Mercurial > minori
view dep/fmt/test/gtest/gmock/gmock.h @ 364:99c961c91809
core: refactor out byte stream into its own file
easy dubs
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Tue, 16 Jul 2024 21:15:59 -0400 |
parents | 1faa72660932 |
children |
line wrap: on
line source
// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This is the main header file a user should include. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_ // This file implements the following syntax: // // ON_CALL(mock_object, Method(...)) // .With(...) ? // .WillByDefault(...); // // where With() is optional and WillByDefault() must appear exactly // once. // // EXPECT_CALL(mock_object, Method(...)) // .With(...) ? // .Times(...) ? // .InSequence(...) * // .WillOnce(...) * // .WillRepeatedly(...) ? // .RetiresOnSaturation() ? ; // // where all clauses are optional and WillOnce() can be repeated. // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template <typename p1_type, ..., typename pk_type> // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., // pk_type>. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope as templates cannot be // declared inside of a local class. // Users can, however, define any local functors (e.g. a lambda) that // can be used as actions. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' on // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef _WIN32_WCE # include <errno.h> #endif #include <algorithm> #include <functional> #include <memory> #include <string> #include <tuple> #include <type_traits> #include <utility> // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file defines some utilities useful for implementing Google // Mock. They are subject to change without notice, so please DO NOT // USE THEM IN USER CODE. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #include <stdio.h> #include <ostream> // NOLINT #include <string> #include <type_traits> // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Low-level types and utilities for porting Google Mock to various // platforms. All macros ending with _ and symbols defined in an // internal namespace are subject to change without notice. Code // outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't // end with _ are part of Google Mock's public API and can be used by // code outside Google Mock. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ #include <assert.h> #include <stdlib.h> #include <cstdint> #include <iostream> // Most of the utilities needed for porting Google Mock are also // required for Google Test and are defined in gtest-port.h. // // Note to maintainers: to reduce code duplication, prefer adding // portability utilities to Google Test's gtest-port.h instead of // here, as Google Mock depends on Google Test. Only add a utility // here if it's truly specific to Google Mock. #include "gtest/gtest.h" // Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Injection point for custom user configurations. See README for details // // ** Custom implementation starts here ** // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_ // For MS Visual C++, check the compiler version. At least VS 2015 is // required to compile Google Mock. #if defined(_MSC_VER) && _MSC_VER < 1900 # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock." #endif // Macro for referencing flags. This is public as we want the user to // use this syntax to reference Google Mock flags. #define GMOCK_FLAG(name) FLAGS_gmock_##name #if !defined(GMOCK_DECLARE_bool_) // Macros for declaring flags. # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name) # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name) # define GMOCK_DECLARE_string_(name) \ extern GTEST_API_ ::std::string GMOCK_FLAG(name) // Macros for defining flags. # define GMOCK_DEFINE_bool_(name, default_val, doc) \ GTEST_API_ bool GMOCK_FLAG(name) = (default_val) # define GMOCK_DEFINE_int32_(name, default_val, doc) \ GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val) # define GMOCK_DEFINE_string_(name, default_val, doc) \ GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val) #endif // !defined(GMOCK_DECLARE_bool_) #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_ namespace testing { template <typename> class Matcher; namespace internal { // Silence MSVC C4100 (unreferenced formal parameter) and // C4805('==': unsafe mix of type 'const int' and type 'const bool') #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) # pragma warning(disable:4805) #endif // Joins a vector of strings as if they are fields of a tuple; returns // the joined string. GTEST_API_ std::string JoinAsTuple(const Strings& fields); // Converts an identifier name to a space-separated list of lower-case // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is // treated as one word. For example, both "FooBar123" and // "foo_bar_123" are converted to "foo bar 123". GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name); // GetRawPointer(p) returns the raw pointer underlying p when p is a // smart pointer, or returns p itself when p is already a raw pointer. // The following default implementation is for the smart pointer case. template <typename Pointer> inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) { return p.get(); } // This overloaded version is for the raw pointer case. template <typename Element> inline Element* GetRawPointer(Element* p) { return p; } // MSVC treats wchar_t as a native type usually, but treats it as the // same as unsigned short when the compiler option /Zc:wchar_t- is // specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t // is a native type. #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED) // wchar_t is a typedef. #else # define GMOCK_WCHAR_T_IS_NATIVE_ 1 #endif // In what follows, we use the term "kind" to indicate whether a type // is bool, an integer type (excluding bool), a floating-point type, // or none of them. This categorization is useful for determining // when a matcher argument type can be safely converted to another // type in the implementation of SafeMatcherCast. enum TypeKind { kBool, kInteger, kFloatingPoint, kOther }; // KindOf<T>::value is the kind of type T. template <typename T> struct KindOf { enum { value = kOther }; // The default kind. }; // This macro declares that the kind of 'type' is 'kind'. #define GMOCK_DECLARE_KIND_(type, kind) \ template <> struct KindOf<type> { enum { value = kind }; } GMOCK_DECLARE_KIND_(bool, kBool); // All standard integer types. GMOCK_DECLARE_KIND_(char, kInteger); GMOCK_DECLARE_KIND_(signed char, kInteger); GMOCK_DECLARE_KIND_(unsigned char, kInteger); GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT GMOCK_DECLARE_KIND_(int, kInteger); GMOCK_DECLARE_KIND_(unsigned int, kInteger); GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DECLARE_KIND_(wchar_t, kInteger); #endif // All standard floating-point types. GMOCK_DECLARE_KIND_(float, kFloatingPoint); GMOCK_DECLARE_KIND_(double, kFloatingPoint); GMOCK_DECLARE_KIND_(long double, kFloatingPoint); #undef GMOCK_DECLARE_KIND_ // Evaluates to the kind of 'type'. #define GMOCK_KIND_OF_(type) \ static_cast< ::testing::internal::TypeKind>( \ ::testing::internal::KindOf<type>::value) // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value // is true if and only if arithmetic type From can be losslessly converted to // arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types, kFromKind is the kind of // From, and kToKind is the kind of To; the value is // implementation-defined when the above pre-condition is violated. template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> using LosslessArithmeticConvertibleImpl = std::integral_constant< bool, // clang-format off // Converting from bool is always lossless (kFromKind == kBool) ? true // Converting between any other type kinds will be lossy if the type // kinds are not the same. : (kFromKind != kToKind) ? false : (kFromKind == kInteger && // Converting between integers of different widths is allowed so long // as the conversion does not go from signed to unsigned. (((sizeof(From) < sizeof(To)) && !(std::is_signed<From>::value && !std::is_signed<To>::value)) || // Converting between integers of the same width only requires the // two types to have the same signedness. ((sizeof(From) == sizeof(To)) && (std::is_signed<From>::value == std::is_signed<To>::value))) ) ? true // Floating point conversions are lossless if and only if `To` is at least // as wide as `From`. : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true : false // clang-format on >; // LosslessArithmeticConvertible<From, To>::value is true if and only if // arithmetic type From can be losslessly converted to arithmetic type To. // // It's the user's responsibility to ensure that both From and To are // raw (i.e. has no CV modifier, is not a pointer, and is not a // reference) built-in arithmetic types; the value is // implementation-defined when the above pre-condition is violated. template <typename From, typename To> using LosslessArithmeticConvertible = LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To>; // This interface knows how to report a Google Mock failure (either // non-fatal or fatal). class FailureReporterInterface { public: // The type of a failure (either non-fatal or fatal). enum FailureType { kNonfatal, kFatal }; virtual ~FailureReporterInterface() {} // Reports a failure that occurred at the given source file location. virtual void ReportFailure(FailureType type, const char* file, int line, const std::string& message) = 0; }; // Returns the failure reporter used by Google Mock. GTEST_API_ FailureReporterInterface* GetFailureReporter(); // Asserts that condition is true; aborts the process with the given // message if condition is false. We cannot use LOG(FATAL) or CHECK() // as Google Mock might be used to mock the log sink itself. We // inline this function to prevent it from showing up in the stack // trace. inline void Assert(bool condition, const char* file, int line, const std::string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal, file, line, msg); } } inline void Assert(bool condition, const char* file, int line) { Assert(condition, file, line, "Assertion failed."); } // Verifies that condition is true; generates a non-fatal failure if // condition is false. inline void Expect(bool condition, const char* file, int line, const std::string& msg) { if (!condition) { GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal, file, line, msg); } } inline void Expect(bool condition, const char* file, int line) { Expect(condition, file, line, "Expectation failed."); } // Severity level of a log. enum LogSeverity { kInfo = 0, kWarning = 1 }; // Valid values for the --gmock_verbose flag. // All logs (informational and warnings) are printed. const char kInfoVerbosity[] = "info"; // Only warnings are printed. const char kWarningVerbosity[] = "warning"; // No logs are printed. const char kErrorVerbosity[] = "error"; // Returns true if and only if a log with the given severity is visible // according to the --gmock_verbose flag. GTEST_API_ bool LogIsVisible(LogSeverity severity); // Prints the given message to stdout if and only if 'severity' >= the level // specified by the --gmock_verbose flag. If stack_frames_to_skip >= // 0, also prints the stack trace excluding the top // stack_frames_to_skip frames. In opt mode, any positive // stack_frames_to_skip is treated as 0, since we don't know which // function calls will be inlined by the compiler and need to be // conservative. GTEST_API_ void Log(LogSeverity severity, const std::string& message, int stack_frames_to_skip); // A marker class that is used to resolve parameterless expectations to the // correct overload. This must not be instantiable, to prevent client code from // accidentally resolving to the overload; for example: // // ON_CALL(mock, Method({}, nullptr))... // class WithoutMatchers { private: WithoutMatchers() {} friend GTEST_API_ WithoutMatchers GetWithoutMatchers(); }; // Internal use only: access the singleton instance of WithoutMatchers. GTEST_API_ WithoutMatchers GetWithoutMatchers(); // Disable MSVC warnings for infinite recursion, since in this case the // the recursion is unreachable. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4717) #endif // Invalid<T>() is usable as an expression of type T, but will terminate // the program with an assertion failure if actually run. This is useful // when a value of type T is needed for compilation, but the statement // will not really be executed (or we don't care if the statement // crashes). template <typename T> inline T Invalid() { Assert(false, "", -1, "Internal error: attempt to return invalid value"); // This statement is unreachable, and would never terminate even if it // could be reached. It is provided only to placate compiler warnings // about missing return statements. return Invalid<T>(); } #ifdef _MSC_VER # pragma warning(pop) #endif // Given a raw type (i.e. having no top-level reference or const // modifier) RawContainer that's either an STL-style container or a // native array, class StlContainerView<RawContainer> has the // following members: // // - type is a type that provides an STL-style container view to // (i.e. implements the STL container concept for) RawContainer; // - const_reference is a type that provides a reference to a const // RawContainer; // - ConstReference(raw_container) returns a const reference to an STL-style // container view to raw_container, which is a RawContainer. // - Copy(raw_container) returns an STL-style container view of a // copy of raw_container, which is a RawContainer. // // This generic version is used when RawContainer itself is already an // STL-style container. template <class RawContainer> class StlContainerView { public: typedef RawContainer type; typedef const type& const_reference; static const_reference ConstReference(const RawContainer& container) { static_assert(!std::is_const<RawContainer>::value, "RawContainer type must not be const"); return container; } static type Copy(const RawContainer& container) { return container; } }; // This specialization is used when RawContainer is a native array type. template <typename Element, size_t N> class StlContainerView<Element[N]> { public: typedef typename std::remove_const<Element>::type RawElement; typedef internal::NativeArray<RawElement> type; // NativeArray<T> can represent a native array either by value or by // reference (selected by a constructor argument), so 'const type' // can be used to reference a const native array. We cannot // 'typedef const type& const_reference' here, as that would mean // ConstReference() has to return a reference to a local variable. typedef const type const_reference; static const_reference ConstReference(const Element (&array)[N]) { static_assert(std::is_same<Element, RawElement>::value, "Element type must not be const"); return type(array, N, RelationToSourceReference()); } static type Copy(const Element (&array)[N]) { return type(array, N, RelationToSourceCopy()); } }; // This specialization is used when RawContainer is a native array // represented as a (pointer, size) tuple. template <typename ElementPointer, typename Size> class StlContainerView< ::std::tuple<ElementPointer, Size> > { public: typedef typename std::remove_const< typename std::pointer_traits<ElementPointer>::element_type>::type RawElement; typedef internal::NativeArray<RawElement> type; typedef const type const_reference; static const_reference ConstReference( const ::std::tuple<ElementPointer, Size>& array) { return type(std::get<0>(array), std::get<1>(array), RelationToSourceReference()); } static type Copy(const ::std::tuple<ElementPointer, Size>& array) { return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy()); } }; // The following specialization prevents the user from instantiating // StlContainer with a reference type. template <typename T> class StlContainerView<T&>; // A type transform to remove constness from the first part of a pair. // Pairs like that are used as the value_type of associative containers, // and this transform produces a similar but assignable pair. template <typename T> struct RemoveConstFromKey { typedef T type; }; // Partially specialized to remove constness from std::pair<const K, V>. template <typename K, typename V> struct RemoveConstFromKey<std::pair<const K, V> > { typedef std::pair<K, V> type; }; // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to // reduce code size. GTEST_API_ void IllegalDoDefault(const char* file, int line); template <typename F, typename Tuple, size_t... Idx> auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype( std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) { return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...); } // Apply the function to a tuple of arguments. template <typename F, typename Tuple> auto Apply(F&& f, Tuple&& args) -> decltype( ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), MakeIndexSequence<std::tuple_size< typename std::remove_reference<Tuple>::type>::value>())) { return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args), MakeIndexSequence<std::tuple_size< typename std::remove_reference<Tuple>::type>::value>()); } // Template struct Function<F>, where F must be a function type, contains // the following typedefs: // // Result: the function's return type. // Arg<N>: the type of the N-th argument, where N starts with 0. // ArgumentTuple: the tuple type consisting of all parameters of F. // ArgumentMatcherTuple: the tuple type consisting of Matchers for all // parameters of F. // MakeResultVoid: the function type obtained by substituting void // for the return type of F. // MakeResultIgnoredValue: // the function type obtained by substituting Something // for the return type of F. template <typename T> struct Function; template <typename R, typename... Args> struct Function<R(Args...)> { using Result = R; static constexpr size_t ArgumentCount = sizeof...(Args); template <size_t I> using Arg = ElemFromList<I, Args...>; using ArgumentTuple = std::tuple<Args...>; using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; using MakeResultVoid = void(Args...); using MakeResultIgnoredValue = IgnoredValue(Args...); }; template <typename R, typename... Args> constexpr size_t Function<R(Args...)>::ArgumentCount; #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace internal } // namespace testing #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ // Expands and concatenates the arguments. Constructed macros reevaluate. #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2) // Expands and stringifies the only argument. #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__) // Returns empty. Given a variadic number of arguments. #define GMOCK_PP_EMPTY(...) // Returns a comma. Given a variadic number of arguments. #define GMOCK_PP_COMMA(...) , // Returns the only argument. #define GMOCK_PP_IDENTITY(_1) _1 // Evaluates to the number of arguments after expansion. // // #define PAIR x, y // // GMOCK_PP_NARG() => 1 // GMOCK_PP_NARG(x) => 1 // GMOCK_PP_NARG(x, y) => 2 // GMOCK_PP_NARG(PAIR) => 2 // // Requires: the number of arguments after expansion is at most 15. #define GMOCK_PP_NARG(...) \ GMOCK_PP_INTERNAL_16TH( \ (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)) // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise // returns 0. Requires no more than 15 unprotected commas. #define GMOCK_PP_HAS_COMMA(...) \ GMOCK_PP_INTERNAL_16TH( \ (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)) // Returns the first argument. #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg)) // Returns the tail. A variadic list of all arguments minus the first. Requires // at least one argument. #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__)) // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__) #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \ GMOCK_PP_IDENTITY( \ GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__)) // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise // evaluates to `0`. // // Requires: * the number of arguments after expansion is at most 15. // * If the argument is a macro, it must be able to be called with one // argument. // // Implementation details: // // There is one case when it generates a compile error: if the argument is macro // that cannot be called with one argument. // // #define M(a, b) // it doesn't matter what it expands to // // // Expected: expands to `0`. // // Actual: compile error. // GMOCK_PP_IS_EMPTY(M) // // There are 4 cases tested: // // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0. // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0. // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma. // Expected 0 // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in // parenthesis, or is a macro that ()-evaluates to comma. Expected 1. // // We trigger detection on '0001', i.e. on empty. #define GMOCK_PP_IS_EMPTY(...) \ GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \ GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \ GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \ GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__())) // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0. #define GMOCK_PP_IF(_Cond, _Then, _Else) \ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else) // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses. // // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f // #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \ GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else)) // Evaluates to the number of arguments after expansion. Identifies 'empty' as // 0. // // #define PAIR x, y // // GMOCK_PP_NARG0() => 0 // GMOCK_PP_NARG0(x) => 1 // GMOCK_PP_NARG0(x, y) => 2 // GMOCK_PP_NARG0(PAIR) => 2 // // Requires: * the number of arguments after expansion is at most 15. // * If the argument is a macro, it must be able to be called with one // argument. #define GMOCK_PP_NARG0(...) \ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__)) // Expands to 1 if the first argument starts with something in parentheses, // otherwise to 0. #define GMOCK_PP_IS_BEGIN_PARENS(...) \ GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \ GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__)) // Expands to 1 is there is only one argument and it is enclosed in parentheses. #define GMOCK_PP_IS_ENCLOSED_PARENS(...) \ GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \ GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0) // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1. #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__ // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data, // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple. // Requires: * |_Macro| can be called with 3 arguments. // * |_Tuple| expansion has no more than 15 elements. #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \ (0, _Macro, _Data, _Tuple) // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, ) // Empty if _K = 0. // Requires: * |_Macro| can be called with 3 arguments. // * |_K| literal between 0 and 15 #define GMOCK_PP_REPEAT(_Macro, _Data, _N) \ GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \ (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE) // Increments the argument, requires the argument to be between 0 and 15. #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i) // Returns comma if _i != 0. Requires _i to be between 0 and 15. #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i) // Internal details follow. Do not use any of these symbols outside of this // file or we will break your code. #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , ) #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2 #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__ #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5 #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \ GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \ _1, _2, _3, _4)) #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 , #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else // Because of MSVC treating a token with a comma in it as a single token when // passed to another macro, we need to force it to evaluate it as multiple // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We // define one per possible macro that relies on this behavior. Note "_Args" must // be parenthesized. #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \ _10, _11, _12, _13, _14, _15, _16, \ ...) \ _16 #define GMOCK_PP_INTERNAL_16TH(_Args) \ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args) #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1 #define GMOCK_PP_INTERNAL_HEAD(_Args) \ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args) #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__ #define GMOCK_PP_INTERNAL_TAIL(_Args) \ GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args) #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _ #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1, #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \ 0, #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__ #define GMOCK_PP_INTERNAL_INC_0 1 #define GMOCK_PP_INTERNAL_INC_1 2 #define GMOCK_PP_INTERNAL_INC_2 3 #define GMOCK_PP_INTERNAL_INC_3 4 #define GMOCK_PP_INTERNAL_INC_4 5 #define GMOCK_PP_INTERNAL_INC_5 6 #define GMOCK_PP_INTERNAL_INC_6 7 #define GMOCK_PP_INTERNAL_INC_7 8 #define GMOCK_PP_INTERNAL_INC_8 9 #define GMOCK_PP_INTERNAL_INC_9 10 #define GMOCK_PP_INTERNAL_INC_10 11 #define GMOCK_PP_INTERNAL_INC_11 12 #define GMOCK_PP_INTERNAL_INC_12 13 #define GMOCK_PP_INTERNAL_INC_13 14 #define GMOCK_PP_INTERNAL_INC_14 15 #define GMOCK_PP_INTERNAL_INC_15 16 #define GMOCK_PP_INTERNAL_COMMA_IF_0 #define GMOCK_PP_INTERNAL_COMMA_IF_1 , #define GMOCK_PP_INTERNAL_COMMA_IF_2 , #define GMOCK_PP_INTERNAL_COMMA_IF_3 , #define GMOCK_PP_INTERNAL_COMMA_IF_4 , #define GMOCK_PP_INTERNAL_COMMA_IF_5 , #define GMOCK_PP_INTERNAL_COMMA_IF_6 , #define GMOCK_PP_INTERNAL_COMMA_IF_7 , #define GMOCK_PP_INTERNAL_COMMA_IF_8 , #define GMOCK_PP_INTERNAL_COMMA_IF_9 , #define GMOCK_PP_INTERNAL_COMMA_IF_10 , #define GMOCK_PP_INTERNAL_COMMA_IF_11 , #define GMOCK_PP_INTERNAL_COMMA_IF_12 , #define GMOCK_PP_INTERNAL_COMMA_IF_13 , #define GMOCK_PP_INTERNAL_COMMA_IF_14 , #define GMOCK_PP_INTERNAL_COMMA_IF_15 , #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \ _Macro(_i, _Data, _element) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \ GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \ GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \ (GMOCK_PP_TAIL _Tuple)) #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_ #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { // BuiltInDefaultValueGetter<T, true>::Get() returns a // default-constructed T value. BuiltInDefaultValueGetter<T, // false>::Get() crashes with an error. // // This primary template is used when kDefaultConstructible is true. template <typename T, bool kDefaultConstructible> struct BuiltInDefaultValueGetter { static T Get() { return T(); } }; template <typename T> struct BuiltInDefaultValueGetter<T, false> { static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid<T>(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // BuiltInDefaultValue<T>::Get() returns the "built-in" default value // for type T, which is NULL when T is a raw pointer type, 0 when T is // a numeric type, false when T is bool, or "" when T is string or // std::string. In addition, in C++11 and above, it turns a // default-constructed T value if T is default constructible. For any // other type T, the built-in default T value is undefined, and the // function will abort the process. template <typename T> class BuiltInDefaultValue { public: // This function returns true if and only if type T has a built-in default // value. static bool Exists() { return ::std::is_default_constructible<T>::value; } static T Get() { return BuiltInDefaultValueGetter< T, ::std::is_default_constructible<T>::value>::Get(); } }; // This partial specialization says that we use the same built-in // default value for T and const T. template <typename T> class BuiltInDefaultValue<const T> { public: static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } static T Get() { return BuiltInDefaultValue<T>::Get(); } }; // This partial specialization defines the default values for pointer // types. template <typename T> class BuiltInDefaultValue<T*> { public: static bool Exists() { return true; } static T* Get() { return nullptr; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue<type> { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ // Simple two-arg form of std::disjunction. template <typename P, typename Q> using disjunction = typename ::std::conditional<P::value, P, Q>::type; } // namespace internal // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue<T> class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue<T>::Set(foo); template <typename T> class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete producer_; producer_ = new FixedValueProducer(x); } // Provides a factory function to be called to generate the default value. // This method can be used even if T is only move-constructible, but it is not // limited to that case. typedef T (*FactoryFunction)(); static void SetFactory(FactoryFunction factory) { delete producer_; producer_ = new FactoryValueProducer(factory); } // Unsets the default value for type T. static void Clear() { delete producer_; producer_ = nullptr; } // Returns true if and only if the user has set the default value for type T. static bool IsSet() { return producer_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value. Requires that Exists() // is true, which ensures that the return value is well-defined. static T Get() { return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); } private: class ValueProducer { public: virtual ~ValueProducer() {} virtual T Produce() = 0; }; class FixedValueProducer : public ValueProducer { public: explicit FixedValueProducer(T value) : value_(value) {} T Produce() override { return value_; } private: const T value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); }; class FactoryValueProducer : public ValueProducer { public: explicit FactoryValueProducer(FactoryFunction factory) : factory_(factory) {} T Produce() override { return factory_(); } private: const FactoryFunction factory_; GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); }; static ValueProducer* producer_; }; // This partial specialization allows a user to set default values for // reference types. template <typename T> class DefaultValue<T&> { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = nullptr; } // Returns true if and only if