post_flag_parse_init_performed_) { post_flag_parse_init_performed_ = true; #if defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) // Register to send notifications about key process state changes. listeners()->Append(new GTEST_CUSTOM_TEST_EVENT_LISTENER_()); #endif // defined(GTEST_CUSTOM_TEST_EVENT_LISTENER_) #if GTEST_HAS_DEATH_TEST InitDeathTestSubprocessControlInfo(); SuppressTestEventsIfInSubprocess(); #endif // GTEST_HAS_DEATH_TEST // Registers parameterized tests. This makes parameterized tests // available to the UnitTest reflection API without running // RUN_ALL_TESTS. RegisterParameterizedTests(); // Configures listeners for XML output. This makes it possible for users // to shut down the default XML output before invoking RUN_ALL_TESTS. ConfigureXmlOutput(); if (GTEST_FLAG(brief)) { listeners()->SetDefaultResultPrinter(new BriefUnitTestResultPrinter); } #if GTEST_CAN_STREAM_RESULTS_ // Configures listeners for streaming test results to the specified server. ConfigureStreamingOutput(); #endif // GTEST_CAN_STREAM_RESULTS_ #if GTEST_HAS_ABSL if (GTEST_FLAG(install_failure_signal_handler)) { absl::FailureSignalHandlerOptions options; absl::InstallFailureSignalHandler(options); } #endif // GTEST_HAS_ABSL } } // A predicate that checks the name of a TestSuite against a known // value. // // This is used for implementation of the UnitTest class only. We put // it in the anonymous namespace to prevent polluting the outer // namespace. // // TestSuiteNameIs is copyable. class TestSuiteNameIs { public: // Constructor. explicit TestSuiteNameIs(const std::string& name) : name_(name) {} // Returns true if and only if the name of test_suite matches name_. bool operator()(const TestSuite* test_suite) const { return test_suite != nullptr && strcmp(test_suite->name(), name_.c_str()) == 0; } private: std::string name_; }; // Finds and returns a TestSuite with the given name. If one doesn't // exist, creates one and returns it. It's the CALLER'S // RESPONSIBILITY to ensure that this function is only called WHEN THE // TESTS ARE NOT SHUFFLED. // // Arguments: // // test_suite_name: name of the test suite // type_param: the name of the test suite's type parameter, or NULL if // this is not a typed or a type-parameterized test suite. // set_up_tc: pointer to the function that sets up the test suite // tear_down_tc: pointer to the function that tears down the test suite TestSuite* UnitTestImpl::GetTestSuite( const char* test_suite_name, const char* type_param, internal::SetUpTestSuiteFunc set_up_tc, internal::TearDownTestSuiteFunc tear_down_tc) { // Can we find a TestSuite with the given name? const auto test_suite = std::find_if(test_suites_.rbegin(), test_suites_.rend(), TestSuiteNameIs(test_suite_name)); if (test_suite != test_suites_.rend()) return *test_suite; // No. Let's create one. auto* const new_test_suite = new TestSuite(test_suite_name, type_param, set_up_tc, tear_down_tc); // Is this a death test suite? if (internal::UnitTestOptions::MatchesFilter(test_suite_name, kDeathTestSuiteFilter)) { // Yes. Inserts the test suite after the last death test suite // defined so far. This only works when the test suites haven't // been shuffled. Otherwise we may end up running a death test // after a non-death test. ++last_death_test_suite_; test_suites_.insert(test_suites_.begin() + last_death_test_suite_, new_test_suite); } else { // No. Appends to the end of the list. test_suites_.push_back(new_test_suite); } test_suite_indices_.push_back(static_cast<int>(test_suite_indices_.size())); return new_test_suite; } // Helpers for setting up / tearing down the given environment. They // are for use in the ForEach() function. static void SetUpEnvironment(Environment* env) { env->SetUp(); } static void TearDownEnvironment(Environment* env) { env->TearDown(); } // Runs all tests in this UnitTest object, prints the result, and // returns true if all tests are successful. If any exception is // thrown during a test, the test is considered to be failed, but the // rest of the tests will still be run. // // When parameterized tests are enabled, it expands and registers // parameterized tests first in RegisterParameterizedTests(). // All other functions called from RunAllTests() may safely assume that // parameterized tests are ready to be counted and run. bool UnitTestImpl::RunAllTests() { // True if and only if Google Test is initialized before RUN_ALL_TESTS() is // called. const bool gtest_is_initialized_before_run_all_tests = GTestIsInitialized(); // Do not run any test if the --help flag was specified. if (g_help_flag) return true; // Repeats the call to the post-flag parsing initialization in case the // user didn't call InitGoogleTest. PostFlagParsingInit(); // Even if sharding is not on, test runners may want to use the // GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding // protocol. internal::WriteToShardStatusFileIfNeeded(); // True if and only if we are in a subprocess for running a thread-safe-style // death test. bool in_subprocess_for_death_test = false; #if GTEST_HAS_DEATH_TEST in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != nullptr); # if defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) if (in_subprocess_for_death_test) { GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_(); } # endif // defined(GTEST_EXTRA_DEATH_TEST_CHILD_SETUP_) #endif // GTEST_HAS_DEATH_TEST const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex, in_subprocess_for_death_test); // Compares the full test names with the filter to decide which // tests to run. const bool has_tests_to_run = FilterTests(should_shard ? HONOR_SHARDING_PROTOCOL : IGNORE_SHARDING_PROTOCOL) > 0; // Lists the tests and exits if the --gtest_list_tests flag was specified. if (GTEST_FLAG(list_tests)) { // This must be called *after* FilterTests() has been called. ListTestsMatchingFilter(); return true; } random_seed_ = GTEST_FLAG(shuffle) ? GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0; // True if and only if at least one test has failed. bool failed = false; TestEventListener* repeater = listeners()->repeater(); start_timestamp_ = GetTimeInMillis(); repeater->OnTestProgramStart(*parent_); // How many times to repeat the tests? We don't want to repeat them // when we are inside the subprocess of a death test. const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat); // Repeats forever if the repeat count is negative. const bool gtest_repeat_forever = repeat < 0; for (int i = 0; gtest_repeat_forever || i != repeat; i++) { // We want to preserve failures generated by ad-hoc test // assertions executed before RUN_ALL_TESTS(). ClearNonAdHocTestResult(); Timer timer; // Shuffles test suites and tests if requested. if (has_tests_to_run && GTEST_FLAG(shuffle)) { random()->Reseed(static_cast<uint32_t>(random_seed_)); // This should be done before calling OnTestIterationStart(), // such that a test event listener can see the actual test order // in the event. ShuffleTests(); } // Tells the unit test event listeners that the tests are about to start. repeater->OnTestIterationStart(*parent_, i); // Runs each test suite if there is at least one test to run. if (has_tests_to_run) { // Sets up all environments beforehand. repeater->OnEnvironmentsSetUpStart(*parent_); ForEach(environments_, SetUpEnvironment); repeater->OnEnvironmentsSetUpEnd(*parent_); // Runs the tests only if there was no fatal failure or skip triggered // during global set-up. if (Test::IsSkipped()) { // Emit diagnostics when global set-up calls skip, as it will not be // emitted by default. TestResult& test_result = *internal::GetUnitTestImpl()->current_test_result(); for (int j = 0; j < test_result.total_part_count(); ++j) { const TestPartResult& test_part_result = test_result.GetTestPartResult(j); if (test_part_result.type() == TestPartResult::kSkip) { const std::string& result = test_part_result.message(); printf("%s\n", result.c_str()); } } fflush(stdout); } else if (!Test::HasFatalFailure()) { for (int test_index = 0; test_index < total_test_suite_count(); test_index++) { GetMutableSuiteCase(test_index)->Run(); if (GTEST_FLAG(fail_fast) && GetMutableSuiteCase(test_index)->Failed()) { for (int j = test_index + 1; j < total_test_suite_count(); j++) { GetMutableSuiteCase(j)->Skip(); } break; } } } else if (Test::HasFatalFailure()) { // If there was a fatal failure during the global setup then we know we // aren't going to run any tests. Explicitly mark all of the tests as // skipped to make this obvious in the output. for (int test_index = 0; test_index < total_test_suite_count(); test_index++) { GetMutableSuiteCase(test_index)->Skip(); } } // Tears down all environments in reverse order afterwards. repeater->OnEnvironmentsTearDownStart(*parent_); std::for_each(environments_.rbegin(), environments_.rend(), TearDownEnvironment); repeater->OnEnvironmentsTearDownEnd(*parent_); } elapsed_time_ = timer.Elapsed(); // Tells the unit test event listener that the tests have just finished. repeater->OnTestIterationEnd(*parent_, i); // Gets the result and clears it. if (!Passed()) { failed = true; } // Restores the original test order after the iteration. This // allows the user to quickly repro a failure that happens in the // N-th iteration without repeating the first (N - 1) iterations. // This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in // case the user somehow changes the value of the flag somewhere // (it's always safe to unshuffle the tests). UnshuffleTests(); if (GTEST_FLAG(shuffle)) { // Picks a new random seed for each iteration. random_seed_ = GetNextRandomSeed(random_seed_); } } repeater->OnTestProgramEnd(*parent_); if (!gtest_is_initialized_before_run_all_tests) { ColoredPrintf( GTestColor::kRed, "\nIMPORTANT NOTICE - DO NOT IGNORE:\n" "This test program did NOT call " GTEST_INIT_GOOGLE_TEST_NAME_ "() before calling RUN_ALL_TESTS(). This is INVALID. Soon " GTEST_NAME_ " will start to enforce the valid usage. " "Please fix it ASAP, or IT WILL START TO FAIL.\n"); // NOLINT #if GTEST_FOR_GOOGLE_ ColoredPrintf(GTestColor::kRed, "For more details, see http://wiki/Main/ValidGUnitMain.\n"); #endif // GTEST_FOR_GOOGLE_ } return !failed; } // Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file // if the variable is present. If a file already exists at this location, this // function will write over it. If the variable is present, but the file cannot // be created, prints an error and exits. void WriteToShardStatusFileIfNeeded() { const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile); if (test_shard_file != nullptr) { FILE* const file = posix::FOpen(test_shard_file, "w"); if (file == nullptr) { ColoredPrintf(GTestColor::kRed, "Could not write to the test shard status file \"%s\" " "specified by the %s environment variable.\n", test_shard_file, kTestShardStatusFile); fflush(stdout); exit(EXIT_FAILURE); } fclose(file); } } // Checks whether sharding is enabled by examining the relevant // environment variable values. If the variables are present, // but inconsistent (i.e., shard_index >= total_shards), prints // an error and exits. If in_subprocess_for_death_test, sharding is // disabled because it must only be applied to the original test // process. Otherwise, we could filter out death tests we intended to execute. bool ShouldShard(const char* total_shards_env, const char* shard_index_env, bool in_subprocess_for_death_test) { if (in_subprocess_for_death_test) { return false; } const int32_t total_shards = Int32FromEnvOrDie(total_shards_env, -1); const int32_t shard_index = Int32FromEnvOrDie(shard_index_env, -1); if (total_shards == -1 && shard_index == -1) { return false; } else if (total_shards == -1 && shard_index != -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestShardIndex << " = " << shard_index << ", but have left " << kTestTotalShards << " unset.\n"; ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (total_shards != -1 && shard_index == -1) { const Message msg = Message() << "Invalid environment variables: you have " << kTestTotalShards << " = " << total_shards << ", but have left " << kTestShardIndex << " unset.\n"; ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } else if (shard_index < 0 || shard_index >= total_shards) { const Message msg = Message() << "Invalid environment variables: we require 0 <= " << kTestShardIndex << " < " << kTestTotalShards << ", but you have " << kTestShardIndex << "=" << shard_index << ", " << kTestTotalShards << "=" << total_shards << ".\n"; ColoredPrintf(GTestColor::kRed, "%s", msg.GetString().c_str()); fflush(stdout); exit(EXIT_FAILURE); } return total_shards > 1; } // Parses the environment variable var as an Int32. If it is unset, // returns default_val. If it is not an Int32, prints an error // and aborts. int32_t Int32FromEnvOrDie(const char* var, int32_t default_val) { const char* str_val = posix::GetEnv(var); if (str_val == nullptr) { return default_val; } int32_t result; if (!ParseInt32(Message() << "The value of environment variable " << var, str_val, &result)) { exit(EXIT_FAILURE); } return result; } // Given the total number of shards, the shard index, and the test id, // returns true if and only if the test should be run on this shard. The test id // is some arbitrary but unique non-negative integer assigned to each test // method. Assumes that 0 <= shard_index < total_shards. bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) { return (test_id % total_shards) == shard_index; } // Compares the name of each test with the user-specified filter to // decide whether the test should be run, then records the result in // each TestSuite and TestInfo object. // If shard_tests == true, further filters tests based on sharding // variables in the environment - see // https://github.com/google/googletest/blob/master/googletest/docs/advanced.md // . Returns the number of tests that should run. int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) { const int32_t total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestTotalShards, -1) : -1; const int32_t shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ? Int32FromEnvOrDie(kTestShardIndex, -1) : -1; // num_runnable_tests are the number of tests that will // run across all shards (i.e., match filter and are not disabled). // num_selected_tests are the number of tests to be run on // this shard. int num_runnable_tests = 0; int num_selected_tests = 0; for (auto* test_suite : test_suites_) { const std::string& test_suite_name = test_suite->name(); test_suite->set_should_run(false); for (size_t j = 0; j < test_suite->test_info_list().size(); j++) { TestInfo* const test_info = test_suite->test_info_list()[j]; const std::string test_name(test_info->name()); // A test is disabled if test suite name or test name matches // kDisableTestFilter. const bool is_disabled = internal::UnitTestOptions::MatchesFilter( test_suite_name, kDisableTestFilter) || internal::UnitTestOptions::MatchesFilter( test_name, kDisableTestFilter); test_info->is_disabled_ = is_disabled; const bool matches_filter = internal::UnitTestOptions::FilterMatchesTest( test_suite_name, test_name); test_info->matches_filter_ = matches_filter; const bool is_runnable = (GTEST_FLAG(also_run_disabled_tests) || !is_disabled) && matches_filter; const bool is_in_another_shard = shard_tests != IGNORE_SHARDING_PROTOCOL && !ShouldRunTestOnShard(total_shards, shard_index, num_runnable_tests); test_info->is_in_another_shard_ = is_in_another_shard; const bool is_selected = is_runnable && !is_in_another_shard; num_runnable_tests += is_runnable; num_selected_tests += is_selected; test_info->should_run_ = is_selected; test_suite->set_should_run(test_suite->should_run() || is_selected); } } return num_selected_tests; } // Prints the given C-string on a single line by replacing all '\n' // characters with string "\\n". If the output takes more than // max_length characters, only prints the first max_length characters // and "...". static void PrintOnOneLine(const char* str, int max_length) { if (str != nullptr) { for (int i = 0; *str != '\0'; ++str) { if (i >= max_length) { printf("..."); break; } if (*str == '\n') { printf("\\n"); i += 2; } else { printf("%c", *str); ++i; } } } } // Prints the names of the tests matching the user-specified filter flag. void UnitTestImpl::ListTestsMatchingFilter() { // Print at most this many characters for each type/value parameter. const int kMaxParamLength = 250; for (auto* test_suite : test_suites_) { bool printed_test_suite_name = false; for (size_t j = 0; j < test_suite->test_info_list().size(); j++) { const TestInfo* const test_info = test_suite->test_info_list()[j]; if (test_info->matches_filter_) { if (!printed_test_suite_name) { printed_test_suite_name = true; printf("%s.", test_suite->name()); if (test_suite->type_param() != nullptr) { printf(" # %s = ", kTypeParamLabel); // We print the type parameter on a single line to make // the output easy to parse by a program. PrintOnOneLine(test_suite->type_param(), kMaxParamLength); } printf("\n"); } printf(" %s", test_info->name()); if (test_info->value_param() != nullptr) { printf(" # %s = ", kValueParamLabel); // We print the value parameter on a single line to make the // output easy to parse by a program. PrintOnOneLine(test_info->value_param(), kMaxParamLength); } printf("\n"); } } } fflush(stdout); const std::string& output_format = UnitTestOptions::GetOutputFormat(); if (output_format == "xml" || output_format == "json") { FILE* fileout = OpenFileForWriting( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()); std::stringstream stream; if (output_format == "xml") { XmlUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()) .PrintXmlTestsList(&stream, test_suites_); } else if (output_format == "json") { JsonUnitTestResultPrinter( UnitTestOptions::GetAbsolutePathToOutputFile().c_str()) .PrintJsonTestList(&stream, test_suites_); } fprintf(fileout, "%s", StringStreamToString(&stream).c_str()); fclose(fileout); } } // Sets the OS stack trace getter. // // Does nothing if the input and the current OS stack trace getter are // the same; otherwise, deletes the old getter and makes the input the // current getter. void UnitTestImpl::set_os_stack_trace_getter( OsStackTraceGetterInterface* getter) { if (os_stack_trace_getter_ != getter) { delete os_stack_trace_getter_; os_stack_trace_getter_ = getter; } } // Returns the current OS stack trace getter if it is not NULL; // otherwise, creates an OsStackTraceGetter, makes it the current // getter, and returns it. OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() { if (os_stack_trace_getter_ == nullptr) { #ifdef GTEST_OS_STACK_TRACE_GETTER_ os_stack_trace_getter_ = new GTEST_OS_STACK_TRACE_GETTER_; #else os_stack_trace_getter_ = new OsStackTraceGetter; #endif // GTEST_OS_STACK_TRACE_GETTER_ } return os_stack_trace_getter_; } // Returns the most specific TestResult currently running. TestResult* UnitTestImpl::current_test_result() { if (current_test_info_ != nullptr) { return ¤t_test_info_->result_; } if (current_test_suite_ != nullptr) { return ¤t_test_suite_->ad_hoc_test_result_; } return &ad_hoc_test_result_; } // Shuffles all test suites, and the tests within each test suite, // making sure that death tests are still run first. void UnitTestImpl::ShuffleTests() { // Shuffles the death test suites. ShuffleRange(random(), 0, last_death_test_suite_ + 1, &test_suite_indices_); // Shuffles the non-death test suites. ShuffleRange(random(), last_death_test_suite_ + 1, static_cast<int>(test_suites_.size()), &test_suite_indices_); // Shuffles the tests inside each test suite. for (auto& test_suite : test_suites_) { test_suite->ShuffleTests(random()); } } // Restores the test suites and tests to their order before the first shuffle. void UnitTestImpl::UnshuffleTests() { for (size_t i = 0; i < test_suites_.size(); i++) { // Unshuffles the tests in each test suite. test_suites_[i]->UnshuffleTests(); // Resets the index of each test suite. test_suite_indices_[i] = static_cast<int>(i); } } // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. std::string GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/, int skip_count) { // We pass skip_count + 1 to skip this wrapper function in addition // to what the user really wants to skip. return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1); } // Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to // suppress unreachable code warnings. namespace { class ClassUniqueToAlwaysTrue {}; } bool IsTrue(bool condition) { return condition; } bool AlwaysTrue() { #if GTEST_HAS_EXCEPTIONS // This condition is always false so AlwaysTrue() never actually throws, // but it makes the compiler think that it may throw. if (IsTrue(false)) throw ClassUniqueToAlwaysTrue(); #endif // GTEST_HAS_EXCEPTIONS return true; } // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. bool SkipPrefix(const char* prefix, const char** pstr) { const size_t prefix_len = strlen(prefix); if (strncmp(*pstr, prefix, prefix_len) == 0) { *pstr += prefix_len; return true; } return false; } // Parses a string as a command line flag. The string should have // the format "--flag=value". When def_optional is true, the "=value" // part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. static const char* ParseFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == nullptr || flag == nullptr) return nullptr; // The flag must start with "--" followed by GTEST_FLAG_PREFIX_. const std::string flag_str = std::string("--") + GTEST_FLAG_PREFIX_ + flag; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return nullptr; // Returns the string after "=". return flag_end + 1; } // Parses a string for a bool flag, in the form of either // "--flag=value" or "--flag". // // In the former case, the value is taken as true as long as it does // not start with '0', 'f', or 'F'. // // In the latter case, the value is taken as true. // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. static bool ParseBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for an int32_t flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. bool ParseInt32Flag(const char* str, const char* flag, int32_t* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag, value_str, value); } // Parses a string for a string flag, in the form of "--flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. template <typename String> static bool ParseStringFlag(const char* str, const char* flag, String* value) { // Gets the value of the flag as a string. const char* const value_str = ParseFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. *value = value_str; return true; } // Determines whether a string has a prefix that Google Test uses for its // flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_. // If Google Test detects that a command line flag has its prefix but is not // recognized, it will print its help message. Flags starting with // GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test // internal flags and do not trigger the help message. static bool HasGoogleTestFlagPrefix(const char* str) { return (SkipPrefix("--", &str) || SkipPrefix("-", &str) || SkipPrefix("/", &str)) && !SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) && (SkipPrefix(GTEST_FLAG_PREFIX_, &str) || SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str)); } // Prints a string containing code-encoded text. The following escape // sequences can be used in the string to control the text color: // // @@ prints a single '@' character. // @R changes the color to red. // @G changes the color to green. // @Y changes the color to yellow. // @D changes to the default terminal text color. // static void PrintColorEncoded(const char* str) { GTestColor color = GTestColor::kDefault; // The current color. // Conceptually, we split the string into segments divided by escape // sequences. Then we print one segment at a time. At the end of // each iteration, the str pointer advances to the beginning of the // next segment. for (;;) { const char* p = strchr(str, '@'); if (p == nullptr) { ColoredPrintf(color, "%s", str); return; } ColoredPrintf(color, "%s", std::string(str, p).c_str()); const char ch = p[1]; str = p + 2; if (ch == '@') { ColoredPrintf(color, "@"); } else if (ch == 'D') { color = GTestColor::kDefault; } else if (ch == 'R') { color = GTestColor::kRed; } else if (ch == 'G') { color = GTestColor::kGreen; } else if (ch == 'Y') { color = GTestColor::kYellow; } else { --str; } } } static const char kColorEncodedHelpMessage[] = "This program contains tests written using " GTEST_NAME_ ". You can use the\n" "following command line flags to control its behavior:\n" "\n" "Test Selection:\n" " @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n" " List the names of all tests instead of running them. The name of\n" " TEST(Foo, Bar) is \"Foo.Bar\".\n" " @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSITIVE_PATTERNS" "[@G-@YNEGATIVE_PATTERNS]@D\n" " Run only the tests whose name matches one of the positive patterns " "but\n" " none of the negative patterns. '?' matches any single character; " "'*'\n" " matches any substring; ':' separates two patterns.\n" " @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n" " Run all disabled tests too.\n" "\n" "Test Execution:\n" " @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n" " Run the tests repeatedly; use a negative count to repeat forever.\n" " @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n" " Randomize tests' orders on every iteration.\n" " @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n" " Random number seed to use for shuffling test orders (between 1 and\n" " 99999, or 0 to use a seed based on the current time).\n" "\n" "Test Output:\n" " @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n" " Enable/disable colored output. The default is @Gauto@D.\n" " @G--" GTEST_FLAG_PREFIX_ "brief=1@D\n" " Only print test failures.\n" " @G--" GTEST_FLAG_PREFIX_ "print_time=0@D\n" " Don't print the elapsed time of each test.\n" " @G--" GTEST_FLAG_PREFIX_ "output=@Y(@Gjson@Y|@Gxml@Y)[@G:@YDIRECTORY_PATH@G" GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n" " Generate a JSON or XML report in the given directory or with the " "given\n" " file name. @YFILE_PATH@D defaults to @Gtest_detail.xml@D.\n" # if GTEST_CAN_STREAM_RESULTS_ " @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n" " Stream test results to the given server.\n" # endif // GTEST_CAN_STREAM_RESULTS_ "\n" "Assertion Behavior:\n" # if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n" " Set the default death test style.\n" # endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS " @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n" " Turn assertion failures into debugger break-points.\n" " @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n" " Turn assertion failures into C++ exceptions for use by an external\n" " test framework.