the user has set the default value for type T&. static bool IsSet() { return address_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue<void>::Get() to // compile. template <> class DefaultValue<void> { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template <typename T> typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; // Points to the user-set default value for type T&. template <typename T> T* DefaultValue<T&>::address_ = nullptr; // Implement this interface to define an action for function type F. template <typename F> class ActionInterface { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); }; // An Action<F> is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function // of type F is called. The implementation of Action<T> is just a // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! // You can view an object implementing ActionInterface<F> as a // concrete action (including its current state), and an Action<F> // object as a handle to it. template <typename F> class Action { // Adapter class to allow constructing Action from a legacy ActionInterface. // New code should create Actions from functors instead. struct ActionAdapter { // Adapter must be copyable to satisfy std::function requirements. ::std::shared_ptr<ActionInterface<F>> impl_; template <typename... Args> typename internal::Function<F>::Result operator()(Args&&... args) { return impl_->Perform( ::std::forward_as_tuple(::std::forward<Args>(args)...)); } }; template <typename G> using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() {} // Construct an Action from a specified callable. // This cannot take std::function directly, because then Action would not be // directly constructible from lambda (it would require two conversions). template < typename G, typename = typename std::enable_if<internal::disjunction< IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, G>>::value>::type> Action(G&& fun) { // NOLINT Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); } // Constructs an Action from its implementation. explicit Action(ActionInterface<F>* impl) : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} // This constructor allows us to turn an Action<Func> object into an // Action<F>, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to F's. template <typename Func> explicit Action(const Action<Func>& action) : fun_(action.fun_) {} // Returns true if and only if this is the DoDefault() action. bool IsDoDefault() const { return fun_ == nullptr; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action<F> means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(ArgumentTuple args) const { if (IsDoDefault()) { internal::IllegalDoDefault(__FILE__, __LINE__); } return internal::Apply(fun_, ::std::move(args)); } private: template <typename G> friend class Action; template <typename G> void Init(G&& g, ::std::true_type) { fun_ = ::std::forward<G>(g); } template <typename G> void Init(G&& g, ::std::false_type) { fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; } template <typename FunctionImpl> struct IgnoreArgs { template <typename... Args> Result operator()(const Args&...) const { return function_impl(); } FunctionImpl function_impl; }; // fun_ is an empty function if and only if this is the DoDefault() action. ::std::function<F> fun_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template <typename Result, typename ArgumentTuple> // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee<N>(value) for // complete examples. template <typename Impl> class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template <typename F> operator Action<F>() const { return Action<F>(new MonomorphicImpl<F>(impl_)); } private: template <typename F> class MonomorphicImpl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} Result Perform(const ArgumentTuple& args) override { return impl_.template Perform<Result>(args); } private: Impl impl_; }; Impl impl_; }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template <typename F> Action<F> MakeAction(ActionInterface<F>* impl) { return Action<F>(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction<Impl> constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction<TypeOfFoo>(foo); template <typename Impl> inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { return PolymorphicAction<Impl>(impl); } namespace internal { // Helper struct to specialize ReturnAction to execute a move instead of a copy // on return. Useful for move-only types, but could be used on any type. template <typename T> struct ByMoveWrapper { explicit ByMoveWrapper(T value) : payload(std::move(value)) {} T payload; }; // Implements the polymorphic Return(x) action, which can be used in // any function that returns the type of x, regardless of the argument // types. // // Note: The value passed into Return must be converted into // Function<F>::Result when this action is cast to Action<F> rather than // when that action is performed. This is important in scenarios like // // MOCK_METHOD1(Method, T(U)); // ... // { // Foo foo; // X x(&foo); // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); // } // // In the example above the variable x holds reference to foo which leaves // scope and gets destroyed. If copying X just copies a reference to foo, // that copy will be left with a hanging reference. If conversion to T // makes a copy of foo, the above code is safe. To support that scenario, we // need to make sure that the type conversion happens inside the EXPECT_CALL // statement, and conversion of the result of Return to Action<T(U)> is a // good place for that. // // The real life example of the above scenario happens when an invocation // of gtl::Container() is passed into Return. // template <typename R> class ReturnAction { public: // Constructs a ReturnAction object from the value to be returned. // 'value' is passed by value instead of by const reference in order // to allow Return("string literal") to compile. explicit ReturnAction(R value) : value_(new R(std::move(value))) {} // This template type conversion operator allows Return(x) to be // used in ANY function that returns x's type. template <typename F> operator Action<F>() const { // NOLINT // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename Function<F>::Result Result; GTEST_COMPILE_ASSERT_( !std::is_reference<Result>::value, use_ReturnRef_instead_of_Return_to_return_a_reference); static_assert(!std::is_void<Result>::value, "Can't use Return() on an action expected to return `void`."); return Action<F>(new Impl<R, F>(value_)); } private: // Implements the Return(x) action for a particular function type F. template <typename R_, typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; // The implicit cast is necessary when Result has more than one // single-argument constructor (e.g. Result is std::vector<int>) and R // has a type conversion operator template. In that case, value_(value) // won't compile as the compiler doesn't known which constructor of // Result to call. ImplicitCast_ forces the compiler to convert R to // Result without considering explicit constructors, thus resolving the // ambiguity. value_ is then initialized using its copy constructor. explicit Impl(const std::shared_ptr<R>& value) : value_before_cast_(*value), value_(ImplicitCast_<Result>(value_before_cast_)) {} Result Perform(const ArgumentTuple&) override { return value_; } private: GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value, Result_cannot_be_a_reference_type); // We save the value before casting just in case it is being cast to a // wrapper type. R value_before_cast_; Result value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); }; // Partially specialize for ByMoveWrapper. This version of ReturnAction will // move its contents instead. template <typename R_, typename F> class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const std::shared_ptr<R>& wrapper) : performed_(false), wrapper_(wrapper) {} Result Perform(const ArgumentTuple&) override { GTEST_CHECK_(!performed_) << "A ByMove() action should only be performed once."; performed_ = true; return std::move(wrapper_->payload); } private: bool performed_; const std::shared_ptr<R> wrapper_; }; const std::shared_ptr<R> value_; }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. In C++11 // this is enforced by returning nullptr, and in non-C++11 by asserting a // pointer type on compile time. template <typename Result, typename ArgumentTuple> static Result Perform(const ArgumentTuple&) { return nullptr; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template <typename Result, typename ArgumentTuple> static void Perform(const ArgumentTuple&) { static_assert(std::is_void<Result>::value, "Result should be void."); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template <typename T> class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value, use_Return_instead_of_ReturnRef_to_return_a_value); return Action<F>(new Impl<F>(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT Result Perform(const ArgumentTuple&) override { return ref_; } private: T& ref_; }; T& ref_; }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template <typename T> class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. GTEST_COMPILE_ASSERT_( std::is_reference<Result>::value, use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); return Action<F>(new Impl<F>(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT Result Perform(const ArgumentTuple&) override { return value_; } private: T value_; }; const T value_; }; // Implements the polymorphic ReturnRoundRobin(v) action, which can be // used in any function that returns the element_type of v. template <typename T> class ReturnRoundRobinAction { public: explicit ReturnRoundRobinAction(std::vector<T> values) { GTEST_CHECK_(!values.empty()) << "ReturnRoundRobin requires at least one element."; state_->values = std::move(values); } template <typename... Args> T operator()(Args&&...) const { return state_->Next(); } private: struct State { T Next() { T ret_val = values[i++]; if (i == values.size()) i = 0; return ret_val; } std::vector<T> values; size_t i = 0; }; std::shared_ptr<State> state_ = std::make_shared<State>(); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template <typename F> operator Action<F>() const { return Action<F>(); } // NOLINT }; // Implements the Assign action to set a given pointer referent to a // particular value. template <typename T1, typename T2> class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template <typename Result, typename ArgumentTuple> void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template <typename T> class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee<N>(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. template <size_t N, typename A, typename = void> struct SetArgumentPointeeAction { A value; template <typename... Args> void operator()(const Args&... args) const { *::std::get<N>(std::tie(args...)) = value; } }; // Implements the Invoke(object_ptr, &Class::Method) action. template <class Class, typename MethodPtr> struct InvokeMethodAction { Class* const obj_ptr; const MethodPtr method_ptr; template <typename... Args> auto operator()(Args&&... args) const -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); } }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action<F> as long as f's type is compatible with F. template <typename FunctionImpl> struct InvokeWithoutArgsAction { FunctionImpl function_impl; // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template <typename... Args> auto operator()(const Args&...) -> decltype(function_impl()) { return function_impl(); } }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template <class Class, typename MethodPtr> struct InvokeMethodWithoutArgsAction { Class* const obj_ptr; const MethodPtr method_ptr; using ReturnType = decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); template <typename... Args> ReturnType operator()(const Args&...) const { return (obj_ptr->*method_ptr)(); } }; // Implements the IgnoreResult(action) action. template <typename A> class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template <typename F> operator Action<F>() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function<F>::Result Result; // Asserts at compile time that F returns void. static_assert(std::is_void<Result>::value, "Result type should be void."); return Action<F>(new Impl<F>(action_)); } private: template <typename F> class Impl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} void Perform(const ArgumentTuple& args) override { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; const Action<OriginalFunction> action_; }; const A action_; }; template <typename InnerAction, size_t... I> struct WithArgsAction { InnerAction action; // The inner action could be anything convertible to Action<X>. // We use the conversion operator to detect the signature of the inner Action. template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT using TupleType = std::tuple<Args...>; Action<R(typename std::tuple_element<I, TupleType>::type...)> converted(action); return [converted](Args... args) -> R { return converted.Perform(std::forward_as_tuple( std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); }; } }; template <typename... Actions> struct DoAllAction { private: template <typename T> using NonFinalType = typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; template <typename ActionT, size_t... I> std::vector<ActionT> Convert(IndexSequence<I...>) const { return {ActionT(std::get<I>(actions))...}; } public: std::tuple<Actions...> actions; template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT struct Op { std::vector<Action<void(NonFinalType<Args>...)>> converted; Action<R(Args...)> last; R operator()(Args... args) const { auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...); for (auto& a : converted) { a.Perform(tuple_args); } return last.Perform(std::move(tuple_args)); } }; return Op{Convert<Action<void(NonFinalType<Args>...)>>( MakeIndexSequence<sizeof...(Actions) - 1>()), std::get<sizeof...(Actions) - 1>(actions)}; } }; template <typename T, typename... Params> struct ReturnNewAction { T* operator()() const { return internal::Apply( [](const Params&... unpacked_params) { return new T(unpacked_params...); }, params); } std::tuple<Params...> params; }; template <size_t k> struct ReturnArgAction { template <typename... Args> auto operator()(const Args&... args) const -> typename std::tuple_element<k, std::tuple<Args...>>::type { return std::get<k>(std::tie(args...)); } }; template <size_t k, typename Ptr> struct SaveArgAction { Ptr pointer; template <typename... Args> void operator()(const Args&... args) const { *pointer = std::get<k>(std::tie(args...)); } }; template <size_t k, typename Ptr> struct SaveArgPointeeAction { Ptr pointer; template <typename... Args> void operator()(const Args&... args) const { *pointer = *std::get<k>(std::tie(args...)); } }; template <size_t k, typename T> struct SetArgRefereeAction { T value; template <typename... Args> void operator()(Args&&... args) const { using argk_type = typename ::std::tuple_element<k, std::tuple<Args...>>::type; static_assert(std::is_lvalue_reference<argk_type>::value, "Argument must be a reference type."); std::get<k>(std::tie(args...)) = value; } }; template <size_t k, typename I1, typename I2> struct SetArrayArgumentAction { I1 first; I2 last; template <typename... Args> void operator()(const Args&... args) const { auto value = std::get<k>(std::tie(args...)); for (auto it = first; it != last; ++it, (void)++value) { *value = *it; } } }; template <size_t k> struct DeleteArgAction { template <typename... Args> void operator()(const Args&... args) const { delete std::get<k>(std::tie(args...)); } }; template <typename Ptr> struct ReturnPointeeAction { Ptr pointer; template <typename... Args> auto operator()(const Args&...) const -> decltype(*pointer) { return *pointer; } }; #if GTEST_HAS_EXCEPTIONS template <typename T> struct ThrowAction { T exception; // We use a conversion operator to adapt to any return type. template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT T copy = exception; return [copy](Args...) -> R { throw copy; }; } }; #endif // GTEST_HAS_EXCEPTIONS } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXPECT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. All but the last action will have a readonly view of the // arguments. template <typename... Action> internal::DoAllAction<typename std::decay<Action>::type...> DoAll( Action&&... action) { return {std::forward_as_tuple(std::forward<Action>(action)...)}; } // WithArg<k>(an_action) creates an action that passes the k-th // (0-based) argument of the mock function to an_action and performs // it. It adapts an action accepting one argument to one that accepts // multiple arguments. For convenience, we also provide // WithArgs<k>(an_action) (defined below) as a synonym. template <size_t k, typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(InnerAction&& action) { return {std::forward<InnerAction>(action)}; } // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. template <size_t k, size_t... ks, typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> WithArgs(InnerAction&& action) { return {std::forward<InnerAction>(action)}; } // WithoutArgs(inner_action) can be used in a mock function with a // non-empty argument list to perform inner_action, which takes no // argument. In other words, it adapts an action accepting no // argument to one that accepts (and ignores) arguments. template <typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(InnerAction&& action) { return {std::forward<InnerAction>(action)}; } // Creates an action that returns 'value'. 'value' is passed by value // instead of const reference - otherwise Return("string literal") // will trigger a compiler error about using array as initializer. template <typename R> internal::ReturnAction<R> Return(R value) { return internal::ReturnAction<R>(std::move(value)); } // Creates an action that returns NULL. inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction<internal::ReturnVoidAction> Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template <typename R> inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction<R>(x); } // Prevent using ReturnRef on reference to temporary. template <typename R, R* = nullptr> internal::ReturnRefAction<R> ReturnRef(R&&) = delete; // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template <typename R> inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction<R>(x); } // Modifies the parent action (a Return() action) to perform a move of the // argument instead of a copy. // Return(ByMove()) actions can only be executed once and will assert this // invariant. template <typename R> internal::ByMoveWrapper<R> ByMove(R x) { return internal::ByMoveWrapper<R>(std::move(x)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template <typename T> internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { return internal::ReturnRoundRobinAction<T>(std::move(vals)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template <typename T> internal::ReturnRoundRobinAction<T> ReturnRoundRobin( std::initializer_list<T> vals) { return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template <size_t N, typename T> internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { return {std::move(value)}; } // The following version is DEPRECATED. template <size_t N, typename T> internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { return {std::move(value)}; } // Creates an action that sets a pointer referent to a given value. template <typename T1, typename T2> PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template <typename T> PolymorphicAction<internal::SetErrnoAndReturnAction<T> > SetErrnoAndReturn(int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction<T>(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for Invoke(). // Legacy function. // Actions can now be implicitly constructed from callables. No need to create // wrapper objects. // This function exists for backwards compatibility. template <typename FunctionImpl> typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { return std::forward<FunctionImpl>(function_impl); } // Creates an action that invokes the given method on the given object // with the mock function's arguments. template <class Class, typename MethodPtr> internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that invokes 'function_impl' with no argument. template <typename FunctionImpl> internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> InvokeWithoutArgs(FunctionImpl function_impl) { return {std::move(function_impl)}; } // Creates an action that invokes the given method on the given object // with no argument. template <class Class, typename MethodPtr> internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template <typename A> inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { return internal::IgnoreResultAction<A>(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef<const Base>(derived) // // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. // However, it may still be used for consistency with ByMove(). template <typename T> inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT return ::std::reference_wrapper<T>(l_value); } // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. template <typename T, typename... Params> internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( Params&&... params) { return {std::forward_as_tuple(std::forward<Params>(params)...)}; } // Action ReturnArg<k>() returns the k-th argument of the mock function. template <size_t k> internal::ReturnArgAction<k> ReturnArg() { return {}; } // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the // mock function to *pointer. template <size_t k, typename Ptr> internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { return {pointer}; } // Action SaveArgPointee<k>(pointer) saves the value pointed to // by the k-th (0-based) argument of the mock function to *pointer. template <size_t k, typename Ptr> internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { return {pointer}; } // Action SetArgReferee<k>(value) assigns 'value' to the variable // referenced by the k-th (0-based) argument of the mock function. template <size_t k, typename T> internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( T&& value) { return {std::forward<T>(value)}; } // Action SetArrayArgument<k>(first, last) copies the elements in // source range [first, last) to the array pointed to by the k-th // (0-based) argument, which can be either a pointer or an // iterator. The action does not take ownership of the elements in the // source range. template <size_t k, typename I1, typename I2> internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, I2 last) { return {first, last}; } // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock // function. template <size_t k> internal::DeleteArgAction<k> DeleteArg() { return {}; } // This action returns the value pointed to by 'pointer'. template <typename Ptr> internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { return {pointer}; } // Action Throw(exception) can be used in a mock function of any type // to throw the given exception. Any copyable value can be thrown. #if GTEST_HAS_EXCEPTIONS template <typename T> internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { return {std::forward<T>(exception)}; } #endif // GTEST_HAS_EXCEPTIONS namespace internal { // A macro from the ACTION* family (defined later in gmock-generated-actions.h) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // Builds an implementation of an Action<> for some particular signature, using // a class defined by an ACTION* macro. template <typename F, typename Impl> struct ActionImpl; template <typename Impl> struct ImplBase { struct Holder { // Allows each copy of the Action<> to get to the Impl. explicit operator const Impl&() const { return *ptr; } std::shared_ptr<Impl> ptr; }; using type = typename std::conditional<std::is_constructible<Impl>::value, Impl, Holder>::type; }; template <typename R, typename... Args, typename Impl> struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { using Base = typename ImplBase<Impl>::type; using function_type = R(Args...); using args_type = std::tuple<Args...>; ActionImpl() = default; // Only defined if appropriate for Base. explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { } R operator()(Args&&... arg) const { static constexpr size_t kMaxArgs = sizeof...(Args) <= 10 ? sizeof...(Args) : 10; return Apply(MakeIndexSequence<kMaxArgs>{}, MakeIndexSequence<10 - kMaxArgs>{}, args_type{std::forward<Args>(arg)...}); } template <std::size_t... arg_id, std::size_t... excess_id> R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, const args_type& args) const { // Impl need not be specific to the signature of action being implemented; // only the implementing function body needs to have all of the specific // types instantiated. Up to 10 of the args that are provided by the // args_type get passed, followed by a dummy of unspecified type for the // remainder up to 10 explicit args. static constexpr ExcessiveArg kExcessArg{}; return static_cast<const Impl&>(*this).template gmock_PerformImpl< /*function_type=*/function_type, /*return_type=*/R, /*args_type=*/args_type, /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>( /*args=*/args, std::get<arg_id>(args)..., ((void)excess_id, kExcessArg)...); } }; // Stores a default-constructed Impl as part of the Action<>'s // std::function<>. The Impl should be trivial to copy. template <typename F, typename Impl> ::testing::Action<F> MakeAction() { return ::testing::Action<F>(ActionImpl<F, Impl>()); } // Stores just the one given instance of Impl. template <typename F, typename Impl> ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); } #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ GMOCK_INTERNAL_ARG_UNUSED, , 10) #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type #define GMOCK_ACTION_TYPE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ , param##_type gmock_p##i #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ , std::forward<param##_type>(gmock_p##i) #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ , param(::std::forward<param##_type>(gmock_p##i)) #define GMOCK_ACTION_INIT_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; #define GMOCK_ACTION_FIELD_PARAMS_(params) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ class full_name { \ public: \ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : impl_(std::make_shared<gmock_Impl>( \ GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \ full_name(const full_name&) = default; \ full_name(full_name&&) noexcept = default; \ template <typename F> \ operator ::testing::Action<F>() const { \ return ::testing::internal::MakeAction<F>(impl_); \ } \ private: \ class gmock_Impl { \ public: \ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : GMOCK_ACTION_INIT_PARAMS_(params) {} \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ GMOCK_ACTION_FIELD_PARAMS_(params) \ }; \ std::shared_ptr<const gmock_Impl> impl_; \ }; \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ GMOCK_ACTION_GVALUE_PARAMS_(params)); \ } \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \ gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const } // namespace internal // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. #define ACTION(name) \ class name##Action { \ public: \ explicit name##Action() noexcept {} \ name##Action(const name##Action&) noexcept {} \ template <typename F> \ operator ::testing::Action<F>() const { \ return ::testing::internal::MakeAction<F, gmock_Impl>(); \ } \ private: \ class gmock_Impl { \ public: \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ }; \ }; \ inline name##Action name() GTEST_MUST_USE_RESULT_; \ inline name##Action name() { return name##Action(); } \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type name##Action::gmock_Impl::gmock_PerformImpl( \ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) #define ACTION_P2(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) #define ACTION_P3(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) #define ACTION_P4(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) #define ACTION_P5(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) #define ACTION_P6(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) #define ACTION_P7(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) #define ACTION_P8(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) #define ACTION_P9(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) #define ACTION_P10(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) } // namespace testing #ifdef _MSC_VER # pragma warning(pop) #endif #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used cardinalities. More // cardinalities can be defined by the user implementing the // CardinalityInterface interface if necessary. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ #include <limits.h> #include <memory> #include <ostream> // NOLINT GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // To implement a cardinality Foo, define: // 1. a class FooCardinality that implements the // CardinalityInterface interface, and // 2. a factory function that creates a Cardinality object from a // const FooCardinality*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Cardinality objects can now be copied like plain values. // The implementation of a cardinality. class CardinalityInterface { public: virtual ~CardinalityInterface() {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. virtual int ConservativeLowerBound() const { return 0; } virtual int ConservativeUpperBound() const { return INT_MAX; } // Returns true if and only if call_count calls will satisfy this // cardinality. virtual bool IsSatisfiedByCallCount(int call_count) const = 0; // Returns true if and only if call_count calls will saturate this // cardinality. virtual bool IsSaturatedByCallCount(int call_count) const = 0; // Describes self to an ostream. virtual void DescribeTo(::std::ostream* os) const = 0; }; // A Cardinality is a copyable and IMMUTABLE (except by assignment) // object that specifies how many times a mock function is expected to // be called. The implementation of Cardinality is just a std::shared_ptr // to const CardinalityInterface. Don't inherit from Cardinality! class GTEST_API_ Cardinality { public: // Constructs a null cardinality. Needed for storing Cardinality // objects in STL containers. Cardinality() {} // Constructs a Cardinality from its implementation. explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {} // Conservative estimate on the lower/upper bound of the number of // calls allowed. int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); } int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); } // Returns true if and only if call_count calls will satisfy this // cardinality. bool IsSatisfiedByCallCount(int call_count) const { return impl_->IsSatisfiedByCallCount(call_count); } // Returns true if and only if call_count calls will saturate this // cardinality. bool IsSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count); } // Returns true if and only if call_count calls will over-saturate this // cardinality, i.e. exceed the maximum number of allowed calls. bool IsOverSaturatedByCallCount(int call_count) const { return impl_->IsSaturatedByCallCount(call_count) && !impl_->IsSatisfiedByCallCount(call_count); } // Describes self to an ostream void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } // Describes the given actual call count to an ostream. static void DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os); private: std::shared_ptr<const CardinalityInterface> impl_; }; // Creates a cardinality that allows at least n calls. GTEST_API_ Cardinality AtLeast(int n); // Creates a cardinality that allows at most n calls. GTEST_API_ Cardinality AtMost(int n); // Creates a cardinality that allows any number of calls. GTEST_API_ Cardinality AnyNumber(); // Creates a cardinality that allows between min and max calls. GTEST_API_ Cardinality Between(int min, int max); // Creates a cardinality that allows exactly n calls. GTEST_API_ Cardinality Exactly(int n); // Creates a cardinality from its implementation. inline Cardinality MakeCardinality(const CardinalityInterface* c) { return Cardinality(c); } } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements MOCK_METHOD. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT #include <type_traits> // IWYU pragma: keep #include <utility> // IWYU pragma: keep // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements the ON_CALL() and EXPECT_CALL() macros. // // A user can use the ON_CALL() macro to specify the default action of // a mock method. The syntax is: // // ON_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // where the .With() clause is optional. // // A user can use the EXPECT_CALL() macro to specify an expectation on // a mock method. The syntax is: // // EXPECT_CALL(mock_object, Method(argument-matchers)) // .With(multi-argument-matchers) // .Times(cardinality) // .InSequence(sequences) // .After(expectations) // .WillOnce(action) // .WillRepeatedly(action) // .RetiresOnSaturation(); // // where all clauses are optional, and .InSequence()/.After()/ // .WillOnce() can appear any number of times. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ #include <functional> #include <map> #include <memory> #include <set> #include <sstream> #include <string> #include <type_traits> #include <utility> #include <vector> // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // The MATCHER* family of macros can be used in a namespace scope to // define custom matchers easily. // // Basic Usage // =========== // // The syntax // // MATCHER(name, description_string) { statements; } // // defines a matcher with the given name that executes the statements, // which must return a bool to indicate if the match succeeds. Inside // the statements, you can refer to the value being matched by 'arg', // and refer to its type by 'arg_type'. // // The description string documents what the matcher does, and is used // to generate the failure message when the match fails. Since a // MATCHER() is usually defined in a header file shared by multiple // C++ source files, we require the description to be a C-string // literal to avoid possible side effects. It can be empty, in which // case we'll use the sequence of words in the matcher name as the // description. // // For example: // // MATCHER(IsEven, "") { return (arg % 2) == 0; } // // allows you to write // // // Expects mock_foo.Bar(n) to be called where n is even. // EXPECT_CALL(mock_foo, Bar(IsEven())); // // or, // // // Verifies that the value of some_expression is even. // EXPECT_THAT(some_expression, IsEven()); // // If the above assertion fails, it will print something like: // // Value of: some_expression // Expected: is even // Actual: 7 // // where the description "is even" is automatically calculated from the // matcher name IsEven. // // Argument Type // ============= // // Note that the type of the value being matched (arg_type) is // determined by the context in which you use the matcher and is // supplied to you by the compiler, so you don't need to worry about // declaring it (nor can you). This allows the matcher to be // polymorphic. For example, IsEven() can be used to match any type // where the value of "(arg % 2) == 0" can be implicitly converted to // a bool. In the "Bar(IsEven())" example above, if method Bar() // takes an int, 'arg_type' will be int; if it takes an unsigned long, // 'arg_type' will be unsigned long; and so on. // // Parameterizing Matchers // ======================= // // Sometimes you'll want to parameterize the matcher. For that you // can use another macro: // // MATCHER_P(name, param_name, description_string) { statements; } // // For example: // // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } // // will allow you to write: // // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); // // which may lead to this message (assuming n is 10): // // Value of: Blah("a") // Expected: has absolute value 10 // Actual: -9 // // Note that both the matcher description and its parameter are // printed, making the message human-friendly. // // In the matcher definition body, you can write 'foo_type' to // reference the type of a parameter named 'foo'. For example, in the // body of MATCHER_P(HasAbsoluteValue, value) above, you can write // 'value_type' to refer to the type of 'value'. // // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to // support multi-parameter matchers. // // Describing Parameterized Matchers // ================================= // // The last argument to MATCHER*() is a string-typed expression. The // expression can reference all of the matcher's parameters and a // special bool-typed variable named 'negation'. When 'negation' is // false, the expression should evaluate to the matcher's description; // otherwise it should evaluate to the description of the negation of // the matcher. For example, // // using testing::PrintToString; // // MATCHER_P2(InClosedRange, low, hi, // std::string(negation ? "is not" : "is") + " in range [" + // PrintToString(low) + ", " + PrintToString(hi) + "]") { // return low <= arg && arg <= hi; // } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: is in range [4, 6] // ... // Expected: is not in range [2, 4] // // If you specify "" as the description, the failure message will // contain the sequence of words in the matcher name followed by the // parameter values printed as a tuple. For example, // // MATCHER_P2(InClosedRange, low, hi, "") { ... } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: in closed range (4, 6) // ... // Expected: not (in closed range (2, 4)) // // Types of Matcher Parameters // =========================== // // For the purpose of typing, you can view // // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } // // as shorthand for // // template <typename p1_type, ..., typename pk_type> // FooMatcherPk<p1_type, ..., pk_type> // Foo(p1_type p1, ..., pk_type pk) { ... } // // When you write Foo(v1, ..., vk), the compiler infers the types of // the parameters v1, ..., and vk for you. If you are not happy with // the result of the type inference, you can specify the types by // explicitly instantiating the template, as in Foo<long, bool>(5, // false). As said earlier, you don't get to (or need to) specify // 'arg_type' as that's determined by the context in which the matcher // is used. You can assign the result of expression Foo(p1, ..., pk) // to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This // can be useful when composing matchers. // // While you can instantiate a matcher template with reference types, // passing the parameters by pointer usually makes your code more // readable. If, however, you still want to pass a parameter by // reference, be aware that in the failure message generated by the // matcher you will see the value of the referenced object but not its // address. // // Explaining Match Results // ======================== // // Sometimes the matcher description alone isn't enough to explain why // the match has failed or succeeded. For example, when expecting a // long string, it can be very helpful to also print the diff between // the expected string and the actual one. To achieve that, you can // optionally stream additional information to a special variable // named result_listener, whose type is a pointer to class // MatchResultListener: // // MATCHER_P(EqualsLongString, str, "") { // if (arg == str) return true; // // *result_listener << "the difference: " /// << DiffStrings(str, arg); // return false; // } // // Overloading Matchers // ==================== // // You can overload matchers with different numbers of parameters: // // MATCHER_P(Blah, a, description_string1) { ... } // MATCHER_P2(Blah, a, b, description_string2) { ... } // // Caveats // ======= // // When defining a new matcher, you should also consider implementing // MatcherInterface or using MakePolymorphicMatcher(). These // approaches require more work than the MATCHER* macros, but also // give you more control on the types of the value being matched and // the matcher parameters, which may leads to better compiler error // messages when the matcher is used wrong. They also allow // overloading matchers based on parameter types (as opposed to just // based on the number of parameters). // // MATCHER*() can only be used in a namespace scope as templates cannot be // declared inside of a local class. // // More Information // ================ // // To learn more about using these macros, please search for 'MATCHER' // on // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md // // This file also implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface<T> interface if necessary. // // See googletest/include/gtest/gtest-matchers.h for the definition of class // Matcher, class MatcherInterface, and others. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include <algorithm> #include <cmath> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <ostream> // NOLINT #include <sstream> #include <string> #include <type_traits> #include <utility> #include <vector> // MSVC warning C5046 is new as of VS2017 version 15.8. #if defined(_MSC_VER) && _MSC_VER >= 1915 #define GMOCK_MAYBE_5046_ 5046 #else #define GMOCK_MAYBE_5046_ #endif GTEST_DISABLE_MSC_WARNINGS_PUSH_( 4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by clients of class B */ /* Symbol involving type with internal linkage not defined */) namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface<T> interface, and // 2. a factory function that creates a Matcher<T> object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. std::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template <typename T, typename M> class MatcherCastImpl { public: static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { // M can be a polymorphic matcher, in which case we want to use // its conversion operator to create Matcher<T>. Or it can be a value // that should be passed to the Matcher<T>'s constructor. // // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implicit_cast // polymorphic_matcher_or_value to Matcher<T> because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl(polymorphic_matcher_or_value, std::is_convertible<M, Matcher<T>>{}, std::is_convertible<M, T>{}); } private: template <bool Ignore> static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, std::true_type /* convertible_to_matcher */, std::integral_constant<bool, Ignore>) { // M is implicitly convertible to Matcher<T>, which means that either // M is a polymorphic matcher or Matcher<T> has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher<T> would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher<T> from T). return polymorphic_matcher_or_value; } // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic // matcher. It's a value of a type implicitly convertible to T. Use direct // initialization to create a matcher. static Matcher<T> CastImpl(const M& value, std::false_type /* convertible_to_matcher */, std::true_type /* convertible_to_T */) { return Matcher<T>(ImplicitCast_<T>(value)); } // M can't be implicitly converted to either Matcher<T> or T. Attempt to use // polymorphic matcher Eq(value) in this case. // // Note that we first attempt to perform an implicit cast on the value and // only fall back to the polymorphic Eq() matcher afterwards because the // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end // which might be undefined even when Rhs is implicitly convertible to Lhs // (e.g. std::pair<const int, int> vs. std::pair<int, int>). // // We don't define this method inline as we need the declaration of Eq(). static Matcher<T> CastImpl(const M& value, std::false_type /* convertible_to_matcher */, std::false_type /* convertible_to_T */); }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template <typename T, typename U> class MatcherCastImpl<T, Matcher<U> > { public: static Matcher<T> Cast(const Matcher<U>& source_matcher) { return Matcher<T>(new Impl(source_matcher)); } private: class Impl : public MatcherInterface<T> { public: explicit Impl(const Matcher<U>& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. bool MatchAndExplain(T x, MatchResultListener* listener) const override { using FromType = typename std::remove_cv<typename std::remove_pointer< typename std::remove_reference<T>::type>::type>::type; using ToType = typename std::remove_cv<typename std::remove_pointer< typename std::remove_reference<U>::type>::type>::type; // Do not allow implicitly converting base*/& to derived*/&. static_assert( // Do not trigger if only one of them is a pointer. That implies a // regular conversion and not a down_cast. (std::is_pointer<typename std::remove_reference<T>::type>::value != std::is_pointer<typename std::remove_reference<U>::type>::value) || std::is_same<FromType, ToType>::value || !std::is_base_of<FromType, ToType>::value, "Can't implicitly convert from <base> to <derived>"); // Do the cast to `U` explicitly if necessary. // Otherwise, let implicit conversions do the trick. using CastType = typename std::conditional<std::is_convertible<T&, const U&>::value, T&, U>::type; return source_matcher_.MatchAndExplain(static_cast<CastType>(x), listener); } void DescribeTo(::std::ostream* os) const override { source_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { source_matcher_.DescribeNegationTo(os); } private: const Matcher<U> source_matcher_; }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template <typename T> class MatcherCastImpl<T, Matcher<T> > { public: static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } }; // Template specialization for parameterless Matcher. template <typename Derived> class MatcherBaseImpl { public: MatcherBaseImpl() = default; template <typename T> operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit) return ::testing::Matcher<T>(new typename Derived::template gmock_Impl<T>()); } }; // Template specialization for Matcher with parameters. template <template <typename...> class Derived, typename... Ts> class MatcherBaseImpl<Derived<Ts...>> { public: // Mark the constructor explicit for single argument T to avoid implicit // conversions. template <typename E = std::enable_if<sizeof...(Ts) == 1>, typename E::type* = nullptr> explicit MatcherBaseImpl(Ts... params) : params_(std::forward<Ts>(params)...) {} template <typename E = std::enable_if<sizeof...(Ts) != 1>, typename = typename E::type> MatcherBaseImpl(Ts... params) // NOLINT : params_(std::forward<Ts>(params)...) {} template <typename F> operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit) return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{}); } private: template <typename F, std::size_t... tuple_ids> ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const { return ::testing::Matcher<F>( new typename Derived<Ts...>::template gmock_Impl<F>( std::get<tuple_ids>(params_)...)); } const std::tuple<Ts...> params_; }; } // namespace internal // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast<T>(m), which takes a // matcher m and returns a Matcher<T>. It compiles only when T can be // statically converted to the argument type of m. template <typename T, typename M> inline Matcher<T> MatcherCast(const M& matcher) { return internal::MatcherCastImpl<T, M>::Cast(matcher); } // This overload handles polymorphic matchers and values only since // monomorphic matchers are handled by the next one. template <typename T, typename M> inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) { return MatcherCast<T>(polymorphic_matcher_or_value); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is // contravariant): just keep a copy of the original Matcher<U>, convert the // argument from type T to U, and then pass it to the underlying Matcher<U>. // The only exception is when U is a reference and T is not, as the // underlying Matcher<U> may be interested in the argument's address, which // is not preserved in the conversion from T to U. template <typename T, typename U> inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { // Enforce that T can be implicitly converted to U. static_assert(std::is_convertible<const T&, const U&>::value, "T must be implicitly convertible to U"); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( std::is_reference<T>::value || !std::is_reference<U>::value, cannot_convert_non_reference_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible<RawT, RawU>::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast<T>(matcher); } // A<T>() returns a matcher that matches any value of type T. template <typename T> Matcher<T> A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const std::string& explanation, ::std::ostream* os) { if (explanation != "" && os != nullptr) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const std::string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == std::string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template <typename Value, typename T> bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const std::string& type_name = GetTypeName<Value>(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template <size_t N> class TuplePrefix { public: // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true // if and only if the first N fields of matcher_tuple matches // the first N fields of value_tuple, respectively. template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) && std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple)); } // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { // First, describes failures in the first N - 1 fields. TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename std::tuple_element<N - 1, MatcherTuple>::type matcher = std::get<N - 1>(matchers); typedef typename std::tuple_element<N - 1, ValueTuple>::type Value; const Value& value = std::get<N - 1>(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { *os << " Expected arg #" << N - 1 << ": "; std::get<N - 1>(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template <typename MatcherTuple, typename ValueTuple> static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template <typename MatcherTuple, typename ValueTuple> static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true if and only if // all matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template <typename MatcherTuple, typename ValueTuple> bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value == std::tuple_size<ValueTuple>::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template <typename MatcherTuple, typename ValueTuple> void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( matchers, values, os); } // TransformTupleValues and its helper. // // TransformTupleValuesHelper hides the internal machinery that // TransformTupleValues uses to implement a tuple traversal. template <typename Tuple, typename Func, typename OutIter> class TransformTupleValuesHelper { private: typedef ::std::tuple_size<Tuple> TupleSize; public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. // Returns the final value of 'out' in case the caller needs it. static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); } private: template <typename Tup, size_t kRemainingSize> struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t)); return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); } }; template <typename Tup> struct IterateOverTuple<Tup, 0> { OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; }; // Successively invokes 'f(element)' on each element of the tuple 't', // appending each result to the 'out' iterator. Returns the final value // of 'out'. template <typename Tuple, typename Func, typename OutIter> OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); } // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher<T> for any // type T. class AnythingMatcher { public: using is_gtest_matcher = void; template <typename T> bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const { return true; } void DescribeTo(std::ostream* os) const { *os << "is anything"; } void DescribeNegationTo(::std::ostream* os) const { // This is mostly for completeness' sake, as it's not very useful // to write Not(A<bool>()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return p == nullptr; } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template <typename Pointer> bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return p != nullptr; } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher<int> m1 = Ref(n); // This won't compile. // Matcher<int&> m2 = Ref(n); // This will compile. template <typename T> class RefMatcher; template <typename T> class RefMatcher<T&> { // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template <typename Super> operator Matcher<Super&>() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl<Super>(object_)); } private: template <typename Super> class Impl : public MatcherInterface<Super&> { public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface<Super&>. bool MatchAndExplain(Super& x, MatchResultListener* listener) const override { *listener << "which is located @" << static_cast<const void*>(&x); return &x == &object_; } void DescribeTo(::std::ostream* os) const override { *os << "references the variable "; UniversalPrinter<Super&>::Print(object_, os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "does not reference the variable "; UniversalPrinter<Super&>::Print(object_, os); } private: const Super& object_; }; T& object_; }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template <typename StringType> bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template <typename StringType> class StrEqualityMatcher { public: StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive) : string_(std::move(str)), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} #if GTEST_INTERNAL_HAS_STRING_VIEW bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide // strings. const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == nullptr) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringView has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} #if GTEST_INTERNAL_HAS_STRING_VIEW bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide // strings. const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringView has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { return StringType(s).find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } #if GTEST_INTERNAL_HAS_STRING_VIEW bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide // strings. const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringView has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher<T> as long as T can be converted to a // string. template <typename StringType> class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} #if GTEST_INTERNAL_HAS_STRING_VIEW bool MatchAndExplain(const internal::StringView& s, MatchResultListener* listener) const { // This should fail to compile if StringView is used with wide // strings. const StringType& str = std::string(s); return MatchAndExplain(str, listener); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template <typename CharType> bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because StringView has some interfering non-explicit constructors. template <typename MatcheeStringType> bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a std::tuple<int, short>, a std::tuple<const long&, double>, // etc). Therefore we use a template type conversion operator in the // implementation. template <typename D, typename Op> class PairMatchBase { public: template <typename T1, typename T2> operator Matcher<::std::tuple<T1, T2>>() const { return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>); } template <typename T1, typename T2> operator Matcher<const ::std::tuple<T1, T2>&>() const { return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>); } private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT return os << D::Desc(); } template <typename Tuple> class Impl : public MatcherInterface<Tuple> { public: bool MatchAndExplain(Tuple args, MatchResultListener* /* listener */) const override { return Op()(::std::get<0>(args), ::std::get<1>(args)); } void DescribeTo(::std::ostream* os) const override { *os << "are " << GetDesc; } void DescribeNegationTo(::std::ostream* os) const override { *os << "aren't " << GetDesc; } }; }; class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { public: static const char* Desc() { return "an equal pair"; } }; class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { public: static const char* Desc() { return "an unequal pair"; } }; class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { public: static const char* Desc() { return "a pair where the first < the second"; } }; class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { public: static const char* Desc() { return "a pair where the first > the second"; } }; class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { public: static const char* Desc() { return "a pair where the first <= the second"; } }; class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { public: static const char* Desc() { return "a pair where the first >= the second"; } }; // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl<T> class. template <typename T> class NotMatcherImpl : public MatcherInterface<const T&> { public: explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {} bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { return !matcher_.MatchAndExplain(x, listener); } void DescribeTo(::std::ostream* os) const override { matcher_.DescribeNegationTo(os); } void DescribeNegationTo(::std::ostream* os) const override { matcher_.DescribeTo(os); } private: const Matcher<T> matcher_; }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template <typename InnerMatcher> class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template <typename T> operator Matcher<T>() const { return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); } private: InnerMatcher matcher_; }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl<T> class. template <typename T> class AllOfMatcherImpl : public MatcherInterface<const T&> { public: explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) : matchers_(std::move(matchers)) {} void DescribeTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeTo(os); } *os << ")"; } void DescribeNegationTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; } bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. std::string all_match_result; for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { if (all_match_result.empty()) { all_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { all_match_result += ", and "; all_match_result += result; } } } else { *listener << slistener.str(); return false; } } // Otherwise we need to explain why *both* of them match. *listener << all_match_result; return true; } private: const std::vector<Matcher<T> > matchers_; }; // VariadicMatcher is used for the variadic implementation of // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). // CombiningMatcher<T> is used to recursively combine the provided matchers // (of type Args...). template <template <typename T> class CombiningMatcher, typename... Args> class VariadicMatcher { public: VariadicMatcher(const Args&... matchers) // NOLINT : matchers_(matchers...) { static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); } VariadicMatcher(const VariadicMatcher&) = default; VariadicMatcher& operator=(const VariadicMatcher&) = delete; // This template type conversion operator allows an // VariadicMatcher<Matcher1, Matcher2...> object to match any type that // all of the provided matchers (Matcher1, Matcher2, ...) can match. template <typename T> operator Matcher<T>() const { std::vector<Matcher<T> > values; CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); return Matcher<T>(new CombiningMatcher<T>(std::move(values))); } private: template <typename T, size_t I> void CreateVariadicMatcher(std::vector<Matcher<T> >* values, std::integral_constant<size_t, I>) const { values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); } template <typename T> void CreateVariadicMatcher( std::vector<Matcher<T> >*, std::integral_constant<size_t, sizeof...(Args)>) const {} std::tuple<Args...