\n" " @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n" " Do not report exceptions as test failures. Instead, allow them\n" " to crash the program or throw a pop-up (on Windows).\n" "\n" "Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set " "the corresponding\n" "environment variable of a flag (all letters in upper-case). For example, " "to\n" "disable colored text output, you can either specify " "@G--" GTEST_FLAG_PREFIX_ "color=no@D or set\n" "the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n" "\n" "For more information, please read the " GTEST_NAME_ " documentation at\n" "@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n" "(not one in your own code or tests), please report it to\n" "@G<" GTEST_DEV_EMAIL_ ">@D.\n"; static bool ParseGoogleTestFlag(const char* const arg) { return ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag, >EST_FLAG(also_run_disabled_tests)) || ParseBoolFlag(arg, kBreakOnFailureFlag, >EST_FLAG(break_on_failure)) || ParseBoolFlag(arg, kCatchExceptionsFlag, >EST_FLAG(catch_exceptions)) || ParseStringFlag(arg, kColorFlag, >EST_FLAG(color)) || ParseStringFlag(arg, kDeathTestStyleFlag, >EST_FLAG(death_test_style)) || ParseBoolFlag(arg, kDeathTestUseFork, >EST_FLAG(death_test_use_fork)) || ParseBoolFlag(arg, kFailFast, >EST_FLAG(fail_fast)) || ParseStringFlag(arg, kFilterFlag, >EST_FLAG(filter)) || ParseStringFlag(arg, kInternalRunDeathTestFlag, >EST_FLAG(internal_run_death_test)) || ParseBoolFlag(arg, kListTestsFlag, >EST_FLAG(list_tests)) || ParseStringFlag(arg, kOutputFlag, >EST_FLAG(output)) || ParseBoolFlag(arg, kBriefFlag, >EST_FLAG(brief)) || ParseBoolFlag(arg, kPrintTimeFlag, >EST_FLAG(print_time)) || ParseBoolFlag(arg, kPrintUTF8Flag, >EST_FLAG(print_utf8)) || ParseInt32Flag(arg, kRandomSeedFlag, >EST_FLAG(random_seed)) || ParseInt32Flag(arg, kRepeatFlag, >EST_FLAG(repeat)) || ParseBoolFlag(arg, kShuffleFlag, >EST_FLAG(shuffle)) || ParseInt32Flag(arg, kStackTraceDepthFlag, >EST_FLAG(stack_trace_depth)) || ParseStringFlag(arg, kStreamResultToFlag, >EST_FLAG(stream_result_to)) || ParseBoolFlag(arg, kThrowOnFailureFlag, >EST_FLAG(throw_on_failure)); } #if GTEST_USE_OWN_FLAGFILE_FLAG_ static void LoadFlagsFromFile(const std::string& path) { FILE* flagfile = posix::FOpen(path.c_str(), "r"); if (!flagfile) { GTEST_LOG_(FATAL) << "Unable to open file \"" << GTEST_FLAG(flagfile) << "\""; } std::string contents(ReadEntireFile(flagfile)); posix::FClose(flagfile); std::vector<std::string> lines; SplitString(contents, '\n', &lines); for (size_t i = 0; i < lines.size(); ++i) { if (lines[i].empty()) continue; if (!ParseGoogleTestFlag(lines[i].c_str())) g_help_flag = true; } } #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ // Parses the command line for Google Test flags, without initializing // other parts of Google Test. The type parameter CharType can be // instantiated to either char or wchar_t. template <typename CharType> void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) { for (int i = 1; i < *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); using internal::ParseBoolFlag; using internal::ParseInt32Flag; using internal::ParseStringFlag; bool remove_flag = false; if (ParseGoogleTestFlag(arg)) { remove_flag = true; #if GTEST_USE_OWN_FLAGFILE_FLAG_ } else if (ParseStringFlag(arg, kFlagfileFlag, >EST_FLAG(flagfile))) { LoadFlagsFromFile(GTEST_FLAG(flagfile)); remove_flag = true; #endif // GTEST_USE_OWN_FLAGFILE_FLAG_ } else if (arg_string == "--help" || arg_string == "-h" || arg_string == "-?" || arg_string == "/?" || HasGoogleTestFlagPrefix(arg)) { // Both help flag and unrecognized Google Test flags (excluding // internal ones) trigger help display. g_help_flag = true; } if (remove_flag) { // Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } } if (g_help_flag) { // We print the help here instead of in RUN_ALL_TESTS(), as the // latter may not be called at all if the user is using Google // Test with another testing framework. PrintColorEncoded(kColorEncodedHelpMessage); } } // Parses the command line for Google Test flags, without initializing // other parts of Google Test. void ParseGoogleTestFlagsOnly(int* argc, char** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); // Fix the value of *_NSGetArgc() on macOS, but if and only if // *_NSGetArgv() == argv // Only applicable to char** version of argv #if GTEST_OS_MAC #ifndef GTEST_OS_IOS if (*_NSGetArgv() == argv) { *_NSGetArgc() = *argc; } #endif #endif } void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) { ParseGoogleTestFlagsOnlyImpl(argc, argv); } // The internal implementation of InitGoogleTest(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template <typename CharType> void InitGoogleTestImpl(int* argc, CharType** argv) { // We don't want to run the initialization code twice. if (GTestIsInitialized()) return; if (*argc <= 0) return; g_argvs.clear(); for (int i = 0; i != *argc; i++) { g_argvs.push_back(StreamableToString(argv[i])); } #if GTEST_HAS_ABSL absl::InitializeSymbolizer(g_argvs[0].c_str()); #endif // GTEST_HAS_ABSL ParseGoogleTestFlagsOnly(argc, argv); GetUnitTestImpl()->PostFlagParsingInit(); } } // namespace internal // Initializes Google Test. This must be called before calling // RUN_ALL_TESTS(). In particular, it parses a command line for the // flags that Google Test recognizes. Whenever a Google Test flag is // seen, it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Test flag variables are // updated. // // Calling the function for the second time has no user-visible effect. void InitGoogleTest(int* argc, char** argv) { #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. void InitGoogleTest(int* argc, wchar_t** argv) { #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } // This overloaded version can be used on Arduino/embedded platforms where // there is no argc/argv. void InitGoogleTest() { // Since Arduino doesn't have a command line, fake out the argc/argv arguments int argc = 1; const auto arg0 = "dummy"; char* argv0 = const_cast<char*>(arg0); char** argv = &argv0; #if defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_(&argc, argv); #else // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) internal::InitGoogleTestImpl(&argc, argv); #endif // defined(GTEST_CUSTOM_INIT_GOOGLE_TEST_FUNCTION_) } std::string TempDir() { #if defined(GTEST_CUSTOM_TEMPDIR_FUNCTION_) return GTEST_CUSTOM_TEMPDIR_FUNCTION_(); #elif GTEST_OS_WINDOWS_MOBILE return "\\temp\\"; #elif GTEST_OS_WINDOWS const char* temp_dir = internal::posix::GetEnv("TEMP"); if (temp_dir == nullptr || temp_dir[0] == '\0') { return "\\temp\\"; } else if (temp_dir[strlen(temp_dir) - 1] == '\\') { return temp_dir; } else { return std::string(temp_dir) + "\\"; } #elif GTEST_OS_LINUX_ANDROID const char* temp_dir = internal::posix::GetEnv("TEST_TMPDIR"); if (temp_dir == nullptr || temp_dir[0] == '\0') { return "/data/local/tmp/"; } else { return temp_dir; } #elif GTEST_OS_LINUX const char* temp_dir = internal::posix::GetEnv("TEST_TMPDIR"); if (temp_dir == nullptr || temp_dir[0] == '\0') { return "/tmp/"; } else { return temp_dir; } #else return "/tmp/"; #endif // GTEST_OS_WINDOWS_MOBILE } // Class ScopedTrace // Pushes the given source file location and message onto a per-thread // trace stack maintained by Google Test. void ScopedTrace::PushTrace(const char* file, int line, std::string message) { internal::TraceInfo trace; trace.file = file; trace.line = line; trace.message.swap(message); UnitTest::GetInstance()->PushGTestTrace(trace); } // Pops the info pushed by the c'tor. ScopedTrace::~ScopedTrace() GTEST_LOCK_EXCLUDED_(&UnitTest::mutex_) { UnitTest::GetInstance()->PopGTestTrace(); } } // namespace testing // Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This file implements death tests. #include <functional> #include <utility> #if GTEST_HAS_DEATH_TEST # if GTEST_OS_MAC # include <crt_externs.h> # endif // GTEST_OS_MAC # include <errno.h> # include <fcntl.h> # include <limits.h> # if GTEST_OS_LINUX # include <signal.h> # endif // GTEST_OS_LINUX # include <stdarg.h> # if GTEST_OS_WINDOWS # include <windows.h> # else # include <sys/mman.h> # include <sys/wait.h> # endif // GTEST_OS_WINDOWS # if GTEST_OS_QNX # include <spawn.h> # endif // GTEST_OS_QNX # if GTEST_OS_FUCHSIA # include <lib/fdio/fd.h> # include <lib/fdio/io.h> # include <lib/fdio/spawn.h> # include <lib/zx/channel.h> # include <lib/zx/port.h> # include <lib/zx/process.h> # include <lib/zx/socket.h> # include <zircon/processargs.h> # include <zircon/syscalls.h> # include <zircon/syscalls/policy.h> # include <zircon/syscalls/port.h> # endif // GTEST_OS_FUCHSIA #endif // GTEST_HAS_DEATH_TEST namespace testing { // Constants. // The default death test style. // // This is defined in internal/gtest-port.h as "fast", but can be overridden by // a definition in internal/custom/gtest-port.h. The recommended value, which is // used internally at Google, is "threadsafe". static const char kDefaultDeathTestStyle[] = GTEST_DEFAULT_DEATH_TEST_STYLE; GTEST_DEFINE_string_( death_test_style, internal::StringFromGTestEnv("death_test_style", kDefaultDeathTestStyle), "Indicates how to run a death test in a forked child process: " "\"threadsafe\" (child process re-executes the test binary " "from the beginning, running only the specific death test) or " "\"fast\" (child process runs the death test immediately " "after forking)."); GTEST_DEFINE_bool_( death_test_use_fork, internal::BoolFromGTestEnv("death_test_use_fork", false), "Instructs to use fork()/_exit() instead of clone() in death tests. " "Ignored and always uses fork() on POSIX systems where clone() is not " "implemented. Useful when running under valgrind or similar tools if " "those do not support clone(). Valgrind 3.3.1 will just fail if " "it sees an unsupported combination of clone() flags. " "It is not recommended to use this flag w/o valgrind though it will " "work in 99% of the cases. Once valgrind is fixed, this flag will " "most likely be removed."); namespace internal { GTEST_DEFINE_string_( internal_run_death_test, "", "Indicates the file, line number, temporal index of " "the single death test to run, and a file descriptor to " "which a success code may be sent, all separated by " "the '|' characters. This flag is specified if and only if the " "current process is a sub-process launched for running a thread-safe " "death test. FOR INTERNAL USE ONLY."); } // namespace internal #if GTEST_HAS_DEATH_TEST namespace internal { // Valid only for fast death tests. Indicates the code is running in the // child process of a fast style death test. # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA static bool g_in_fast_death_test_child = false; # endif // Returns a Boolean value indicating whether the caller is currently // executing in the context of the death test child process. Tools such as // Valgrind heap checkers may need this to modify their behavior in death // tests. IMPORTANT: This is an internal utility. Using it may break the // implementation of death tests. User code MUST NOT use it. bool InDeathTestChild() { # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA // On Windows and Fuchsia, death tests are thread-safe regardless of the value // of the death_test_style flag. return !GTEST_FLAG(internal_run_death_test).empty(); # else if (GTEST_FLAG(death_test_style) == "threadsafe") return !GTEST_FLAG(internal_run_death_test).empty(); else return g_in_fast_death_test_child; #endif } } // namespace internal // ExitedWithCode constructor. ExitedWithCode::ExitedWithCode(int exit_code) : exit_code_(exit_code) { } // ExitedWithCode function-call operator. bool ExitedWithCode::operator()(int exit_status) const { # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA return exit_status == exit_code_; # else return WIFEXITED(exit_status) && WEXITSTATUS(exit_status) == exit_code_; # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA } # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // KilledBySignal constructor. KilledBySignal::KilledBySignal(int signum) : signum_(signum) { } // KilledBySignal function-call operator. bool KilledBySignal::operator()(int exit_status) const { # if defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_) { bool result; if (GTEST_KILLED_BY_SIGNAL_OVERRIDE_(signum_, exit_status, &result)) { return result; } } # endif // defined(GTEST_KILLED_BY_SIGNAL_OVERRIDE_) return WIFSIGNALED(exit_status) && WTERMSIG(exit_status) == signum_; } # endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA namespace internal { // Utilities needed for death tests. // Generates a textual description of a given exit code, in the format // specified by wait(2). static std::string ExitSummary(int exit_code) { Message m; # if GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA m << "Exited with exit status " << exit_code; # else if (WIFEXITED(exit_code)) { m << "Exited with exit status " << WEXITSTATUS(exit_code); } else if (WIFSIGNALED(exit_code)) { m << "Terminated by signal " << WTERMSIG(exit_code); } # ifdef WCOREDUMP if (WCOREDUMP(exit_code)) { m << " (core dumped)"; } # endif # endif // GTEST_OS_WINDOWS || GTEST_OS_FUCHSIA return m.GetString(); } // Returns true if exit_status describes a process that was terminated // by a signal, or exited normally with a nonzero exit code. bool ExitedUnsuccessfully(int exit_status) { return !ExitedWithCode(0)(exit_status); } # if !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // Generates a textual failure message when a death test finds more than // one thread running, or cannot determine the number of threads, prior // to executing the given statement. It is the responsibility of the // caller not to pass a thread_count of 1. static std::string DeathTestThreadWarning(size_t thread_count) { Message msg; msg << "Death tests use fork(), which is unsafe particularly" << " in a threaded context. For this test, " << GTEST_NAME_ << " "; if (thread_count == 0) { msg << "couldn't detect the number of threads."; } else { msg << "detected " << thread_count << " threads."; } msg << " See " "https://github.com/google/googletest/blob/master/docs/" "advanced.md#death-tests-and-threads" << " for more explanation and suggested solutions, especially if" << " this is the last message you see before your test times out."; return msg.GetString(); } # endif // !GTEST_OS_WINDOWS && !GTEST_OS_FUCHSIA // Flag characters for reporting a death test that did not die. static const char kDeathTestLived = 'L'; static const char kDeathTestReturned = 'R'; static const char kDeathTestThrew = 'T'; static const char kDeathTestInternalError = 'I'; #if GTEST_OS_FUCHSIA // File descriptor used for the pipe in the child process. static const int kFuchsiaReadPipeFd = 3; #endif // An enumeration describing all of the possible ways that a death test can // conclude. DIED means that the process died while executing the test // code; LIVED means that process lived beyond the end of the test code; // RETURNED means that the test statement attempted to execute a return // statement, which is not allowed; THREW means that the test statement // returned control by throwing an exception. IN_PROGRESS means the test // has not yet concluded. enum DeathTestOutcome { IN_PROGRESS, DIED, LIVED, RETURNED, THREW }; // Routine for aborting the program which is safe to call from an // exec-style death test child process, in which case the error // message is propagated back to the parent process. Otherwise, the // message is simply printed to stderr. In either case, the program // then exits with status 1. static void DeathTestAbort(const std::string& message) { // On a POSIX system, this function may be called from a threadsafe-style // death test child process, which operates on a very small stack. Use // the heap for any additional non-minuscule memory requirements. const InternalRunDeathTestFlag* const flag = GetUnitTestImpl()->internal_run_death_test_flag(); if (flag != nullptr) { FILE* parent = posix::FDOpen(flag->write_fd(), "w"); fputc(kDeathTestInternalError, parent); fprintf(parent, "%s", message.c_str()); fflush(parent); _exit(1); } else { fprintf(stderr, "%s", message.c_str()); fflush(stderr); posix::Abort(); } } // A replacement for CHECK that calls DeathTestAbort if the assertion // fails. # define GTEST_DEATH_TEST_CHECK_(expression) \ do { \ if (!::testing::internal::IsTrue(expression)) { \ DeathTestAbort( \ ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + ::testing::internal::StreamableToString(__LINE__) + ": " \ + #expression); \ } \ } while (::testing::internal::AlwaysFalse()) // This macro is similar to GTEST_DEATH_TEST_CHECK_, but it is meant for // evaluating any system call that fulfills two conditions: it must return // -1 on failure, and set errno to EINTR when it is interrupted and // should be tried again. The macro expands to a loop that repeatedly // evaluates the expression as long as it evaluates to -1 and sets // errno to EINTR. If the expression evaluates to -1 but errno is // something other than EINTR, DeathTestAbort is called. # define GTEST_DEATH_TEST_CHECK_SYSCALL_(expression) \ do { \ int gtest_retval; \ do { \ gtest_retval = (expression); \ } while (gtest_retval == -1 && errno == EINTR); \ if (gtest_retval == -1) { \ DeathTestAbort( \ ::std::string("CHECK failed: File ") + __FILE__ + ", line " \ + ::testing::internal::StreamableToString(__LINE__) + ": " \ + #expression + " != -1"); \ } \ } while (::testing::internal::AlwaysFalse()) // Returns the message describing the last system error in errno. std::string GetLastErrnoDescription() { return errno == 0 ? "" : posix::StrError(errno); } // This is called from a death test parent process to read a failure // message from the death test child process and log it with the FATAL // severity. On Windows, the message is read from a pipe handle. On other // platforms, it is read from a file descriptor. static void FailFromInternalError(int fd) { Message error; char buffer[256]; int num_read; do { while ((num_read = posix::Read(fd, buffer, 255)) > 0) { buffer[num_read] = '\0'; error << buffer; } } while (num_read == -1 && errno == EINTR); if (num_read == 0) { GTEST_LOG_(FATAL) << error.GetString(); } else { const int last_error = errno; GTEST_LOG_(FATAL) << "Error while reading death test internal: " << GetLastErrnoDescription() << " [" << last_error << "]"; } } // Death test constructor. Increments the running death test count // for the current test. DeathTest::DeathTest() { TestInfo* const info = GetUnitTestImpl()->current_test_info(); if (info == nullptr) { DeathTestAbort("Cannot run a death test outside of a TEST or " "TEST_F construct"); } } // Creates and returns a death test by dispatching to the current // death test factory. bool DeathTest::Create(const char* statement, Matcher<const std::string&> matcher, const char* file, int line, DeathTest** test) { return GetUnitTestImpl()->death_test_factory()->Create( statement, std::move(matcher), file, line, test); } const char* DeathTest::LastMessage() { return last_death_test_message_.c_str(); } void DeathTest::set_last_death_test_message(const std::string& message) { last_death_test_message_ = message; } std::string DeathTest::last_death_test_message_; // Provides cross platform implementation for some death functionality. class DeathTestImpl : public DeathTest { protected: DeathTestImpl(const char* a_statement, Matcher<const std::string&> matcher) : statement_(a_statement), matcher_(std::move(matcher)), spawned_(false), status_(-1), outcome_(IN_PROGRESS), read_fd_(-1), write_fd_(-1) {} // read_fd_ is expected to be closed and cleared by a derived class. ~DeathTestImpl() override { GTEST_DEATH_TEST_CHECK_(read_fd_ == -1); } void Abort(AbortReason reason) override; bool Passed(bool status_ok) override; const char* statement() const { return statement_; } bool spawned() const { return spawned_; } void set_spawned(bool is_spawned) { spawned_ = is_spawned; } int status() const { return status_; } void set_status(int a_status) { status_ = a_status; } DeathTestOutcome outcome() const { return outcome_; } void set_outcome(DeathTestOutcome an_outcome) { outcome_ = an_outcome; } int read_fd() const { return read_fd_; } void set_read_fd(int fd) { read_fd_ = fd; } int write_fd() const { return write_fd_; } void set_write_fd(int fd) { write_fd_ = fd; } // Called in the parent process only. Reads the result code of the death // test child process via a pipe, interprets it to set the outcome_ // member, and closes read_fd_. Outputs diagnostics and terminates in // case of unexpected codes. void ReadAndInterpretStatusByte(); // Returns stderr output from the child process. virtual std::string GetErrorLogs(); private: // The textual content of the code this object is testing. This class // doesn't own this string and should not attempt to delete it. const char* const statement_; // A matcher that's expected to match the stderr output by the child process. Matcher<const std::string&> matcher_; // True if the death test child process has been successfully spawned. bool spawned_; // The exit status of the child process. int status_; // How the death test concluded. DeathTestOutcome outcome_; // Descriptor to the read end of the pipe to the child process. It is // always -1 in the child process. The child keeps its write end of the // pipe in write_fd_. int read_fd_; // Descriptor to the child's write end of the pipe to the parent process. // It is always -1 in the parent process. The parent keeps its end of the // pipe in read_fd_. int write_fd_; }; // Called in the parent process only. Reads the result code of the death // test child process via a pipe, interprets it to set the outcome_ // member, and closes read_fd_. Outputs diagnostics and terminates in // case of unexpected codes. void DeathTestImpl::ReadAndInterpretStatusByte() { char flag; int bytes_read; // The read() here blocks until data is available (signifying the // failure of the death test) or until the pipe is closed (signifying // its success), so it's okay to call this in the parent before // the child process has exited. do { bytes_read = posix::Read(read_fd(), &flag, 1); } while (bytes_read == -1 && errno == EINTR); if (bytes_read == 0) { set_outcome(DIED); } else if (bytes_read == 1) { switch (flag) { case kDeathTestReturned: set_outcome(RETURNED); break; case kDeathTestThrew: set_outcome(THREW); break; case kDeathTestLived: set_outcome(LIVED); break; case kDeathTestInternalError: FailFromInternalError(read_fd()); // Does not return. break; default: GTEST_LOG_(FATAL) << "Death test child process reported " << "unexpected status byte (" << static_cast<unsigned int>(flag) << ")"; } } else { GTEST_LOG_(FATAL) << "Read from death test child process failed: " << GetLastErrnoDescription(); } GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Close(read_fd())); set_read_fd(-1); } std::string DeathTestImpl::GetErrorLogs() { return GetCapturedStderr(); } // Signals that the death test code which should have exited, didn't. // Should be called only in a death test child process. // Writes a status byte to the child's status file descriptor, then // calls _exit(1). void DeathTestImpl::Abort(AbortReason reason) { // The parent process considers the death test to be a failure if // it finds any data in our pipe. So, here we write a single flag byte // to the pipe, then exit. const char status_ch = reason == TEST_DID_NOT_DIE ? kDeathTestLived : reason == TEST_THREW_EXCEPTION ? kDeathTestThrew : kDeathTestReturned; GTEST_DEATH_TEST_CHECK_SYSCALL_(posix::Write(write_fd(), &status_ch, 1)); // We are leaking the descriptor here because on some platforms (i.e., // when built as Windows DLL), destructors of global objects will still // run after calling _exit(). On such systems, write_fd_ will be // indirectly closed from the destructor of UnitTestImpl, causing double // close if it is also closed here. On debug configurations, double close // may assert. As there are no in-process buffers to flush here, we are // relying on the OS to close the descriptor after the process terminates // when the destructors are not run. _exit(1); // Exits w/o any normal exit hooks (we were supposed to crash) } // Returns an indented copy of stderr output for a death test. // This makes distinguishing death test output lines from regular log lines // much easier. static ::std::string FormatDeathTestOutput(const ::std::string& output) { ::std::string ret; for (size_t at = 0; ; ) { const size_t line_end = output.find('\n', at); ret += "[ DEATH ] "; if (line_end == ::std::string::npos) { ret += output.substr(at); break; } ret += output.substr(at, line_end + 1 - at); at = line_end + 1; } return ret; } // Assesses the success or failure of a death test, using both private // members which have previously been set, and one argument: // // Private data members: // outcome: An enumeration describing how the death test // concluded: DIED, LIVED, THREW, or RETURNED. The death test // fails in the latter three cases. // status: The exit status of the child process. On *nix, it is in the // in the format specified by wait(2). On Windows, this is the // value supplied to the ExitProcess() API or a numeric code // of the exception that terminated the program. // matcher_: A matcher that's expected to match the stderr output by the child // process. // // Argument: // status_ok: true if exit_status is acceptable in the context of // this particular death test, which fails if it is false // // Returns true if and only if all of the above conditions are met. Otherwise, // the first failing condition, in the order given above, is the one that is // reported. Also sets the last death test message string. bool DeathTestImpl::Passed(bool status_ok) { if (!spawned()) return false; const std::string error_message = GetErrorLogs(); bool success = false; Message buffer; buffer << "Death test: " << statement() << "\n"; switch (outcome()) { case LIVED: buffer << " Result: failed to die.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case THREW: buffer << " Result: threw an exception.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case RETURNED: buffer << " Result: illegal return in test statement.\n" << " Error msg:\n" << FormatDeathTestOutput(error_message); break; case DIED: if (status_ok) { if (matcher_.Matches(error_message)) { success = true; } else { std::ostringstream stream; matcher_.DescribeTo(&stream); buffer << " Result: died but not with expected error.