> matchers_; }; template <typename... Args> using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; // Implements the AnyOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the AnyOfMatcher class template, as // that will prevent different instantiations of AnyOfMatcher from // sharing the same EitherOfMatcherImpl<T> class. template <typename T> class AnyOfMatcherImpl : public MatcherInterface<const T&> { public: explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) : matchers_(std::move(matchers)) {} void DescribeTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeTo(os); } *os << ")"; } void DescribeNegationTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; } bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { std::string no_match_result; // If either matcher1_ or matcher2_ matches x, we just need to // explain why *one* of them matches. for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { *listener << slistener.str(); return true; } else { if (no_match_result.empty()) { no_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { no_match_result += ", and "; no_match_result += result; } } } } // Otherwise we need to explain why *both* of them fail. *listener << no_match_result; return false; } private: const std::vector<Matcher<T> > matchers_; }; // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). template <typename... Args> using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; // Wrapper for implementation of Any/AllOfArray(). template <template <class> class MatcherImpl, typename T> class SomeOfArrayMatcher { public: // Constructs the matcher from a sequence of element values or // element matchers. template <typename Iter> SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} template <typename U> operator Matcher<U>() const { // NOLINT using RawU = typename std::decay<U>::type; std::vector<Matcher<RawU>> matchers; for (const auto& matcher : matchers_) { matchers.push_back(MatcherCast<RawU>(matcher)); } return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers))); } private: const ::std::vector<T> matchers_; }; template <typename T> using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>; template <typename T> using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>; // Used for implementing Truly(pred), which turns a predicate into a // matcher. template <typename Predicate> class TrulyMatcher { public: explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} // This method template allows Truly(pred) to be used as a matcher // for type T where T is the argument type of predicate 'pred'. The // argument is passed by reference as the predicate may be // interested in the address of the argument. template <typename T> bool MatchAndExplain(T& x, // NOLINT MatchResultListener* listener) const { // Without the if-statement, MSVC sometimes warns about converting // a value to bool (warning 4800). // // We cannot write 'return !!predicate_(x);' as that doesn't work // when predicate_(x) returns a class convertible to bool but // having no operator!(). if (predicate_(x)) return true; *listener << "didn't satisfy the given predicate"; return false; } void DescribeTo(::std::ostream* os) const { *os << "satisfies the given predicate"; } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't satisfy the given predicate"; } private: Predicate predicate_; }; // Used for implementing Matches(matcher), which turns a matcher into // a predicate. template <typename M> class MatcherAsPredicate { public: explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} // This template operator() allows Matches(m) to be used as a // predicate on type T where m is a matcher on type T. // // The argument x is passed by reference instead of by value, as // some matcher may be interested in its address (e.g. as in // Matches(Ref(n))(x)). template <typename T> bool operator()(const T& x) const { // We let matcher_ commit to a particular type here instead of // when the MatcherAsPredicate object was constructed. This // allows us to write Matches(m) where m is a polymorphic matcher // (e.g. Eq(5)). // // If we write Matcher<T>(matcher_).Matches(x) here, it won't // compile when matcher_ has type Matcher<const T&>; if we write // Matcher<const T&>(matcher_).Matches(x) here, it won't compile // when matcher_ has type Matcher<T>; if we just write // matcher_.Matches(x), it won't compile when matcher_ is // polymorphic, e.g. Eq(5). // // MatcherCast<const T&>() is necessary for making the code work // in all of the above situations. return MatcherCast<const T&>(matcher_).Matches(x); } private: M matcher_; }; // For implementing ASSERT_THAT() and EXPECT_THAT(). The template // argument M must be a type that can be converted to a matcher. template <typename M> class PredicateFormatterFromMatcher { public: explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {} // This template () operator allows a PredicateFormatterFromMatcher // object to act as a predicate-formatter suitable for using with // Google Test's EXPECT_PRED_FORMAT1() macro. template <typename T> AssertionResult operator()(const char* value_text, const T& x) const { // We convert matcher_ to a Matcher<const T&> *now* instead of // when the PredicateFormatterFromMatcher object was constructed, // as matcher_ may be polymorphic (e.g. NotNull()) and we won't // know which type to instantiate it to until we actually see the // type of x here. // // We write SafeMatcherCast<const T&>(matcher_) instead of // Matcher<const T&>(matcher_), as the latter won't compile when // matcher_ has type Matcher<T> (e.g. An<int>()). // We don't write MatcherCast<const T&> either, as that allows // potentially unsafe downcasting of the matcher argument. const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); // The expected path here is that the matcher should match (i.e. that most // tests pass) so optimize for this case. if (matcher.Matches(x)) { return AssertionSuccess(); } ::std::stringstream ss; ss << "Value of: " << value_text << "\n" << "Expected: "; matcher.DescribeTo(&ss); // Rerun the matcher to "PrintAndExplain" the failure. StringMatchResultListener listener; if (MatchPrintAndExplain(x, matcher, &listener)) { ss << "\n The matcher failed on the initial attempt; but passed when " "rerun to generate the explanation."; } ss << "\n Actual: " << listener.str(); return AssertionFailure() << ss.str(); } private: const M matcher_; }; // A helper function for converting a matcher to a predicate-formatter // without the user needing to explicitly write the type. This is // used for implementing ASSERT_THAT() and EXPECT_THAT(). // Implementation detail: 'matcher' is received by-value to force decaying. template <typename M> inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(M matcher) { return PredicateFormatterFromMatcher<M>(std::move(matcher)); } // Implements the polymorphic IsNan() matcher, which matches any floating type // value that is Nan. class IsNanMatcher { public: template <typename FloatType> bool MatchAndExplain(const FloatType& f, MatchResultListener* /* listener */) const { return (::std::isnan)(f); } void DescribeTo(::std::ostream* os) const { *os << "is NaN"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; } }; // Implements the polymorphic floating point equality matcher, which matches // two float values using ULP-based approximation or, optionally, a // user-specified epsilon. The template is meant to be instantiated with // FloatType being either float or double. template <typename FloatType> class FloatingEqMatcher { public: // Constructor for FloatingEqMatcher. // The matcher's input will be compared with expected. The matcher treats two // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, // equality comparisons between NANs will always return false. We specify a // negative max_abs_error_ term to indicate that ULP-based approximation will // be used for comparison. FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { } // Constructor that supports a user-specified max_abs_error that will be used // for comparison instead of ULP-based approximation. The max absolute // should be non-negative. FloatingEqMatcher(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) { GTEST_CHECK_(max_abs_error >= 0) << ", where max_abs_error is" << max_abs_error; } // Implements floating point equality matcher as a Matcher<T>. template <typename T> class Impl : public MatcherInterface<T> { public: Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) {} bool MatchAndExplain(T value, MatchResultListener* listener) const override { const FloatingPoint<FloatType> actual(value), expected(expected_); // Compares NaNs first, if nan_eq_nan_ is true. if (actual.is_nan() || expected.is_nan()) { if (actual.is_nan() && expected.is_nan()) { return nan_eq_nan_; } // One is nan; the other is not nan. return false; } if (HasMaxAbsError()) { // We perform an equality check so that inf will match inf, regardless // of error bounds. If the result of value - expected_ would result in // overflow or if either value is inf, the default result is infinity, // which should only match if max_abs_error_ is also infinity. if (value == expected_) { return true; } const FloatType diff = value - expected_; if (::std::fabs(diff) <= max_abs_error_) { return true; } if (listener->IsInterested()) { *listener << "which is " << diff << " from " << expected_; } return false; } else { return actual.AlmostEquals(expected); } } void DescribeTo(::std::ostream* os) const override { // os->precision() returns the previously set precision, which we // store to restore the ostream to its original configuration // after outputting. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(expected_).is_nan()) { if (nan_eq_nan_) { *os << "is NaN"; } else { *os << "never matches"; } } else { *os << "is approximately " << expected_; if (HasMaxAbsError()) { *os << " (absolute error <= " << max_abs_error_ << ")"; } } os->precision(old_precision); } void DescribeNegationTo(::std::ostream* os) const override { // As before, get original precision. const ::std::streamsize old_precision = os->precision( ::std::numeric_limits<FloatType>::digits10 + 2); if (FloatingPoint<FloatType>(expected_).is_nan()) { if (nan_eq_nan_) { *os << "isn't NaN"; } else { *os << "is anything"; } } else { *os << "isn't approximately " << expected_; if (HasMaxAbsError()) { *os << " (absolute error > " << max_abs_error_ << ")"; } } // Restore original precision. os->precision(old_precision); } private: bool HasMaxAbsError() const { return max_abs_error_ >= 0; } const FloatType expected_; const bool nan_eq_nan_; // max_abs_error will be used for value comparison when >= 0. const FloatType max_abs_error_; }; // The following 3 type conversion operators allow FloatEq(expected) and // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a // Matcher<const float&>, or a Matcher<float&>, but nothing else. operator Matcher<FloatType>() const { return MakeMatcher( new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); } operator Matcher<const FloatType&>() const { return MakeMatcher( new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); } operator Matcher<FloatType&>() const { return MakeMatcher( new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); } private: const FloatType expected_; const bool nan_eq_nan_; // max_abs_error will be used for value comparison when >= 0. const FloatType max_abs_error_; }; // A 2-tuple ("binary") wrapper around FloatingEqMatcher: // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) // against y. The former implements "Eq", the latter "Near". At present, there // is no version that compares NaNs as equal. template <typename FloatType> class FloatingEq2Matcher { public: FloatingEq2Matcher() { Init(-1, false); } explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } explicit FloatingEq2Matcher(FloatType max_abs_error) { Init(max_abs_error, false); } FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { Init(max_abs_error, nan_eq_nan); } template <typename T1, typename T2> operator Matcher<::std::tuple<T1, T2>>() const { return MakeMatcher( new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_)); } template <typename T1, typename T2> operator Matcher<const ::std::tuple<T1, T2>&>() const { return MakeMatcher( new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); } private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT return os << "an almost-equal pair"; } template <typename Tuple> class Impl : public MatcherInterface<Tuple> { public: Impl(FloatType max_abs_error, bool nan_eq_nan) : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {} bool MatchAndExplain(Tuple args, MatchResultListener* listener) const override { if (max_abs_error_ == -1) { FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_); return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( ::std::get<1>(args), listener); } else { FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_, max_abs_error_); return static_cast<Matcher<FloatType>>(fm).MatchAndExplain( ::std::get<1>(args), listener); } } void DescribeTo(::std::ostream* os) const override { *os << "are " << GetDesc; } void DescribeNegationTo(::std::ostream* os) const override { *os << "aren't " << GetDesc; } private: FloatType max_abs_error_; const bool nan_eq_nan_; }; void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { max_abs_error_ = max_abs_error_val; nan_eq_nan_ = nan_eq_nan_val; } FloatType max_abs_error_; bool nan_eq_nan_; }; // Implements the Pointee(m) matcher for matching a pointer whose // pointee matches matcher m. The pointer can be either raw or smart. template <typename InnerMatcher> class PointeeMatcher { public: explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} // This type conversion operator template allows Pointee(m) to be // used as a matcher for any pointer type whose pointee type is // compatible with the inner matcher, where type Pointer can be // either a raw pointer or a smart pointer. // // The reason we do this instead of relying on // MakePolymorphicMatcher() is that the latter is not flexible // enough for implementing the DescribeTo() method of Pointee(). template <typename Pointer> operator Matcher<Pointer>() const { return Matcher<Pointer>(new Impl<const Pointer&>(matcher_)); } private: // The monomorphic implementation that works for a particular pointer type. template <typename Pointer> class Impl : public MatcherInterface<Pointer> { public: using Pointee = typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( Pointer)>::element_type; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<const Pointee&>(matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "points to a value that "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "does not point to a value that "; matcher_.DescribeTo(os); } bool MatchAndExplain(Pointer pointer, MatchResultListener* listener) const override { if (GetRawPointer(pointer) == nullptr) return false; *listener << "which points to "; return MatchPrintAndExplain(*pointer, matcher_, listener); } private: const Matcher<const Pointee&> matcher_; }; const InnerMatcher matcher_; }; // Implements the Pointer(m) matcher // Implements the Pointer(m) matcher for matching a pointer that matches matcher // m. The pointer can be either raw or smart, and will match `m` against the // raw pointer. template <typename InnerMatcher> class PointerMatcher { public: explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} // This type conversion operator template allows Pointer(m) to be // used as a matcher for any pointer type whose pointer type is // compatible with the inner matcher, where type PointerType can be // either a raw pointer or a smart pointer. // // The reason we do this instead of relying on // MakePolymorphicMatcher() is that the latter is not flexible // enough for implementing the DescribeTo() method of Pointer(). template <typename PointerType> operator Matcher<PointerType>() const { // NOLINT return Matcher<PointerType>(new Impl<const PointerType&>(matcher_)); } private: // The monomorphic implementation that works for a particular pointer type. template <typename PointerType> class Impl : public MatcherInterface<PointerType> { public: using Pointer = const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_( PointerType)>::element_type*; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<Pointer>(matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "is a pointer that "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "is not a pointer that "; matcher_.DescribeTo(os); } bool MatchAndExplain(PointerType pointer, MatchResultListener* listener) const override { *listener << "which is a pointer that "; Pointer p = GetRawPointer(pointer); return MatchPrintAndExplain(p, matcher_, listener); } private: Matcher<Pointer> matcher_; }; const InnerMatcher matcher_; }; #if GTEST_HAS_RTTI // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or // reference that matches inner_matcher when dynamic_cast<T> is applied. // The result of dynamic_cast<To> is forwarded to the inner matcher. // If To is a pointer and the cast fails, the inner matcher will receive NULL. // If To is a reference and the cast fails, this matcher returns false // immediately. template <typename To> class WhenDynamicCastToMatcherBase { public: explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) : matcher_(matcher) {} void DescribeTo(::std::ostream* os) const { GetCastTypeDescription(os); matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { GetCastTypeDescription(os); matcher_.DescribeNegationTo(os); } protected: const Matcher<To> matcher_; static std::string GetToName() { return GetTypeName<To>(); } private: static void GetCastTypeDescription(::std::ostream* os) { *os << "when dynamic_cast to " << GetToName() << ", "; } }; // Primary template. // To is a pointer. Cast and forward the result. template <typename To> class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { public: explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) : WhenDynamicCastToMatcherBase<To>(matcher) {} template <typename From> bool MatchAndExplain(From from, MatchResultListener* listener) const { To to = dynamic_cast<To>(from); return MatchPrintAndExplain(to, this->matcher_, listener); } }; // Specialize for references. // In this case we return false if the dynamic_cast fails. template <typename To> class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { public: explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) : WhenDynamicCastToMatcherBase<To&>(matcher) {} template <typename From> bool MatchAndExplain(From& from, MatchResultListener* listener) const { // We don't want an std::bad_cast here, so do the cast with pointers. To* to = dynamic_cast<To*>(&from); if (to == nullptr) { *listener << "which cannot be dynamic_cast to " << this->GetToName(); return false; } return MatchPrintAndExplain(*to, this->matcher_, listener); } }; #endif // GTEST_HAS_RTTI // Implements the Field() matcher for matching a field (i.e. member // variable) of an object. template <typename Class, typename FieldType> class FieldMatcher { public: FieldMatcher(FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher), whose_field_("whose given field ") {} FieldMatcher(const std::string& field_name, FieldType Class::*field, const Matcher<const FieldType&>& matcher) : field_(field), matcher_(matcher), whose_field_("whose field `" + field_name + "` ") {} void DescribeTo(::std::ostream* os) const { *os << "is an object " << whose_field_; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "is an object " << whose_field_; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(const T& value, MatchResultListener* listener) const { // FIXME: The dispatch on std::is_pointer was introduced as a workaround for // a compiler bug, and can now be removed. return MatchAndExplainImpl( typename std::is_pointer<typename std::remove_const<T>::type>::type(), value, listener); } private: bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << whose_field_ << "is "; return MatchPrintAndExplain(obj.*field_, matcher_, listener); } bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == nullptr) return false; *listener << "which points to an object "; // Since *p has a field, it must be a class/struct/union type and // thus cannot be a pointer. Therefore we pass false_type() as // the first argument. return MatchAndExplainImpl(std::false_type(), *p, listener); } const FieldType Class::*field_; const Matcher<const FieldType&> matcher_; // Contains either "whose given field " if the name of the field is unknown // or "whose field `name_of_field` " if the name is known. const std::string whose_field_; }; // Implements the Property() matcher for matching a property // (i.e. return value of a getter method) of an object. // // Property is a const-qualified member function of Class returning // PropertyType. template <typename Class, typename PropertyType, typename Property> class PropertyMatcher { public: typedef const PropertyType& RefToConstProperty; PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher), whose_property_("whose given property ") {} PropertyMatcher(const std::string& property_name, Property property, const Matcher<RefToConstProperty>& matcher) : property_(property), matcher_(matcher), whose_property_("whose property `" + property_name + "` ") {} void DescribeTo(::std::ostream* os) const { *os << "is an object " << whose_property_; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const { *os << "is an object " << whose_property_; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(const T&value, MatchResultListener* listener) const { return MatchAndExplainImpl( typename std::is_pointer<typename std::remove_const<T>::type>::type(), value, listener); } private: bool MatchAndExplainImpl(std::false_type /* is_not_pointer */, const Class& obj, MatchResultListener* listener) const { *listener << whose_property_ << "is "; // Cannot pass the return value (for example, int) to MatchPrintAndExplain, // which takes a non-const reference as argument. RefToConstProperty result = (obj.*property_)(); return MatchPrintAndExplain(result, matcher_, listener); } bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p, MatchResultListener* listener) const { if (p == nullptr) return false; *listener << "which points to an object "; // Since *p has a property method, it must be a class/struct/union // type and thus cannot be a pointer. Therefore we pass // false_type() as the first argument. return MatchAndExplainImpl(std::false_type(), *p, listener); } Property property_; const Matcher<RefToConstProperty> matcher_; // Contains either "whose given property " if the name of the property is // unknown or "whose property `name_of_property` " if the name is known. const std::string whose_property_; }; // Type traits specifying various features of different functors for ResultOf. // The default template specifies features for functor objects. template <typename Functor> struct CallableTraits { typedef Functor StorageType; static void CheckIsValid(Functor /* functor */) {} template <typename T> static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) { return f(arg); } }; // Specialization for function pointers. template <typename ArgType, typename ResType> struct CallableTraits<ResType(*)(ArgType)> { typedef ResType ResultType; typedef ResType(*StorageType)(ArgType); static void CheckIsValid(ResType(*f)(ArgType)) { GTEST_CHECK_(f != nullptr) << "NULL function pointer is passed into ResultOf()."; } template <typename T> static ResType Invoke(ResType(*f)(ArgType), T arg) { return (*f)(arg); } }; // Implements the ResultOf() matcher for matching a return value of a // unary function of an object. template <typename Callable, typename InnerMatcher> class ResultOfMatcher { public: ResultOfMatcher(Callable callable, InnerMatcher matcher) : callable_(std::move(callable)), matcher_(std::move(matcher)) { CallableTraits<Callable>::CheckIsValid(callable_); } template <typename T> operator Matcher<T>() const { return Matcher<T>(new Impl<const T&>(callable_, matcher_)); } private: typedef typename CallableTraits<Callable>::StorageType CallableStorageType; template <typename T> class Impl : public MatcherInterface<T> { using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( std::declval<CallableStorageType>(), std::declval<T>())); public: template <typename M> Impl(const CallableStorageType& callable, const M& matcher) : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "is mapped by the given callable to a value that "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "is mapped by the given callable to a value that "; matcher_.DescribeNegationTo(os); } bool MatchAndExplain(T obj, MatchResultListener* listener) const override { *listener << "which is mapped by the given callable to "; // Cannot pass the return value directly to MatchPrintAndExplain, which // takes a non-const reference as argument. // Also, specifying template argument explicitly is needed because T could // be a non-const reference (e.g. Matcher<Uncopyable&>). ResultType result = CallableTraits<Callable>::template Invoke<T>(callable_, obj); return MatchPrintAndExplain(result, matcher_, listener); } private: // Functors often define operator() as non-const method even though // they are actually stateless. But we need to use them even when // 'this' is a const pointer. It's the user's responsibility not to // use stateful callables with ResultOf(), which doesn't guarantee // how many times the callable will be invoked. mutable CallableStorageType callable_; const Matcher<ResultType> matcher_; }; // class Impl const CallableStorageType callable_; const InnerMatcher matcher_; }; // Implements a matcher that checks the size of an STL-style container. template <typename SizeMatcher> class SizeIsMatcher { public: explicit SizeIsMatcher(const SizeMatcher& size_matcher) : size_matcher_(size_matcher) { } template <typename Container> operator Matcher<Container>() const { return Matcher<Container>(new Impl<const Container&>(size_matcher_)); } template <typename Container> class Impl : public MatcherInterface<Container> { public: using SizeType = decltype(std::declval<Container>().size()); explicit Impl(const SizeMatcher& size_matcher) : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "size "; size_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "size "; size_matcher_.DescribeNegationTo(os); } bool MatchAndExplain(Container container, MatchResultListener* listener) const override { SizeType size = container.size(); StringMatchResultListener size_listener; const bool result = size_matcher_.MatchAndExplain(size, &size_listener); *listener << "whose size " << size << (result ? " matches" : " doesn't match"); PrintIfNotEmpty(size_listener.str(), listener->stream()); return result; } private: const Matcher<SizeType> size_matcher_; }; private: const SizeMatcher size_matcher_; }; // Implements a matcher that checks the begin()..end() distance of an STL-style // container. template <typename DistanceMatcher> class BeginEndDistanceIsMatcher { public: explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) : distance_matcher_(distance_matcher) {} template <typename Container> operator Matcher<Container>() const { return Matcher<Container>(new Impl<const Container&>(distance_matcher_)); } template <typename Container> class Impl : public MatcherInterface<Container> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; typedef typename std::iterator_traits< typename ContainerView::type::const_iterator>::difference_type DistanceType; explicit Impl(const DistanceMatcher& distance_matcher) : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "distance between begin() and end() "; distance_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "distance between begin() and end() "; distance_matcher_.DescribeNegationTo(os); } bool MatchAndExplain(Container container, MatchResultListener* listener) const override { using std::begin; using std::end; DistanceType distance = std::distance(begin(container), end(container)); StringMatchResultListener distance_listener; const bool result = distance_matcher_.MatchAndExplain(distance, &distance_listener); *listener << "whose distance between begin() and end() " << distance << (result ? " matches" : " doesn't match"); PrintIfNotEmpty(distance_listener.str(), listener->stream()); return result; } private: const Matcher<DistanceType> distance_matcher_; }; private: const DistanceMatcher distance_matcher_; }; // Implements an equality matcher for any STL-style container whose elements // support ==. This matcher is like Eq(), but its failure explanations provide // more detailed information that is useful when the container is used as a set. // The failure message reports elements that are in one of the operands but not // the other. The failure messages do not report duplicate or out-of-order // elements in the containers (which don't properly matter to sets, but can // occur if the containers are vectors or lists, for example). // // Uses the container's const_iterator, value_type, operator ==, // begin(), and end(). template <typename Container> class ContainerEqMatcher { public: typedef internal::StlContainerView<Container> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; static_assert(!std::is_const<Container>::value, "Container type must not be const"); static_assert(!std::is_reference<Container>::value, "Container type must not be a reference"); // We make a copy of expected in case the elements in it are modified // after this matcher is created. explicit ContainerEqMatcher(const Container& expected) : expected_(View::Copy(expected)) {} void DescribeTo(::std::ostream* os) const { *os << "equals "; UniversalPrint(expected_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "does not equal "; UniversalPrint(expected_, os); } template <typename LhsContainer> bool MatchAndExplain(const LhsContainer& lhs, MatchResultListener* listener) const { typedef internal::StlContainerView< typename std::remove_const<LhsContainer>::type> LhsView; typedef typename LhsView::type LhsStlContainer; StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); if (lhs_stl_container == expected_) return true; ::std::ostream* const os = listener->stream(); if (os != nullptr) { // Something is different. Check for extra values first. bool printed_header = false; for (typename LhsStlContainer::const_iterator it = lhs_stl_container.begin(); it != lhs_stl_container.end(); ++it) { if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == expected_.end()) { if (printed_header) { *os << ", "; } else { *os << "which has these unexpected elements: "; printed_header = true; } UniversalPrint(*it, os); } } // Now check for missing values. bool printed_header2 = false; for (typename StlContainer::const_iterator it = expected_.begin(); it != expected_.end(); ++it) { if (internal::ArrayAwareFind( lhs_stl_container.begin(), lhs_stl_container.end(), *it) == lhs_stl_container.end()) { if (printed_header2) { *os << ", "; } else { *os << (printed_header ? ",\nand" : "which") << " doesn't have these expected elements: "; printed_header2 = true; } UniversalPrint(*it, os); } } } return false; } private: const StlContainer expected_; }; // A comparator functor that uses the < operator to compare two values. struct LessComparator { template <typename T, typename U> bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } }; // Implements WhenSortedBy(comparator, container_matcher). template <typename Comparator, typename ContainerMatcher> class WhenSortedByMatcher { public: WhenSortedByMatcher(const Comparator& comparator, const ContainerMatcher& matcher) : comparator_(comparator), matcher_(matcher) {} template <typename LhsContainer> operator Matcher<LhsContainer>() const { return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); } template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; // Transforms std::pair<const Key, Value> into std::pair<Key, Value> // so that we can match associative containers. typedef typename RemoveConstFromKey< typename LhsStlContainer::value_type>::type LhsValue; Impl(const Comparator& comparator, const ContainerMatcher& matcher) : comparator_(comparator), matcher_(matcher) {} void DescribeTo(::std::ostream* os) const override { *os << "(when sorted) "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "(when sorted) "; matcher_.DescribeNegationTo(os); } bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const override { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), lhs_stl_container.end()); ::std::sort( sorted_container.begin(), sorted_container.end(), comparator_); if (!listener->IsInterested()) { // If the listener is not interested, we do not need to // construct the inner explanation. return matcher_.Matches(sorted_container); } *listener << "which is "; UniversalPrint(sorted_container, listener->stream()); *listener << " when sorted"; StringMatchResultListener inner_listener; const bool match = matcher_.MatchAndExplain(sorted_container, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } private: const Comparator comparator_; const Matcher<const ::std::vector<LhsValue>&> matcher_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); }; private: const Comparator comparator_; const ContainerMatcher matcher_; }; // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher // must be able to be safely cast to Matcher<std::tuple<const T1&, const // T2&> >, where T1 and T2 are the types of elements in the LHS // container and the RHS container respectively. template <typename TupleMatcher, typename RhsContainer> class PointwiseMatcher { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, use_UnorderedPointwise_with_hash_tables); public: typedef internal::StlContainerView<RhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type RhsValue; static_assert(!std::is_const<RhsContainer>::value, "RhsContainer type must not be const"); static_assert(!std::is_reference<RhsContainer>::value, "RhsContainer type must not be a reference"); // Like ContainerEq, we make a copy of rhs in case the elements in // it are modified after this matcher is created. PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {} template <typename LhsContainer> operator Matcher<LhsContainer>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, use_UnorderedPointwise_with_hash_tables); return Matcher<LhsContainer>( new Impl<const LhsContainer&>(tuple_matcher_, rhs_)); } template <typename LhsContainer> class Impl : public MatcherInterface<LhsContainer> { public: typedef internal::StlContainerView< GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; typedef typename LhsView::type LhsStlContainer; typedef typename LhsView::const_reference LhsStlContainerReference; typedef typename LhsStlContainer::value_type LhsValue; // We pass the LHS value and the RHS value to the inner matcher by // reference, as they may be expensive to copy. We must use tuple // instead of pair here, as a pair cannot hold references (C++ 98, // 20.2.2 [lib.pairs]). typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), rhs_(rhs) {} void DescribeTo(::std::ostream* os) const override { *os << "contains " << rhs_.size() << " values, where each value and its corresponding value in "; UniversalPrinter<RhsStlContainer>::Print(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "doesn't contain exactly " << rhs_.size() << " values, or contains a value x at some index i" << " where x and the i-th value of "; UniversalPrint(rhs_, os); *os << " "; mono_tuple_matcher_.DescribeNegationTo(os); } bool MatchAndExplain(LhsContainer lhs, MatchResultListener* listener) const override { LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); const size_t actual_size = lhs_stl_container.size(); if (actual_size != rhs_.size()) { *listener << "which contains " << actual_size << " values"; return false; } typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); typename RhsStlContainer::const_iterator right = rhs_.begin(); for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { if (listener->IsInterested()) { StringMatchResultListener inner_listener; // Create InnerMatcherArg as a temporarily object to avoid it outlives // *left and *right. Dereference or the conversion to `const T&` may // return temp objects, e.g for vector<bool>. if (!mono_tuple_matcher_.MatchAndExplain( InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), ImplicitCast_<const RhsValue&>(*right)), &inner_listener)) { *listener << "where the value pair ("; UniversalPrint(*left, listener->stream()); *listener << ", "; UniversalPrint(*right, listener->stream()); *listener << ") at index #" << i << " don't match"; PrintIfNotEmpty(inner_listener.str(), listener->stream()); return false; } } else { if (!mono_tuple_matcher_.Matches( InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), ImplicitCast_<const RhsValue&>(*right)))) return false; } } return true; } private: const Matcher<InnerMatcherArg> mono_tuple_matcher_; const RhsStlContainer rhs_; }; private: const TupleMatcher tuple_matcher_; const RhsStlContainer rhs_; }; // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. template <typename Container> class QuantifierMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element; template <typename InnerMatcher> explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const Element&>(inner_matcher)) {} // Checks whether: // * All elements in the container match, if all_elements_should_match. // * Any element in the container matches, if !all_elements_should_match. bool MatchAndExplainImpl(bool all_elements_should_match, Container container, MatchResultListener* listener) const { StlContainerReference stl_container = View::ConstReference(container); size_t i = 0; for (typename StlContainer::const_iterator it = stl_container.begin(); it != stl_container.end(); ++it, ++i) { StringMatchResultListener inner_listener; const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); if (matches != all_elements_should_match) { *listener << "whose element #" << i << (matches ? " matches" : " doesn't match"); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return !all_elements_should_match; } } return all_elements_should_match; } protected: const Matcher<const Element&> inner_matcher_; }; // Implements Contains(element_matcher) for the given argument type Container. // Symmetric to EachMatcherImpl. template <typename Container> class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit ContainsMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {} // Describes what this matcher does. void DescribeTo(::std::ostream* os) const override { *os << "contains at least one element that "; this->inner_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "doesn't contain any element that "; this->inner_matcher_.DescribeTo(os); } bool MatchAndExplain(Container container, MatchResultListener* listener) const override { return this->MatchAndExplainImpl(false, container, listener); } }; // Implements Each(element_matcher) for the given argument type Container. // Symmetric to ContainsMatcherImpl. template <typename Container> class EachMatcherImpl : public QuantifierMatcherImpl<Container> { public: template <typename InnerMatcher> explicit EachMatcherImpl(InnerMatcher inner_matcher) : QuantifierMatcherImpl<Container>(inner_matcher) {} // Describes what this matcher does. void DescribeTo(::std::ostream* os) const override { *os << "only contains elements that "; this->inner_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "contains some element that "; this->inner_matcher_.DescribeNegationTo(os); } bool MatchAndExplain(Container container, MatchResultListener* listener) const override { return this->MatchAndExplainImpl(true, container, listener); } }; // Implements polymorphic Contains(element_matcher). template <typename M> class ContainsMatcher { public: explicit ContainsMatcher(M m) : inner_matcher_(m) {} template <typename Container> operator Matcher<Container>() const { return Matcher<Container>( new ContainsMatcherImpl<const Container&>(inner_matcher_)); } private: const M inner_matcher_; }; // Implements polymorphic Each(element_matcher). template <typename M> class EachMatcher { public: explicit EachMatcher(M m) : inner_matcher_(m) {} template <typename Container> operator Matcher<Container>() const { return Matcher<Container>( new EachMatcherImpl<const Container&>(inner_matcher_)); } private: const M inner_matcher_; }; struct Rank1 {}; struct Rank0 : Rank1 {}; namespace pair_getters { using std::get; template <typename T> auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT return get<0>(x); } template <typename T> auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT return x.first; } template <typename T> auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT return get<1>(x); } template <typename T> auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT return x.second; } } // namespace pair_getters // Implements Key(inner_matcher) for the given argument pair type. // Key(inner_matcher) matches an std::pair whose 'first' field matches // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an // std::map that contains at least one element whose key is >= 5. template <typename PairType> class KeyMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type KeyType; template <typename InnerMatcher> explicit KeyMatcherImpl(InnerMatcher inner_matcher) : inner_matcher_( testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { } // Returns true if and only if 'key_value.first' (the key) matches the inner // matcher. bool MatchAndExplain(PairType key_value, MatchResultListener* listener) const override { StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain( pair_getters::First(key_value, Rank0()), &inner_listener); const std::string explanation = inner_listener.str(); if (explanation != "") { *listener << "whose first field is a value " << explanation; } return match; } // Describes what this matcher does. void DescribeTo(::std::ostream* os) const override { *os << "has a key that "; inner_matcher_.DescribeTo(os); } // Describes what the negation of this matcher does. void DescribeNegationTo(::std::ostream* os) const override { *os << "doesn't have a key that "; inner_matcher_.DescribeTo(os); } private: const Matcher<const KeyType&> inner_matcher_; }; // Implements polymorphic Key(matcher_for_key). template <typename M> class KeyMatcher { public: explicit KeyMatcher(M m) : matcher_for_key_(m) {} template <typename PairType> operator Matcher<PairType>() const { return Matcher<PairType>( new KeyMatcherImpl<const PairType&>(matcher_for_key_)); } private: const M matcher_for_key_; }; // Implements polymorphic Address(matcher_for_address). template <typename InnerMatcher> class AddressMatcher { public: explicit AddressMatcher(InnerMatcher m) : matcher_(m) {} template <typename Type> operator Matcher<Type>() const { // NOLINT return Matcher<Type>(new Impl<const Type&>(matcher_)); } private: // The monomorphic implementation that works for a particular object type. template <typename Type> class Impl : public MatcherInterface<Type> { public: using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *; explicit Impl(const InnerMatcher& matcher) : matcher_(MatcherCast<Address>(matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "has address that "; matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "does not have address that "; matcher_.DescribeTo(os); } bool MatchAndExplain(Type object, MatchResultListener* listener) const override { *listener << "which has address "; Address address = std::addressof(object); return MatchPrintAndExplain(address, matcher_, listener); } private: const Matcher<Address> matcher_; }; const InnerMatcher matcher_; }; // Implements Pair(first_matcher, second_matcher) for the given argument pair // type with its two matchers. See Pair() function below. template <typename PairType> class PairMatcherImpl : public MatcherInterface<PairType> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; typedef typename RawPairType::first_type FirstType; typedef typename RawPairType::second_type SecondType; template <typename FirstMatcher, typename SecondMatcher> PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_( testing::SafeMatcherCast<const FirstType&>(first_matcher)), second_matcher_( testing::SafeMatcherCast<const SecondType&>(second_matcher)) { } // Describes what this matcher does. void DescribeTo(::std::ostream* os) const override { *os << "has a first field that "; first_matcher_.DescribeTo(os); *os << ", and has a second field that "; second_matcher_.DescribeTo(os); } // Describes what the negation of this matcher does. void DescribeNegationTo(::std::ostream* os) const override { *os << "has a first field that "; first_matcher_.DescribeNegationTo(os); *os << ", or has a second field that "; second_matcher_.DescribeNegationTo(os); } // Returns true if and only if 'a_pair.first' matches first_matcher and // 'a_pair.second' matches second_matcher. bool MatchAndExplain(PairType a_pair, MatchResultListener* listener) const override { if (!listener->IsInterested()) { // If the listener is not interested, we don't need to construct the // explanation. return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); } StringMatchResultListener first_inner_listener; if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), &first_inner_listener)) { *listener << "whose first field does not match"; PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); return false; } StringMatchResultListener second_inner_listener; if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), &second_inner_listener)) { *listener << "whose second field does not match"; PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); return false; } ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), listener); return true; } private: void ExplainSuccess(const std::string& first_explanation, const std::string& second_explanation, MatchResultListener* listener) const { *listener << "whose both fields match"; if (first_explanation != "") { *listener << ", where the first field is a value " << first_explanation; } if (second_explanation != "") { *listener << ", "; if (first_explanation != "") { *listener << "and "; } else { *listener << "where "; } *listener << "the second field is a value " << second_explanation; } } const Matcher<const FirstType&> first_matcher_; const Matcher<const SecondType&> second_matcher_; }; // Implements polymorphic Pair(first_matcher, second_matcher). template <typename FirstMatcher, typename SecondMatcher> class PairMatcher { public: PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) : first_matcher_(first_matcher), second_matcher_(second_matcher) {} template <typename PairType> operator Matcher<PairType> () const { return Matcher<PairType>( new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_)); } private: const FirstMatcher first_matcher_; const SecondMatcher second_matcher_; }; template <typename T, size_t... I> auto UnpackStructImpl(const T& t, IndexSequence<I...>, int) -> decltype(std::tie(get<I>(t)...)) { static_assert(std::tuple_size<T>::value == sizeof...(I), "Number of arguments doesn't match the number of fields."); return std::tie(get<I>(t)...); } #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) { const auto& [a] = t; return std::tie(a); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) { const auto& [a, b] = t; return std::tie(a, b); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) { const auto& [a, b, c] = t; return std::tie(a, b, c); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) { const auto& [a, b, c, d] = t; return std::tie(a, b, c, d); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) { const auto& [a, b, c, d, e] = t; return std::tie(a, b, c, d, e); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) { const auto& [a, b, c, d, e, f] = t; return std::tie(a, b, c, d, e, f); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) { const auto& [a, b, c, d, e, f, g] = t; return std::tie(a, b, c, d, e, f, g); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) { const auto& [a, b, c, d, e, f, g, h] = t; return std::tie(a, b, c, d, e, f, g, h); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) { const auto& [a, b, c, d, e, f, g, h, i] = t; return std::tie(a, b, c, d, e, f, g, h, i); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) { const auto& [a, b, c, d, e, f, g, h, i, j] = t; return std::tie(a, b, c, d, e, f, g, h, i, j); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o); } template <typename T> auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) { const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t; return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p); } #endif // defined(__cpp_structured_bindings) template <size_t I, typename T> auto UnpackStruct(const T& t) -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) { return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0); } // Helper function to do comma folding in C++11. // The array ensures left-to-right order of evaluation. // Usage: VariadicExpand({expr...}); template <typename T, size_t N> void VariadicExpand(const T (&)[N]) {} template <typename Struct, typename StructSize> class FieldsAreMatcherImpl; template <typename Struct, size_t... I> class FieldsAreMatcherImpl<Struct, IndexSequence<I...>> : public MatcherInterface<Struct> { using UnpackedType = decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>())); using MatchersType = std::tuple< Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>; public: template <typename Inner> explicit FieldsAreMatcherImpl(const Inner& matchers) : matchers_(testing::SafeMatcherCast< const typename std::tuple_element<I, UnpackedType>::type&>( std::get<I>(matchers))...) {} void DescribeTo(::std::ostream* os) const override { const char* separator = ""; VariadicExpand( {(*os << separator << "has field #" << I << " that ", std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...}); } void DescribeNegationTo(::std::ostream* os) const override { const char* separator = ""; VariadicExpand({(*os << separator << "has field #" << I << " that ", std::get<I>(matchers_).DescribeNegationTo(os), separator = ", or ")...}); } bool MatchAndExplain(Struct t, MatchResultListener* listener) const override { return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener); } private: bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const { if (!listener->IsInterested()) { // If the listener is not interested, we don't need to construct the // explanation. bool good = true; VariadicExpand({good = good && std::get<I>(matchers_).Matches( std::get<I>(tuple))...}); return good; } size_t failed_pos = ~size_t{}; std::vector<StringMatchResultListener> inner_listener(sizeof...(I)); VariadicExpand( {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain( std::get<I>(tuple), &inner_listener[I]) ? failed_pos = I : 0 ...}); if (failed_pos != ~size_t{}) { *listener << "whose field #" << failed_pos << " does not match"; PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream()); return false; } *listener << "whose all elements match"; const char* separator = ", where"; for (size_t index = 0; index < sizeof...(I); ++index) { const std::string str = inner_listener[index].str(); if (!str.empty()) { *listener << separator << " field #" << index << " is a value " << str; separator = ", and"; } } return true; } MatchersType matchers_; }; template <typename... Inner> class FieldsAreMatcher { public: explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {} template <typename Struct> operator Matcher<Struct>() const { // NOLINT return Matcher<Struct>( new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>( matchers_)); } private: std::tuple<Inner...> matchers_; }; // Implements ElementsAre() and ElementsAreArray(). template <typename Container> class ElementsAreMatcherImpl : public MatcherInterface<Container> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::value_type Element; // Constructs the matcher from a sequence of element values or // element matchers. template <typename InputIter> ElementsAreMatcherImpl(InputIter first, InputIter last) { while (first != last) { matchers_.push_back(MatcherCast<const Element&>(*first++)); } } // Describes what this matcher does. void DescribeTo(::std::ostream* os) const override { if (count() == 0) { *os << "is empty"; } else if (count() == 1) { *os << "has 1 element that "; matchers_[0].DescribeTo(os); } else { *os << "has " << Elements(count()) << " where\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeTo(os); if (i + 1 < count()) { *os << ",\n"; } } } } // Describes what the negation of this matcher does. void DescribeNegationTo(::std::ostream* os) const override { if (count() == 0) { *os << "isn't empty"; return; } *os << "doesn't have " << Elements(count()) << ", or\n"; for (size_t i = 0; i != count(); ++i) { *os << "element #" << i << " "; matchers_[i].DescribeNegationTo(os); if (i + 1 < count()) { *os << ", or\n"; } } } bool MatchAndExplain(Container container, MatchResultListener* listener) const override { // To work with stream-like "containers", we must only walk // through the elements in one pass. const bool listener_interested = listener->IsInterested(); // explanations[i] is the explanation of the element at index i. ::std::vector<std::string> explanations(count()); StlContainerReference stl_container = View::ConstReference(container); typename StlContainer::const_iterator it = stl_container.begin(); size_t exam_pos = 0; bool mismatch_found = false; // Have we found a mismatched element yet? // Go through the elements and matchers in pairs, until we reach // the end of either the elements or the matchers, or until we find a // mismatch. for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { bool match; // Does the current element match the current matcher? if (listener_interested) { StringMatchResultListener s; match = matchers_[exam_pos].MatchAndExplain(*it, &s); explanations[exam_pos] = s.str(); } else { match = matchers_[exam_pos].Matches(*it); } if (!match) { mismatch_found = true; break; } } // If mismatch_found is true, 'exam_pos' is the index of the mismatch. // Find how many elements the actual container has. We avoid // calling size() s.t. this code works for stream-like "containers" // that don't define size(). size_t actual_count = exam_pos; for (; it != stl_container.end(); ++it) { ++actual_count; } if (actual_count != count()) { // The element count doesn't match. If the container is empty, // there's no need to explain anything as Google Mock already // prints the empty container. Otherwise we just need to show // how many elements there actually are. if (listener_interested && (actual_count != 0)) { *listener << "which has " << Elements(actual_count); } return false; } if (mismatch_found) { // The element count matches, but the exam_pos-th element doesn't match. if (listener_interested) { *listener << "whose element #" << exam_pos << " doesn't match"; PrintIfNotEmpty(explanations[exam_pos], listener->stream()); } return false; } // Every element matches its expectation. We need to explain why // (the obvious ones can be skipped). if (listener_interested) { bool reason_printed = false; for (size_t i = 0; i != count(); ++i) { const std::string& s = explanations[i]; if (!s.empty()) { if (reason_printed) { *listener << ",\nand "; } *listener << "whose element #" << i << " matches, " << s; reason_printed = true; } } } return true; } private: static Message Elements(size_t count) { return Message() << count << (count == 1 ? " element" : " elements"); } size_t count() const { return matchers_.size(); } ::std::vector<Matcher<const Element&> > matchers_; }; // Connectivity matrix of (elements X matchers), in element-major order. // Initially, there are no edges. // Use NextGraph() to iterate over all possible edge configurations. // Use Randomize() to generate a random edge configuration. class GTEST_API_ MatchMatrix { public: MatchMatrix(size_t num_elements, size_t num_matchers) : num_elements_(num_elements), num_matchers_(num_matchers), matched_(num_elements_* num_matchers_, 0) { } size_t LhsSize() const { return num_elements_; } size_t RhsSize() const { return num_matchers_; } bool HasEdge(size_t ilhs, size_t irhs) const { return matched_[SpaceIndex(ilhs, irhs)] == 1; } void SetEdge(size_t ilhs, size_t irhs, bool b) { matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; } // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, // adds 1 to that number; returns false if incrementing the graph left it // empty. bool NextGraph(); void Randomize(); std::string DebugString() const; private: size_t SpaceIndex(size_t ilhs, size_t irhs) const { return ilhs * num_matchers_ + irhs; } size_t num_elements_; size_t num_matchers_; // Each element is a char interpreted as bool. They are stored as a // flattened array in lhs-major order, use 'SpaceIndex()' to translate // a (ilhs, irhs) matrix coordinate into an offset. ::std::vector<char> matched_; }; typedef ::std::pair<size_t, size_t> ElementMatcherPair; typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; // Returns a maximum bipartite matching for the specified graph 'g'. // The matching is represented as a vector of {element, matcher} pairs. GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g); struct UnorderedMatcherRequire { enum Flags { Superset = 1 << 0, Subset = 1 << 1, ExactMatch = Superset | Subset, }; }; // Untyped base class for implementing UnorderedElementsAre. By // putting logic that's not specific to the element type here, we // reduce binary bloat and increase compilation speed. class GTEST_API_ UnorderedElementsAreMatcherImplBase { protected: explicit UnorderedElementsAreMatcherImplBase( UnorderedMatcherRequire::Flags matcher_flags) : match_flags_(matcher_flags) {} // A vector of matcher describers, one for each element matcher. // Does not own the describers (and thus can be used only when the // element matchers are alive). typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; // Describes this UnorderedElementsAre matcher. void DescribeToImpl(::std::ostream* os) const; // Describes the negation of this UnorderedElementsAre matcher. void DescribeNegationToImpl(::std::ostream* os) const; bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, const MatchMatrix& matrix, MatchResultListener* listener) const; bool FindPairing(const MatchMatrix& matrix, MatchResultListener* listener) const; MatcherDescriberVec& matcher_describers() { return matcher_describers_; } static Message Elements(size_t n) { return Message() << n << " element" << (n == 1 ? "" : "s"); } UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } private: UnorderedMatcherRequire::Flags match_flags_; MatcherDescriberVec matcher_describers_; }; // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and // IsSupersetOf. template <typename Container> class UnorderedElementsAreMatcherImpl : public MatcherInterface<Container>, public UnorderedElementsAreMatcherImplBase { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef internal::StlContainerView<RawContainer> View; typedef typename View::type StlContainer; typedef typename View::const_reference StlContainerReference; typedef typename StlContainer::const_iterator StlContainerConstIterator; typedef typename StlContainer::value_type Element; template <typename InputIter> UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, InputIter first, InputIter last) : UnorderedElementsAreMatcherImplBase(matcher_flags) { for (; first != last; ++first) { matchers_.push_back(MatcherCast<const Element&>(*first)); } for (const auto& m : matchers_) { matcher_describers().push_back(m.GetDescriber()); } } // Describes what this matcher does. void DescribeTo(::std::ostream* os) const override { return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); } // Describes what the negation of this matcher does. void DescribeNegationTo(::std::ostream* os) const override { return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); } bool MatchAndExplain(Container container, MatchResultListener* listener) const override { StlContainerReference stl_container = View::ConstReference(container); ::std::vector<std::string> element_printouts; MatchMatrix matrix = AnalyzeElements(stl_container.begin(), stl_container.end(), &element_printouts, listener); if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { return true; } if (match_flags() == UnorderedMatcherRequire::ExactMatch) { if (matrix.LhsSize() != matrix.RhsSize()) { // The element count doesn't match. If the container is empty, // there's no need to explain anything as Google Mock already // prints the empty container. Otherwise we just need to show // how many elements there actually are. if (matrix.LhsSize() != 0 && listener->IsInterested()) { *listener << "which has " << Elements(matrix.LhsSize()); } return false; } } return VerifyMatchMatrix(element_printouts, matrix, listener) && FindPairing(matrix, listener); } private: template <typename ElementIter> MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, ::std::vector<std::string>* element_printouts, MatchResultListener* listener) const { element_printouts->clear(); ::std::vector<char> did_match; size_t num_elements = 0; DummyMatchResultListener dummy; for (; elem_first != elem_last; ++num_elements, ++elem_first) { if (listener->IsInterested()) { element_printouts->push_back(PrintToString(*elem_first)); } for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { did_match.push_back( matchers_[irhs].MatchAndExplain(*elem_first, &dummy)); } } MatchMatrix matrix(num_elements, matchers_.size()); ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); } } return matrix; } ::std::vector<Matcher<const Element&> > matchers_; }; // Functor for use in TransformTuple. // Performs MatcherCast<Target> on an input argument of any type. template <typename Target> struct CastAndAppendTransform { template <typename Arg> Matcher<Target> operator()(const Arg& a) const { return MatcherCast<Target>(a); } }; // Implements UnorderedElementsAre. template <typename MatcherTuple> class UnorderedElementsAreMatcher { public: explicit UnorderedElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} template <typename Container> operator Matcher<Container>() const { typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type View; typedef typename View::value_type Element; typedef ::std::vector<Matcher<const Element&> > MatcherVec; MatcherVec matchers; matchers.reserve(::std::tuple_size<MatcherTuple>::value); TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, ::std::back_inserter(matchers)); return Matcher<Container>( new UnorderedElementsAreMatcherImpl<const Container&>( UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end())); } private: const MatcherTuple matchers_; }; // Implements ElementsAre. template <typename MatcherTuple> class ElementsAreMatcher { public: explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} template <typename Container> operator Matcher<Container>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || ::std::tuple_size<MatcherTuple>::value < 2, use_UnorderedElementsAre_with_hash_tables); typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; typedef typename internal::StlContainerView<RawContainer>::type View; typedef typename View::value_type Element; typedef ::std::vector<Matcher<const Element&> > MatcherVec; MatcherVec matchers; matchers.reserve(::std::tuple_size<MatcherTuple>::value); TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, ::std::back_inserter(matchers)); return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( matchers.begin(), matchers.end())); } private: const MatcherTuple matchers_; }; // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). template <typename T> class UnorderedElementsAreArrayMatcher { public: template <typename Iter> UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, Iter first, Iter last) : match_flags_(match_flags), matchers_(first, last) {} template <typename Container> operator Matcher<Container>() const { return Matcher<Container>( new UnorderedElementsAreMatcherImpl<const Container&>( match_flags_, matchers_.begin(), matchers_.end())); } private: UnorderedMatcherRequire::Flags match_flags_; ::std::vector<T> matchers_; }; // Implements ElementsAreArray(). template <typename T> class ElementsAreArrayMatcher { public: template <typename Iter> ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} template <typename Container> operator Matcher<Container>() const { GTEST_COMPILE_ASSERT_( !