\n" << " Expected: " << stream.str() << "\n" << "Actual msg:\n" << FormatDeathTestOutput(error_message); } } else { buffer << " Result: died but not with expected exit code:\n" << " " << ExitSummary(status()) << "\n" << "Actual msg:\n" << FormatDeathTestOutput(error_message); } break; case IN_PROGRESS: default: GTEST_LOG_(FATAL) << "DeathTest::Passed somehow called before conclusion of test"; } DeathTest::set_last_death_test_message(buffer.GetString()); return success; } # if GTEST_OS_WINDOWS // WindowsDeathTest implements death tests on Windows. Due to the // specifics of starting new processes on Windows, death tests there are // always threadsafe, and Google Test considers the // --gtest_death_test_style=fast setting to be equivalent to // --gtest_death_test_style=threadsafe there. // // A few implementation notes: Like the Linux version, the Windows // implementation uses pipes for child-to-parent communication. But due to // the specifics of pipes on Windows, some extra steps are required: // // 1. The parent creates a communication pipe and stores handles to both // ends of it. // 2. The parent starts the child and provides it with the information // necessary to acquire the handle to the write end of the pipe. // 3. The child acquires the write end of the pipe and signals the parent // using a Windows event. // 4. Now the parent can release the write end of the pipe on its side. If // this is done before step 3, the object's reference count goes down to // 0 and it is destroyed, preventing the child from acquiring it. The // parent now has to release it, or read operations on the read end of // the pipe will not return when the child terminates. // 5. The parent reads child's output through the pipe (outcome code and // any possible error messages) from the pipe, and its stderr and then // determines whether to fail the test. // // Note: to distinguish Win32 API calls from the local method and function // calls, the former are explicitly resolved in the global namespace. // class WindowsDeathTest : public DeathTestImpl { public: WindowsDeathTest(const char* a_statement, Matcher<const std::string&> matcher, const char* file, int line) : DeathTestImpl(a_statement, std::move(matcher)), file_(file), line_(line) {} // All of these virtual functions are inherited from DeathTest. virtual int Wait(); virtual TestRole AssumeRole(); private: // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; // Handle to the write end of the pipe to the child process. AutoHandle write_handle_; // Child process handle. AutoHandle child_handle_; // Event the child process uses to signal the parent that it has // acquired the handle to the write end of the pipe. After seeing this // event the parent can release its own handles to make sure its // ReadFile() calls return when the child terminates. AutoHandle event_handle_; }; // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int WindowsDeathTest::Wait() { if (!spawned()) return 0; // Wait until the child either signals that it has acquired the write end // of the pipe or it dies. const HANDLE wait_handles[2] = { child_handle_.Get(), event_handle_.Get() }; switch (::WaitForMultipleObjects(2, wait_handles, FALSE, // Waits for any of the handles. INFINITE)) { case WAIT_OBJECT_0: case WAIT_OBJECT_0 + 1: break; default: GTEST_DEATH_TEST_CHECK_(false); // Should not get here. } // The child has acquired the write end of the pipe or exited. // We release the handle on our side and continue. write_handle_.Reset(); event_handle_.Reset(); ReadAndInterpretStatusByte(); // Waits for the child process to exit if it haven't already. This // returns immediately if the child has already exited, regardless of // whether previous calls to WaitForMultipleObjects synchronized on this // handle or not. GTEST_DEATH_TEST_CHECK_( WAIT_OBJECT_0 == ::WaitForSingleObject(child_handle_.Get(), INFINITE)); DWORD status_code; GTEST_DEATH_TEST_CHECK_( ::GetExitCodeProcess(child_handle_.Get(), &status_code) != FALSE); child_handle_.Reset(); set_status(static_cast<int>(status_code)); return status(); } // The AssumeRole process for a Windows death test. It creates a child // process with the same executable as the current process to run the // death test. The child process is given the --gtest_filter and // --gtest_internal_run_death_test flags such that it knows to run the // current death test only. DeathTest::TestRole WindowsDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != nullptr) { // ParseInternalRunDeathTestFlag() has performed all the necessary // processing. set_write_fd(flag->write_fd()); return EXECUTE_TEST; } // WindowsDeathTest uses an anonymous pipe to communicate results of // a death test. SECURITY_ATTRIBUTES handles_are_inheritable = {sizeof(SECURITY_ATTRIBUTES), nullptr, TRUE}; HANDLE read_handle, write_handle; GTEST_DEATH_TEST_CHECK_( ::CreatePipe(&read_handle, &write_handle, &handles_are_inheritable, 0) // Default buffer size. != FALSE); set_read_fd(::_open_osfhandle(reinterpret_cast<intptr_t>(read_handle), O_RDONLY)); write_handle_.Reset(write_handle); event_handle_.Reset(::CreateEvent( &handles_are_inheritable, TRUE, // The event will automatically reset to non-signaled state. FALSE, // The initial state is non-signalled. nullptr)); // The even is unnamed. GTEST_DEATH_TEST_CHECK_(event_handle_.Get() != nullptr); const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_suite_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index) + "|" + StreamableToString(static_cast<unsigned int>(::GetCurrentProcessId())) + // size_t has the same width as pointers on both 32-bit and 64-bit // Windows platforms. // See http://msdn.microsoft.com/en-us/library/tcxf1dw6.aspx. "|" + StreamableToString(reinterpret_cast<size_t>(write_handle)) + "|" + StreamableToString(reinterpret_cast<size_t>(event_handle_.Get())); char executable_path[_MAX_PATH + 1]; // NOLINT GTEST_DEATH_TEST_CHECK_(_MAX_PATH + 1 != ::GetModuleFileNameA(nullptr, executable_path, _MAX_PATH)); std::string command_line = std::string(::GetCommandLineA()) + " " + filter_flag + " \"" + internal_flag + "\""; DeathTest::set_last_death_test_message(""); CaptureStderr(); // Flush the log buffers since the log streams are shared with the child. FlushInfoLog(); // The child process will share the standard handles with the parent. STARTUPINFOA startup_info; memset(&startup_info, 0, sizeof(STARTUPINFO)); startup_info.dwFlags = STARTF_USESTDHANDLES; startup_info.hStdInput = ::GetStdHandle(STD_INPUT_HANDLE); startup_info.hStdOutput = ::GetStdHandle(STD_OUTPUT_HANDLE); startup_info.hStdError = ::GetStdHandle(STD_ERROR_HANDLE); PROCESS_INFORMATION process_info; GTEST_DEATH_TEST_CHECK_( ::CreateProcessA( executable_path, const_cast<char*>(command_line.c_str()), nullptr, // Retuned process handle is not inheritable. nullptr, // Retuned thread handle is not inheritable. TRUE, // Child inherits all inheritable handles (for write_handle_). 0x0, // Default creation flags. nullptr, // Inherit the parent's environment. UnitTest::GetInstance()->original_working_dir(), &startup_info, &process_info) != FALSE); child_handle_.Reset(process_info.hProcess); ::CloseHandle(process_info.hThread); set_spawned(true); return OVERSEE_TEST; } # elif GTEST_OS_FUCHSIA class FuchsiaDeathTest : public DeathTestImpl { public: FuchsiaDeathTest(const char* a_statement, Matcher<const std::string&> matcher, const char* file, int line) : DeathTestImpl(a_statement, std::move(matcher)), file_(file), line_(line) {} // All of these virtual functions are inherited from DeathTest. int Wait() override; TestRole AssumeRole() override; std::string GetErrorLogs() override; private: // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; // The stderr data captured by the child process. std::string captured_stderr_; zx::process child_process_; zx::channel exception_channel_; zx::socket stderr_socket_; }; // Utility class for accumulating command-line arguments. class Arguments { public: Arguments() { args_.push_back(nullptr); } ~Arguments() { for (std::vector<char*>::iterator i = args_.begin(); i != args_.end(); ++i) { free(*i); } } void AddArgument(const char* argument) { args_.insert(args_.end() - 1, posix::StrDup(argument)); } template <typename Str> void AddArguments(const ::std::vector<Str>& arguments) { for (typename ::std::vector<Str>::const_iterator i = arguments.begin(); i != arguments.end(); ++i) { args_.insert(args_.end() - 1, posix::StrDup(i->c_str())); } } char* const* Argv() { return &args_[0]; } int size() { return static_cast<int>(args_.size()) - 1; } private: std::vector<char*> args_; }; // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int FuchsiaDeathTest::Wait() { const int kProcessKey = 0; const int kSocketKey = 1; const int kExceptionKey = 2; if (!spawned()) return 0; // Create a port to wait for socket/task/exception events. zx_status_t status_zx; zx::port port; status_zx = zx::port::create(0, &port); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); // Register to wait for the child process to terminate. status_zx = child_process_.wait_async( port, kProcessKey, ZX_PROCESS_TERMINATED, 0); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); // Register to wait for the socket to be readable or closed. status_zx = stderr_socket_.wait_async( port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, 0); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); // Register to wait for an exception. status_zx = exception_channel_.wait_async( port, kExceptionKey, ZX_CHANNEL_READABLE, 0); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); bool process_terminated = false; bool socket_closed = false; do { zx_port_packet_t packet = {}; status_zx = port.wait(zx::time::infinite(), &packet); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); if (packet.key == kExceptionKey) { // Process encountered an exception. Kill it directly rather than // letting other handlers process the event. We will get a kProcessKey // event when the process actually terminates. status_zx = child_process_.kill(); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); } else if (packet.key == kProcessKey) { // Process terminated. GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type)); GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_PROCESS_TERMINATED); process_terminated = true; } else if (packet.key == kSocketKey) { GTEST_DEATH_TEST_CHECK_(ZX_PKT_IS_SIGNAL_ONE(packet.type)); if (packet.signal.observed & ZX_SOCKET_READABLE) { // Read data from the socket. constexpr size_t kBufferSize = 1024; do { size_t old_length = captured_stderr_.length(); size_t bytes_read = 0; captured_stderr_.resize(old_length + kBufferSize); status_zx = stderr_socket_.read( 0, &captured_stderr_.front() + old_length, kBufferSize, &bytes_read); captured_stderr_.resize(old_length + bytes_read); } while (status_zx == ZX_OK); if (status_zx == ZX_ERR_PEER_CLOSED) { socket_closed = true; } else { GTEST_DEATH_TEST_CHECK_(status_zx == ZX_ERR_SHOULD_WAIT); status_zx = stderr_socket_.wait_async( port, kSocketKey, ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED, 0); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); } } else { GTEST_DEATH_TEST_CHECK_(packet.signal.observed & ZX_SOCKET_PEER_CLOSED); socket_closed = true; } } } while (!process_terminated && !socket_closed); ReadAndInterpretStatusByte(); zx_info_process_v2_t buffer; status_zx = child_process_.get_info( ZX_INFO_PROCESS_V2, &buffer, sizeof(buffer), nullptr, nullptr); GTEST_DEATH_TEST_CHECK_(status_zx == ZX_OK); GTEST_DEATH_TEST_CHECK_(buffer.flags & ZX_INFO_PROCESS_FLAG_EXITED); set_status(static_cast<int>(buffer.return_code)); return status(); } // The AssumeRole process for a Fuchsia death test. It creates a child // process with the same executable as the current process to run the // death test. The child process is given the --gtest_filter and // --gtest_internal_run_death_test flags such that it knows to run the // current death test only. DeathTest::TestRole FuchsiaDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != nullptr) { // ParseInternalRunDeathTestFlag() has performed all the necessary // processing. set_write_fd(kFuchsiaReadPipeFd); return EXECUTE_TEST; } // Flush the log buffers since the log streams are shared with the child. FlushInfoLog(); // Build the child process command line. const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_suite_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index); Arguments args; args.AddArguments(GetInjectableArgvs()); args.AddArgument(filter_flag.c_str()); args.AddArgument(internal_flag.c_str()); // Build the pipe for communication with the child. zx_status_t status; zx_handle_t child_pipe_handle; int child_pipe_fd; status = fdio_pipe_half(&child_pipe_fd, &child_pipe_handle); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); set_read_fd(child_pipe_fd); // Set the pipe handle for the child. fdio_spawn_action_t spawn_actions[2] = {}; fdio_spawn_action_t* add_handle_action = &spawn_actions[0]; add_handle_action->action = FDIO_SPAWN_ACTION_ADD_HANDLE; add_handle_action->h.id = PA_HND(PA_FD, kFuchsiaReadPipeFd); add_handle_action->h.handle = child_pipe_handle; // Create a socket pair will be used to receive the child process' stderr. zx::socket stderr_producer_socket; status = zx::socket::create(0, &stderr_producer_socket, &stderr_socket_); GTEST_DEATH_TEST_CHECK_(status >= 0); int stderr_producer_fd = -1; status = fdio_fd_create(stderr_producer_socket.release(), &stderr_producer_fd); GTEST_DEATH_TEST_CHECK_(status >= 0); // Make the stderr socket nonblocking. GTEST_DEATH_TEST_CHECK_(fcntl(stderr_producer_fd, F_SETFL, 0) == 0); fdio_spawn_action_t* add_stderr_action = &spawn_actions[1]; add_stderr_action->action = FDIO_SPAWN_ACTION_CLONE_FD; add_stderr_action->fd.local_fd = stderr_producer_fd; add_stderr_action->fd.target_fd = STDERR_FILENO; // Create a child job. zx_handle_t child_job = ZX_HANDLE_INVALID; status = zx_job_create(zx_job_default(), 0, & child_job); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); zx_policy_basic_t policy; policy.condition = ZX_POL_NEW_ANY; policy.policy = ZX_POL_ACTION_ALLOW; status = zx_job_set_policy( child_job, ZX_JOB_POL_RELATIVE, ZX_JOB_POL_BASIC, &policy, 1); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); // Create an exception channel attached to the |child_job|, to allow // us to suppress the system default exception handler from firing. status = zx_task_create_exception_channel( child_job, 0, exception_channel_.reset_and_get_address()); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); // Spawn the child process. status = fdio_spawn_etc( child_job, FDIO_SPAWN_CLONE_ALL, args.Argv()[0], args.Argv(), nullptr, 2, spawn_actions, child_process_.reset_and_get_address(), nullptr); GTEST_DEATH_TEST_CHECK_(status == ZX_OK); set_spawned(true); return OVERSEE_TEST; } std::string FuchsiaDeathTest::GetErrorLogs() { return captured_stderr_; } #else // We are neither on Windows, nor on Fuchsia. // ForkingDeathTest provides implementations for most of the abstract // methods of the DeathTest interface. Only the AssumeRole method is // left undefined. class ForkingDeathTest : public DeathTestImpl { public: ForkingDeathTest(const char* statement, Matcher<const std::string&> matcher); // All of these virtual functions are inherited from DeathTest. int Wait() override; protected: void set_child_pid(pid_t child_pid) { child_pid_ = child_pid; } private: // PID of child process during death test; 0 in the child process itself. pid_t child_pid_; }; // Constructs a ForkingDeathTest. ForkingDeathTest::ForkingDeathTest(const char* a_statement, Matcher<const std::string&> matcher) : DeathTestImpl(a_statement, std::move(matcher)), child_pid_(-1) {} // Waits for the child in a death test to exit, returning its exit // status, or 0 if no child process exists. As a side effect, sets the // outcome data member. int ForkingDeathTest::Wait() { if (!spawned()) return 0; ReadAndInterpretStatusByte(); int status_value; GTEST_DEATH_TEST_CHECK_SYSCALL_(waitpid(child_pid_, &status_value, 0)); set_status(status_value); return status_value; } // A concrete death test class that forks, then immediately runs the test // in the child process. class NoExecDeathTest : public ForkingDeathTest { public: NoExecDeathTest(const char* a_statement, Matcher<const std::string&> matcher) : ForkingDeathTest(a_statement, std::move(matcher)) {} TestRole AssumeRole() override; }; // The AssumeRole process for a fork-and-run death test. It implements a // straightforward fork, with a simple pipe to transmit the status byte. DeathTest::TestRole NoExecDeathTest::AssumeRole() { const size_t thread_count = GetThreadCount(); if (thread_count != 1) { GTEST_LOG_(WARNING) << DeathTestThreadWarning(thread_count); } int pipe_fd[2]; GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); DeathTest::set_last_death_test_message(""); CaptureStderr(); // When we fork the process below, the log file buffers are copied, but the // file descriptors are shared. We flush all log files here so that closing // the file descriptors in the child process doesn't throw off the // synchronization between descriptors and buffers in the parent process. // This is as close to the fork as possible to avoid a race condition in case // there are multiple threads running before the death test, and another // thread writes to the log file. FlushInfoLog(); const pid_t child_pid = fork(); GTEST_DEATH_TEST_CHECK_(child_pid != -1); set_child_pid(child_pid); if (child_pid == 0) { GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[0])); set_write_fd(pipe_fd[1]); // Redirects all logging to stderr in the child process to prevent // concurrent writes to the log files. We capture stderr in the parent // process and append the child process' output to a log. LogToStderr(); // Event forwarding to the listeners of event listener API mush be shut // down in death test subprocesses. GetUnitTestImpl()->listeners()->SuppressEventForwarding(); g_in_fast_death_test_child = true; return EXECUTE_TEST; } else { GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); set_read_fd(pipe_fd[0]); set_spawned(true); return OVERSEE_TEST; } } // A concrete death test class that forks and re-executes the main // program from the beginning, with command-line flags set that cause // only this specific death test to be run. class ExecDeathTest : public ForkingDeathTest { public: ExecDeathTest(const char* a_statement, Matcher<const std::string&> matcher, const char* file, int line) : ForkingDeathTest(a_statement, std::move(matcher)), file_(file), line_(line) {} TestRole AssumeRole() override; private: static ::std::vector<std::string> GetArgvsForDeathTestChildProcess() { ::std::vector<std::string> args = GetInjectableArgvs(); # if defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_) ::std::vector<std::string> extra_args = GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_(); args.insert(args.end(), extra_args.begin(), extra_args.end()); # endif // defined(GTEST_EXTRA_DEATH_TEST_COMMAND_LINE_ARGS_) return args; } // The name of the file in which the death test is located. const char* const file_; // The line number on which the death test is located. const int line_; }; // Utility class for accumulating command-line arguments. class Arguments { public: Arguments() { args_.push_back(nullptr); } ~Arguments() { for (std::vector<char*>::iterator i = args_.begin(); i != args_.end(); ++i) { free(*i); } } void AddArgument(const char* argument) { args_.insert(args_.end() - 1, posix::StrDup(argument)); } template <typename Str> void AddArguments(const ::std::vector<Str>& arguments) { for (typename ::std::vector<Str>::const_iterator i = arguments.begin(); i != arguments.end(); ++i) { args_.insert(args_.end() - 1, posix::StrDup(i->c_str())); } } char* const* Argv() { return &args_[0]; } private: std::vector<char*> args_; }; // A struct that encompasses the arguments to the child process of a // threadsafe-style death test process. struct ExecDeathTestArgs { char* const* argv; // Command-line arguments for the child's call to exec int close_fd; // File descriptor to close; the read end of a pipe }; # if GTEST_OS_QNX extern "C" char** environ; # else // GTEST_OS_QNX // The main function for a threadsafe-style death test child process. // This function is called in a clone()-ed process and thus must avoid // any potentially unsafe operations like malloc or libc functions. static int ExecDeathTestChildMain(void* child_arg) { ExecDeathTestArgs* const args = static_cast<ExecDeathTestArgs*>(child_arg); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(args->close_fd)); // We need to execute the test program in the same environment where // it was originally invoked. Therefore we change to the original // working directory first. const char* const original_dir = UnitTest::GetInstance()->original_working_dir(); // We can safely call chdir() as it's a direct system call. if (chdir(original_dir) != 0) { DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } // We can safely call execv() as it's almost a direct system call. We // cannot use execvp() as it's a libc function and thus potentially // unsafe. Since execv() doesn't search the PATH, the user must // invoke the test program via a valid path that contains at least // one path separator. execv(args->argv[0], args->argv); DeathTestAbort(std::string("execv(") + args->argv[0] + ", ...) in " + original_dir + " failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } # endif // GTEST_OS_QNX # if GTEST_HAS_CLONE // Two utility routines that together determine the direction the stack // grows. // This could be accomplished more elegantly by a single recursive // function, but we want to guard against the unlikely possibility of // a smart compiler optimizing the recursion away. // // GTEST_NO_INLINE_ is required to prevent GCC 4.6 from inlining // StackLowerThanAddress into StackGrowsDown, which then doesn't give // correct answer. static void StackLowerThanAddress(const void* ptr, bool* result) GTEST_NO_INLINE_; // Make sure sanitizers do not tamper with the stack here. // Ideally, we want to use `__builtin_frame_address` instead of a local variable // address with sanitizer disabled, but it does not work when the // compiler optimizes the stack frame out, which happens on PowerPC targets. // HWAddressSanitizer add a random tag to the MSB of the local variable address, // making comparison result unpredictable. GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ static void StackLowerThanAddress(const void* ptr, bool* result) { int dummy = 0; *result = std::less<const void*>()(&dummy, ptr); } // Make sure AddressSanitizer does not tamper with the stack here. GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ static bool StackGrowsDown() { int dummy = 0; bool result; StackLowerThanAddress(&dummy, &result); return result; } # endif // GTEST_HAS_CLONE // Spawns a child process with the same executable as the current process in // a thread-safe manner and instructs it to run the death test. The // implementation uses fork(2) + exec. On systems where clone(2) is // available, it is used instead, being slightly more thread-safe. On QNX, // fork supports only single-threaded environments, so this function uses // spawn(2) there instead. The function dies with an error message if // anything goes wrong. static pid_t ExecDeathTestSpawnChild(char* const* argv, int close_fd) { ExecDeathTestArgs args = { argv, close_fd }; pid_t child_pid = -1; # if GTEST_OS_QNX // Obtains the current directory and sets it to be closed in the child // process. const int cwd_fd = open(".", O_RDONLY); GTEST_DEATH_TEST_CHECK_(cwd_fd != -1); GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(cwd_fd, F_SETFD, FD_CLOEXEC)); // We need to execute the test program in the same environment where // it was originally invoked. Therefore we change to the original // working directory first. const char* const original_dir = UnitTest::GetInstance()->original_working_dir(); // We can safely call chdir() as it's a direct system call. if (chdir(original_dir) != 0) { DeathTestAbort(std::string("chdir(\"") + original_dir + "\") failed: " + GetLastErrnoDescription()); return EXIT_FAILURE; } int fd_flags; // Set close_fd to be closed after spawn. GTEST_DEATH_TEST_CHECK_SYSCALL_(fd_flags = fcntl(close_fd, F_GETFD)); GTEST_DEATH_TEST_CHECK_SYSCALL_(fcntl(close_fd, F_SETFD, fd_flags | FD_CLOEXEC)); struct inheritance inherit = {0}; // spawn is a system call. child_pid = spawn(args.argv[0], 0, nullptr, &inherit, args.argv, environ); // Restores the current working directory. GTEST_DEATH_TEST_CHECK_(fchdir(cwd_fd) != -1); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(cwd_fd)); # else // GTEST_OS_QNX # if GTEST_OS_LINUX // When a SIGPROF signal is received while fork() or clone() are executing, // the process may hang. To avoid this, we ignore SIGPROF here and re-enable // it after the call to fork()/clone() is complete. struct sigaction saved_sigprof_action; struct sigaction ignore_sigprof_action; memset(&ignore_sigprof_action, 0, sizeof(ignore_sigprof_action)); sigemptyset(&ignore_sigprof_action.sa_mask); ignore_sigprof_action.sa_handler = SIG_IGN; GTEST_DEATH_TEST_CHECK_SYSCALL_(sigaction( SIGPROF, &ignore_sigprof_action, &saved_sigprof_action)); # endif // GTEST_OS_LINUX # if GTEST_HAS_CLONE const bool use_fork = GTEST_FLAG(death_test_use_fork); if (!use_fork) { static const bool stack_grows_down = StackGrowsDown(); const auto stack_size = static_cast<size_t>(getpagesize() * 2); // MMAP_ANONYMOUS is not defined on Mac, so we use MAP_ANON instead. void* const stack = mmap(nullptr, stack_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); GTEST_DEATH_TEST_CHECK_(stack != MAP_FAILED); // Maximum stack alignment in bytes: For a downward-growing stack, this // amount is subtracted from size of the stack space to get an address // that is within the stack space and is aligned on all systems we care // about. As far as I know there is no ABI with stack alignment greater // than 64. We assume stack and stack_size already have alignment of // kMaxStackAlignment. const size_t kMaxStackAlignment = 64; void* const stack_top = static_cast<char*>(stack) + (stack_grows_down ? stack_size - kMaxStackAlignment : 0); GTEST_DEATH_TEST_CHECK_( static_cast<size_t>(stack_size) > kMaxStackAlignment && reinterpret_cast<uintptr_t>(stack_top) % kMaxStackAlignment == 0); child_pid = clone(&ExecDeathTestChildMain, stack_top, SIGCHLD, &args); GTEST_DEATH_TEST_CHECK_(munmap(stack, stack_size) != -1); } # else const bool use_fork = true; # endif // GTEST_HAS_CLONE if (use_fork && (child_pid = fork()) == 0) { ExecDeathTestChildMain(&args); _exit(0); } # endif // GTEST_OS_QNX # if GTEST_OS_LINUX GTEST_DEATH_TEST_CHECK_SYSCALL_( sigaction(SIGPROF, &saved_sigprof_action, nullptr)); # endif // GTEST_OS_LINUX GTEST_DEATH_TEST_CHECK_(child_pid != -1); return child_pid; } // The AssumeRole process for a fork-and-exec death test. It re-executes the // main program from the beginning, setting the --gtest_filter // and --gtest_internal_run_death_test flags to cause only the current // death test to be re-run. DeathTest::TestRole ExecDeathTest::AssumeRole() { const UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const TestInfo* const info = impl->current_test_info(); const int death_test_index = info->result()->death_test_count(); if (flag != nullptr) { set_write_fd(flag->write_fd()); return EXECUTE_TEST; } int pipe_fd[2]; GTEST_DEATH_TEST_CHECK_(pipe(pipe_fd) != -1); // Clear the close-on-exec flag on the write end of the pipe, lest // it be closed when the child process does an exec: GTEST_DEATH_TEST_CHECK_(fcntl(pipe_fd[1], F_SETFD, 0) != -1); const std::string filter_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kFilterFlag + "=" + info->test_suite_name() + "." + info->name(); const std::string internal_flag = std::string("--") + GTEST_FLAG_PREFIX_ + kInternalRunDeathTestFlag + "=" + file_ + "|" + StreamableToString(line_) + "|" + StreamableToString(death_test_index) + "|" + StreamableToString(pipe_fd[1]); Arguments args; args.AddArguments(GetArgvsForDeathTestChildProcess()); args.AddArgument(filter_flag.c_str()); args.AddArgument(internal_flag.c_str()); DeathTest::set_last_death_test_message(""); CaptureStderr(); // See the comment in NoExecDeathTest::AssumeRole for why the next line // is necessary. FlushInfoLog(); const pid_t child_pid = ExecDeathTestSpawnChild(args.Argv(), pipe_fd[0]); GTEST_DEATH_TEST_CHECK_SYSCALL_(close(pipe_fd[1])); set_child_pid(child_pid); set_read_fd(pipe_fd[0]); set_spawned(true); return OVERSEE_TEST; } # endif // !GTEST_OS_WINDOWS // Creates a concrete DeathTest-derived class that depends on the // --gtest_death_test_style flag, and sets the pointer pointed to // by the "test" argument to its address. If the test should be // skipped, sets that pointer to NULL. Returns true, unless the // flag is set to an invalid value. bool DefaultDeathTestFactory::Create(const char* statement, Matcher<const std::string&> matcher, const char* file, int line, DeathTest** test) { UnitTestImpl* const impl = GetUnitTestImpl(); const InternalRunDeathTestFlag* const flag = impl->internal_run_death_test_flag(); const int death_test_index = impl->current_test_info() ->increment_death_test_count(); if (flag != nullptr) { if (death_test_index > flag->index()) { DeathTest::set_last_death_test_message( "Death test count (" + StreamableToString(death_test_index) + ") somehow exceeded expected maximum (" + StreamableToString(flag->index()) + ")"); return false; } if (!(flag->file() == file && flag->line() == line && flag->index() == death_test_index)) { *test = nullptr; return true; } } # if GTEST_OS_WINDOWS if (GTEST_FLAG(death_test_style) == "threadsafe" || GTEST_FLAG(death_test_style) == "fast") { *test = new WindowsDeathTest(statement, std::move(matcher), file, line); } # elif GTEST_OS_FUCHSIA if (GTEST_FLAG(death_test_style) == "threadsafe" || GTEST_FLAG(death_test_style) == "fast") { *test = new FuchsiaDeathTest(statement, std::move(matcher), file, line); } # else if (GTEST_FLAG(death_test_style) == "threadsafe") { *test = new ExecDeathTest(statement, std::move(matcher), file, line); } else if (GTEST_FLAG(death_test_style) == "fast") { *test = new NoExecDeathTest(statement, std::move(matcher)); } # endif // GTEST_OS_WINDOWS else { // NOLINT - this is more readable than unbalanced brackets inside #if. DeathTest::set_last_death_test_message( "Unknown death test style \"" + GTEST_FLAG(death_test_style) + "\" encountered"); return false; } return true; } # if GTEST_OS_WINDOWS // Recreates the pipe and event handles from the provided parameters, // signals the event, and returns a file descriptor wrapped around the pipe // handle. This function is called in the child process only. static int GetStatusFileDescriptor(unsigned int parent_process_id, size_t write_handle_as_size_t, size_t event_handle_as_size_t) { AutoHandle parent_process_handle(::OpenProcess(PROCESS_DUP_HANDLE, FALSE, // Non-inheritable. parent_process_id)); if (parent_process_handle.Get() == INVALID_HANDLE_VALUE) { DeathTestAbort("Unable to open parent process " + StreamableToString(parent_process_id)); } GTEST_CHECK_(sizeof(HANDLE) <= sizeof(size_t)); const HANDLE write_handle = reinterpret_cast<HANDLE>(write_handle_as_size_t); HANDLE dup_write_handle; // The newly initialized handle is accessible only in the parent // process. To obtain one accessible within the child, we need to use // DuplicateHandle. if (!::DuplicateHandle(parent_process_handle.Get(), write_handle, ::GetCurrentProcess(), &dup_write_handle, 0x0, // Requested privileges ignored since // DUPLICATE_SAME_ACCESS is used. FALSE, // Request non-inheritable handler. DUPLICATE_SAME_ACCESS)) { DeathTestAbort("Unable to duplicate the pipe handle " + StreamableToString(write_handle_as_size_t) + " from the parent process " + StreamableToString(parent_process_id)); } const HANDLE event_handle = reinterpret_cast<HANDLE>(event_handle_as_size_t); HANDLE dup_event_handle; if (!::DuplicateHandle(parent_process_handle.Get(), event_handle, ::GetCurrentProcess(), &dup_event_handle, 0x0, FALSE, DUPLICATE_SAME_ACCESS)) { DeathTestAbort("Unable to duplicate the event handle " + StreamableToString(event_handle_as_size_t) + " from the parent process " + StreamableToString(parent_process_id)); } const int write_fd = ::_open_osfhandle(reinterpret_cast<intptr_t>(dup_write_handle), O_APPEND); if (write_fd == -1) { DeathTestAbort("Unable to convert pipe handle " + StreamableToString(write_handle_as_size_t) + " to a file descriptor"); } // Signals the parent that the write end of the pipe has been acquired // so the parent can release its own write end. ::SetEvent(dup_event_handle); return write_fd; } # endif // GTEST_OS_WINDOWS // Returns a newly created InternalRunDeathTestFlag object with fields // initialized from the GTEST_FLAG(internal_run_death_test) flag if // the flag is specified; otherwise returns NULL. InternalRunDeathTestFlag* ParseInternalRunDeathTestFlag() { if (GTEST_FLAG(internal_run_death_test) == "") return nullptr; // GTEST_HAS_DEATH_TEST implies that we have ::std::string, so we // can use it here. int line = -1; int index = -1; ::std::vector< ::std::string> fields; SplitString(GTEST_FLAG(internal_run_death_test).c_str(), '|', &fields); int write_fd = -1; # if GTEST_OS_WINDOWS unsigned int parent_process_id = 0; size_t write_handle_as_size_t = 0; size_t event_handle_as_size_t = 0; if (fields.size() != 6 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index) || !ParseNaturalNumber(fields[3], &parent_process_id) || !ParseNaturalNumber(fields[4], &write_handle_as_size_t) || !ParseNaturalNumber(fields[5], &event_handle_as_size_t)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } write_fd = GetStatusFileDescriptor(parent_process_id, write_handle_as_size_t, event_handle_as_size_t); # elif GTEST_OS_FUCHSIA if (fields.size() != 3 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } # else if (fields.size() != 4 || !ParseNaturalNumber(fields[1], &line) || !ParseNaturalNumber(fields[2], &index) || !ParseNaturalNumber(fields[3], &write_fd)) { DeathTestAbort("Bad --gtest_internal_run_death_test flag: " + GTEST_FLAG(internal_run_death_test)); } # endif // GTEST_OS_WINDOWS return new InternalRunDeathTestFlag(fields[0], line, index, write_fd); } } // namespace internal #endif // GTEST_HAS_DEATH_TEST } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdlib.h> #if GTEST_OS_WINDOWS_MOBILE # include <windows.h> #elif GTEST_OS_WINDOWS # include <direct.h> # include <io.h> #else # include <limits.h> # include <climits> // Some Linux distributions define PATH_MAX here. #endif // GTEST_OS_WINDOWS_MOBILE #if GTEST_OS_WINDOWS # define GTEST_PATH_MAX_ _MAX_PATH #elif defined(PATH_MAX) # define GTEST_PATH_MAX_ PATH_MAX #elif defined(_XOPEN_PATH_MAX) # define GTEST_PATH_MAX_ _XOPEN_PATH_MAX #else # define GTEST_PATH_MAX_ _POSIX_PATH_MAX #endif // GTEST_OS_WINDOWS namespace testing { namespace internal { #if GTEST_OS_WINDOWS // On Windows, '\\' is the standard path separator, but many tools and the // Windows API also accept '/' as an alternate path separator. Unless otherwise // noted, a file path can contain either kind of path separators, or a mixture // of them. const char kPathSeparator = '\\'; const char kAlternatePathSeparator = '/'; const char kAlternatePathSeparatorString[] = "/"; # if GTEST_OS_WINDOWS_MOBILE // Windows CE doesn't have a current directory. You should not use // the current directory in tests on Windows CE, but this at least // provides a reasonable fallback. const char kCurrentDirectoryString[] = "\\"; // Windows CE doesn't define INVALID_FILE_ATTRIBUTES const DWORD kInvalidFileAttributes = 0xffffffff; # else const char kCurrentDirectoryString[] = ".\\"; # endif // GTEST_OS_WINDOWS_MOBILE #else const char kPathSeparator = '/'; const char kCurrentDirectoryString[] = "./"; #endif // GTEST_OS_WINDOWS // Returns whether the given character is a valid path separator. static bool IsPathSeparator(char c) { #if GTEST_HAS_ALT_PATH_SEP_ return (c == kPathSeparator) || (c == kAlternatePathSeparator); #else return c == kPathSeparator; #endif } // Returns the current working directory, or "" if unsuccessful. FilePath FilePath::GetCurrentDir() { #if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_WINDOWS_PHONE || \ GTEST_OS_WINDOWS_RT || GTEST_OS_ESP8266 || GTEST_OS_ESP32 || \ GTEST_OS_XTENSA // These platforms do not have a current directory, so we just return // something reasonable. return FilePath(kCurrentDirectoryString); #elif GTEST_OS_WINDOWS char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; return FilePath(_getcwd(cwd, sizeof(cwd)) == nullptr ? "" : cwd); #else char cwd[GTEST_PATH_MAX_ + 1] = { '\0' }; char* result = getcwd(cwd, sizeof(cwd)); # if GTEST_OS_NACL // getcwd will likely fail in NaCl due to the sandbox, so return something // reasonable. The user may have provided a shim implementation for getcwd, // however, so fallback only when failure is detected. return FilePath(result == nullptr ? kCurrentDirectoryString : cwd); # endif // GTEST_OS_NACL return FilePath(result == nullptr ? "" : cwd); #endif // GTEST_OS_WINDOWS_MOBILE } // Returns a copy of the FilePath with the case-insensitive extension removed. // Example: FilePath("dir/file.exe").RemoveExtension("EXE") returns // FilePath("dir/file"). If a case-insensitive extension is not // found, returns a copy of the original FilePath. FilePath FilePath::RemoveExtension(const char* extension) const { const std::string dot_extension = std::string(".") + extension; if (String::EndsWithCaseInsensitive(pathname_, dot_extension)) { return FilePath(pathname_.substr( 0, pathname_.length() - dot_extension.length())); } return *this; } // Returns a pointer to the last occurrence of a valid path separator in // the FilePath. On Windows, for example, both '/' and '\' are valid path // separators. Returns NULL if no path separator was found. const char* FilePath::FindLastPathSeparator() const { const char* const last_sep = strrchr(c_str(), kPathSeparator); #if GTEST_HAS_ALT_PATH_SEP_ const char* const last_alt_sep = strrchr(c_str(), kAlternatePathSeparator); // Comparing two pointers of which only one is NULL is undefined. if (last_alt_sep != nullptr && (last_sep == nullptr || last_alt_sep > last_sep)) { return last_alt_sep; } #endif return last_sep; } // Returns a copy of the FilePath with the directory part removed. // Example: FilePath("path/to/file").RemoveDirectoryName() returns // FilePath("file"). If there is no directory part ("just_a_file"), it returns // the FilePath unmodified. If there is no file part ("just_a_dir/") it // returns an empty FilePath (""). // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath FilePath::RemoveDirectoryName() const { const char* const last_sep = FindLastPathSeparator(); return last_sep ? FilePath(last_sep + 1) : *this; } // RemoveFileName returns the directory path with the filename removed. // Example: FilePath("path/to/file").RemoveFileName() returns "path/to/". // If the FilePath is "a_file" or "/a_file", RemoveFileName returns // FilePath("./") or, on Windows, FilePath(".\\"). If the filepath does // not have a file, like "just/a/dir/", it returns the FilePath unmodified. // On Windows platform, '\' is the path separator, otherwise it is '/'. FilePath FilePath::RemoveFileName() const { const char* const last_sep = FindLastPathSeparator(); std::string dir; if (last_sep) { dir = std::string(c_str(), static_cast<size_t>(last_sep + 1 - c_str())); } else { dir = kCurrentDirectoryString; } return FilePath(dir); } // Helper functions for naming files in a directory for xml output. // Given directory = "dir", base_name = "test", number = 0, // extension = "xml", returns "dir/test.xml". If number is greater // than zero (e.g., 12), returns "dir/test_12.xml". // On Windows platform, uses \ as the separator rather than /. FilePath FilePath::MakeFileName(const FilePath& directory, const FilePath& base_name, int number, const char* extension) { std::string file; if (number == 0) { file = base_name.string() + "." + extension; } else { file = base_name.string() + "_" + StreamableToString(number) + "." + extension; } return ConcatPaths(directory, FilePath(file)); } // Given directory = "dir", relative_path = "test.xml", returns "dir/test.xml". // On Windows, uses \ as the separator rather than /. FilePath FilePath::ConcatPaths(const FilePath& directory, const FilePath& relative_path) { if (directory.IsEmpty()) return relative_path; const FilePath dir(directory.RemoveTrailingPathSeparator()); return FilePath(dir.string() + kPathSeparator + relative_path.string()); } // Returns true if pathname describes something findable in the file-system, // either a file, directory, or whatever. bool FilePath::FileOrDirectoryExists() const { #if GTEST_OS_WINDOWS_MOBILE LPCWSTR unicode = String::AnsiToUtf16(pathname_.c_str()); const DWORD attributes = GetFileAttributes(unicode); delete [] unicode; return attributes != kInvalidFileAttributes; #else posix::StatStruct file_stat; return posix::Stat(pathname_.c_str(), &file_stat) == 0; #endif // GTEST_OS_WINDOWS_MOBILE } // Returns true if pathname describes a directory in the file-system // that exists. bool FilePath::DirectoryExists() const { bool result = false; #if GTEST_OS_WINDOWS // Don't strip off trailing separator if path is a root directory on // Windows (like "C:\\"). const FilePath& path(IsRootDirectory() ? *this : RemoveTrailingPathSeparator()); #else const FilePath& path(*this); #endif #if GTEST_OS_WINDOWS_MOBILE LPCWSTR unicode = String::AnsiToUtf16(path.c_str()); const DWORD attributes = GetFileAttributes(unicode); delete [] unicode; if ((attributes != kInvalidFileAttributes) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) { result = true; } #else posix::StatStruct file_stat; result = posix::Stat(path.c_str(), &file_stat) == 0 && posix::IsDir(file_stat); #endif // GTEST_OS_WINDOWS_MOBILE return result; } // Returns true if pathname describes a root directory. (Windows has one // root directory per disk drive.) bool FilePath::IsRootDirectory() const { #if GTEST_OS_WINDOWS return pathname_.length() == 3 && IsAbsolutePath(); #else return pathname_.length() == 1 && IsPathSeparator(pathname_.c_str()[0]); #endif } // Returns true if pathname describes an absolute path. bool FilePath::IsAbsolutePath() const { const char* const name = pathname_.c_str(); #if GTEST_OS_WINDOWS return pathname_.length() >= 3 && ((name[0] >= 'a' && name[0] <= 'z') || (name[0] >= 'A' && name[0] <= 'Z')) && name[1] == ':' && IsPathSeparator(name[2]); #else return IsPathSeparator(name[0]); #endif } // Returns a pathname for a file that does not currently exist. The pathname // will be directory/base_name.extension or // directory/base_name_<number>.extension if directory/base_name.extension // already exists. The number will be incremented until a pathname is found // that does not already exist. // Examples: 'dir/foo_test.xml' or 'dir/foo_test_1.xml'. // There could be a race condition if two or more processes are calling this // function at the same time -- they could both pick the same filename. FilePath FilePath::GenerateUniqueFileName(const FilePath& directory, const FilePath& base_name, const char* extension) { FilePath full_pathname; int number = 0; do { full_pathname.Set(MakeFileName(directory, base_name, number++, extension)); } while (full_pathname.FileOrDirectoryExists()); return full_pathname; } // Returns true if FilePath ends with a path separator, which indicates that // it is intended to represent a directory. Returns false otherwise. // This does NOT check that a directory (or file) actually exists. bool FilePath::IsDirectory() const { return !pathname_.empty() && IsPathSeparator(pathname_.c_str()[pathname_.length() - 1]); } // Create directories so that path exists. Returns true if successful or if // the directories already exist; returns false if unable to create directories // for any reason. bool FilePath::CreateDirectoriesRecursively() const { if (!this->IsDirectory()) { return false; } if (pathname_.length() == 0 || this->DirectoryExists()) { return true; } const FilePath parent(this->RemoveTrailingPathSeparator().RemoveFileName()); return parent.CreateDirectoriesRecursively() && this->CreateFolder(); } // Create the directory so that path exists. Returns true if successful or // if the directory already exists; returns false if unable to create the // directory for any reason, including if the parent directory does not // exist. Not named "CreateDirectory" because that's a macro on Windows. bool FilePath::CreateFolder() const { #if GTEST_OS_WINDOWS_MOBILE FilePath removed_sep(this->RemoveTrailingPathSeparator()); LPCWSTR unicode = String::AnsiToUtf16(removed_sep.c_str()); int result = CreateDirectory(unicode, nullptr) ? 0 : -1; delete [] unicode; #elif GTEST_OS_WINDOWS int result = _mkdir(pathname_.c_str()); #elif GTEST_OS_ESP8266 || GTEST_OS_XTENSA // do nothing int result = 0; #else int result = mkdir(pathname_.c_str(), 0777); #endif // GTEST_OS_WINDOWS_MOBILE if (result == -1) { return this->DirectoryExists(); // An error is OK if the directory exists. } return true; // No error. } // If input name has a trailing separator character, remove it and return the // name, otherwise return the name string unmodified. // On Windows platform, uses \ as the separator, other platforms use /. FilePath FilePath::RemoveTrailingPathSeparator() const { return IsDirectory() ? FilePath(pathname_.substr(0, pathname_.length() - 1)) : *this; } // Removes any redundant separators that might be in the pathname. // For example, "bar///foo" becomes "bar/foo". Does not eliminate other // redundancies that might be in a pathname involving "." or "..". void FilePath::Normalize() { auto out = pathname_.begin(); for (const char character : pathname_) { if (!IsPathSeparator(character)) { *(out++) = character; } else if (out == pathname_.begin() || *std::prev(out) != kPathSeparator) { *(out++) = kPathSeparator; } else { continue; } } pathname_.erase(out, pathname_.end()); } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The Google C++ Testing and Mocking Framework (Google Test) // // This file implements just enough of the matcher interface to allow // EXPECT_DEATH and friends to accept a matcher argument. #include <string> namespace testing { // Constructs a matcher that matches a const std::string& whose value is // equal to s. Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const std::string& whose value is // equal to s. Matcher<const std::string&>::Matcher(const char* s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a std::string whose value is equal to // s. Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a std::string whose value is equal to // s. Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); } #if GTEST_INTERNAL_HAS_STRING_VIEW // Constructs a matcher that matches a const StringView& whose value is // equal to s. Matcher<const internal::StringView&>::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const StringView& whose value is // equal to s. Matcher<const internal::StringView&>::Matcher(const char* s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a const StringView& whose value is // equal to s. Matcher<const internal::StringView&>::Matcher(internal::StringView s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a StringView whose value is equal to // s. Matcher<internal::StringView>::Matcher(const std::string& s) { *this = Eq(s); } // Constructs a matcher that matches a StringView whose value is equal to // s. Matcher<internal::StringView>::Matcher(const char* s) { *this = Eq(std::string(s)); } // Constructs a matcher that matches a StringView whose value is equal to // s. Matcher<internal::StringView>::Matcher(internal::StringView s) { *this = Eq(std::string(s)); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <limits.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <cstdint> #include <fstream> #include <memory> #if GTEST_OS_WINDOWS # include <windows.h> # include <io.h> # include <sys/stat.h> # include <map> // Used in ThreadLocal. # ifdef _MSC_VER # include <crtdbg.h> # endif // _MSC_VER #else # include <unistd.h> #endif // GTEST_OS_WINDOWS #if GTEST_OS_MAC # include <mach/mach_init.h> # include <mach/task.h> # include <mach/vm_map.h> #endif // GTEST_OS_MAC #if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ GTEST_OS_NETBSD || GTEST_OS_OPENBSD # include <sys/sysctl.h> # if GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD # include <sys/user.h> # endif #endif #if GTEST_OS_QNX # include <devctl.h> # include <fcntl.h> # include <sys/procfs.h> #endif // GTEST_OS_QNX #if GTEST_OS_AIX # include <procinfo.h> # include <sys/types.h> #endif // GTEST_OS_AIX #if GTEST_OS_FUCHSIA # include <zircon/process.h> # include <zircon/syscalls.h> #endif // GTEST_OS_FUCHSIA namespace testing { namespace internal { #if defined(_MSC_VER) || defined(__BORLANDC__) // MSVC and C++Builder do not provide a definition of STDERR_FILENO. const int kStdOutFileno = 1; const int kStdErrFileno = 2; #else const int kStdOutFileno = STDOUT_FILENO; const int kStdErrFileno = STDERR_FILENO; #endif // _MSC_VER #if GTEST_OS_LINUX namespace { template <typename T> T ReadProcFileField(const std::string& filename, int field) { std::string dummy; std::ifstream file(filename.c_str()); while (field-- > 0) { file >> dummy; } T output = 0; file >> output; return output; } } // namespace // Returns the number of active threads, or 0 when there is an error. size_t GetThreadCount() { const std::string filename = (Message() << "/proc/" << getpid() << "/stat").GetString(); return ReadProcFileField<size_t>(filename, 19); } #elif GTEST_OS_MAC size_t GetThreadCount() { const task_t task = mach_task_self(); mach_msg_type_number_t thread_count; thread_act_array_t thread_list; const kern_return_t status = task_threads(task, &thread_list, &thread_count); if (status == KERN_SUCCESS) { // task_threads allocates resources in thread_list and we need to free them // to avoid leaks. vm_deallocate(task, reinterpret_cast<vm_address_t>(thread_list), sizeof(thread_t) * thread_count); return static_cast<size_t>(thread_count); } else { return 0; } } #elif GTEST_OS_DRAGONFLY || GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD || \ GTEST_OS_NETBSD #if GTEST_OS_NETBSD #undef KERN_PROC #define KERN_PROC KERN_PROC2 #define kinfo_proc kinfo_proc2 #endif #if GTEST_OS_DRAGONFLY #define KP_NLWP(kp) (kp.kp_nthreads) #elif GTEST_OS_FREEBSD || GTEST_OS_GNU_KFREEBSD #define KP_NLWP(kp) (kp.ki_numthreads) #elif GTEST_OS_NETBSD #define KP_NLWP(kp) (kp.p_nlwps) #endif // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, getpid(), #if GTEST_OS_NETBSD sizeof(struct kinfo_proc), 1, #endif }; u_int miblen = sizeof(mib) / sizeof(mib[0]); struct kinfo_proc info; size_t size = sizeof(info); if (sysctl(mib, miblen, &info, &size, NULL, 0)) { return 0; } return static_cast<size_t>(KP_NLWP(info)); } #elif GTEST_OS_OPENBSD // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID | KERN_PROC_SHOW_THREADS, getpid(), sizeof(struct kinfo_proc), 0, }; u_int miblen = sizeof(mib) / sizeof(mib[0]); // get number of structs size_t size; if (sysctl(mib, miblen, NULL, &size, NULL, 0)) { return 0; } mib[5] = static_cast<int>(size / static_cast<size_t>(mib[4])); // populate array of structs struct kinfo_proc info[mib[5]]; if (sysctl(mib, miblen, &info, &size, NULL, 0)) { return 0; } // exclude empty members size_t nthreads = 0; for (size_t i = 0; i < size / static_cast<size_t>(mib[4]); i++) { if (info[i].p_tid != -1) nthreads++; } return nthreads; } #elif GTEST_OS_QNX // Returns the number of threads running in the process, or 0 to indicate that // we cannot detect it. size_t GetThreadCount() { const int fd = open("/proc/self/as", O_RDONLY); if (fd < 0) { return 0; } procfs_info process_info; const int status = devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), nullptr); close(fd); if (status == EOK) { return static_cast<size_t>(process_info.num_threads); } else { return 0; } } #elif GTEST_OS_AIX size_t GetThreadCount() { struct procentry64 entry; pid_t pid = getpid(); int status = getprocs64(&entry, sizeof(entry), nullptr, 0, &pid, 1); if (status == 1) { return entry.pi_thcount; } else { return 0; } } #elif GTEST_OS_FUCHSIA size_t GetThreadCount() { int dummy_buffer; size_t avail; zx_status_t status = zx_object_get_info( zx_process_self(), ZX_INFO_PROCESS_THREADS, &dummy_buffer, 0, nullptr, &avail); if (status == ZX_OK) { return avail; } else { return 0; } } #else size_t GetThreadCount() { // There's no portable way to detect the number of threads, so we just // return 0 to indicate that we cannot detect it. return 0; } #endif // GTEST_OS_LINUX #if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS void SleepMilliseconds(int n) { ::Sleep(static_cast<DWORD>(n)); } AutoHandle::AutoHandle() : handle_(INVALID_HANDLE_VALUE) {} AutoHandle::AutoHandle(Handle handle) : handle_(handle) {} AutoHandle::~AutoHandle() { Reset(); } AutoHandle::Handle AutoHandle::Get() const { return handle_; } void AutoHandle::Reset() { Reset(INVALID_HANDLE_VALUE); } void AutoHandle::Reset(HANDLE handle) { // Resetting with the same handle we already own is invalid. if (handle_ != handle) { if (IsCloseable()) { ::CloseHandle(handle_); } handle_ = handle; } else { GTEST_CHECK_(!IsCloseable()) << "Resetting a valid handle to itself is likely a programmer error " "and thus not allowed."; } } bool AutoHandle::IsCloseable() const { // Different Windows APIs may use either of these values to represent an // invalid handle. return handle_ != nullptr && handle_ != INVALID_HANDLE_VALUE; } Notification::Notification() : event_(::CreateEvent(nullptr, // Default security attributes. TRUE, // Do not reset automatically. FALSE, // Initially unset. nullptr)) { // Anonymous event. GTEST_CHECK_(event_.Get() != nullptr); } void Notification::Notify() { GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE); } void Notification::WaitForNotification() { GTEST_CHECK_( ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0); } Mutex::Mutex() : owner_thread_id_(0), type_(kDynamic), critical_section_init_phase_(0), critical_section_(new CRITICAL_SECTION) { ::InitializeCriticalSection(critical_section_); } Mutex::~Mutex() { // Static mutexes are leaked intentionally. It is not thread-safe to try // to clean them up. if (type_ == kDynamic) { ::DeleteCriticalSection(critical_section_); delete critical_section_; critical_section_ = nullptr; } } void Mutex::Lock() { ThreadSafeLazyInit(); ::EnterCriticalSection(critical_section_); owner_thread_id_ = ::GetCurrentThreadId(); } void Mutex::Unlock() { ThreadSafeLazyInit(); // We don't protect writing to owner_thread_id_ here, as it's the // caller's responsibility to ensure that the current thread holds the // mutex when this is called. owner_thread_id_ = 0; ::LeaveCriticalSection(critical_section_); } // Does nothing if the current thread holds the mutex. Otherwise, crashes // with high probability. void Mutex::AssertHeld() { ThreadSafeLazyInit(); GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId()) << "The current thread is not holding the mutex @" << this; } namespace { #ifdef _MSC_VER // Use the RAII idiom to flag mem allocs that are intentionally never // deallocated. The motivation is to silence the false positive mem leaks // that are reported by the debug version of MS's CRT which can only detect // if an alloc is missing a matching deallocation. // Example: // MemoryIsNotDeallocated memory_is_not_deallocated; // critical_section_ = new CRITICAL_SECTION; // class MemoryIsNotDeallocated { public: MemoryIsNotDeallocated() : old_crtdbg_flag_(0) { old_crtdbg_flag_ = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); // Set heap allocation block type to _IGNORE_BLOCK so that MS debug CRT // doesn't report mem leak if there's no matching deallocation. _CrtSetDbgFlag(old_crtdbg_flag_ & ~_CRTDBG_ALLOC_MEM_DF); } ~MemoryIsNotDeallocated() { // Restore the original _CRTDBG_ALLOC_MEM_DF flag _CrtSetDbgFlag(old_crtdbg_flag_); } private: int old_crtdbg_flag_; GTEST_DISALLOW_COPY_AND_ASSIGN_(MemoryIsNotDeallocated); }; #endif // _MSC_VER } // namespace // Initializes owner_thread_id_ and critical_section_ in static mutexes. void Mutex::ThreadSafeLazyInit() { // Dynamic mutexes are initialized in the constructor. if (type_ == kStatic) { switch ( ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) { case 0: // If critical_section_init_phase_ was 0 before the exchange, we // are the first to test it and need to perform the initialization. owner_thread_id_ = 0; { // Use RAII to flag that following mem alloc is never deallocated. #ifdef _MSC_VER MemoryIsNotDeallocated memory_is_not_deallocated; #endif // _MSC_VER critical_section_ = new CRITICAL_SECTION; } ::InitializeCriticalSection(critical_section_); // Updates the critical_section_init_phase_ to 2 to signal // initialization complete. GTEST_CHECK_(::InterlockedCompareExchange( &critical_section_init_phase_, 2L, 1L) == 1L); break; case 1: // Somebody else is already initializing the mutex; spin until they // are done. while (::InterlockedCompareExchange(&critical_section_init_phase_, 2L, 2L) != 2L) { // Possibly yields the rest of the thread's time slice to other // threads. ::Sleep(0); } break; case 2: break; // The mutex is already initialized and ready for use. default: GTEST_CHECK_(false) << "Unexpected value of critical_section_init_phase_ " << "while initializing a static mutex."; } } } namespace { class ThreadWithParamSupport : public ThreadWithParamBase { public: static HANDLE CreateThread(Runnable* runnable, Notification* thread_can_start) { ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start); DWORD thread_id; HANDLE thread_handle = ::CreateThread( nullptr, // Default security. 0, // Default stack size. &ThreadWithParamSupport::ThreadMain, param, // Parameter to ThreadMainStatic 0x0, // Default creation flags. &thread_id); // Need a valid pointer for the call to work under Win98. GTEST_CHECK_(thread_handle != nullptr) << "CreateThread failed with error " << ::GetLastError() << "."; if (thread_handle == nullptr) { delete param; } return thread_handle; } private: struct ThreadMainParam { ThreadMainParam(Runnable* runnable, Notification* thread_can_start) : runnable_(runnable), thread_can_start_(thread_can_start) { } std::unique_ptr<Runnable> runnable_; // Does not own. Notification* thread_can_start_; }; static DWORD WINAPI ThreadMain(void* ptr) { // Transfers ownership. std::unique_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr)); if (param->thread_can_start_ != nullptr) param->thread_can_start_->WaitForNotification(); param->runnable_->Run(); return 0; } // Prohibit instantiation. ThreadWithParamSupport(); GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport); }; } // namespace ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable, Notification* thread_can_start) : thread_(ThreadWithParamSupport::CreateThread(runnable, thread_can_start)) { } ThreadWithParamBase::~ThreadWithParamBase() { Join(); } void ThreadWithParamBase::Join() { GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0) << "Failed to join the thread with error " << ::GetLastError() << "."; } // Maps a thread to a set of ThreadIdToThreadLocals that have values // instantiated on that thread and notifies them when the thread exits. A // ThreadLocal instance is expected to persist until all threads it has // values on have terminated. class ThreadLocalRegistryImpl { public: // Registers thread_local_instance as having value on the current thread. // Returns a value that can be used to identify the thread from other threads. static ThreadLocalValueHolderBase* GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance) { #ifdef _MSC_VER MemoryIsNotDeallocated memory_is_not_deallocated; #endif // _MSC_VER DWORD current_thread = ::GetCurrentThreadId(); MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); ThreadIdToThreadLocals::iterator thread_local_pos = thread_to_thread_locals->find(current_thread); if (thread_local_pos == thread_to_thread_locals->end()) { thread_local_pos = thread_to_thread_locals->insert( std::make_pair(current_thread, ThreadLocalValues())).first; StartWatcherThreadFor(current_thread); } ThreadLocalValues& thread_local_values = thread_local_pos->second; ThreadLocalValues::iterator value_pos = thread_local_values.find(thread_local_instance); if (value_pos == thread_local_values.end()) { value_pos = thread_local_values .insert(std::make_pair( thread_local_instance, std::shared_ptr<ThreadLocalValueHolderBase>( thread_local_instance->NewValueForCurrentThread()))) .first; } return value_pos->second.get(); } static void OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance) { std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders; // Clean up the ThreadLocalValues data structure while holding the lock, but // defer the destruction of the ThreadLocalValueHolderBases. { MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); for (ThreadIdToThreadLocals::iterator it = thread_to_thread_locals->begin(); it != thread_to_thread_locals->end(); ++it) { ThreadLocalValues& thread_local_values = it->second; ThreadLocalValues::iterator value_pos = thread_local_values.find(thread_local_instance); if (value_pos != thread_local_values.end()) { value_holders.push_back(value_pos->second); thread_local_values.erase(value_pos); // This 'if' can only be successful at most once, so theoretically we // could break out of the loop here, but we don't bother doing so. } } } // Outside the lock, let the destructor for 'value_holders' deallocate the // ThreadLocalValueHolderBases. } static void OnThreadExit(DWORD thread_id) { GTEST_CHECK_(thread_id != 0) << ::GetLastError(); std::vector<std::shared_ptr<ThreadLocalValueHolderBase> > value_holders; // Clean up the ThreadIdToThreadLocals data structure while holding the // lock, but defer the destruction of the ThreadLocalValueHolderBases. { MutexLock lock(&mutex_); ThreadIdToThreadLocals* const thread_to_thread_locals = GetThreadLocalsMapLocked(); ThreadIdToThreadLocals::iterator thread_local_pos = thread_to_thread_locals->find(thread_id); if (thread_local_pos != thread_to_thread_locals->end()) { ThreadLocalValues& thread_local_values = thread_local_pos->second; for (ThreadLocalValues::iterator value_pos = thread_local_values.begin(); value_pos != thread_local_values.end(); ++value_pos) { value_holders.push_back(value_pos->second); } thread_to_thread_locals->erase(thread_local_pos); } } // Outside the lock, let the destructor for 'value_holders' deallocate the // ThreadLocalValueHolderBases. } private: // In a particular thread, maps a ThreadLocal object to its value. typedef std::map<const ThreadLocalBase*, std::shared_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues; // Stores all ThreadIdToThreadLocals having values in a thread, indexed by // thread's ID. typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals; // Holds the thread id and thread handle that we pass from // StartWatcherThreadFor to WatcherThreadFunc. typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle; static void StartWatcherThreadFor(DWORD thread_id) { // The returned handle will be kept in thread_map and closed by // watcher_thread in WatcherThreadFunc. HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION, FALSE, thread_id); GTEST_CHECK_(thread != nullptr); // We need to pass a valid thread ID pointer into CreateThread for it // to work correctly under Win98. DWORD watcher_thread_id; HANDLE watcher_thread = ::CreateThread( nullptr, // Default security. 0, // Default stack size &ThreadLocalRegistryImpl::WatcherThreadFunc, reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)), CREATE_SUSPENDED, &watcher_thread_id); GTEST_CHECK_(watcher_thread != nullptr); // Give the watcher thread the same priority as ours to avoid being // blocked by it. ::SetThreadPriority(watcher_thread, ::GetThreadPriority(::GetCurrentThread())); ::ResumeThread(watcher_thread); ::CloseHandle(watcher_thread); } // Monitors exit from a given thread and notifies those // ThreadIdToThreadLocals about thread termination. static DWORD WINAPI WatcherThreadFunc(LPVOID param) { const ThreadIdAndHandle* tah = reinterpret_cast<const ThreadIdAndHandle*>(param); GTEST_CHECK_( ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0); OnThreadExit(tah->first); ::CloseHandle(tah->second); delete tah; return 0; } // Returns map of thread local instances. static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() { mutex_.AssertHeld(); #ifdef _MSC_VER MemoryIsNotDeallocated memory_is_not_deallocated; #endif // _MSC_VER static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals(); return map; } // Protects access to GetThreadLocalsMapLocked() and its return value. static Mutex mutex_; // Protects access to GetThreadMapLocked() and its return value. static Mutex thread_map_mutex_; }; Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex); Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex); ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread( const ThreadLocalBase* thread_local_instance) { return ThreadLocalRegistryImpl::GetValueOnCurrentThread( thread_local_instance); } void ThreadLocalRegistry::OnThreadLocalDestroyed( const ThreadLocalBase* thread_local_instance) { ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance); } #endif // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS #if GTEST_USES_POSIX_RE // Implements RE. Currently only needed for death tests. RE::~RE() { if (is_valid_) { // regfree'ing an invalid regex might crash because the content // of the regex is undefined. Since the regex's are essentially // the same, one cannot be valid (or invalid) without the other // being so too. regfree(&partial_regex_); regfree(&full_regex_); } free(const_cast<char*>(pattern_)); } // Returns true if and only if regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.full_regex_, str, 1, &match, 0) == 0; } // Returns true if and only if regular expression re matches a substring of // str (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { if (!re.is_valid_) return false; regmatch_t match; return regexec(&re.partial_regex_, str, 1, &match, 0) == 0; } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = posix::StrDup(regex); // Reserves enough bytes to hold the regular expression used for a // full match. const size_t full_regex_len = strlen(regex) + 10; char* const full_pattern = new char[full_regex_len]; snprintf(full_pattern, full_regex_len, "^(%s)$", regex); is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0; // We want to call regcomp(&partial_regex_, ...) even if the // previous expression returns false. Otherwise partial_regex_ may // not be properly initialized can may cause trouble when it's // freed. // // Some implementation of POSIX regex (e.g. on at least some // versions of Cygwin) doesn't accept the empty string as a valid // regex. We change it to an equivalent form "()" to be safe. if (is_valid_) { const char* const partial_regex = (*regex == '\0') ? "()" : regex; is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0; } EXPECT_TRUE(is_valid_) << "Regular expression \"" << regex << "\" is not a valid POSIX Extended regular expression."; delete[] full_pattern; } #elif GTEST_USES_SIMPLE_RE // Returns true if and only if ch appears anywhere in str (excluding the // terminating '\0' character). bool IsInSet(char ch, const char* str) { return ch != '\0' && strchr(str, ch) != nullptr; } // Returns true if and only if ch belongs to the given classification. // Unlike similar functions in <ctype.h>, these aren't affected by the // current locale. bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; } bool IsAsciiPunct(char ch) { return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~"); } bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); } bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); } bool IsAsciiWordChar(char ch) { return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') || ('0' <= ch && ch <= '9') || ch == '_'; } // Returns true if and only if "\\c" is a supported escape sequence. bool IsValidEscape(char c) { return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW")); } // Returns true if and only if the given atom (specified by escaped and // pattern) matches ch. The result is undefined if the atom is invalid. bool AtomMatchesChar(bool escaped, char pattern_char, char ch) { if (escaped) { // "\\p" where p is pattern_char. switch (pattern_char) { case 'd': return IsAsciiDigit(ch); case 'D': return !IsAsciiDigit(ch); case 'f': return ch == '\f'; case 'n': return ch == '\n'; case 'r': return ch == '\r'; case 's': return IsAsciiWhiteSpace(ch); case 'S': return !IsAsciiWhiteSpace(ch); case 't': return ch == '\t'; case 'v': return ch == '\v'; case 'w': return IsAsciiWordChar(ch); case 'W': return !IsAsciiWordChar(ch); } return IsAsciiPunct(pattern_char) && pattern_char == ch; } return (pattern_char == '.' && ch != '\n') || pattern_char == ch; } // Helper function used by ValidateRegex() to format error messages. static std::string FormatRegexSyntaxError(const char* regex, int index) { return (Message() << "Syntax error at index " << index << " in simple regular expression \"" << regex << "\": ").GetString(); } // Generates non-fatal failures and returns false if regex is invalid; // otherwise returns true. bool ValidateRegex(const char* regex) { if (regex == nullptr) { ADD_FAILURE() << "NULL is not a valid simple regular expression."; return false; } bool is_valid = true; // True if and only if ?, *, or + can follow the previous atom. bool prev_repeatable = false; for (int i = 0; regex[i]; i++) { if (regex[i] == '\\') { // An escape sequence i++; if (regex[i] == '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "'\\' cannot appear at the end."; return false; } if (!IsValidEscape(regex[i])) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1) << "invalid escape sequence \"\\" << regex[i] << "\"."; is_valid = false; } prev_repeatable = true; } else { // Not an escape sequence. const char ch = regex[i]; if (ch == '^' && i > 0) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'^' can only appear at the beginning."; is_valid = false; } else if (ch == '$' && regex[i + 1] != '\0') { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'$' can only appear at the end."; is_valid = false; } else if (IsInSet(ch, "()[]{}|")) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' is unsupported."; is_valid = false; } else if (IsRepeat(ch) && !prev_repeatable) { ADD_FAILURE() << FormatRegexSyntaxError(regex, i) << "'" << ch << "' can only follow a repeatable token."; is_valid = false; } prev_repeatable = !IsInSet(ch, "^$?*+"); } } return is_valid; } // Matches a repeated regex atom followed by a valid simple regular // expression. The regex atom is defined as c if escaped is false, // or \c otherwise. repeat is the repetition meta character (?, *, // or +). The behavior is undefined if str contains too many // characters to be indexable by size_t, in which case the test will // probably time out anyway. We are fine with this limitation as // std::string has it too. bool MatchRepetitionAndRegexAtHead( bool escaped, char c, char repeat, const char* regex, const char* str) { const size_t min_count = (repeat == '+') ? 1 : 0; const size_t max_count = (repeat == '?') ? 1 : static_cast<size_t>(-1) - 1; // We cannot call numeric_limits::max() as it conflicts with the // max() macro on Windows. for (size_t i = 0; i <= max_count; ++i) { // We know that the atom matches each of the first i characters in str. if (i >= min_count && MatchRegexAtHead(regex, str + i)) { // We have enough matches at the head, and the tail matches too. // Since we only care about *whether* the pattern matches str // (as opposed to *how* it matches), there is no need to find a // greedy match. return true; } if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i])) return false; } return false; } // Returns true if and only if regex matches a prefix of str. regex must // be a valid simple regular expression and not start with "^", or the // result is undefined. bool MatchRegexAtHead(const char* regex, const char* str) { if (*regex == '\0') // An empty regex matches a prefix of anything. return true; // "$" only matches the end of a string. Note that regex being // valid guarantees that there's nothing after "$" in it. if (*regex == '$') return *str == '\0'; // Is the first thing in regex an escape sequence? const bool escaped = *regex == '\\'; if (escaped) ++regex; if (IsRepeat(regex[1])) { // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so // here's an indirect recursion. It terminates as the regex gets // shorter in each recursion. return MatchRepetitionAndRegexAtHead( escaped, regex[0], regex[1], regex + 2, str); } else { // regex isn't empty, isn't "$", and doesn't start with a // repetition. We match the first atom of regex with the first // character of str and recurse. return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) && MatchRegexAtHead(regex + 1, str + 1); } } // Returns true if and only if regex matches any substring of str. regex must // be a valid simple regular expression, or the result is undefined. // // The algorithm is recursive, but the recursion depth doesn't exceed // the regex length, so we won't need to worry about running out of // stack space normally. In rare cases the time complexity can be // exponential with respect to the regex length + the string length, // but usually it's must faster (often close to linear). bool MatchRegexAnywhere(const char* regex, const char* str) { if (regex == nullptr || str == nullptr) return false; if (*regex == '^') return MatchRegexAtHead(regex + 1, str); // A successful match can be anywhere in str. do { if (MatchRegexAtHead(regex, str)) return true; } while (*str++ != '\0'); return false; } // Implements the RE class. RE::~RE() { free(const_cast<char*>(pattern_)); free(const_cast<char*>(full_pattern_)); } // Returns true if and only if regular expression re matches the entire str. bool RE::FullMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str); } // Returns true if and only if regular expression re matches a substring of // str (including str itself). bool RE::PartialMatch(const char* str, const RE& re) { return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str); } // Initializes an RE from its string representation. void RE::Init(const char* regex) { pattern_ = full_pattern_ = nullptr; if (regex != nullptr) { pattern_ = posix::StrDup(regex); } is_valid_ = ValidateRegex(regex); if (!is_valid_) { // No need to calculate the full pattern when the regex is invalid. return; } const size_t len = strlen(regex); // Reserves enough bytes to hold the regular expression used for a // full match: we need space to prepend a '^', append a '$', and // terminate the string with '\0'. char* buffer = static_cast<char*>(malloc(len + 3)); full_pattern_ = buffer; if (*regex != '^') *buffer++ = '^'; // Makes sure full_pattern_ starts with '^'. // We don't use snprintf or strncpy, as they trigger a warning when // compiled with VC++ 8.0. memcpy(buffer, regex, len); buffer += len; if (len == 0 || regex[len - 1] != '$') *buffer++ = '$'; // Makes sure full_pattern_ ends with '$'. *buffer = '\0'; } #endif // GTEST_USES_POSIX_RE const char kUnknownFile[] = "unknown file"; // Formats a source file path and a line number as they would appear // in an error message from the compiler used to compile this code. GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) { const std::string file_name(file == nullptr ? kUnknownFile : file); if (line < 0) { return file_name + ":"; } #ifdef _MSC_VER return file_name + "(" + StreamableToString(line) + "):"; #else return file_name + ":" + StreamableToString(line) + ":"; #endif // _MSC_VER } // Formats a file location for compiler-independent XML output. // Although this function is not platform dependent, we put it next to // FormatFileLocation in order to contrast the two functions. // Note that FormatCompilerIndependentFileLocation() does NOT append colon // to the file location it produces, unlike FormatFileLocation(). GTEST_API_ ::std::string FormatCompilerIndependentFileLocation( const char* file, int line) { const std::string file_name(file == nullptr ? kUnknownFile : file); if (line < 0) return file_name; else return file_name + ":" + StreamableToString(line); } GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line) : severity_(severity) { const char* const marker = severity == GTEST_INFO ? "[ INFO ]" : severity == GTEST_WARNING ? "[WARNING]" : severity == GTEST_ERROR ? "[ ERROR ]" : "[ FATAL ]"; GetStream() << ::std::endl << marker << " " << FormatFileLocation(file, line).c_str() << ": "; } // Flushes the buffers and, if severity is GTEST_FATAL, aborts the program. GTestLog::~GTestLog() { GetStream() << ::std::endl; if (severity_ == GTEST_FATAL) { fflush(stderr); posix::Abort(); } } // Disable Microsoft deprecation warnings for POSIX functions called from // this class (creat, dup, dup2, and close) GTEST_DISABLE_MSC_DEPRECATED_PUSH_() #if GTEST_HAS_STREAM_REDIRECTION // Object that captures an output stream (stdout/stderr). class CapturedStream { public: // The ctor redirects the stream to a temporary file. explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) { # if GTEST_OS_WINDOWS char temp_dir_path[MAX_PATH + 1] = { '\0' }; // NOLINT char temp_file_path[MAX_PATH + 1] = { '\0' }; // NOLINT ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path); const UINT success = ::GetTempFileNameA(temp_dir_path, "gtest_redir", 0, // Generate unique file name. temp_file_path); GTEST_CHECK_(success != 0) << "Unable to create a temporary file in " << temp_dir_path; const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE); GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file " << temp_file_path; filename_ = temp_file_path; # else // There's no guarantee that a test has write access to the current // directory, so we create the temporary file in the /tmp directory // instead. We use /tmp on most systems, and /sdcard on Android. // That's because Android doesn't have /tmp. # if GTEST_OS_LINUX_ANDROID // Note: Android applications are expected to call the framework's // Context.getExternalStorageDirectory() method through JNI to get // the location of the world-writable SD Card directory. However, // this requires a Context handle, which cannot be retrieved // globally from native code. Doing so also precludes running the // code as part of a regular standalone executable, which doesn't // run in a Dalvik process (e.g. when running it through 'adb shell'). // // The location /data/local/tmp is directly accessible from native code. // '/sdcard' and other variants cannot be relied on, as they are not // guaranteed to be mounted, or may have a delay in mounting. char name_template[] = "/data/local/tmp/gtest_captured_stream.XXXXXX"; # else char name_template[] = "/tmp/captured_stream.XXXXXX"; # endif // GTEST_OS_LINUX_ANDROID const int captured_fd = mkstemp(name_template); if (captured_fd == -1) { GTEST_LOG_(WARNING) << "Failed to create tmp file " << name_template << " for test; does the test have access to the /tmp directory?"; } filename_ = name_template; # endif // GTEST_OS_WINDOWS fflush(nullptr); dup2(captured_fd, fd_); close(captured_fd); } ~CapturedStream() { remove(filename_.c_str()); } std::string GetCapturedString() { if (uncaptured_fd_ != -1) { // Restores the original stream. fflush(nullptr); dup2(uncaptured_fd_, fd_); close(uncaptured_fd_); uncaptured_fd_ = -1; } FILE* const file = posix::FOpen(filename_.c_str(), "r"); if (file == nullptr) { GTEST_LOG_(FATAL) << "Failed to open tmp file " << filename_ << " for capturing stream."; } const std::string content = ReadEntireFile(file); posix::FClose(file); return content; } private: const int fd_; // A stream to capture. int uncaptured_fd_; // Name of the temporary file holding the stderr output. ::std::string filename_; GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream); }; GTEST_DISABLE_MSC_DEPRECATED_POP_() static CapturedStream* g_captured_stderr = nullptr; static CapturedStream* g_captured_stdout = nullptr; // Starts capturing an output stream (stdout/stderr). static void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) { if (*stream != nullptr) { GTEST_LOG_(FATAL) << "Only one " << stream_name << " capturer can exist at a time."; } *stream = new CapturedStream(fd); } // Stops capturing the output stream and returns the captured string. static std::string GetCapturedStream(CapturedStream** captured_stream) { const std::string content = (*captured_stream)->GetCapturedString(); delete *captured_stream; *captured_stream = nullptr; return content; } // Starts capturing stdout. void CaptureStdout() { CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout); } // Starts capturing stderr. void CaptureStderr() { CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr); } // Stops capturing stdout and returns the captured string. std::string GetCapturedStdout() { return GetCapturedStream(&g_captured_stdout); } // Stops capturing stderr and returns the captured string. std::string GetCapturedStderr() { return GetCapturedStream(&g_captured_stderr); } #endif // GTEST_HAS_STREAM_REDIRECTION size_t GetFileSize(FILE* file) { fseek(file, 0, SEEK_END); return static_cast<size_t>(ftell(file)); } std::string ReadEntireFile(FILE* file) { const size_t file_size = GetFileSize(file); char* const buffer = new char[file_size]; size_t bytes_last_read = 0; // # of bytes read in the last fread() size_t bytes_read = 0; // # of bytes read so far fseek(file, 0, SEEK_SET); // Keeps reading the file until we cannot read further or the // pre-determined file size is reached. do { bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file); bytes_read += bytes_last_read; } while (bytes_last_read > 0 && bytes_read < file_size); const std::string content(buffer, bytes_read); delete[] buffer; return content; } #if GTEST_HAS_DEATH_TEST static const std::vector<std::string>* g_injected_test_argvs = nullptr; // Owned. std::vector<std::string> GetInjectableArgvs() { if (g_injected_test_argvs != nullptr) { return *g_injected_test_argvs; } return GetArgvs(); } void SetInjectableArgvs(const std::vector<std::string>* new_argvs) { if (g_injected_test_argvs != new_argvs) delete g_injected_test_argvs; g_injected_test_argvs = new_argvs; } void SetInjectableArgvs(const std::vector<std::string>& new_argvs) { SetInjectableArgvs( new std::vector<std::string>(new_argvs.begin(), new_argvs.end())); } void ClearInjectableArgvs() { delete g_injected_test_argvs; g_injected_test_argvs = nullptr; } #endif // GTEST_HAS_DEATH_TEST #if GTEST_OS_WINDOWS_MOBILE namespace posix { void Abort() { DebugBreak(); TerminateProcess(GetCurrentProcess(), 1); } } // namespace posix #endif // GTEST_OS_WINDOWS_MOBILE // Returns the name of the environment variable corresponding to the // given flag. For example, FlagToEnvVar("foo") will return // "GTEST_FOO" in the open-source version. static std::string FlagToEnvVar(const char* flag) { const std::string full_flag = (Message() << GTEST_FLAG_PREFIX_ << flag).GetString(); Message env_var; for (size_t i = 0; i != full_flag.length(); i++) { env_var << ToUpper(full_flag.c_str()[i]); } return env_var.GetString(); } // Parses 'str' for a 32-bit signed integer. If successful, writes // the result to *value and returns true; otherwise leaves *value // unchanged and returns false. bool ParseInt32(const Message& src_text, const char* str, int32_t* value) { // Parses the environment variable as a decimal integer. char* end = nullptr; const long long_value = strtol(str, &end, 10); // NOLINT // Has strtol() consumed all characters in the string? if (*end != '\0') { // No - an invalid character was encountered. Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value \"" << str << "\".\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } // Is the parsed value in the range of an int32_t? const auto result = static_cast<int32_t>(long_value); if (long_value == LONG_MAX || long_value == LONG_MIN || // The parsed value overflows as a long. (strtol() returns // LONG_MAX or LONG_MIN when the input overflows.) result != long_value // The parsed value overflows as an int32_t. ) { Message msg; msg << "WARNING: " << src_text << " is expected to be a 32-bit integer, but actually" << " has value " << str << ", which overflows.\n"; printf("%s", msg.GetString().c_str()); fflush(stdout); return false; } *value = result; return true; } // Reads and returns the Boolean environment variable corresponding to // the given flag; if it's not set, returns default_value. // // The value is considered true if and only if it's not "0". bool BoolFromGTestEnv(const char* flag, bool default_value) { #if defined(GTEST_GET_BOOL_FROM_ENV_) return GTEST_GET_BOOL_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); return string_value == nullptr ? default_value : strcmp(string_value, "0") != 0; #endif // defined(GTEST_GET_BOOL_FROM_ENV_) } // Reads and returns a 32-bit integer stored in the environment // variable corresponding to the given flag; if it isn't set or // doesn't represent a valid 32-bit integer, returns default_value. int32_t Int32FromGTestEnv(const char* flag, int32_t default_value) { #if defined(GTEST_GET_INT32_FROM_ENV_) return GTEST_GET_INT32_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const string_value = posix::GetEnv(env_var.c_str()); if (string_value == nullptr) { // The environment variable is not set. return default_value; } int32_t result = default_value; if (!ParseInt32(Message() << "Environment variable " << env_var, string_value, &result)) { printf("The default value %s is used.\n", (Message() << default_value).GetString().c_str()); fflush(stdout); return default_value; } return result; #endif // defined(GTEST_GET_INT32_FROM_ENV_) } // As a special case for the 'output' flag, if GTEST_OUTPUT is not // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build // system. The value of XML_OUTPUT_FILE is a filename without the // "xml:" prefix of GTEST_OUTPUT. // Note that this is meant to be called at the call site so it does // not check that the flag is 'output' // In essence this checks an env variable called XML_OUTPUT_FILE // and if it is set we prepend "xml:" to its value, if it not set we return "" std::string OutputFlagAlsoCheckEnvVar(){ std::string default_value_for_output_flag = ""; const char* xml_output_file_env = posix::GetEnv("XML_OUTPUT_FILE"); if (nullptr != xml_output_file_env) { default_value_for_output_flag = std::string("xml:") + xml_output_file_env; } return default_value_for_output_flag; } // Reads and returns the string environment variable corresponding to // the given flag; if it's not set, returns default_value. const char* StringFromGTestEnv(const char* flag, const char* default_value) { #if defined(GTEST_GET_STRING_FROM_ENV_) return GTEST_GET_STRING_FROM_ENV_(flag, default_value); #else const std::string env_var = FlagToEnvVar(flag); const char* const value = posix::GetEnv(env_var.c_str()); return value == nullptr ? default_value : value; #endif // defined(GTEST_GET_STRING_FROM_ENV_) } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Test - The Google C++ Testing and Mocking Framework // // This file implements a universal value printer that can print a // value of any type T: // // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); // // It uses the << operator when possible, and prints the bytes in the // object otherwise. A user can override its behavior for a class // type Foo by defining either operator<<(::std::ostream&, const Foo&) // or void PrintTo(const Foo&, ::std::ostream*) in the namespace that // defines Foo. #include <stdio.h> #include <cctype> #include <cstdint> #include <cwchar> #include <ostream> // NOLINT #include <string> #include <type_traits> namespace testing { namespace { using ::std::ostream; // Prints a segment of bytes in the given object. GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ void PrintByteSegmentInObjectTo(const unsigned char* obj_bytes, size_t start, size_t count, ostream* os) { char text[5] = ""; for (size_t i = 0; i != count; i++) { const size_t j = start + i; if (i != 0) { // Organizes the bytes into groups of 2 for easy parsing by // human. if ((j % 2) == 0) *os << ' '; else *os << '-'; } GTEST_SNPRINTF_(text, sizeof(text), "%02X", obj_bytes[j]); *os << text; } } // Prints the bytes in the given value to the given ostream. void PrintBytesInObjectToImpl(const unsigned char* obj_bytes, size_t count, ostream* os) { // Tells the user how big the object is. *os << count << "-byte object <"; const size_t kThreshold = 132; const size_t kChunkSize = 64; // If the object size is bigger than kThreshold, we'll have to omit // some details by printing only the first and the last kChunkSize // bytes. if (count < kThreshold) { PrintByteSegmentInObjectTo(obj_bytes, 0, count, os); } else { PrintByteSegmentInObjectTo(obj_bytes, 0, kChunkSize, os); *os << " ... "; // Rounds up to 2-byte boundary. const size_t resume_pos = (count - kChunkSize + 1)/2*2; PrintByteSegmentInObjectTo(obj_bytes, resume_pos, count - resume_pos, os); } *os << ">"; } // Helpers for widening a character to char32_t. Since the standard does not // specify if char / wchar_t is signed or unsigned, it is important to first // convert it to the unsigned type of the same width before widening it to // char32_t. template <typename CharType> char32_t ToChar32(CharType in) { return static_cast<char32_t>( static_cast<typename std::make_unsigned<CharType>::type>(in)); } } // namespace namespace internal { // Delegates to PrintBytesInObjectToImpl() to print the bytes in the // given object. The delegation simplifies the implementation, which // uses the << operator and thus is easier done outside of the // ::testing::internal namespace, which contains a << operator that // sometimes conflicts with the one in STL. void PrintBytesInObjectTo(const unsigned char* obj_bytes, size_t count, ostream* os) { PrintBytesInObjectToImpl(obj_bytes, count, os); } // Depending on the value of a char (or wchar_t), we print it in one // of three formats: // - as is if it's a printable ASCII (e.g. 'a', '2', ' '), // - as a hexadecimal escape sequence (e.g. '\x7F'), or // - as a special escape sequence (e.g. '\r', '\n'). enum CharFormat { kAsIs, kHexEscape, kSpecialEscape }; // Returns true if c is a printable ASCII character. We test the // value of c directly instead of calling isprint(), which is buggy on // Windows Mobile. inline bool IsPrintableAscii(char32_t c) { return 0x20 <= c && c <= 0x7E; } // Prints c (of type char, char8_t, char16_t, char32_t, or wchar_t) as a // character literal without the quotes, escaping it when necessary; returns how // c was formatted. template <typename Char> static CharFormat PrintAsCharLiteralTo(Char c, ostream* os) { const char32_t u_c = ToChar32(c); switch (u_c) { case L'\0': *os << "\\0"; break; case L'\'': *os << "\\'"; break; case L'\\': *os << "\\\\"; break; case L'\a': *os << "\\a"; break; case L'\b': *os << "\\b"; break; case L'\f': *os << "\\f"; break; case L'\n': *os << "\\n"; break; case L'\r': *os << "\\r"; break; case L'\t': *os << "\\t"; break; case L'\v': *os << "\\v"; break; default: if (IsPrintableAscii(u_c)) { *os << static_cast<char>(c); return kAsIs; } else { ostream::fmtflags flags = os->flags(); *os << "\\x" << std::hex << std::uppercase << static_cast<int>(u_c); os->flags(flags); return kHexEscape; } } return kSpecialEscape; } // Prints a char32_t c as if it's part of a string literal, escaping it when // necessary; returns how c was formatted. static CharFormat PrintAsStringLiteralTo(char32_t c, ostream* os) { switch (c) { case L'\'': *os << "'"; return kAsIs; case L'"': *os << "\\\""; return kSpecialEscape; default: return PrintAsCharLiteralTo(c, os); } } static const char* GetCharWidthPrefix(char) { return ""; } static const char* GetCharWidthPrefix(signed char) { return ""; } static const char* GetCharWidthPrefix(unsigned char) { return ""; } #ifdef __cpp_char8_t static const char* GetCharWidthPrefix(char8_t) { return "u8"; } #endif static const char* GetCharWidthPrefix(char16_t) { return "u"; } static const char* GetCharWidthPrefix(char32_t) { return "U"; } static const char* GetCharWidthPrefix(wchar_t) { return "L"; } // Prints a char c as if it's part of a string literal, escaping it when // necessary; returns how c was formatted. static CharFormat PrintAsStringLiteralTo(char c, ostream* os) { return PrintAsStringLiteralTo(ToChar32(c), os); } #ifdef __cpp_char8_t static CharFormat PrintAsStringLiteralTo(char8_t c, ostream* os) { return PrintAsStringLiteralTo(ToChar32(c), os); } #endif static CharFormat PrintAsStringLiteralTo(char16_t c, ostream* os) { return PrintAsStringLiteralTo(ToChar32(c), os); } static CharFormat PrintAsStringLiteralTo(wchar_t c, ostream* os) { return PrintAsStringLiteralTo(ToChar32(c), os); } // Prints a character c (of type char, char8_t, char16_t, char32_t, or wchar_t) // and its code. '\0' is printed as "'\\0'", other unprintable characters are // also properly escaped using the standard C++ escape sequence. template <typename Char> void PrintCharAndCodeTo(Char c, ostream* os) { // First, print c as a literal in the most readable form we can find. *os << GetCharWidthPrefix(c) << "'"; const CharFormat format = PrintAsCharLiteralTo(c, os); *os << "'"; // To aid user debugging, we also print c's code in decimal, unless // it's 0 (in which case c was printed as '\\0', making the code // obvious). if (c == 0) return; *os << " (" << static_cast<int>(c); // For more convenience, we print c's code again in hexadecimal, // unless c was already printed in the form '\x##' or the code is in // [1, 9]. if (format == kHexEscape || (1 <= c && c <= 9)) { // Do nothing. } else { *os << ", 0x" << String::FormatHexInt(static_cast<int>(c)); } *os << ")"; } void PrintTo(unsigned char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); } void PrintTo(signed char c, ::std::ostream* os) { PrintCharAndCodeTo(c, os); } // Prints a wchar_t as a symbol if it is printable or as its internal // code otherwise and also as its code. L'\0' is printed as "L'\\0'". void PrintTo(wchar_t wc, ostream* os) { PrintCharAndCodeTo(wc, os); } // TODO(dcheng): Consider making this delegate to PrintCharAndCodeTo() as well. void PrintTo(char32_t c, ::std::ostream* os) { *os << std::hex << "U+" << std::uppercase << std::setfill('0') << std::setw(4) << static_cast<uint32_t>(c); } // Prints the given array of characters to the ostream. CharType must be either // char, char8_t, char16_t, char32_t, or wchar_t. // The array starts at begin, the length is len, it may include '\0' characters // and may not be NUL-terminated. template <typename CharType> GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ static CharFormat PrintCharsAsStringTo( const CharType* begin, size_t len, ostream* os) { const char* const quote_prefix = GetCharWidthPrefix(*begin); *os << quote_prefix << "\""; bool is_previous_hex = false; CharFormat print_format = kAsIs; for (size_t index = 0; index < len; ++index) { const CharType cur = begin[index]; if (is_previous_hex && IsXDigit(cur)) { // Previous character is of '\x..' form and this character can be // interpreted as another hexadecimal digit in its number. Break string to // disambiguate. *os << "\" " << quote_prefix << "\""; } is_previous_hex = PrintAsStringLiteralTo(cur, os) == kHexEscape; // Remember if any characters required hex escaping. if (is_previous_hex) { print_format = kHexEscape; } } *os << "\""; return print_format; } // Prints a (const) char/wchar_t array of 'len' elements, starting at address // 'begin'. CharType must be either char or wchar_t. template <typename CharType> GTEST_ATTRIBUTE_NO_SANITIZE_MEMORY_ GTEST_ATTRIBUTE_NO_SANITIZE_ADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_HWADDRESS_ GTEST_ATTRIBUTE_NO_SANITIZE_THREAD_ static void UniversalPrintCharArray( const CharType* begin, size_t len, ostream* os) { // The code // const char kFoo[] = "foo"; // generates an array of 4, not 3, elements, with the last one being '\0'. // // Therefore when printing a char array, we don't print the last element if // it's '\0', such that the output matches the string literal as it's // written in the source code. if (len > 0 && begin[len - 1] == '\0') { PrintCharsAsStringTo(begin, len - 1, os); return; } // If, however, the last element in the array is not '\0', e.g. // const char kFoo[] = { 'f', 'o', 'o' }; // we must print the entire array. We also print a message to indicate // that the array is not NUL-terminated. PrintCharsAsStringTo(begin, len, os); *os << " (no terminating NUL)"; } // Prints a (const) char array of 'len' elements, starting at address 'begin'. void UniversalPrintArray(const char* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } #ifdef __cpp_char8_t // Prints a (const) char8_t array of 'len' elements, starting at address // 'begin'. void UniversalPrintArray(const char8_t* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } #endif // Prints a (const) char16_t array of 'len' elements, starting at address // 'begin'. void UniversalPrintArray(const char16_t* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } // Prints a (const) char32_t array of 'len' elements, starting at address // 'begin'. void UniversalPrintArray(const char32_t* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } // Prints a (const) wchar_t array of 'len' elements, starting at address // 'begin'. void UniversalPrintArray(const wchar_t* begin, size_t len, ostream* os) { UniversalPrintCharArray(begin, len, os); } namespace { // Prints a null-terminated C-style string to the ostream. template <typename Char> void PrintCStringTo(const Char* s, ostream* os) { if (s == nullptr) { *os << "NULL"; } else { *os << ImplicitCast_<const void*>(s) << " pointing to "; PrintCharsAsStringTo(s, std::char_traits<Char>::length(s), os); } } } // anonymous namespace void PrintTo(const char* s, ostream* os) { PrintCStringTo(s, os); } #ifdef __cpp_char8_t void PrintTo(const char8_t* s, ostream* os) { PrintCStringTo(s, os); } #endif void PrintTo(const char16_t* s, ostream* os) { PrintCStringTo(s, os); } void PrintTo(const char32_t* s, ostream* os) { PrintCStringTo(s, os); } // MSVC compiler can be configured to define whar_t as a typedef // of unsigned short. Defining an overload for const wchar_t* in that case // would cause pointers to unsigned shorts be printed as wide strings, // possibly accessing more memory than intended and causing invalid // memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when // wchar_t is implemented as a native type. #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) // Prints the given wide C string to the ostream. void PrintTo(const wchar_t* s, ostream* os) { PrintCStringTo(s, os); } #endif // wchar_t is native namespace { bool ContainsUnprintableControlCodes(const char* str, size_t length) { const unsigned char *s = reinterpret_cast<const unsigned char *>(str); for (size_t i = 0; i < length; i++) { unsigned char ch = *s++; if (std::iscntrl(ch)) { switch (ch) { case '\t': case '\n': case '\r': break; default: return true; } } } return false; } bool IsUTF8TrailByte(unsigned char t) { return 0x80 <= t && t<= 0xbf; } bool IsValidUTF8(const char* str, size_t length) { const unsigned char *s = reinterpret_cast<const unsigned char *>(str); for (size_t i = 0; i < length;) { unsigned char lead = s[i++]; if (lead <= 0x7f) { continue; // single-byte character (ASCII) 0..7F } if (lead < 0xc2) { return false; // trail byte or non-shortest form } else if (lead <= 0xdf && (i + 1) <= length && IsUTF8TrailByte(s[i])) { ++i; // 2-byte character } else if (0xe0 <= lead && lead <= 0xef && (i + 2) <= length && IsUTF8TrailByte(s[i]) && IsUTF8TrailByte(s[i + 1]) && // check for non-shortest form and surrogate (lead != 0xe0 || s[i] >= 0xa0) && (lead != 0xed || s[i] < 0xa0)) { i += 2; // 3-byte character } else if (0xf0 <= lead && lead <= 0xf4 && (i + 3) <= length && IsUTF8TrailByte(s[i]) && IsUTF8TrailByte(s[i + 1]) && IsUTF8TrailByte(s[i + 2]) && // check for non-shortest form (lead != 0xf0 || s[i] >= 0x90) && (lead != 0xf4 || s[i] < 0x90)) { i += 3; // 4-byte character } else { return false; } } return true; } void ConditionalPrintAsText(const char* str, size_t length, ostream* os) { if (!ContainsUnprintableControlCodes(str, length) && IsValidUTF8(str, length)) { *os << "\n As Text: \"" << str << "\""; } } } // anonymous namespace void PrintStringTo(const ::std::string& s, ostream* os) { if (PrintCharsAsStringTo(s.data(), s.size(), os) == kHexEscape) { if (GTEST_FLAG(print_utf8)) { ConditionalPrintAsText(s.data(), s.size(), os); } } } #ifdef __cpp_char8_t void PrintU8StringTo(const ::std::u8string& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #endif void PrintU16StringTo(const ::std::u16string& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } void PrintU32StringTo(const ::std::u32string& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #if GTEST_HAS_STD_WSTRING void PrintWideStringTo(const ::std::wstring& s, ostream* os) { PrintCharsAsStringTo(s.data(), s.size(), os); } #endif // GTEST_HAS_STD_WSTRING } // namespace internal } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // The Google C++ Testing and Mocking Framework (Google Test) namespace testing { using internal::GetUnitTestImpl; // Gets the summary of the failure message by omitting the stack trace // in it. std::string TestPartResult::ExtractSummary(const char* message) { const char* const stack_trace = strstr(message, internal::kStackTraceMarker); return stack_trace == nullptr ? message : std::string(message, stack_trace); } // Prints a TestPartResult object. std::ostream& operator<<(std::ostream& os, const TestPartResult& result) { return os << internal::FormatFileLocation(result.file_name(), result.line_number()) << " " << (result.type() == TestPartResult::kSuccess ? "Success" : result.type() == TestPartResult::kSkip ? "Skipped" : result.type() == TestPartResult::kFatalFailure ? "Fatal failure" : "Non-fatal failure") << ":\n" << result.message() << std::endl; } // Appends a TestPartResult to the array. void TestPartResultArray::Append(const TestPartResult& result) { array_.push_back(result); } // Returns the TestPartResult at the given index (0-based). const TestPartResult& TestPartResultArray::GetTestPartResult(int index) const { if (index < 0 || index >= size()) { printf("\nInvalid index (%d) into TestPartResultArray.\n", index); internal::posix::Abort(); } return array_[static_cast<size_t>(index)]; } // Returns the number of TestPartResult objects in the array. int TestPartResultArray::size() const { return static_cast<int>(array_.size()); } namespace internal { HasNewFatalFailureHelper::HasNewFatalFailureHelper() : has_new_fatal_failure_(false), original_reporter_(GetUnitTestImpl()-> GetTestPartResultReporterForCurrentThread()) { GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread(this); } HasNewFatalFailureHelper::~HasNewFatalFailureHelper() { GetUnitTestImpl()->SetTestPartResultReporterForCurrentThread( original_reporter_); } void HasNewFatalFailureHelper::ReportTestPartResult( const TestPartResult& result) { if (result.fatally_failed()) has_new_fatal_failure_ = true; original_reporter_->ReportTestPartResult(result); } } // namespace internal } // namespace testing // Copyright 2008 Google Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. namespace testing { namespace internal { // Skips to the first non-space char in str. Returns an empty string if str // contains only whitespace characters. static const char* SkipSpaces(const char* str) { while (IsSpace(*str)) str++; return str; } static std::vector<std::string> SplitIntoTestNames(const char* src) { std::vector<std::string> name_vec; src = SkipSpaces(src); for (; src != nullptr; src = SkipComma(src)) { name_vec.push_back(StripTrailingSpaces(GetPrefixUntilComma(src))); } return name_vec; } // Verifies that registered_tests match the test names in // registered_tests_; returns registered_tests if successful, or // aborts the program otherwise. const char* TypedTestSuitePState::VerifyRegisteredTestNames( const char* test_suite_name, const char* file, int line, const char* registered_tests) { RegisterTypeParameterizedTestSuite(test_suite_name, CodeLocation(file, line)); typedef RegisteredTestsMap::const_iterator RegisteredTestIter; registered_ = true; std::vector<std::string> name_vec = SplitIntoTestNames(registered_tests); Message errors; std::set<std::string> tests; for (std::vector<std::string>::const_iterator name_it = name_vec.begin(); name_it != name_vec.end(); ++name_it) { const std::string& name = *name_it; if (tests.count(name) != 0) { errors << "Test " << name << " is listed more than once.\n"; continue; } if (registered_tests_.count(name) != 0) { tests.insert(name); } else { errors << "No test named " << name << " can be found in this test suite.\n"; } } for (RegisteredTestIter it = registered_tests_.begin(); it != registered_tests_.end(); ++it) { if (tests.count(it->first) == 0) { errors << "You forgot to list test " << it->first << ".\n"; } } const std::string& errors_str = errors.GetString(); if (errors_str != "") { fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(), errors_str.c_str()); fflush(stderr); posix::Abort(); } return registered_tests; } } // namespace internal } // namespace testing // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Google C++ Mocking Framework (Google Mock) // // This file #includes all Google Mock implementation .cc files. The // purpose is to allow a user to build Google Mock by compiling this // file alone. // This line ensures that gmock.h can be compiled on its own, even // when it's fused. #include "gmock/gmock.h" // The following lines pull in the real gmock *.cc files. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements cardinalities. #include <limits.h> #include <ostream> // NOLINT #include <sstream> #include <string> namespace testing { namespace { // Implements the Between(m, n) cardinality. class BetweenCardinalityImpl : public CardinalityInterface { public: BetweenCardinalityImpl(int min, int max) : min_(min >= 0 ? min : 0), max_(max >= min_ ? max : min_) { std::stringstream ss; if (min < 0) { ss << "The invocation lower bound must be >= 0, " << "but is actually " << min << "."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } else if (max < 0) { ss << "The invocation upper bound must be >= 0, " << "but is actually " << max << "."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } else if (min > max) { ss << "The invocation upper bound (" << max << ") must be >= the invocation lower bound (" << min << ")."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } } // Conservative estimate on the lower/upper bound of the number of // calls allowed. int ConservativeLowerBound() const override { return min_; } int ConservativeUpperBound() const override { return max_; } bool IsSatisfiedByCallCount(int call_count) const override { return min_ <= call_count && call_count <= max_; } bool IsSaturatedByCallCount(int call_count) const override { return call_count >= max_; } void DescribeTo(::std::ostream* os) const override; private: const int min_; const int max_; GTEST_DISALLOW_COPY_AND_ASSIGN_(BetweenCardinalityImpl); }; // Formats "n times" in a human-friendly way. inline std::string FormatTimes(int n) { if (n == 1) { return "once"; } else if (n == 2) { return "twice"; } else { std::stringstream ss; ss << n << " times"; return ss.str(); } } // Describes the Between(m, n) cardinality in human-friendly text. void BetweenCardinalityImpl::DescribeTo(::std::ostream* os) const { if (min_ == 0) { if (max_ == 0) { *os << "never called"; } else if (max_ == INT_MAX) { *os << "called any number of times"; } else { *os << "called at most " << FormatTimes(max_); } } else if (min_ == max_) { *os << "called " << FormatTimes(min_); } else if (max_ == INT_MAX) { *os << "called at least " << FormatTimes(min_); } else { // 0 < min_ < max_ < INT_MAX *os << "called between " << min_ << " and " << max_ << " times"; } } } // Unnamed namespace // Describes the given call count to an ostream. void Cardinality::DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os) { if (actual_call_count > 0) { *os << "called " << FormatTimes(actual_call_count); } else { *os << "never called"; } } // Creates a cardinality that allows at least n calls. GTEST_API_ Cardinality AtLeast(int n) { return Between(n, INT_MAX); } // Creates a cardinality that allows at most n calls. GTEST_API_ Cardinality AtMost(int n) { return Between(0, n); } // Creates a cardinality that allows any number of calls. GTEST_API_ Cardinality AnyNumber() { return AtLeast(0); } // Creates a cardinality that allows between min and max calls. GTEST_API_ Cardinality Between(int min, int max) { return Cardinality(new BetweenCardinalityImpl(min, max)); } // Creates a cardinality that allows exactly n calls. GTEST_API_ Cardinality Exactly(int n) { return Between(n, n); } } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. #include <ctype.h> #include <ostream> // NOLINT #include <string> namespace testing { namespace internal { // Joins a vector of strings as if they are fields of a tuple; returns // the joined string. GTEST_API_ std::string JoinAsTuple(const Strings& fields) { switch (fields.size()) { case 0: return ""; case 1: return fields[0]; default: std::string result = "(" + fields[0]; for (size_t i = 1; i < fields.size(); i++) { result += ", "; result += fields[i]; } result += ")"; return result; } } // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name) { std::string result; char prev_char = '\0'; for (const char* p = id_name; *p != '\0'; prev_char = *(p++)) { // We don't care about the current locale as the input is // guaranteed to be a valid C++ identifier name. const bool starts_new_word = IsUpper(*p) || (!IsAlpha(prev_char) && IsLower(*p)) || (!IsDigit(prev_char) && IsDigit(*p)); if (IsAlNum(*p)) { if (starts_new_word && result != "") result += ' '; result += ToLower(*p); } } return result; } // This class reports Google Mock failures as Google Test failures. A // user can define another class in a similar fashion if they intend to // use Google Mock with a testing framework other than Google Test. class GoogleTestFailureReporter : public FailureReporterInterface { public: void ReportFailure(FailureType type, const char* file, int line, const std::string& message) override { AssertHelper(type == kFatal ? TestPartResult::kFatalFailure : TestPartResult::kNonFatalFailure, file, line, message.c_str()) = Message(); if (type == kFatal) { posix::Abort(); } } }; // Returns the global failure reporter. Will create a // GoogleTestFailureReporter and return it the first time called. GTEST_API_ FailureReporterInterface* GetFailureReporter() { // Points to the global failure reporter used by Google Mock. gcc // guarantees that the following use of failure_reporter is // thread-safe. We may need to add additional synchronization to // protect failure_reporter if we port Google Mock to other // compilers. static FailureReporterInterface* const failure_reporter = new GoogleTestFailureReporter(); return failure_reporter; } // Protects global resources (stdout in particular) used by Log(). static GTEST_DEFINE_STATIC_MUTEX_(g_log_mutex); // Returns true if and only if a log with the given severity is visible // according to the --gmock_verbose flag. GTEST_API_ bool LogIsVisible(LogSeverity severity) { if (GMOCK_FLAG(verbose) == kInfoVerbosity) { // Always show the log if --gmock_verbose=info. return true; } else if (GMOCK_FLAG(verbose) == kErrorVerbosity) { // Always hide it if --gmock_verbose=error. return false; } else { // If --gmock_verbose is neither "info" nor "error", we treat it // as "warning" (its default value). return severity == kWarning; } } // Prints the given message to stdout if and only if 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. GTEST_API_ void Log(LogSeverity severity, const std::string& message, int stack_frames_to_skip) { if (!LogIsVisible(severity)) return; // Ensures that logs from different threads don't interleave. MutexLock l(&g_log_mutex); if (severity == kWarning) { // Prints a GMOCK WARNING marker to make the warnings easily searchable. std::cout << "\nGMOCK WARNING:"; } // Pre-pends a new-line to message if it doesn't start with one. if (message.empty() || message[0] != '\n') { std::cout << "\n"; } std::cout << message; if (stack_frames_to_skip >= 0) { #ifdef NDEBUG // In opt mode, we have to be conservative and skip no stack frame. const int actual_to_skip = 0; #else // In dbg mode, we can do what the caller tell us to do (plus one // for skipping this function's stack frame). const int actual_to_skip = stack_frames_to_skip + 1; #endif // NDEBUG // Appends a new-line to message if it doesn't end with one. if (!message.empty() && *message.rbegin() != '\n') { std::cout << "\n"; } std::cout << "Stack trace:\n" << ::testing::internal::GetCurrentOsStackTraceExceptTop( ::testing::UnitTest::GetInstance(), actual_to_skip); } std::cout << ::std::flush; } GTEST_API_ WithoutMatchers GetWithoutMatchers() { return WithoutMatchers(); } GTEST_API_ void IllegalDoDefault(const char* file, int line) { internal::Assert( false, file, line, "You are using DoDefault() inside a composite action like " "DoAll() or WithArgs(). This is not supported for technical " "reasons. Please instead spell out the default action, or " "assign the default action to an Action variable and use " "the variable in various places."); } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements Matcher<const string&>, Matcher<string>, and // utilities for defining matchers. #include <string.h> #include <iostream> #include <sstream> #include <string> namespace testing { namespace internal { // Returns the description for a matcher defined using the MATCHER*() // macro where the user-supplied description string is "", if // 'negation' is false; otherwise returns the description of the // negation of the matcher. 'param_values' contains a list of strings // that are the print-out of the matcher's parameters. GTEST_API_ std::string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values) { std::string result = ConvertIdentifierNameToWords(matcher_name); if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values); return negation ? "not (" + result + ")" : result; } // FindMaxBipartiteMatching and its helper class. // // Uses the well-known Ford-Fulkerson max flow method to find a maximum // bipartite matching. Flow is considered to be from left to right. // There is an implicit source node that is connected to all of the left // nodes, and an implicit sink node that is connected to all of the // right nodes. All edges have unit capacity. // // Neither the flow graph nor the residual flow graph are represented // explicitly. Instead, they are implied by the information in 'graph' and // a vector<int> called 'left_' whose elements are initialized to the // value kUnused. This represents the initial state of the algorithm, // where the flow graph is empty, and the residual flow graph has the // following edges: // - An edge from source to each left_ node // - An edge from each right_ node to sink // - An edge from each left_ node to each right_ node, if the // corresponding edge exists in 'graph'. // // When the TryAugment() method adds a flow, it sets left_[l] = r for some // nodes l and r. This induces the following changes: // - The edges (source, l), (l, r), and (r, sink) are added to the // flow graph. // - The same three edges are removed from the residual flow graph. // - The reverse edges (l, source), (r, l), and (sink, r) are added // to the residual flow graph, which is a directional graph // representing unused flow capacity. // // When the method augments a flow (moving left_[l] from some r1 to some // other r2), this can be thought of as "undoing" the above steps with // respect to r1 and "redoing" them with respect to r2. // // It bears repeating that the flow graph and residual flow graph are // never represented explicitly, but can be derived by looking at the // information in 'graph' and in left_. // // As an optimization, there is a second vector<int> called right_ which // does not provide any new information. Instead, it enables more // efficient queries about edges entering or leaving the right-side nodes // of the flow or residual flow graphs. The following invariants are // maintained: // // left[l] == kUnused or right[left[l]] == l // right[r] == kUnused or left[right[r]] == r // // . [ source ] . // . ||| . // . ||| . // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . // . || | | . // . |\---> left[1]=-1 \--> right[1]=0 ---\| . // . | || . // . \----> left[2]=2 ------> right[2]=2 --\|| . // . ||| . // . elements matchers vvv . // . [ sink ] . // // See Also: // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". // "Introduction to Algorithms (Second ed.)", pp. 651-664. // [2] "Ford-Fulkerson algorithm", Wikipedia, // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' class MaxBipartiteMatchState { public: explicit MaxBipartiteMatchState(const MatchMatrix& graph) : graph_(&graph), left_(graph_->LhsSize(), kUnused), right_(graph_->RhsSize(), kUnused) {} // Returns the edges of a maximal match, each in the form {left, right}. ElementMatcherPairs Compute() { // 'seen' is used for path finding { 0: unseen, 1: seen }. ::std::vector<char> seen; // Searches the residual flow graph for a path from each left node to // the sink in the residual flow graph, and if one is found, add flow // to the graph. It's okay to search through the left nodes once. The // edge from the implicit source node to each previously-visited left // node will have flow if that left node has any path to the sink // whatsoever. Subsequent augmentations can only add flow to the // network, and cannot take away that previous flow unit from the source. // Since the source-to-left edge can only carry one flow unit (or, // each element can be matched to only one matcher), there is no need // to visit the left nodes more than once looking for augmented paths. // The flow is known to be possible or impossible by looking at the // node once. for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { // Reset the path-marking vector and try to find a path from // source to sink starting at the left_[ilhs] node. GTEST_CHECK_(left_[ilhs] == kUnused) << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; // 'seen' initialized to 'graph_->RhsSize()' copies of 0. seen.assign(graph_->RhsSize(), 0); TryAugment(ilhs, &seen); } ElementMatcherPairs result; for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { size_t irhs = left_[ilhs]; if (irhs == kUnused) continue; result.push_back(ElementMatcherPair(ilhs, irhs)); } return result; } private: static const size_t kUnused = static_cast<size_t>(-1); // Perform a depth-first search from left node ilhs to the sink. If a // path is found, flow is added to the network by linking the left and // right vector elements corresponding each segment of the path. // Returns true if a path to sink was found, which means that a unit of // flow was added to the network. The 'seen' vector elements correspond // to right nodes and are marked to eliminate cycles from the search. // // Left nodes will only be explored at most once because they // are accessible from at most one right node in the residual flow // graph. // // Note that left_[ilhs] is the only element of left_ that TryAugment will // potentially transition from kUnused to another value. Any other // left_ element holding kUnused before TryAugment will be holding it // when TryAugment returns. // bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { if ((*seen)[irhs]) continue; if (!graph_->HasEdge(ilhs, irhs)) continue; // There's an available edge from ilhs to irhs. (*seen)[irhs] = 1; // Next a search is performed to determine whether // this edge is a dead end or leads to the sink. // // right_[irhs] == kUnused means that there is residual flow from // right node irhs to the sink, so we can use that to finish this // flow path and return success. // // Otherwise there is residual flow to some ilhs. We push flow // along that path and call ourselves recursively to see if this // ultimately leads to sink. if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { // Add flow from left_[ilhs] to right_[irhs]. left_[ilhs] = irhs; right_[irhs] = ilhs; return true; } } return false; } const MatchMatrix* graph_; // not owned // Each element of the left_ vector represents a left hand side node // (i.e. an element) and each element of right_ is a right hand side // node (i.e. a matcher). The values in the left_ vector indicate // outflow from that node to a node on the right_ side. The values // in the right_ indicate inflow, and specify which left_ node is // feeding that right_ node, if any. For example, left_[3] == 1 means // there's a flow from element #3 to matcher #1. Such a flow would also // be redundantly represented in the right_ vector as right_[1] == 3. // Elements of left_ and right_ are either kUnused or mutually // referent. Mutually referent means that left_[right_[i]] = i and // right_[left_[i]] = i. ::std::vector<size_t> left_; ::std::vector<size_t> right_; }; const size_t MaxBipartiteMatchState::kUnused; GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { return MaxBipartiteMatchState(g).Compute(); } static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, ::std::ostream* stream) { typedef ElementMatcherPairs::const_iterator Iter; ::std::ostream& os = *stream; os << "{"; const char* sep = ""; for (Iter it = pairs.begin(); it != pairs.end(); ++it) { os << sep << "\n (" << "element #" << it->first << ", " << "matcher #" << it->second << ")"; sep = ","; } os << "\n}"; } bool MatchMatrix::NextGraph() { for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { char& b = matched_[SpaceIndex(ilhs, irhs)]; if (!b) { b = 1; return true; } b = 0; } } return false; } void MatchMatrix::Randomize() { for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { char& b = matched_[SpaceIndex(ilhs, irhs)]; b = static_cast<char>(rand() & 1); // NOLINT } } } std::string MatchMatrix::DebugString() const { ::std::stringstream ss; const char* sep = ""; for (size_t i = 0; i < LhsSize(); ++i) { ss << sep; for (size_t j = 0; j < RhsSize(); ++j) { ss << HasEdge(i, j); } sep = ";"; } return ss.str(); } void UnorderedElementsAreMatcherImplBase::DescribeToImpl( ::std::ostream* os) const { switch (match_flags()) { case UnorderedMatcherRequire::ExactMatch: if (matcher_describers_.empty()) { *os << "is empty"; return; } if (matcher_describers_.size() == 1) { *os << "has " << Elements(1) << " and that element "; matcher_describers_[0]->DescribeTo(os); return; } *os << "has " << Elements(matcher_describers_.size()) << " and there exists some permutation of elements such that:\n"; break; case UnorderedMatcherRequire::Superset: *os << "a surjection from elements to requirements exists such that:\n"; break; case UnorderedMatcherRequire::Subset: *os << "an injection from elements to requirements exists such that:\n"; break; } const char* sep = ""; for (size_t i = 0; i != matcher_describers_.size(); ++i) { *os << sep; if (match_flags() == UnorderedMatcherRequire::ExactMatch) { *os << " - element #" << i << " "; } else { *os << " - an element "; } matcher_describers_[i]->DescribeTo(os); if (match_flags() == UnorderedMatcherRequire::ExactMatch) { sep = ", and\n"; } else { sep = "\n"; } } } void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( ::std::ostream* os) const { switch (match_flags()) { case UnorderedMatcherRequire::ExactMatch: if (matcher_describers_.empty()) { *os << "isn't empty"; return; } if (matcher_describers_.size() == 1) { *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) << " that "; matcher_describers_[0]->DescribeNegationTo(os); return; } *os << "doesn't have " << Elements(matcher_describers_.size()) << ", or there exists no permutation of elements such that:\n"; break; case UnorderedMatcherRequire::Superset: *os << "no surjection from elements to requirements exists such that:\n"; break; case UnorderedMatcherRequire::Subset: *os << "no injection from elements to requirements exists such that:\n"; break; } const char* sep = ""; for (size_t i = 0; i != matcher_describers_.size(); ++i) { *os << sep; if (match_flags() == UnorderedMatcherRequire::ExactMatch) { *os << " - element #" << i << " "; } else { *os << " - an element "; } matcher_describers_[i]->DescribeTo(os); if (match_flags() == UnorderedMatcherRequire::ExactMatch) { sep = ", and\n"; } else { sep = "\n"; } } } // Checks that all matchers match at least one element, and that all // elements match at least one matcher. This enables faster matching // and better error reporting. // Returns false, writing an explanation to 'listener', if and only // if the success criteria are not met. bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix( const ::std::vector<std::string>& element_printouts, const MatchMatrix& matrix, MatchResultListener* listener) const { bool result = true; ::std::vector<char> element_matched(matrix.LhsSize(), 0); ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { char matched = matrix.HasEdge(ilhs, irhs); element_matched[ilhs] |= matched; matcher_matched[irhs] |= matched; } } if (match_flags() & UnorderedMatcherRequire::Superset) { const char* sep = "where the following matchers don't match any elements:\n"; for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { if (matcher_matched[mi]) continue; result = false; if (listener->IsInterested()) { *listener << sep << "matcher #" << mi << ": "; matcher_describers_[mi]->DescribeTo(listener->stream()); sep = ",\n"; } } } if (match_flags() & UnorderedMatcherRequire::Subset) { const char* sep = "where the following elements don't match any matchers:\n"; const char* outer_sep = ""; if (!result) { outer_sep = "\nand "; } for (size_t ei = 0; ei < element_matched.size(); ++ei) { if (element_matched[ei]) continue; result = false; if (listener->IsInterested()) { *listener << outer_sep << sep << "element #" << ei << ": " << element_printouts[ei]; sep = ",\n"; outer_sep = ""; } } } return result; } bool UnorderedElementsAreMatcherImplBase::FindPairing( const MatchMatrix& matrix, MatchResultListener* listener) const { ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); size_t max_flow = matches.size(); if ((match_flags() & UnorderedMatcherRequire::Superset) && max_flow < matrix.RhsSize()) { if (listener->IsInterested()) { *listener << "where no permutation of the elements can satisfy all " "matchers, and the closest match is " << max_flow << " of " << matrix.RhsSize() << " matchers with the pairings:\n"; LogElementMatcherPairVec(matches, listener->stream()); } return false; } if ((match_flags() & UnorderedMatcherRequire::Subset) && max_flow < matrix.LhsSize()) { if (listener->IsInterested()) { *listener << "where not all elements can be matched, and the closest match is " << max_flow << " of " << matrix.RhsSize() << " matchers with the pairings:\n"; LogElementMatcherPairVec(matches, listener->stream()); } return false; } if (matches.size() > 1) { if (listener->IsInterested()) { const char* sep = "where:\n"; for (size_t mi = 0; mi < matches.size(); ++mi) { *listener << sep << " - element #" << matches[mi].first << " is matched by matcher #" << matches[mi].second; sep = ",\n"; } } } return true; } } // namespace internal } // namespace testing // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements the spec builder syntax (ON_CALL and // EXPECT_CALL). #include <stdlib.h> #include <iostream> // NOLINT #include <map> #include <memory> #include <set> #include <string> #include <vector> #if GTEST_OS_CYGWIN || GTEST_OS_LINUX || GTEST_OS_MAC # include <unistd.h> // NOLINT #endif // Silence C4800 (C4800: 'int *const ': forcing value // to bool 'true' or 'false') for MSVC 15 #ifdef _MSC_VER #if _MSC_VER == 1900 # pragma warning(push) # pragma warning(disable:4800) #endif #endif namespace testing { namespace internal { // Protects the mock object registry (in class Mock), all function // mockers, and all expectations. GTEST_API_ GTEST_DEFINE_STATIC_MUTEX_(g_gmock_mutex); // Logs a message including file and line number information. GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, const char* file, int line, const std::string& message) { ::std::ostringstream s; s << internal::FormatFileLocation(file, line) << " " << message << ::std::endl; Log(severity, s.str(), 0); } // Constructs an ExpectationBase object. ExpectationBase::ExpectationBase(const char* a_file, int a_line, const std::string& a_source_text) : file_(a_file), line_(a_line), source_text_(a_source_text), cardinality_specified_(false), cardinality_(Exactly(1)), call_count_(0), retired_(false), extra_matcher_specified_(false), repeated_action_specified_(false), retires_on_saturation_(false), last_clause_(kNone), action_count_checked_(false) {} // Destructs an ExpectationBase object. ExpectationBase::~ExpectationBase() {} // Explicitly specifies the cardinality of this expectation. Used by // the subclasses to implement the .Times() clause. void ExpectationBase::SpecifyCardinality(const Cardinality& a_cardinality) { cardinality_specified_ = true; cardinality_ = a_cardinality; } // Retires all pre-requisites of this expectation. void ExpectationBase::RetireAllPreRequisites() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { if (is_retired()) { // We can take this short-cut as we never retire an expectation // until we have retired all its pre-requisites. return; } ::std::vector<ExpectationBase*> expectations(1, this); while (!expectations.empty()) { ExpectationBase* exp = expectations.back(); expectations.pop_back(); for (ExpectationSet::const_iterator it = exp->immediate_prerequisites_.begin(); it != exp->immediate_prerequisites_.end(); ++it) { ExpectationBase* next = it->expectation_base().get(); if (!next->is_retired()) { next->Retire(); expectations.push_back(next); } } } } // Returns true if and only if all pre-requisites of this expectation // have been satisfied. bool ExpectationBase::AllPrerequisitesAreSatisfied() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); ::std::vector<const ExpectationBase*> expectations(1, this); while (!expectations.empty()) { const ExpectationBase* exp = expectations.back(); expectations.pop_back(); for (ExpectationSet::const_iterator it = exp->immediate_prerequisites_.begin(); it != exp->immediate_prerequisites_.end(); ++it) { const ExpectationBase* next = it->expectation_base().get(); if (!next->IsSatisfied()) return false; expectations.push_back(next); } } return true; } // Adds unsatisfied pre-requisites of this expectation to 'result'. void ExpectationBase::FindUnsatisfiedPrerequisites(ExpectationSet* result) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); ::std::vector<const ExpectationBase*> expectations(1, this); while (!expectations.empty()) { const ExpectationBase* exp = expectations.back(); expectations.pop_back(); for (ExpectationSet::const_iterator it = exp->immediate_prerequisites_.begin(); it != exp->immediate_prerequisites_.end(); ++it) { const ExpectationBase* next = it->expectation_base().get(); if (next->IsSatisfied()) { // If *it is satisfied and has a call count of 0, some of its // pre-requisites may not be satisfied yet. if (next->call_count_ == 0) { expectations.push_back(next); } } else { // Now that we know next is unsatisfied, we are not so interested // in whether its pre-requisites are satisfied. Therefore we // don't iterate into it here. *result += *it; } } } } // Describes how many times a function call matching this // expectation has occurred. void ExpectationBase::DescribeCallCountTo(::std::ostream* os) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); // Describes how many times the function is expected to be called. *os << " Expected: to be "; cardinality().DescribeTo(os); *os << "\n Actual: "; Cardinality::DescribeActualCallCountTo(call_count(), os); // Describes the state of the expectation (e.g. is it satisfied? // is it active?). *os << " - " << (IsOverSaturated() ? "over-saturated" : IsSaturated() ? "saturated" : IsSatisfied() ? "satisfied" : "unsatisfied") << " and " << (is_retired() ? "retired" : "active"); } // Checks the action count (i.e. the number of WillOnce() and // WillRepeatedly() clauses) against the cardinality if this hasn't // been done before. Prints a warning if there are too many or too // few actions. void ExpectationBase::CheckActionCountIfNotDone() const GTEST_LOCK_EXCLUDED_(mutex_) { bool should_check = false; { MutexLock l(&mutex_); if (!action_count_checked_) { action_count_checked_ = true; should_check = true; } } if (should_check) { if (!cardinality_specified_) { // The cardinality was inferred - no need to check the action // count against it. return; } // The cardinality was explicitly specified. const int action_count = static_cast<int>(untyped_actions_.size()); const int upper_bound = cardinality().ConservativeUpperBound(); const int lower_bound = cardinality().ConservativeLowerBound(); bool too_many; // True if there are too many actions, or false // if there are too few. if (action_count > upper_bound || (action_count == upper_bound && repeated_action_specified_)) { too_many = true; } else if (0 < action_count && action_count < lower_bound && !repeated_action_specified_) { too_many = false; } else { return; } ::std::stringstream ss; DescribeLocationTo(&ss); ss << "Too " << (too_many ? "many" : "few") << " actions specified in " << source_text() << "...\n" << "Expected to be "; cardinality().DescribeTo(&ss); ss << ", but has " << (too_many ? "" : "only ") << action_count << " WillOnce()" << (action_count == 1 ? "" : "s"); if (repeated_action_specified_) { ss << " and a WillRepeatedly()"; } ss << "."; Log(kWarning, ss.str(), -1); // -1 means "don't print stack trace". } } // Implements the .Times() clause. void ExpectationBase::UntypedTimes(const Cardinality& a_cardinality) { if (last_clause_ == kTimes) { ExpectSpecProperty(false, ".Times() cannot appear " "more than once in an EXPECT_CALL()."); } else { ExpectSpecProperty(last_clause_ < kTimes, ".Times() cannot appear after " ".InSequence(), .WillOnce(), .WillRepeatedly(), " "or .RetiresOnSaturation()."); } last_clause_ = kTimes; SpecifyCardinality(a_cardinality); } // Points to the implicit sequence introduced by a living InSequence // object (if any) in the current thread or NULL. GTEST_API_ ThreadLocal<Sequence*> g_gmock_implicit_sequence; // Reports an uninteresting call (whose description is in msg) in the // manner specified by 'reaction'. void ReportUninterestingCall(CallReaction reaction, const std::string& msg) { // Include a stack trace only if --gmock_verbose=info is specified. const int stack_frames_to_skip = GMOCK_FLAG(verbose) == kInfoVerbosity ? 3 : -1; switch (reaction) { case kAllow: Log(kInfo, msg, stack_frames_to_skip); break; case kWarn: Log(kWarning, msg + "\nNOTE: You can safely ignore the above warning unless this " "call should not happen. Do not suppress it by blindly adding " "an EXPECT_CALL() if you don't mean to enforce the call. " "See " "https://github.com/google/googletest/blob/master/docs/" "gmock_cook_book.md#" "knowing-when-to-expect for details.\n", stack_frames_to_skip); break; default: // FAIL Expect(false, nullptr, -1, msg); } } UntypedFunctionMockerBase::UntypedFunctionMockerBase() : mock_obj_(nullptr), name_("") {} UntypedFunctionMockerBase::~UntypedFunctionMockerBase() {} // Sets the mock object this mock method belongs to, and registers // this information in the global mock registry. Will be called // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock // method. void UntypedFunctionMockerBase::RegisterOwner(const void* mock_obj) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { { MutexLock l(&g_gmock_mutex); mock_obj_ = mock_obj; } Mock::Register(mock_obj, this); } // Sets the mock object this mock method belongs to, and sets the name // of the mock function. Will be called upon each invocation of this // mock function. void UntypedFunctionMockerBase::SetOwnerAndName(const void* mock_obj, const char* name) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { // We protect name_ under g_gmock_mutex in case this mock function // is called from two threads concurrently. MutexLock l(&g_gmock_mutex); mock_obj_ = mock_obj; name_ = name; } // Returns the name of the function being mocked. Must be called // after RegisterOwner() or SetOwnerAndName() has been called. const void* UntypedFunctionMockerBase::MockObject() const GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { const void* mock_obj; { // We protect mock_obj_ under g_gmock_mutex in case this mock // function is called from two threads concurrently. MutexLock l(&g_gmock_mutex); Assert(mock_obj_ != nullptr, __FILE__, __LINE__, "MockObject() must not be called before RegisterOwner() or " "SetOwnerAndName() has been called."); mock_obj = mock_obj_; } return mock_obj; } // Returns the name of this mock method. Must be called after // SetOwnerAndName() has been called. const char* UntypedFunctionMockerBase::Name() const GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { const char* name; { // We protect name_ under g_gmock_mutex in case this mock // function is called from two threads concurrently. MutexLock l(&g_gmock_mutex); Assert(name_ != nullptr, __FILE__, __LINE__, "Name() must not be called before SetOwnerAndName() has " "been called."); name = name_; } return name; } // Calculates the result of invoking this mock function with the given // arguments, prints it, and returns it. The caller is responsible // for deleting the result. UntypedActionResultHolderBase* UntypedFunctionMockerBase::UntypedInvokeWith( void* const untyped_args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { // See the definition of untyped_expectations_ for why access to it // is unprotected here. if (untyped_expectations_.size() == 0) { // No expectation is set on this mock method - we have an // uninteresting call. // We must get Google Mock's reaction on uninteresting calls // made on this mock object BEFORE performing the action, // because the action may DELETE the mock object and make the // following expression meaningless. const CallReaction reaction = Mock::GetReactionOnUninterestingCalls(MockObject()); // True if and only if we need to print this call's arguments and return // value. This definition must be kept in sync with // the behavior of ReportUninterestingCall(). const bool need_to_report_uninteresting_call = // If the user allows this uninteresting call, we print it // only when they want informational messages. reaction == kAllow ? LogIsVisible(kInfo) : // If the user wants this to be a warning, we print // it only when they want to see warnings. reaction == kWarn ? LogIsVisible(kWarning) : // Otherwise, the user wants this to be an error, and we // should always print detailed information in the error. true; if (!need_to_report_uninteresting_call) { // Perform the action without printing the call information. return this->UntypedPerformDefaultAction( untyped_args, "Function call: " + std::string(Name())); } // Warns about the uninteresting call. ::std::stringstream ss; this->UntypedDescribeUninterestingCall(untyped_args, &ss); // Calculates the function result. UntypedActionResultHolderBase* const result = this->UntypedPerformDefaultAction(untyped_args, ss.str()); // Prints the function result. if (result != nullptr) result->PrintAsActionResult(&ss); ReportUninterestingCall(reaction, ss.str()); return result; } bool is_excessive = false; ::std::stringstream ss; ::std::stringstream why; ::std::stringstream loc; const void* untyped_action = nullptr; // The UntypedFindMatchingExpectation() function acquires and // releases g_gmock_mutex. const ExpectationBase* const untyped_expectation = this->UntypedFindMatchingExpectation(untyped_args, &untyped_action, &is_excessive, &ss, &why); const bool found = untyped_expectation != nullptr; // True if and only if we need to print the call's arguments // and return value. // This definition must be kept in sync with the uses of Expect() // and Log() in this function. const bool need_to_report_call = !found || is_excessive || LogIsVisible(kInfo); if (!need_to_report_call) { // Perform the action without printing the call information. return untyped_action == nullptr ? this->UntypedPerformDefaultAction(untyped_args, "") : this->UntypedPerformAction(untyped_action, untyped_args); } ss << " Function call: " << Name(); this->UntypedPrintArgs(untyped_args, &ss); // In case the action deletes a piece of the expectation, we // generate the message beforehand. if (found && !is_excessive) { untyped_expectation->DescribeLocationTo(&loc); } UntypedActionResultHolderBase* result = nullptr; auto perform_action = [&, this] { return untyped_action == nullptr ? this->UntypedPerformDefaultAction(untyped_args, ss.str()) : this->UntypedPerformAction(untyped_action, untyped_args); }; auto handle_failures = [&] { ss << "\n" << why.str(); if (!found) { // No expectation matches this call - reports a failure. Expect(false, nullptr, -1, ss.str()); } else if (is_excessive) { // We had an upper-bound violation and the failure message is in ss. Expect(false, untyped_expectation->file(), untyped_expectation->line(), ss.str()); } else { // We had an expected call and the matching expectation is // described in ss. Log(kInfo, loc.str() + ss.str(), 2); } }; #if GTEST_HAS_EXCEPTIONS try { result = perform_action(); } catch (...) { handle_failures(); throw; } #else result = perform_action(); #endif if (result != nullptr) result->PrintAsActionResult(&ss); handle_failures(); return result; } // Returns an Expectation object that references and co-owns exp, // which must be an expectation on this mock function. Expectation UntypedFunctionMockerBase::GetHandleOf(ExpectationBase* exp) { // See the definition of untyped_expectations_ for why access to it // is unprotected here. for (UntypedExpectations::const_iterator it = untyped_expectations_.begin(); it != untyped_expectations_.end(); ++it) { if (it->get() == exp) { return Expectation(*it); } } Assert(false, __FILE__, __LINE__, "Cannot find expectation."); return Expectation(); // The above statement is just to make the code compile, and will // never be executed. } // Verifies that all expectations on this mock function have been // satisfied. Reports one or more Google Test non-fatal failures // and returns false if not. bool UntypedFunctionMockerBase::VerifyAndClearExpectationsLocked() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); bool expectations_met = true; for (UntypedExpectations::const_iterator it = untyped_expectations_.begin(); it != untyped_expectations_.end(); ++it) { ExpectationBase* const untyped_expectation = it->get(); if (untyped_expectation->IsOverSaturated()) { // There was an upper-bound violation. Since the error was // already reported when it occurred, there is no need to do // anything here. expectations_met = false; } else if (!untyped_expectation->IsSatisfied()) { expectations_met = false; ::std::stringstream ss; ss << "Actual function call count doesn't match " << untyped_expectation->source_text() << "...\n"; // No need to show the source file location of the expectation // in the description, as the Expect() call that follows already // takes care of it. untyped_expectation->MaybeDescribeExtraMatcherTo(&ss); untyped_expectation->DescribeCallCountTo(&ss); Expect(false, untyped_expectation->file(), untyped_expectation->line(), ss.str()); } } // Deleting our expectations may trigger other mock objects to be deleted, for // example if an action contains a reference counted smart pointer to that // mock object, and that is the last reference. So if we delete our // expectations within the context of the global mutex we may deadlock when // this method is called again. Instead, make a copy of the set of // expectations to delete, clear our set within the mutex, and then clear the // copied set outside of it. UntypedExpectations expectations_to_delete; untyped_expectations_.swap(expectations_to_delete); g_gmock_mutex.Unlock(); expectations_to_delete.clear(); g_gmock_mutex.Lock(); return expectations_met; } CallReaction intToCallReaction(int mock_behavior) { if (mock_behavior >= kAllow && mock_behavior <= kFail) { return static_cast<internal::CallReaction>(mock_behavior); } return kWarn; } } // namespace internal // Class Mock. namespace { typedef std::set<internal::UntypedFunctionMockerBase*> FunctionMockers; // The current state of a mock object. Such information is needed for // detecting leaked mock objects and explicitly verifying a mock's // expectations. struct MockObjectState { MockObjectState() : first_used_file(nullptr), first_used_line(-1), leakable(false) {} // Where in the source file an ON_CALL or EXPECT_CALL is first // invoked on this mock object. const char* first_used_file; int first_used_line; ::std::string first_used_test_suite; ::std::string first_used_test; bool leakable; // true if and only if it's OK to leak the object. FunctionMockers function_mockers; // All registered methods of the object. }; // A global registry holding the state of all mock objects that are // alive. A mock object is added to this registry the first time // Mock::AllowLeak(), ON_CALL(), or EXPECT_CALL() is called on it. It // is removed from the registry in the mock object's destructor. class MockObjectRegistry { public: // Maps a mock object (identified by its address) to its state. typedef std::map<const void*, MockObjectState> StateMap; // This destructor will be called when a program exits, after all // tests in it have been run. By then, there should be no mock // object alive. Therefore we report any living object as test // failure, unless the user explicitly asked us to ignore it. ~MockObjectRegistry() { if (!GMOCK_FLAG(catch_leaked_mocks)) return; int leaked_count = 0; for (StateMap::const_iterator it = states_.begin(); it != states_.end(); ++it) { if (it->second.leakable) // The user said it's fine to leak this object. continue; // FIXME: Print the type of the leaked object. // This can help the user identify the leaked object. std::cout << "\n"; const MockObjectState& state = it->second; std::cout << internal::FormatFileLocation(state.first_used_file, state.first_used_line); std::cout << " ERROR: this mock object"; if (state.first_used_test != "") { std::cout << " (used in test " << state.first_used_test_suite << "." << state.first_used_test << ")"; } std::cout << " should be deleted but never is. Its address is @" << it->first << "."; leaked_count++; } if (leaked_count > 0) { std::cout << "\nERROR: " << leaked_count << " leaked mock " << (leaked_count == 1 ? "object" : "objects") << " found at program exit. Expectations on a mock object are " "verified when the object is destructed. Leaking a mock " "means that its expectations aren't verified, which is " "usually a test bug. If you really intend to leak a mock, " "you can suppress this error using " "testing::Mock::AllowLeak(mock_object), or you may use a " "fake or stub instead of a mock.\n"; std::cout.flush(); ::std::cerr.flush(); // RUN_ALL_TESTS() has already returned when this destructor is // called. Therefore we cannot use the normal Google Test // failure reporting mechanism. _exit(1); // We cannot call exit() as it is not reentrant and // may already have been called. } } StateMap& states() { return states_; } private: StateMap states_; }; // Protected by g_gmock_mutex. MockObjectRegistry g_mock_object_registry; // Maps a mock object to the reaction Google Mock should have when an // uninteresting method is called. Protected by g_gmock_mutex. std::map<const void*, internal::CallReaction> g_uninteresting_call_reaction; // Sets the reaction Google Mock should have when an uninteresting // method of the given mock object is called. void SetReactionOnUninterestingCalls(const void* mock_obj, internal::CallReaction reaction) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_uninteresting_call_reaction[mock_obj] = reaction; } } // namespace // Tells Google Mock to allow uninteresting calls on the given mock // object. void Mock::AllowUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { SetReactionOnUninterestingCalls(mock_obj, internal::kAllow); } // Tells Google Mock to warn the user about uninteresting calls on the // given mock object. void Mock::WarnUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { SetReactionOnUninterestingCalls(mock_obj, internal::kWarn); } // Tells Google Mock to fail uninteresting calls on the given mock // object. void Mock::FailUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { SetReactionOnUninterestingCalls(mock_obj, internal::kFail); } // Tells Google Mock the given mock object is being destroyed and its // entry in the call-reaction table should be removed. void Mock::UnregisterCallReaction(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_uninteresting_call_reaction.erase(mock_obj); } // Returns the reaction Google Mock will have on uninteresting calls // made on the given mock object. internal::CallReaction Mock::GetReactionOnUninterestingCalls( const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); return (g_uninteresting_call_reaction.count(mock_obj) == 0) ? internal::intToCallReaction(GMOCK_FLAG(default_mock_behavior)) : g_uninteresting_call_reaction[mock_obj]; } // Tells Google Mock to ignore mock_obj when checking for leaked mock // objects. void Mock::AllowLeak(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_mock_object_registry.states()[mock_obj].leakable = true; } // Verifies and clears all expectations on the given mock object. If // the expectations aren't satisfied, generates one or more Google // Test non-fatal failures and returns false. bool Mock::VerifyAndClearExpectations(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); return VerifyAndClearExpectationsLocked(mock_obj); } // Verifies all expectations on the given mock object and clears its // default actions and expectations. Returns true if and only if the // verification was successful. bool Mock::VerifyAndClear(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); ClearDefaultActionsLocked(mock_obj); return VerifyAndClearExpectationsLocked(mock_obj); } // Verifies and clears all expectations on the given mock object. If // the expectations aren't satisfied, generates one or more Google // Test non-fatal failures and returns false. bool Mock::VerifyAndClearExpectationsLocked(void* mock_obj) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) { internal::g_gmock_mutex.AssertHeld(); if (g_mock_object_registry.states().count(mock_obj) == 0) { // No EXPECT_CALL() was set on the given mock object. return true; } // Verifies and clears the expectations on each mock method in the // given mock object. bool expectations_met = true; FunctionMockers& mockers = g_mock_object_registry.states()[mock_obj].function_mockers; for (FunctionMockers::const_iterator it = mockers.begin(); it != mockers.end(); ++it) { if (!(*it)->VerifyAndClearExpectationsLocked()) { expectations_met = false; } } // We don't clear the content of mockers, as they may still be // needed by ClearDefaultActionsLocked(). return expectations_met; } bool Mock::IsNaggy(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { return Mock::GetReactionOnUninterestingCalls(mock_obj) == internal::kWarn; } bool Mock::IsNice(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { return Mock::GetReactionOnUninterestingCalls(mock_obj) == internal::kAllow; } bool Mock::IsStrict(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { return Mock::GetReactionOnUninterestingCalls(mock_obj) == internal::kFail; } // Registers a mock object and a mock method it owns. void Mock::Register(const void* mock_obj, internal::UntypedFunctionMockerBase* mocker) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); g_mock_object_registry.states()[mock_obj].function_mockers.insert(mocker); } // Tells Google Mock where in the source code mock_obj is used in an // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this // information helps the user identify which object it is. void Mock::RegisterUseByOnCallOrExpectCall(const void* mock_obj, const char* file, int line) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex) { internal::MutexLock l(&internal::g_gmock_mutex); MockObjectState& state = g_mock_object_registry.states()[mock_obj]; if (state.first_used_file == nullptr) { state.first_used_file = file; state.first_used_line = line; const TestInfo* const test_info = UnitTest::GetInstance()->current_test_info(); if (test_info != nullptr) { state.first_used_test_suite = test_info->test_suite_name(); state.first_used_test = test_info->name(); } } } // Unregisters a mock method; removes the owning mock object from the // registry when the last mock method associated with it has been // unregistered. This is called only in the destructor of // FunctionMockerBase. void Mock::UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) { internal::g_gmock_mutex.AssertHeld(); for (MockObjectRegistry::StateMap::iterator it = g_mock_object_registry.states().begin(); it != g_mock_object_registry.states().end(); ++it) { FunctionMockers& mockers = it->second.function_mockers; if (mockers.erase(mocker) > 0) { // mocker was in mockers and has been just removed. if (mockers.empty()) { g_mock_object_registry.states().erase(it); } return; } } } // Clears all ON_CALL()s set on the given mock object. void Mock::ClearDefaultActionsLocked(void* mock_obj) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex) { internal::g_gmock_mutex.AssertHeld(); if (g_mock_object_registry.states().count(mock_obj) == 0) { // No ON_CALL() was set on the given mock object. return; } // Clears the default actions for each mock method in the given mock // object. FunctionMockers& mockers = g_mock_object_registry.states()[mock_obj].function_mockers; for (FunctionMockers::const_iterator it = mockers.begin(); it != mockers.end(); ++it) { (*it)->ClearDefaultActionsLocked(); } // We don't clear the content of mockers, as they may still be // needed by VerifyAndClearExpectationsLocked(). } Expectation::Expectation() {} Expectation::Expectation( const std::shared_ptr<internal::ExpectationBase>& an_expectation_base) : expectation_base_(an_expectation_base) {} Expectation::~Expectation() {} // Adds an expectation to a sequence. void Sequence::AddExpectation(const Expectation& expectation) const { if (*last_expectation_ != expectation) { if (last_expectation_->expectation_base() != nullptr) { expectation.expectation_base()->immediate_prerequisites_ += *last_expectation_; } *last_expectation_ = expectation; } } // Creates the implicit sequence if there isn't one. InSequence::InSequence() { if (internal::g_gmock_implicit_sequence.get() == nullptr) { internal::g_gmock_implicit_sequence.set(new Sequence); sequence_created_ = true; } else { sequence_created_ = false; } } // Deletes the implicit sequence if it was created by the constructor // of this object. InSequence::~InSequence() { if (sequence_created_) { delete internal::g_gmock_implicit_sequence.get(); internal::g_gmock_implicit_sequence.set(nullptr); } } } // namespace testing #ifdef _MSC_VER #if _MSC_VER == 1900 # pragma warning(pop) #endif #endif // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. namespace testing { GMOCK_DEFINE_bool_(catch_leaked_mocks, true, "true if and only if Google Mock should report leaked " "mock objects as failures."); GMOCK_DEFINE_string_(verbose, internal::kWarningVerbosity, "Controls how verbose Google Mock's output is." " Valid values:\n" " info - prints all messages.\n" " warning - prints warnings and errors.\n" " error - prints errors only."); GMOCK_DEFINE_int32_(default_mock_behavior, 1, "Controls the default behavior of mocks." " Valid values:\n" " 0 - by default, mocks act as NiceMocks.\n" " 1 - by default, mocks act as NaggyMocks.\n" " 2 - by default, mocks act as StrictMocks."); namespace internal { // Parses a string as a command line flag. The string should have the // format "--gmock_flag=value". When def_optional is true, the // "=value" part can be omitted. // // Returns the value of the flag, or NULL if the parsing failed. static const char* ParseGoogleMockFlagValue(const char* str, const char* flag, bool def_optional) { // str and flag must not be NULL. if (str == nullptr || flag == nullptr) return nullptr; // The flag must start with "--gmock_". const std::string flag_str = std::string("--gmock_") + flag; const size_t flag_len = flag_str.length(); if (strncmp(str, flag_str.c_str(), flag_len) != 0) return nullptr; // Skips the flag name. const char* flag_end = str + flag_len; // When def_optional is true, it's OK to not have a "=value" part. if (def_optional && (flag_end[0] == '\0')) { return flag_end; } // If def_optional is true and there are more characters after the // flag name, or if def_optional is false, there must be a '=' after // the flag name. if (flag_end[0] != '=') return nullptr; // Returns the string after "=". return flag_end + 1; } // Parses a string for a Google Mock bool flag, in the form of // "--gmock_flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. static bool ParseGoogleMockBoolFlag(const char* str, const char* flag, bool* value) { // Gets the value of the flag as a string. const char* const value_str = ParseGoogleMockFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Converts the string value to a bool. *value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F'); return true; } // Parses a string for a Google Mock string flag, in the form of // "--gmock_flag=value". // // On success, stores the value of the flag in *value, and returns // true. On failure, returns false without changing *value. template <typename String> static bool ParseGoogleMockStringFlag(const char* str, const char* flag, String* value) { // Gets the value of the flag as a string. const char* const value_str = ParseGoogleMockFlagValue(str, flag, false); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. *value = value_str; return true; } static bool ParseGoogleMockIntFlag(const char* str, const char* flag, int32_t* value) { // Gets the value of the flag as a string. const char* const value_str = ParseGoogleMockFlagValue(str, flag, true); // Aborts if the parsing failed. if (value_str == nullptr) return false; // Sets *value to the value of the flag. return ParseInt32(Message() << "The value of flag --" << flag, value_str, value); } // The internal implementation of InitGoogleMock(). // // The type parameter CharType can be instantiated to either char or // wchar_t. template <typename CharType> void InitGoogleMockImpl(int* argc, CharType** argv) { // Makes sure Google Test is initialized. InitGoogleTest() is // idempotent, so it's fine if the user has already called it. InitGoogleTest(argc, argv); if (*argc <= 0) return; for (int i = 1; i != *argc; i++) { const std::string arg_string = StreamableToString(argv[i]); const char* const arg = arg_string.c_str(); // Do we see a Google Mock flag? if (ParseGoogleMockBoolFlag(arg, "catch_leaked_mocks", &GMOCK_FLAG(catch_leaked_mocks)) || ParseGoogleMockStringFlag(arg, "verbose", &GMOCK_FLAG(verbose)) || ParseGoogleMockIntFlag(arg, "default_mock_behavior", &GMOCK_FLAG(default_mock_behavior))) { // Yes. Shift the remainder of the argv list left by one. Note // that argv has (*argc + 1) elements, the last one always being // NULL. The following loop moves the trailing NULL element as // well. for (int j = i; j != *argc; j++) { argv[j] = argv[j + 1]; } // Decrements the argument count. (*argc)--; // We also need to decrement the iterator as we just removed // an element. i--; } } } } // namespace internal // Initializes Google Mock. This must be called before running the // tests. In particular, it parses a command line for the flags that // Google Mock recognizes. Whenever a Google Mock flag is seen, it is // removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Mock flag variables are // updated. // // Since Google Test is needed for Google Mock to work, this function // also initializes Google Test and parses its flags, if that hasn't // been done. GTEST_API_ void InitGoogleMock(int* argc, char** argv) { internal::InitGoogleMockImpl(argc, argv); } // This overloaded version can be used in Windows programs compiled in // UNICODE mode. GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv) { internal::InitGoogleMockImpl(argc, argv); } // This overloaded version can be used on Arduino/embedded platforms where // there is no argc/argv. GTEST_API_ void InitGoogleMock() { // Since Arduino doesn't have a command line, fake out the argc/argv arguments int argc = 1; const auto arg0 = "dummy"; char* argv0 = const_cast<char*>(arg0); char** argv = &argv0; internal::InitGoogleMockImpl(&argc, argv); } } // namespace testing