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, use_UnorderedElementsAreArray_with_hash_tables); return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>( matchers_.begin(), matchers_.end())); } private: const ::std::vector<T> matchers_; }; // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, // second) is a polymorphic matcher that matches a value x if and only if // tm matches tuple (x, second). Useful for implementing // UnorderedPointwise() in terms of UnorderedElementsAreArray(). // // BoundSecondMatcher is copyable and assignable, as we need to put // instances of this class in a vector when implementing // UnorderedPointwise(). template <typename Tuple2Matcher, typename Second> class BoundSecondMatcher { public: BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) : tuple2_matcher_(tm), second_value_(second) {} BoundSecondMatcher(const BoundSecondMatcher& other) = default; template <typename T> operator Matcher<T>() const { return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); } // We have to define this for UnorderedPointwise() to compile in // C++98 mode, as it puts BoundSecondMatcher instances in a vector, // which requires the elements to be assignable in C++98. The // compiler cannot generate the operator= for us, as Tuple2Matcher // and Second may not be assignable. // // However, this should never be called, so the implementation just // need to assert. void operator=(const BoundSecondMatcher& /*rhs*/) { GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; } private: template <typename T> class Impl : public MatcherInterface<T> { public: typedef ::std::tuple<T, Second> ArgTuple; Impl(const Tuple2Matcher& tm, const Second& second) : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), second_value_(second) {} void DescribeTo(::std::ostream* os) const override { *os << "and "; UniversalPrint(second_value_, os); *os << " "; mono_tuple2_matcher_.DescribeTo(os); } bool MatchAndExplain(T x, MatchResultListener* listener) const override { return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), listener); } private: const Matcher<const ArgTuple&> mono_tuple2_matcher_; const Second second_value_; }; const Tuple2Matcher tuple2_matcher_; const Second second_value_; }; // Given a 2-tuple matcher tm and a value second, // MatcherBindSecond(tm, second) returns a matcher that matches a // value x if and only if tm matches tuple (x, second). Useful for // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray(). template <typename Tuple2Matcher, typename Second> BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( const Tuple2Matcher& tm, const Second& second) { return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); } // Returns the description for a matcher defined using the MATCHER*() // macro where the user-supplied description string is "", if // 'negation' is false; otherwise returns the description of the // negation of the matcher. 'param_values' contains a list of strings // that are the print-out of the matcher's parameters. GTEST_API_ std::string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values); // Implements a matcher that checks the value of a optional<> type variable. template <typename ValueMatcher> class OptionalMatcher { public: explicit OptionalMatcher(const ValueMatcher& value_matcher) : value_matcher_(value_matcher) {} template <typename Optional> operator Matcher<Optional>() const { return Matcher<Optional>(new Impl<const Optional&>(value_matcher_)); } template <typename Optional> class Impl : public MatcherInterface<Optional> { public: typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; typedef typename OptionalView::value_type ValueType; explicit Impl(const ValueMatcher& value_matcher) : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} void DescribeTo(::std::ostream* os) const override { *os << "value "; value_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "value "; value_matcher_.DescribeNegationTo(os); } bool MatchAndExplain(Optional optional, MatchResultListener* listener) const override { if (!optional) { *listener << "which is not engaged"; return false; } const ValueType& value = *optional; StringMatchResultListener value_listener; const bool match = value_matcher_.MatchAndExplain(value, &value_listener); *listener << "whose value " << PrintToString(value) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(value_listener.str(), listener->stream()); return match; } private: const Matcher<ValueType> value_matcher_; }; private: const ValueMatcher value_matcher_; }; namespace variant_matcher { // Overloads to allow VariantMatcher to do proper ADL lookup. template <typename T> void holds_alternative() {} template <typename T> void get() {} // Implements a matcher that checks the value of a variant<> type variable. template <typename T> class VariantMatcher { public: explicit VariantMatcher(::testing::Matcher<const T&> matcher) : matcher_(std::move(matcher)) {} template <typename Variant> bool MatchAndExplain(const Variant& value, ::testing::MatchResultListener* listener) const { using std::get; if (!listener->IsInterested()) { return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); } if (!holds_alternative<T>(value)) { *listener << "whose value is not of type '" << GetTypeName() << "'"; return false; } const T& elem = get<T>(value); StringMatchResultListener elem_listener; const bool match = matcher_.MatchAndExplain(elem, &elem_listener); *listener << "whose value " << PrintToString(elem) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(elem_listener.str(), listener->stream()); return match; } void DescribeTo(std::ostream* os) const { *os << "is a variant<> with value of type '" << GetTypeName() << "' and the value "; matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "is a variant<> with value of type other than '" << GetTypeName() << "' or the value "; matcher_.DescribeNegationTo(os); } private: static std::string GetTypeName() { #if GTEST_HAS_RTTI GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( return internal::GetTypeName<T>()); #endif return "the element type"; } const ::testing::Matcher<const T&> matcher_; }; } // namespace variant_matcher namespace any_cast_matcher { // Overloads to allow AnyCastMatcher to do proper ADL lookup. template <typename T> void any_cast() {} // Implements a matcher that any_casts the value. template <typename T> class AnyCastMatcher { public: explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) : matcher_(matcher) {} template <typename AnyType> bool MatchAndExplain(const AnyType& value, ::testing::MatchResultListener* listener) const { if (!listener->IsInterested()) { const T* ptr = any_cast<T>(&value); return ptr != nullptr && matcher_.Matches(*ptr); } const T* elem = any_cast<T>(&value); if (elem == nullptr) { *listener << "whose value is not of type '" << GetTypeName() << "'"; return false; } StringMatchResultListener elem_listener; const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); *listener << "whose value " << PrintToString(*elem) << (match ? " matches" : " doesn't match"); PrintIfNotEmpty(elem_listener.str(), listener->stream()); return match; } void DescribeTo(std::ostream* os) const { *os << "is an 'any' type with value of type '" << GetTypeName() << "' and the value "; matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "is an 'any' type with value of type other than '" << GetTypeName() << "' or the value "; matcher_.DescribeNegationTo(os); } private: static std::string GetTypeName() { #if GTEST_HAS_RTTI GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( return internal::GetTypeName<T>()); #endif return "the element type"; } const ::testing::Matcher<const T&> matcher_; }; } // namespace any_cast_matcher // Implements the Args() matcher. template <class ArgsTuple, size_t... k> class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> { public: using RawArgsTuple = typename std::decay<ArgsTuple>::type; using SelectedArgs = std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>; using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>; template <typename InnerMatcher> explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {} bool MatchAndExplain(ArgsTuple args, MatchResultListener* listener) const override { // Workaround spurious C4100 on MSVC<=15.7 when k is empty. (void)args; const SelectedArgs& selected_args = std::forward_as_tuple(std::get<k>(args)...); if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); PrintIndices(listener->stream()); *listener << "are " << PrintToString(selected_args); StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(selected_args, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } void DescribeTo(::std::ostream* os) const override { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeNegationTo(os); } private: // Prints the indices of the selected fields. static void PrintIndices(::std::ostream* os) { *os << "whose fields ("; const char* sep = ""; // Workaround spurious C4189 on MSVC<=15.7 when k is empty. (void)sep; const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...}; (void)dummy; *os << ") "; } MonomorphicInnerMatcher inner_matcher_; }; template <class InnerMatcher, size_t... k> class ArgsMatcher { public: explicit ArgsMatcher(InnerMatcher inner_matcher) : inner_matcher_(std::move(inner_matcher)) {} template <typename ArgsTuple> operator Matcher<ArgsTuple>() const { // NOLINT return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_)); } private: InnerMatcher inner_matcher_; }; } // namespace internal // ElementsAreArray(iterator_first, iterator_last) // ElementsAreArray(pointer, count) // ElementsAreArray(array) // ElementsAreArray(container) // ElementsAreArray({ e1, e2, ..., en }) // // The ElementsAreArray() functions are like ElementsAre(...), except // that they are given a homogeneous sequence rather than taking each // element as a function argument. The sequence can be specified as an // array, a pointer and count, a vector, an initializer list, or an // STL iterator range. In each of these cases, the underlying sequence // can be either a sequence of values or a sequence of matchers. // // All forms of ElementsAreArray() make a copy of the input matcher sequence. template <typename Iter> inline internal::ElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> ElementsAreArray(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::ElementsAreArrayMatcher<T>(first, last); } template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T* pointer, size_t count) { return ElementsAreArray(pointer, pointer + count); } template <typename T, size_t N> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( const T (&array)[N]) { return ElementsAreArray(array, N); } template <typename Container> inline internal::ElementsAreArrayMatcher<typename Container::value_type> ElementsAreArray(const Container& container) { return ElementsAreArray(container.begin(), container.end()); } template <typename T> inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(::std::initializer_list<T> xs) { return ElementsAreArray(xs.begin(), xs.end()); } // UnorderedElementsAreArray(iterator_first, iterator_last) // UnorderedElementsAreArray(pointer, count) // UnorderedElementsAreArray(array) // UnorderedElementsAreArray(container) // UnorderedElementsAreArray({ e1, e2, ..., en }) // // UnorderedElementsAreArray() verifies that a bijective mapping onto a // collection of matchers exists. // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> UnorderedElementsAreArray(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::ExactMatch, first, last); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(const T* pointer, size_t count) { return UnorderedElementsAreArray(pointer, pointer + count); } template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(const T (&array)[N]) { return UnorderedElementsAreArray(array, N); } template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> UnorderedElementsAreArray(const Container& container) { return UnorderedElementsAreArray(container.begin(), container.end()); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(::std::initializer_list<T> xs) { return UnorderedElementsAreArray(xs.begin(), xs.end()); } // _ is a matcher that matches anything of any type. // // This definition is fine as: // // 1. The C++ standard permits using the name _ in a namespace that // is not the global namespace or ::std. // 2. The AnythingMatcher class has no data member or constructor, // so it's OK to create global variables of this type. // 3. c-style has approved of using _ in this case. const internal::AnythingMatcher _ = {}; // Creates a matcher that matches any value of the given type T. template <typename T> inline Matcher<T> A() { return _; } // Creates a matcher that matches any value of the given type T. template <typename T> inline Matcher<T> An() { return _; } template <typename T, typename M> Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( const M& value, std::false_type /* convertible_to_matcher */, std::false_type /* convertible_to_T */) { return Eq(value); } // Creates a polymorphic matcher that matches any NULL pointer. inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { return MakePolymorphicMatcher(internal::IsNullMatcher()); } // Creates a polymorphic matcher that matches any non-NULL pointer. // This is convenient as Not(NULL) doesn't compile (the compiler // thinks that that expression is comparing a pointer with an integer). inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { return MakePolymorphicMatcher(internal::NotNullMatcher()); } // Creates a polymorphic matcher that matches any argument that // references variable x. template <typename T> inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT return internal::RefMatcher<T&>(x); } // Creates a polymorphic matcher that matches any NaN floating point. inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() { return MakePolymorphicMatcher(internal::IsNanMatcher()); } // Creates a matcher that matches any double argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, false); } // Creates a matcher that matches any double argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { return internal::FloatingEqMatcher<double>(rhs, true); } // Creates a matcher that matches any double argument approximately equal to // rhs, up to the specified max absolute error bound, where two NANs are // considered unequal. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<double> DoubleNear( double rhs, double max_abs_error) { return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); } // Creates a matcher that matches any double argument approximately equal to // rhs, up to the specified max absolute error bound, including NaN values when // rhs is NaN. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( double rhs, double max_abs_error) { return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); } // Creates a matcher that matches any float argument approximately // equal to rhs, where two NANs are considered unequal. inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, false); } // Creates a matcher that matches any float argument approximately // equal to rhs, including NaN values when rhs is NaN. inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { return internal::FloatingEqMatcher<float>(rhs, true); } // Creates a matcher that matches any float argument approximately equal to // rhs, up to the specified max absolute error bound, where two NANs are // considered unequal. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<float> FloatNear( float rhs, float max_abs_error) { return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); } // Creates a matcher that matches any float argument approximately equal to // rhs, up to the specified max absolute error bound, including NaN values when // rhs is NaN. The max absolute error bound must be non-negative. inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( float rhs, float max_abs_error) { return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); } // Creates a matcher that matches a pointer (raw or smart) that points // to a value that matches inner_matcher. template <typename InnerMatcher> inline internal::PointeeMatcher<InnerMatcher> Pointee( const InnerMatcher& inner_matcher) { return internal::PointeeMatcher<InnerMatcher>(inner_matcher); } #if GTEST_HAS_RTTI // Creates a matcher that matches a pointer or reference that matches // inner_matcher when dynamic_cast<To> is applied. // The result of dynamic_cast<To> is forwarded to the inner matcher. // If To is a pointer and the cast fails, the inner matcher will receive NULL. // If To is a reference and the cast fails, this matcher returns false // immediately. template <typename To> inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > WhenDynamicCastTo(const Matcher<To>& inner_matcher) { return MakePolymorphicMatcher( internal::WhenDynamicCastToMatcher<To>(inner_matcher)); } #endif // GTEST_HAS_RTTI // Creates a matcher that matches an object whose given field matches // 'matcher'. For example, // Field(&Foo::number, Ge(5)) // matches a Foo object x if and only if x.number >= 5. template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher< internal::FieldMatcher<Class, FieldType> > Field( FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher( internal::FieldMatcher<Class, FieldType>( field, MatcherCast<const FieldType&>(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Field(&Foo::bar, m) // to compile where bar is an int32 and m is a matcher for int64. } // Same as Field() but also takes the name of the field to provide better error // messages. template <typename Class, typename FieldType, typename FieldMatcher> inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( const std::string& field_name, FieldType Class::*field, const FieldMatcher& matcher) { return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( field_name, field, MatcherCast<const FieldType&>(matcher))); } // Creates a matcher that matches an object whose given property // matches 'matcher'. For example, // Property(&Foo::str, StartsWith("hi")) // matches a Foo object x if and only if x.str() starts with "hi". template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const> > Property(PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const>( property, MatcherCast<const PropertyType&>(matcher))); // The call to MatcherCast() is required for supporting inner // matchers of compatible types. For example, it allows // Property(&Foo::bar, m) // to compile where bar() returns an int32 and m is a matcher for int64. } // Same as Property() above, but also takes the name of the property to provide // better error messages. template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const> > Property(const std::string& property_name, PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const>( property_name, property, MatcherCast<const PropertyType&>(matcher))); } // The same as above but for reference-qualified member functions. template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const &> > Property(PropertyType (Class::*property)() const &, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const&>( property, MatcherCast<const PropertyType&>(matcher))); } // Three-argument form for reference-qualified member functions. template <typename Class, typename PropertyType, typename PropertyMatcher> inline PolymorphicMatcher<internal::PropertyMatcher< Class, PropertyType, PropertyType (Class::*)() const &> > Property(const std::string& property_name, PropertyType (Class::*property)() const &, const PropertyMatcher& matcher) { return MakePolymorphicMatcher( internal::PropertyMatcher<Class, PropertyType, PropertyType (Class::*)() const&>( property_name, property, MatcherCast<const PropertyType&>(matcher))); } // Creates a matcher that matches an object if and only if the result of // applying a callable to x matches 'matcher'. For example, // ResultOf(f, StartsWith("hi")) // matches a Foo object x if and only if f(x) starts with "hi". // `callable` parameter can be a function, function pointer, or a functor. It is // required to keep no state affecting the results of the calls on it and make // no assumptions about how many calls will be made. Any state it keeps must be // protected from the concurrent access. template <typename Callable, typename InnerMatcher> internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( Callable callable, InnerMatcher matcher) { return internal::ResultOfMatcher<Callable, InnerMatcher>( std::move(callable), std::move(matcher)); } // String matchers. // Matches a string equal to str. template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( const internal::StringLike<T>& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(std::string(str), true, true)); } // Matches a string not equal to str. template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( const internal::StringLike<T>& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(std::string(str), false, true)); } // Matches a string equal to str, ignoring case. template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( const internal::StringLike<T>& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::string>(std::string(str), true, false)); } // Matches a string not equal to str, ignoring case. template <typename T = std::string> PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( const internal::StringLike<T>& str) { return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>( std::string(str), false, false)); } // Creates a matcher that matches any string, std::string, or C string // that contains the given substring. template <typename T = std::string> PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( const internal::StringLike<T>& substring) { return MakePolymorphicMatcher( internal::HasSubstrMatcher<std::string>(std::string(substring))); } // Matches a string that starts with 'prefix' (case-sensitive). template <typename T = std::string> PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( const internal::StringLike<T>& prefix) { return MakePolymorphicMatcher( internal::StartsWithMatcher<std::string>(std::string(prefix))); } // Matches a string that ends with 'suffix' (case-sensitive). template <typename T = std::string> PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( const internal::StringLike<T>& suffix) { return MakePolymorphicMatcher( internal::EndsWithMatcher<std::string>(std::string(suffix))); } #if GTEST_HAS_STD_WSTRING // Wide string matchers. // Matches a string equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, true, true)); } // Matches a string not equal to str. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, false, true)); } // Matches a string equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrCaseEq(const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, true, false)); } // Matches a string not equal to str, ignoring case. inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrCaseNe(const std::wstring& str) { return MakePolymorphicMatcher( internal::StrEqualityMatcher<std::wstring>(str, false, false)); } // Creates a matcher that matches any ::wstring, std::wstring, or C wide string // that contains the given substring. inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( const std::wstring& substring) { return MakePolymorphicMatcher( internal::HasSubstrMatcher<std::wstring>(substring)); } // Matches a string that starts with 'prefix' (case-sensitive). inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > StartsWith(const std::wstring& prefix) { return MakePolymorphicMatcher( internal::StartsWithMatcher<std::wstring>(prefix)); } // Matches a string that ends with 'suffix' (case-sensitive). inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( const std::wstring& suffix) { return MakePolymorphicMatcher( internal::EndsWithMatcher<std::wstring>(suffix)); } #endif // GTEST_HAS_STD_WSTRING // Creates a polymorphic matcher that matches a 2-tuple where the // first field == the second field. inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field >= the second field. inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field > the second field. inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field <= the second field. inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field < the second field. inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where the // first field != the second field. inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatEq(first field) matches the second field. inline internal::FloatingEq2Matcher<float> FloatEq() { return internal::FloatingEq2Matcher<float>(); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleEq(first field) matches the second field. inline internal::FloatingEq2Matcher<double> DoubleEq() { return internal::FloatingEq2Matcher<double>(); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatEq(first field) matches the second field with NaN equality. inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { return internal::FloatingEq2Matcher<float>(true); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleEq(first field) matches the second field with NaN equality. inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { return internal::FloatingEq2Matcher<double>(true); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatNear(first field, max_abs_error) matches the second field. inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { return internal::FloatingEq2Matcher<float>(max_abs_error); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleNear(first field, max_abs_error) matches the second field. inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { return internal::FloatingEq2Matcher<double>(max_abs_error); } // Creates a polymorphic matcher that matches a 2-tuple where // FloatNear(first field, max_abs_error) matches the second field with NaN // equality. inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( float max_abs_error) { return internal::FloatingEq2Matcher<float>(max_abs_error, true); } // Creates a polymorphic matcher that matches a 2-tuple where // DoubleNear(first field, max_abs_error) matches the second field with NaN // equality. inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( double max_abs_error) { return internal::FloatingEq2Matcher<double>(max_abs_error, true); } // Creates a matcher that matches any value of type T that m doesn't // match. template <typename InnerMatcher> inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { return internal::NotMatcher<InnerMatcher>(m); } // Returns a matcher that matches anything that satisfies the given // predicate. The predicate can be any unary function or functor // whose return type can be implicitly converted to bool. template <typename Predicate> inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > Truly(Predicate pred) { return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); } // Returns a matcher that matches the container size. The container must // support both size() and size_type which all STL-like containers provide. // Note that the parameter 'size' can be a value of type size_type as well as // matcher. For instance: // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. template <typename SizeMatcher> inline internal::SizeIsMatcher<SizeMatcher> SizeIs(const SizeMatcher& size_matcher) { return internal::SizeIsMatcher<SizeMatcher>(size_matcher); } // Returns a matcher that matches the distance between the container's begin() // iterator and its end() iterator, i.e. the size of the container. This matcher // can be used instead of SizeIs with containers such as std::forward_list which // do not implement size(). The container must provide const_iterator (with // valid iterator_traits), begin() and end(). template <typename DistanceMatcher> inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); } // Returns a matcher that matches an equal container. // This matcher behaves like Eq(), but in the event of mismatch lists the // values that are included in one container but not the other. (Duplicate // values and order differences are not explained.) template <typename Container> inline PolymorphicMatcher<internal::ContainerEqMatcher< typename std::remove_const<Container>::type>> ContainerEq(const Container& rhs) { return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs)); } // Returns a matcher that matches a container that, when sorted using // the given comparator, matches container_matcher. template <typename Comparator, typename ContainerMatcher> inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(const Comparator& comparator, const ContainerMatcher& container_matcher) { return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( comparator, container_matcher); } // Returns a matcher that matches a container that, when sorted using // the < operator, matches container_matcher. template <typename ContainerMatcher> inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> WhenSorted(const ContainerMatcher& container_matcher) { return internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( internal::LessComparator(), container_matcher); } // Matches an STL-style container or a native array that contains the // same number of elements as in rhs, where its i-th element and rhs's // i-th element (as a pair) satisfy the given pair matcher, for all i. // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const // T1&, const T2&> >, where T1 and T2 are the types of elements in the // LHS container and the RHS container respectively. template <typename TupleMatcher, typename Container> inline internal::PointwiseMatcher<TupleMatcher, typename std::remove_const<Container>::type> Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher, rhs); } // Supports the Pointwise(m, {a, b, c}) syntax. template <typename TupleMatcher, typename T> inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { return Pointwise(tuple_matcher, std::vector<T>(rhs)); } // UnorderedPointwise(pair_matcher, rhs) matches an STL-style // container or a native array that contains the same number of // elements as in rhs, where in some permutation of the container, its // i-th element and rhs's i-th element (as a pair) satisfy the given // pair matcher, for all i. Tuple2Matcher must be able to be safely // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are // the types of elements in the LHS container and the RHS container // respectively. // // This is like Pointwise(pair_matcher, rhs), except that the element // order doesn't matter. template <typename Tuple2Matcher, typename RhsContainer> inline internal::UnorderedElementsAreArrayMatcher< typename internal::BoundSecondMatcher< Tuple2Matcher, typename internal::StlContainerView< typename std::remove_const<RhsContainer>::type>::type::value_type>> UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, const RhsContainer& rhs_container) { // RhsView allows the same code to handle RhsContainer being a // STL-style container and it being a native C-style array. typedef typename internal::StlContainerView<RhsContainer> RhsView; typedef typename RhsView::type RhsStlContainer; typedef typename RhsStlContainer::value_type Second; const RhsStlContainer& rhs_stl_container = RhsView::ConstReference(rhs_container); // Create a matcher for each element in rhs_container. ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); it != rhs_stl_container.end(); ++it) { matchers.push_back( internal::MatcherBindSecond(tuple2_matcher, *it)); } // Delegate the work to UnorderedElementsAreArray(). return UnorderedElementsAreArray(matchers); } // Supports the UnorderedPointwise(m, {a, b, c}) syntax. template <typename Tuple2Matcher, typename T> inline internal::UnorderedElementsAreArrayMatcher< typename internal::BoundSecondMatcher<Tuple2Matcher, T> > UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, std::initializer_list<T> rhs) { return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); } // Matches an STL-style container or a native array that contains at // least one element matching the given value or matcher. // // Examples: // ::std::set<int> page_ids; // page_ids.insert(3); // page_ids.insert(1); // EXPECT_THAT(page_ids, Contains(1)); // EXPECT_THAT(page_ids, Contains(Gt(2))); // EXPECT_THAT(page_ids, Not(Contains(4))); // // ::std::map<int, size_t> page_lengths; // page_lengths[1] = 100; // EXPECT_THAT(page_lengths, // Contains(::std::pair<const int, size_t>(1, 100))); // // const char* user_ids[] = { "joe", "mike", "tom" }; // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); template <typename M> inline internal::ContainsMatcher<M> Contains(M matcher) { return internal::ContainsMatcher<M>(matcher); } // IsSupersetOf(iterator_first, iterator_last) // IsSupersetOf(pointer, count) // IsSupersetOf(array) // IsSupersetOf(container) // IsSupersetOf({e1, e2, ..., en}) // // IsSupersetOf() verifies that a surjective partial mapping onto a collection // of matchers exists. In other words, a container matches // IsSupersetOf({e1, ..., en}) if and only if there is a permutation // {y1, ..., yn} of some of the container's elements where y1 matches e1, // ..., and yn matches en. Obviously, the size of the container must be >= n // in order to have a match. Examples: // // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and // 1 matches Ne(0). // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches // both Eq(1) and Lt(2). The reason is that different matchers must be used // for elements in different slots of the container. // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches // Eq(1) and (the second) 1 matches Lt(2). // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) // Gt(1) and 3 matches (the second) Gt(1). // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> IsSupersetOf(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::Superset, first, last); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( const T* pointer, size_t count) { return IsSupersetOf(pointer, pointer + count); } template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( const T (&array)[N]) { return IsSupersetOf(array, N); } template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> IsSupersetOf(const Container& container) { return IsSupersetOf(container.begin(), container.end()); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( ::std::initializer_list<T> xs) { return IsSupersetOf(xs.begin(), xs.end()); } // IsSubsetOf(iterator_first, iterator_last) // IsSubsetOf(pointer, count) // IsSubsetOf(array) // IsSubsetOf(container) // IsSubsetOf({e1, e2, ..., en}) // // IsSubsetOf() verifies that an injective mapping onto a collection of matchers // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and // only if there is a subset of matchers {m1, ..., mk} which would match the // container using UnorderedElementsAre. Obviously, the size of the container // must be <= n in order to have a match. Examples: // // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 // matches Lt(0). // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both // match Gt(0). The reason is that different matchers must be used for // elements in different slots of the container. // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::UnorderedElementsAreArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> IsSubsetOf(Iter first, Iter last) { typedef typename ::std::iterator_traits<Iter>::value_type T; return internal::UnorderedElementsAreArrayMatcher<T>( internal::UnorderedMatcherRequire::Subset, first, last); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( const T* pointer, size_t count) { return IsSubsetOf(pointer, pointer + count); } template <typename T, size_t N> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( const T (&array)[N]) { return IsSubsetOf(array, N); } template <typename Container> inline internal::UnorderedElementsAreArrayMatcher< typename Container::value_type> IsSubsetOf(const Container& container) { return IsSubsetOf(container.begin(), container.end()); } template <typename T> inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( ::std::initializer_list<T> xs) { return IsSubsetOf(xs.begin(), xs.end()); } // Matches an STL-style container or a native array that contains only // elements matching the given value or matcher. // // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only // the messages are different. // // Examples: // ::std::set<int> page_ids; // // Each(m) matches an empty container, regardless of what m is. // EXPECT_THAT(page_ids, Each(Eq(1))); // EXPECT_THAT(page_ids, Each(Eq(77))); // // page_ids.insert(3); // EXPECT_THAT(page_ids, Each(Gt(0))); // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); // page_ids.insert(1); // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); // // ::std::map<int, size_t> page_lengths; // page_lengths[1] = 100; // page_lengths[2] = 200; // page_lengths[3] = 300; // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); // // const char* user_ids[] = { "joe", "mike", "tom" }; // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); template <typename M> inline internal::EachMatcher<M> Each(M matcher) { return internal::EachMatcher<M>(matcher); } // Key(inner_matcher) matches an std::pair whose 'first' field matches // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an // std::map that contains at least one element whose key is >= 5. template <typename M> inline internal::KeyMatcher<M> Key(M inner_matcher) { return internal::KeyMatcher<M>(inner_matcher); } // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field // matches first_matcher and whose 'second' field matches second_matcher. For // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used // to match a std::map<int, string> that contains exactly one element whose key // is >= 5 and whose value equals "foo". template <typename FirstMatcher, typename SecondMatcher> inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { return internal::PairMatcher<FirstMatcher, SecondMatcher>( first_matcher, second_matcher); } namespace no_adl { // FieldsAre(matchers...) matches piecewise the fields of compatible structs. // These include those that support `get<I>(obj)`, and when structured bindings // are enabled any class that supports them. // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types. template <typename... M> internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre( M&&... matchers) { return internal::FieldsAreMatcher<typename std::decay<M>::type...>( std::forward<M>(matchers)...); } // Creates a matcher that matches a pointer (raw or smart) that matches // inner_matcher. template <typename InnerMatcher> inline internal::PointerMatcher<InnerMatcher> Pointer( const InnerMatcher& inner_matcher) { return internal::PointerMatcher<InnerMatcher>(inner_matcher); } // Creates a matcher that matches an object that has an address that matches // inner_matcher. template <typename InnerMatcher> inline internal::AddressMatcher<InnerMatcher> Address( const InnerMatcher& inner_matcher) { return internal::AddressMatcher<InnerMatcher>(inner_matcher); } } // namespace no_adl // Returns a predicate that is satisfied by anything that matches the // given matcher. template <typename M> inline internal::MatcherAsPredicate<M> Matches(M matcher) { return internal::MatcherAsPredicate<M>(matcher); } // Returns true if and only if the value matches the matcher. template <typename T, typename M> inline bool Value(const T& value, M matcher) { return testing::Matches(matcher)(value); } // Matches the value against the given matcher and explains the match // result to listener. template <typename T, typename M> inline bool ExplainMatchResult( M matcher, const T& value, MatchResultListener* listener) { return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); } // Returns a string representation of the given matcher. Useful for description // strings of matchers defined using MATCHER_P* macros that accept matchers as // their arguments. For example: // // MATCHER_P(XAndYThat, matcher, // "X that " + DescribeMatcher<int>(matcher, negation) + // " and Y that " + DescribeMatcher<double>(matcher, negation)) { // return ExplainMatchResult(matcher, arg.x(), result_listener) && // ExplainMatchResult(matcher, arg.y(), result_listener); // } template <typename T, typename M> std::string DescribeMatcher(const M& matcher, bool negation = false) { ::std::stringstream ss; Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); if (negation) { monomorphic_matcher.DescribeNegationTo(&ss); } else { monomorphic_matcher.DescribeTo(&ss); } return ss.str(); } template <typename... Args> internal::ElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>> ElementsAre(const Args&... matchers) { return internal::ElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>>( std::make_tuple(matchers...)); } template <typename... Args> internal::UnorderedElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>> UnorderedElementsAre(const Args&... matchers) { return internal::UnorderedElementsAreMatcher< std::tuple<typename std::decay<const Args&>::type...>>( std::make_tuple(matchers...)); } // Define variadic matcher versions. template <typename... Args> internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( const Args&... matchers) { return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( matchers...); } template <typename... Args> internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( const Args&... matchers) { return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( matchers...); } // AnyOfArray(array) // AnyOfArray(pointer, count) // AnyOfArray(container) // AnyOfArray({ e1, e2, ..., en }) // AnyOfArray(iterator_first, iterator_last) // // AnyOfArray() verifies whether a given value matches any member of a // collection of matchers. // // AllOfArray(array) // AllOfArray(pointer, count) // AllOfArray(container) // AllOfArray({ e1, e2, ..., en }) // AllOfArray(iterator_first, iterator_last) // // AllOfArray() verifies whether a given value matches all members of a // collection of matchers. // // The matchers can be specified as an array, a pointer and count, a container, // an initializer list, or an STL iterator range. In each of these cases, the // underlying matchers can be either values or matchers. template <typename Iter> inline internal::AnyOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> AnyOfArray(Iter first, Iter last) { return internal::AnyOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type>(first, last); } template <typename Iter> inline internal::AllOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type> AllOfArray(Iter first, Iter last) { return internal::AllOfArrayMatcher< typename ::std::iterator_traits<Iter>::value_type>(first, last); } template <typename T> inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) { return AnyOfArray(ptr, ptr + count); } template <typename T> inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) { return AllOfArray(ptr, ptr + count); } template <typename T, size_t N> inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) { return AnyOfArray(array, N); } template <typename T, size_t N> inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) { return AllOfArray(array, N); } template <typename Container> inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray( const Container& container) { return AnyOfArray(container.begin(), container.end()); } template <typename Container> inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray( const Container& container) { return AllOfArray(container.begin(), container.end()); } template <typename T> inline internal::AnyOfArrayMatcher<T> AnyOfArray( ::std::initializer_list<T> xs) { return AnyOfArray(xs.begin(), xs.end()); } template <typename T> inline internal::AllOfArrayMatcher<T> AllOfArray( ::std::initializer_list<T> xs) { return AllOfArray(xs.begin(), xs.end()); } // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected // fields of it matches a_matcher. C++ doesn't support default // arguments for function templates, so we have to overload it. template <size_t... k, typename InnerMatcher> internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args( InnerMatcher&& matcher) { return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>( std::forward<InnerMatcher>(matcher)); } // AllArgs(m) is a synonym of m. This is useful in // // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); // // which is easier to read than // // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); template <typename InnerMatcher> inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } // Returns a matcher that matches the value of an optional<> type variable. // The matcher implementation only uses '!arg' and requires that the optional<> // type has a 'value_type' member type and that '*arg' is of type 'value_type' // and is printable using 'PrintToString'. It is compatible with // std::optional/std::experimental::optional. // Note that to compare an optional type variable against nullopt you should // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the // optional value contains an optional itself. template <typename ValueMatcher> inline internal::OptionalMatcher<ValueMatcher> Optional( const ValueMatcher& value_matcher) { return internal::OptionalMatcher<ValueMatcher>(value_matcher); } // Returns a matcher that matches the value of a absl::any type variable. template <typename T> PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( const Matcher<const T&>& matcher) { return MakePolymorphicMatcher( internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); } // Returns a matcher that matches the value of a variant<> type variable. // The matcher implementation uses ADL to find the holds_alternative and get // functions. // It is compatible with std::variant. template <typename T> PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( const Matcher<const T&>& matcher) { return MakePolymorphicMatcher( internal::variant_matcher::VariantMatcher<T>(matcher)); } #if GTEST_HAS_EXCEPTIONS // Anything inside the `internal` namespace is internal to the implementation // and must not be used in user code! namespace internal { class WithWhatMatcherImpl { public: WithWhatMatcherImpl(Matcher<std::string> matcher) : matcher_(std::move(matcher)) {} void DescribeTo(std::ostream* os) const { *os << "contains .what() that "; matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "contains .what() that does not "; matcher_.DescribeTo(os); } template <typename Err> bool MatchAndExplain(const Err& err, MatchResultListener* listener) const { *listener << "which contains .what() that "; return matcher_.MatchAndExplain(err.what(), listener); } private: const Matcher<std::string> matcher_; }; inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat( Matcher<std::string> m) { return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m))); } template <typename Err> class ExceptionMatcherImpl { class NeverThrown { public: const char* what() const noexcept { return "this exception should never be thrown"; } }; // If the matchee raises an exception of a wrong type, we'd like to // catch it and print its message and type. To do that, we add an additional // catch clause: // // try { ... } // catch (const Err&) { /* an expected exception */ } // catch (const std::exception&) { /* exception of a wrong type */ } // // However, if the `Err` itself is `std::exception`, we'd end up with two // identical `catch` clauses: // // try { ... } // catch (const std::exception&) { /* an expected exception */ } // catch (const std::exception&) { /* exception of a wrong type */ } // // This can cause a warning or an error in some compilers. To resolve // the issue, we use a fake error type whenever `Err` is `std::exception`: // // try { ... } // catch (const std::exception&) { /* an expected exception */ } // catch (const NeverThrown&) { /* exception of a wrong type */ } using DefaultExceptionType = typename std::conditional< std::is_same<typename std::remove_cv< typename std::remove_reference<Err>::type>::type, std::exception>::value, const NeverThrown&, const std::exception&>::type; public: ExceptionMatcherImpl(Matcher<const Err&> matcher) : matcher_(std::move(matcher)) {} void DescribeTo(std::ostream* os) const { *os << "throws an exception which is a " << GetTypeName<Err>(); *os << " which "; matcher_.DescribeTo(os); } void DescribeNegationTo(std::ostream* os) const { *os << "throws an exception which is not a " << GetTypeName<Err>(); *os << " which "; matcher_.DescribeNegationTo(os); } template <typename T> bool MatchAndExplain(T&& x, MatchResultListener* listener) const { try { (void)(std::forward<T>(x)()); } catch (const Err& err) { *listener << "throws an exception which is a " << GetTypeName<Err>(); *listener << " "; return matcher_.MatchAndExplain(err, listener); } catch (DefaultExceptionType err) { #if GTEST_HAS_RTTI *listener << "throws an exception of type " << GetTypeName(typeid(err)); *listener << " "; #else *listener << "throws an std::exception-derived type "; #endif *listener << "with description \"" << err.what() << "\""; return false; } catch (...) { *listener << "throws an exception of an unknown type"; return false; } *listener << "does not throw any exception"; return false; } private: const Matcher<const Err&> matcher_; }; } // namespace internal // Throws() // Throws(exceptionMatcher) // ThrowsMessage(messageMatcher) // // This matcher accepts a callable and verifies that when invoked, it throws // an exception with the given type and properties. // // Examples: // // EXPECT_THAT( // []() { throw std::runtime_error("message"); }, // Throws<std::runtime_error>()); // // EXPECT_THAT( // []() { throw std::runtime_error("message"); }, // ThrowsMessage<std::runtime_error>(HasSubstr("message"))); // // EXPECT_THAT( // []() { throw std::runtime_error("message"); }, // Throws<std::runtime_error>( // Property(&std::runtime_error::what, HasSubstr("message")))); template <typename Err> PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() { return MakePolymorphicMatcher( internal::ExceptionMatcherImpl<Err>(A<const Err&>())); } template <typename Err, typename ExceptionMatcher> PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws( const ExceptionMatcher& exception_matcher) { // Using matcher cast allows users to pass a matcher of a more broad type. // For example user may want to pass Matcher<std::exception> // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>. return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>( SafeMatcherCast<const Err&>(exception_matcher))); } template <typename Err, typename MessageMatcher> PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage( MessageMatcher&& message_matcher) { static_assert(std::is_base_of<std::exception, Err>::value, "expected an std::exception-derived type"); return Throws<Err>(internal::WithWhat( MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher)))); } #endif // GTEST_HAS_EXCEPTIONS // These macros allow using matchers to check values in Google Test // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) // succeed if and only if the value matches the matcher. If the assertion // fails, the value and the description of the matcher will be printed. #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) // MATCHER* macroses itself are listed below. #define MATCHER(name, description) \ class name##Matcher \ : public ::testing::internal::MatcherBaseImpl<name##Matcher> { \ public: \ template <typename arg_type> \ class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ public: \ gmock_Impl() {} \ bool MatchAndExplain( \ const arg_type& arg, \ ::testing::MatchResultListener* result_listener) const override; \ void DescribeTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(false); \ } \ void DescribeNegationTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(true); \ } \ \ private: \ ::std::string FormatDescription(bool negation) const { \ ::std::string gmock_description = (description); \ if (!gmock_description.empty()) { \ return gmock_description; \ } \ return ::testing::internal::FormatMatcherDescription(negation, #name, \ {}); \ } \ }; \ }; \ GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \ template <typename arg_type> \ bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \ const arg_type& arg, \ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \ const #define MATCHER_P(name, p0, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0)) #define MATCHER_P2(name, p0, p1, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1)) #define MATCHER_P3(name, p0, p1, p2, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2)) #define MATCHER_P4(name, p0, p1, p2, p3, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3)) #define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \ (p0, p1, p2, p3, p4)) #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \ (p0, p1, p2, p3, p4, p5)) #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \ (p0, p1, p2, p3, p4, p5, p6)) #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \ (p0, p1, p2, p3, p4, p5, p6, p7)) #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \ (p0, p1, p2, p3, p4, p5, p6, p7, p8)) #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \ GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \ (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ class full_name : public ::testing::internal::MatcherBaseImpl< \ full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \ public: \ using full_name::MatcherBaseImpl::MatcherBaseImpl; \ template <typename arg_type> \ class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \ public: \ explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \ : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \ bool MatchAndExplain( \ const arg_type& arg, \ ::testing::MatchResultListener* result_listener) const override; \ void DescribeTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(false); \ } \ void DescribeNegationTo(::std::ostream* gmock_os) const override { \ *gmock_os << FormatDescription(true); \ } \ GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ \ private: \ ::std::string FormatDescription(bool negation) const { \ ::std::string gmock_description = (description); \ if (!gmock_description.empty()) { \ return gmock_description; \ } \ return ::testing::internal::FormatMatcherDescription( \ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings( \ ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \ } \ }; \ }; \ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \ GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \ return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \ GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \ } \ template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \ template <typename arg_type> \ bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \ arg_type>::MatchAndExplain(const arg_type& arg, \ ::testing::MatchResultListener* \ result_listener GTEST_ATTRIBUTE_UNUSED_) \ const #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \ GMOCK_PP_TAIL( \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args)) #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \ , typename arg##_type #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args)) #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \ , arg##_type #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \ GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \ GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args)) #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \ , arg##_type gmock_p##i #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args)) #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \ , arg(::std::forward<arg##_type>(gmock_p##i)) #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args) #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \ const arg##_type arg; #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args)) #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args)) #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \ , gmock_p##i // To prevent ADL on certain functions we put them on a separate namespace. using namespace no_adl; // NOLINT } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 // Include any custom callback matchers added by the local installation. // We must include this header at the end to make sure it can use the // declarations from this file. // Copyright 2015, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Injection point for custom user configurations. See README for details // // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #if GTEST_HAS_EXCEPTIONS # include <stdexcept> // NOLINT #endif GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ /* class A needs to have dll-interface to be used by clients of class B */) namespace testing { // An abstract handle of an expectation. class Expectation; // A set of expectation handles. class ExpectationSet; // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // Implements a mock function. template <typename F> class FunctionMocker; // Base class for expectations. class ExpectationBase; // Implements an expectation. template <typename F> class TypedExpectation; // Helper class for testing the Expectation class template. class ExpectationTester; // Helper classes for implementing NiceMock, StrictMock, and NaggyMock. template <typename MockClass> class NiceMockImpl; template <typename MockClass> class StrictMockImpl; template <typename MockClass> class NaggyMockImpl; // Protects the mock object registry (in class Mock), all function // mockers, and all expectations. // // The reason we don't use more fine-grained protection is: when a // mock function Foo() is called, it needs to consult its expectations // to see which one should be picked. If another thread is allowed to // call a mock function (either Foo() or a different one) at the same // time, it could affect the "retired" attributes of Foo()'s // expectations when InSequence() is used, and thus affect which // expectation gets picked. Therefore, we sequence all mock function // calls to ensure the integrity of the mock objects' states. GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex); // Untyped base class for ActionResultHolder<R>. class UntypedActionResultHolderBase; // Abstract base class of FunctionMocker. This is the // type-agnostic part of the function mocker interface. Its pure // virtual methods are implemented by FunctionMocker. class GTEST_API_ UntypedFunctionMockerBase { public: UntypedFunctionMockerBase(); virtual ~UntypedFunctionMockerBase(); // Verifies that all expectations on this mock function have been // satisfied. Reports one or more Google Test non-fatal failures // and returns false if not. bool VerifyAndClearExpectationsLocked() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); // Clears the ON_CALL()s set on this mock function. virtual void ClearDefaultActionsLocked() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0; // In all of the following Untyped* functions, it's the caller's // responsibility to guarantee the correctness of the arguments' // types. // Performs the default action with the given arguments and returns // the action's result. The call description string will be used in // the error message to describe the call in the case the default // action fails. // L = * virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction( void* untyped_args, const std::string& call_description) const = 0; // Performs the given action with the given arguments and returns // the action's result. // L = * virtual UntypedActionResultHolderBase* UntypedPerformAction( const void* untyped_action, void* untyped_args) const = 0; // Writes a message that the call is uninteresting (i.e. neither // explicitly expected nor explicitly unexpected) to the given // ostream. virtual void UntypedDescribeUninterestingCall( const void* untyped_args, ::std::ostream* os) const GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; // Returns the expectation that matches the given function arguments // (or NULL is there's no match); when a match is found, // untyped_action is set to point to the action that should be // performed (or NULL if the action is "do default"), and // is_excessive is modified to indicate whether the call exceeds the // expected number. virtual const ExpectationBase* UntypedFindMatchingExpectation( const void* untyped_args, const void** untyped_action, bool* is_excessive, ::std::ostream* what, ::std::ostream* why) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0; // Prints the given function arguments to the ostream. virtual void UntypedPrintArgs(const void* untyped_args, ::std::ostream* os) const = 0; // Sets the mock object this mock method belongs to, and registers // this information in the global mock registry. Will be called // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock // method. void RegisterOwner(const void* mock_obj) GTEST_LOCK_EXCLUDED_(g_gmock_mutex); // Sets the mock object this mock method belongs to, and sets the // name of the mock function. Will be called upon each invocation // of this mock function. void SetOwnerAndName(const void* mock_obj, const char* name) GTEST_LOCK_EXCLUDED_(g_gmock_mutex); // Returns the mock object this mock method belongs to. Must be // called after RegisterOwner() or SetOwnerAndName() has been // called. const void* MockObject() const GTEST_LOCK_EXCLUDED_(g_gmock_mutex); // Returns the name of this mock method. Must be called after // SetOwnerAndName() has been called. const char* Name() const GTEST_LOCK_EXCLUDED_(g_gmock_mutex); // Returns the result of invoking this mock function with the given // arguments. This function can be safely called from multiple // threads concurrently. The caller is responsible for deleting the // result. UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex); protected: typedef std::vector<const void*> UntypedOnCallSpecs; using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>; // Returns an Expectation object that references and co-owns exp, // which must be an expectation on this mock function. Expectation GetHandleOf(ExpectationBase* exp); // Address of the mock object this mock method belongs to. Only // valid after this mock method has been called or // ON_CALL/EXPECT_CALL has been invoked on it. const void* mock_obj_; // Protected by g_gmock_mutex. // Name of the function being mocked. Only valid after this mock // method has been called. const char* name_; // Protected by g_gmock_mutex. // All default action specs for this function mocker. UntypedOnCallSpecs untyped_on_call_specs_; // All expectations for this function mocker. // // It's undefined behavior to interleave expectations (EXPECT_CALLs // or ON_CALLs) and mock function calls. Also, the order of // expectations is important. Therefore it's a logic race condition // to read/write untyped_expectations_ concurrently. In order for // tools like tsan to catch concurrent read/write accesses to // untyped_expectations, we deliberately leave accesses to it // unprotected. UntypedExpectations untyped_expectations_; }; // class UntypedFunctionMockerBase // Untyped base class for OnCallSpec<F>. class UntypedOnCallSpecBase { public: // The arguments are the location of the ON_CALL() statement. UntypedOnCallSpecBase(const char* a_file, int a_line) : file_(a_file), line_(a_line), last_clause_(kNone) {} // Where in the source file was the default action spec defined? const char* file() const { return file_; } int line() const { return line_; } protected: // Gives each clause in the ON_CALL() statement a name. enum Clause { // Do not change the order of the enum members! The run-time // syntax checking relies on it. kNone, kWith, kWillByDefault }; // Asserts that the ON_CALL() statement has a certain property. void AssertSpecProperty(bool property, const std::string& failure_message) const { Assert(property, file_, line_, failure_message); } // Expects that the ON_CALL() statement has a certain property. void ExpectSpecProperty(bool property, const std::string& failure_message) const { Expect(property, file_, line_, failure_message); } const char* file_; int line_; // The last clause in the ON_CALL() statement as seen so far. // Initially kNone and changes as the statement is parsed. Clause last_clause_; }; // class UntypedOnCallSpecBase // This template class implements an ON_CALL spec. template <typename F> class OnCallSpec : public UntypedOnCallSpecBase { public: typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; // Constructs an OnCallSpec object from the information inside // the parenthesis of an ON_CALL() statement. OnCallSpec(const char* a_file, int a_line, const ArgumentMatcherTuple& matchers) : UntypedOnCallSpecBase(a_file, a_line), matchers_(matchers), // By default, extra_matcher_ should match anything. However, // we cannot initialize it with _ as that causes ambiguity between // Matcher's copy and move constructor for some argument types. extra_matcher_(A<const ArgumentTuple&>()) {} // Implements the .With() clause. OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) { // Makes sure this is called at most once. ExpectSpecProperty(last_clause_ < kWith, ".With() cannot appear " "more than once in an ON_CALL()."); last_clause_ = kWith; extra_matcher_ = m; return *this; } // Implements the .WillByDefault() clause. OnCallSpec& WillByDefault(const Action<F>& action) { ExpectSpecProperty(last_clause_ < kWillByDefault, ".WillByDefault() must appear " "exactly once in an ON_CALL()."); last_clause_ = kWillByDefault; ExpectSpecProperty(!action.IsDoDefault(), "DoDefault() cannot be used in ON_CALL()."); action_ = action; return *this; } // Returns true if and only if the given arguments match the matchers. bool Matches(const ArgumentTuple& args) const { return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); } // Returns the action specified by the user. const Action<F>& GetAction() const { AssertSpecProperty(last_clause_ == kWillByDefault, ".WillByDefault() must appear exactly " "once in an ON_CALL()."); return action_; } private: // The information in statement // // ON_CALL(mock_object, Method(matchers)) // .With(multi-argument-matcher) // .WillByDefault(action); // // is recorded in the data members like this: // // source file that contains the statement => file_ // line number of the statement => line_ // matchers => matchers_ // multi-argument-matcher => extra_matcher_ // action => action_ ArgumentMatcherTuple matchers_; Matcher<const ArgumentTuple&> extra_matcher_; Action<F> action_; }; // class OnCallSpec // Possible reactions on uninteresting calls. enum CallReaction { kAllow, kWarn, kFail, }; } // namespace internal // Utilities for manipulating mock objects. class GTEST_API_ Mock { public: // The following public methods can be called concurrently. // Tells Google Mock to ignore mock_obj when checking for leaked // mock objects. static void AllowLeak(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Verifies and clears all expectations on the given mock object. // If the expectations aren't satisfied, generates one or more // Google Test non-fatal failures and returns false. static bool VerifyAndClearExpectations(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Verifies all expectations on the given mock object and clears its // default actions and expectations. Returns true if and only if the // verification was successful. static bool VerifyAndClear(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Returns whether the mock was created as a naggy mock (default) static bool IsNaggy(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Returns whether the mock was created as a nice mock static bool IsNice(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Returns whether the mock was created as a strict mock static bool IsStrict(void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); private: friend class internal::UntypedFunctionMockerBase; // Needed for a function mocker to register itself (so that we know // how to clear a mock object). template <typename F> friend class internal::FunctionMocker; template <typename MockClass> friend class internal::NiceMockImpl; template <typename MockClass> friend class internal::NaggyMockImpl; template <typename MockClass> friend class internal::StrictMockImpl; // Tells Google Mock to allow uninteresting calls on the given mock // object. static void AllowUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Tells Google Mock to warn the user about uninteresting calls on // the given mock object. static void WarnUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Tells Google Mock to fail uninteresting calls on the given mock // object. static void FailUninterestingCalls(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Tells Google Mock the given mock object is being destroyed and // its entry in the call-reaction table should be removed. static void UnregisterCallReaction(const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Returns the reaction Google Mock will have on uninteresting calls // made on the given mock object. static internal::CallReaction GetReactionOnUninterestingCalls( const void* mock_obj) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Verifies that all expectations on the given mock object have been // satisfied. Reports one or more Google Test non-fatal failures // and returns false if not. static bool VerifyAndClearExpectationsLocked(void* mock_obj) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); // Clears all ON_CALL()s set on the given mock object. static void ClearDefaultActionsLocked(void* mock_obj) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); // Registers a mock object and a mock method it owns. static void Register( const void* mock_obj, internal::UntypedFunctionMockerBase* mocker) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Tells Google Mock where in the source code mock_obj is used in an // ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this // information helps the user identify which object it is. static void RegisterUseByOnCallOrExpectCall( const void* mock_obj, const char* file, int line) GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex); // Unregisters a mock method; removes the owning mock object from // the registry when the last mock method associated with it has // been unregistered. This is called only in the destructor of // FunctionMocker. static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker) GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex); }; // class Mock // An abstract handle of an expectation. Useful in the .After() // clause of EXPECT_CALL() for setting the (partial) order of // expectations. The syntax: // // Expectation e1 = EXPECT_CALL(...)...; // EXPECT_CALL(...).After(e1)...; // // sets two expectations where the latter can only be matched after // the former has been satisfied. // // Notes: // - This class is copyable and has value semantics. // - Constness is shallow: a const Expectation object itself cannot // be modified, but the mutable methods of the ExpectationBase // object it references can be called via expectation_base(). class GTEST_API_ Expectation { public: // Constructs a null object that doesn't reference any expectation. Expectation(); Expectation(Expectation&&) = default; Expectation(const Expectation&) = default; Expectation& operator=(Expectation&&) = default; Expectation& operator=(const Expectation&) = default; ~Expectation(); // This single-argument ctor must not be explicit, in order to support the // Expectation e = EXPECT_CALL(...); // syntax. // // A TypedExpectation object stores its pre-requisites as // Expectation objects, and needs to call the non-const Retire() // method on the ExpectationBase objects they reference. Therefore // Expectation must receive a *non-const* reference to the // ExpectationBase object. Expectation(internal::ExpectationBase& exp); // NOLINT // The compiler-generated copy ctor and operator= work exactly as // intended, so we don't need to define our own. // Returns true if and only if rhs references the same expectation as this // object does. bool operator==(const Expectation& rhs) const { return expectation_base_ == rhs.expectation_base_; } bool operator!=(const Expectation& rhs) const { return !(*this == rhs); } private: friend class ExpectationSet; friend class Sequence; friend class ::testing::internal::ExpectationBase; friend class ::testing::internal::UntypedFunctionMockerBase; template <typename F> friend class ::testing::internal::FunctionMocker; template <typename F> friend class ::testing::internal::TypedExpectation; // This comparator is needed for putting Expectation objects into a set. class Less { public: bool operator()(const Expectation& lhs, const Expectation& rhs) const { return lhs.expectation_base_.get() < rhs.expectation_base_.get(); } }; typedef ::std::set<Expectation, Less> Set; Expectation( const std::shared_ptr<internal::ExpectationBase>& expectation_base); // Returns the expectation this object references. const std::shared_ptr<internal::ExpectationBase>& expectation_base() const { return expectation_base_; } // A shared_ptr that co-owns the expectation this handle references. std::shared_ptr<internal::ExpectationBase> expectation_base_; }; // A set of expectation handles. Useful in the .After() clause of // EXPECT_CALL() for setting the (partial) order of expectations. The // syntax: // // ExpectationSet es; // es += EXPECT_CALL(...)...; // es += EXPECT_CALL(...)...; // EXPECT_CALL(...).After(es)...; // // sets three expectations where the last one can only be matched // after the first two have both been satisfied. // // This class is copyable and has value semantics. class ExpectationSet { public: // A bidirectional iterator that can read a const element in the set. typedef Expectation::Set::const_iterator const_iterator; // An object stored in the set. This is an alias of Expectation. typedef Expectation::Set::value_type value_type; // Constructs an empty set. ExpectationSet() {} // This single-argument ctor must not be explicit, in order to support the // ExpectationSet es = EXPECT_CALL(...); // syntax. ExpectationSet(internal::ExpectationBase& exp) { // NOLINT *this += Expectation(exp); } // This single-argument ctor implements implicit conversion from // Expectation and thus must not be explicit. This allows either an // Expectation or an ExpectationSet to be used in .After(). ExpectationSet(const Expectation& e) { // NOLINT *this += e; } // The compiler-generator ctor and operator= works exactly as // intended, so we don't need to define our own. // Returns true if and only if rhs contains the same set of Expectation // objects as this does. bool operator==(const ExpectationSet& rhs) const { return expectations_ == rhs.expectations_; } bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); } // Implements the syntax // expectation_set += EXPECT_CALL(...); ExpectationSet& operator+=(const Expectation& e) { expectations_.insert(e); return *this; } int size() const { return static_cast<int>(expectations_.size()); } const_iterator begin() const { return expectations_.begin(); } const_iterator end() const { return expectations_.end(); } private: Expectation::Set expectations_; }; // Sequence objects are used by a user to specify the relative order // in which the expectations should match. They are copyable (we rely // on the compiler-defined copy constructor and assignment operator). class GTEST_API_ Sequence { public: // Constructs an empty sequence. Sequence() : last_expectation_(new Expectation) {} // Adds an expectation to this sequence. The caller must ensure // that no other thread is accessing this Sequence object. void AddExpectation(const Expectation& expectation) const; private: // The last expectation in this sequence. std::shared_ptr<Expectation> last_expectation_; }; // class Sequence // An object of this type causes all EXPECT_CALL() statements // encountered in its scope to be put in an anonymous sequence. The // work is done in the constructor and destructor. You should only // create an InSequence object on the stack. // // The sole purpose for this class is to support easy definition of // sequential expectations, e.g. // // { // InSequence dummy; // The name of the object doesn't matter. // // // The following expectations must match in the order they appear. // EXPECT_CALL(a, Bar())...; // EXPECT_CALL(a, Baz())...; // ... // EXPECT_CALL(b, Xyz())...; // } // // You can create InSequence objects in multiple threads, as long as // they are used to affect different mock objects. The idea is that // each thread can create and set up its own mocks as if it's the only // thread. However, for clarity of your tests we recommend you to set // up mocks in the main thread unless you have a good reason not to do // so. class GTEST_API_ InSequence { public: InSequence(); ~InSequence(); private: bool sequence_created_; GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT } GTEST_ATTRIBUTE_UNUSED_; namespace internal { // Points to the implicit sequence introduced by a living InSequence // object (if any) in the current thread or NULL. GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence; // Base class for implementing expectations. // // There are two reasons for having a type-agnostic base class for // Expectation: // // 1. We need to store collections of expectations of different // types (e.g. all pre-requisites of a particular expectation, all // expectations in a sequence). Therefore these expectation objects // must share a common base class. // // 2. We can avoid binary code bloat by moving methods not depending // on the template argument of Expectation to the base class. // // This class is internal and mustn't be used by user code directly. class GTEST_API_ ExpectationBase { public: // source_text is the EXPECT_CALL(...) source that created this Expectation. ExpectationBase(const char* file, int line, const std::string& source_text); virtual ~ExpectationBase(); // Where in the source file was the expectation spec defined? const char* file() const { return file_; } int line() const { return line_; } const char* source_text() const { return source_text_.c_str(); } // Returns the cardinality specified in the expectation spec. const Cardinality& cardinality() const { return cardinality_; } // Describes the source file location of this expectation. void DescribeLocationTo(::std::ostream* os) const { *os << FormatFileLocation(file(), line()) << " "; } // Describes how many times a function call matching this // expectation has occurred. void DescribeCallCountTo(::std::ostream* os) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); // If this mock method has an extra matcher (i.e. .With(matcher)), // describes it to the ostream. virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0; protected: friend class ::testing::Expectation; friend class UntypedFunctionMockerBase; enum Clause { // Don't change the order of the enum members! kNone, kWith, kTimes, kInSequence, kAfter, kWillOnce, kWillRepeatedly, kRetiresOnSaturation }; typedef std::vector<const void*> UntypedActions; // Returns an Expectation object that references and co-owns this // expectation. virtual Expectation GetHandle() = 0; // Asserts that the EXPECT_CALL() statement has the given property. void AssertSpecProperty(bool property, const std::string& failure_message) const { Assert(property, file_, line_, failure_message); } // Expects that the EXPECT_CALL() statement has the given property. void ExpectSpecProperty(bool property, const std::string& failure_message) const { Expect(property, file_, line_, failure_message); } // Explicitly specifies the cardinality of this expectation. Used // by the subclasses to implement the .Times() clause. void SpecifyCardinality(const Cardinality& cardinality); // Returns true if and only if the user specified the cardinality // explicitly using a .Times(). bool cardinality_specified() const { return cardinality_specified_; } // Sets the cardinality of this expectation spec. void set_cardinality(const Cardinality& a_cardinality) { cardinality_ = a_cardinality; } // The following group of methods should only be called after the // EXPECT_CALL() statement, and only when g_gmock_mutex is held by // the current thread. // Retires all pre-requisites of this expectation. void RetireAllPreRequisites() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); // Returns true if and only if this expectation is retired. bool is_retired() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); return retired_; } // Retires this expectation. void Retire() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); retired_ = true; } // Returns true if and only if this expectation is satisfied. bool IsSatisfied() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); return cardinality().IsSatisfiedByCallCount(call_count_); } // Returns true if and only if this expectation is saturated. bool IsSaturated() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); return cardinality().IsSaturatedByCallCount(call_count_); } // Returns true if and only if this expectation is over-saturated. bool IsOverSaturated() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); return cardinality().IsOverSaturatedByCallCount(call_count_); } // Returns true if and only if all pre-requisites of this expectation are // satisfied. bool AllPrerequisitesAreSatisfied() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); // Adds unsatisfied pre-requisites of this expectation to 'result'. void FindUnsatisfiedPrerequisites(ExpectationSet* result) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex); // Returns the number this expectation has been invoked. int call_count() const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); return call_count_; } // Increments the number this expectation has been invoked. void IncrementCallCount() GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); call_count_++; } // Checks the action count (i.e. the number of WillOnce() and // WillRepeatedly() clauses) against the cardinality if this hasn't // been done before. Prints a warning if there are too many or too // few actions. void CheckActionCountIfNotDone() const GTEST_LOCK_EXCLUDED_(mutex_); friend class ::testing::Sequence; friend class ::testing::internal::ExpectationTester; template <typename Function> friend class TypedExpectation; // Implements the .Times() clause. void UntypedTimes(const Cardinality& a_cardinality); // This group of fields are part of the spec and won't change after // an EXPECT_CALL() statement finishes. const char* file_; // The file that contains the expectation. int line_; // The line number of the expectation. const std::string source_text_; // The EXPECT_CALL(...) source text. // True if and only if the cardinality is specified explicitly. bool cardinality_specified_; Cardinality cardinality_; // The cardinality of the expectation. // The immediate pre-requisites (i.e. expectations that must be // satisfied before this expectation can be matched) of this // expectation. We use std::shared_ptr in the set because we want an // Expectation object to be co-owned by its FunctionMocker and its // successors. This allows multiple mock objects to be deleted at // different times. ExpectationSet immediate_prerequisites_; // This group of fields are the current state of the expectation, // and can change as the mock function is called. int call_count_; // How many times this expectation has been invoked. bool retired_; // True if and only if this expectation has retired. UntypedActions untyped_actions_; bool extra_matcher_specified_; bool repeated_action_specified_; // True if a WillRepeatedly() was specified. bool retires_on_saturation_; Clause last_clause_; mutable bool action_count_checked_; // Under mutex_. mutable Mutex mutex_; // Protects action_count_checked_. }; // class ExpectationBase // Impements an expectation for the given function type. template <typename F> class TypedExpectation : public ExpectationBase { public: typedef typename Function<F>::ArgumentTuple ArgumentTuple; typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; typedef typename Function<F>::Result Result; TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line, const std::string& a_source_text, const ArgumentMatcherTuple& m) : ExpectationBase(a_file, a_line, a_source_text), owner_(owner), matchers_(m), // By default, extra_matcher_ should match anything. However, // we cannot initialize it with _ as that causes ambiguity between // Matcher's copy and move constructor for some argument types. extra_matcher_(A<const ArgumentTuple&>()), repeated_action_(DoDefault()) {} ~TypedExpectation() override { // Check the validity of the action count if it hasn't been done // yet (for example, if the expectation was never used). CheckActionCountIfNotDone(); for (UntypedActions::const_iterator it = untyped_actions_.begin(); it != untyped_actions_.end(); ++it) { delete static_cast<const Action<F>*>(*it); } } // Implements the .With() clause. TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) { if (last_clause_ == kWith) { ExpectSpecProperty(false, ".With() cannot appear " "more than once in an EXPECT_CALL()."); } else { ExpectSpecProperty(last_clause_ < kWith, ".With() must be the first " "clause in an EXPECT_CALL()."); } last_clause_ = kWith; extra_matcher_ = m; extra_matcher_specified_ = true; return *this; } // Implements the .Times() clause. TypedExpectation& Times(const Cardinality& a_cardinality) { ExpectationBase::UntypedTimes(a_cardinality); return *this; } // Implements the .Times() clause. TypedExpectation& Times(int n) { return Times(Exactly(n)); } // Implements the .InSequence() clause. TypedExpectation& InSequence(const Sequence& s) { ExpectSpecProperty(last_clause_ <= kInSequence, ".InSequence() cannot appear after .After()," " .WillOnce(), .WillRepeatedly(), or " ".RetiresOnSaturation()."); last_clause_ = kInSequence; s.AddExpectation(GetHandle()); return *this; } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) { return InSequence(s1).InSequence(s2); } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, const Sequence& s3) { return InSequence(s1, s2).InSequence(s3); } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, const Sequence& s3, const Sequence& s4) { return InSequence(s1, s2, s3).InSequence(s4); } TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2, const Sequence& s3, const Sequence& s4, const Sequence& s5) { return InSequence(s1, s2, s3, s4).InSequence(s5); } // Implements that .After() clause. TypedExpectation& After(const ExpectationSet& s) { ExpectSpecProperty(last_clause_ <= kAfter, ".After() cannot appear after .WillOnce()," " .WillRepeatedly(), or " ".RetiresOnSaturation()."); last_clause_ = kAfter; for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) { immediate_prerequisites_ += *it; } return *this; } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) { return After(s1).After(s2); } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, const ExpectationSet& s3) { return After(s1, s2).After(s3); } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, const ExpectationSet& s3, const ExpectationSet& s4) { return After(s1, s2, s3).After(s4); } TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2, const ExpectationSet& s3, const ExpectationSet& s4, const ExpectationSet& s5) { return After(s1, s2, s3, s4).After(s5); } // Implements the .WillOnce() clause. TypedExpectation& WillOnce(const Action<F>& action) { ExpectSpecProperty(last_clause_ <= kWillOnce, ".WillOnce() cannot appear after " ".WillRepeatedly() or .RetiresOnSaturation()."); last_clause_ = kWillOnce; untyped_actions_.push_back(new Action<F>(action)); if (!cardinality_specified()) { set_cardinality(Exactly(static_cast<int>(untyped_actions_.size()))); } return *this; } // Implements the .WillRepeatedly() clause. TypedExpectation& WillRepeatedly(const Action<F>& action) { if (last_clause_ == kWillRepeatedly) { ExpectSpecProperty(false, ".WillRepeatedly() cannot appear " "more than once in an EXPECT_CALL()."); } else { ExpectSpecProperty(last_clause_ < kWillRepeatedly, ".WillRepeatedly() cannot appear " "after .RetiresOnSaturation()."); } last_clause_ = kWillRepeatedly; repeated_action_specified_ = true; repeated_action_ = action; if (!cardinality_specified()) { set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size()))); } // Now that no more action clauses can be specified, we check // whether their count makes sense. CheckActionCountIfNotDone(); return *this; } // Implements the .RetiresOnSaturation() clause. TypedExpectation& RetiresOnSaturation() { ExpectSpecProperty(last_clause_ < kRetiresOnSaturation, ".RetiresOnSaturation() cannot appear " "more than once."); last_clause_ = kRetiresOnSaturation; retires_on_saturation_ = true; // Now that no more action clauses can be specified, we check // whether their count makes sense. CheckActionCountIfNotDone(); return *this; } // Returns the matchers for the arguments as specified inside the // EXPECT_CALL() macro. const ArgumentMatcherTuple& matchers() const { return matchers_; } // Returns the matcher specified by the .With() clause. const Matcher<const ArgumentTuple&>& extra_matcher() const { return extra_matcher_; } // Returns the action specified by the .WillRepeatedly() clause. const Action<F>& repeated_action() const { return repeated_action_; } // If this mock method has an extra matcher (i.e. .With(matcher)), // describes it to the ostream. void MaybeDescribeExtraMatcherTo(::std::ostream* os) override { if (extra_matcher_specified_) { *os << " Expected args: "; extra_matcher_.DescribeTo(os); *os << "\n"; } } private: template <typename Function> friend class FunctionMocker; // Returns an Expectation object that references and co-owns this // expectation. Expectation GetHandle() override { return owner_->GetHandleOf(this); } // The following methods will be called only after the EXPECT_CALL() // statement finishes and when the current thread holds // g_gmock_mutex. // Returns true if and only if this expectation matches the given arguments. bool Matches(const ArgumentTuple& args) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); return TupleMatches(matchers_, args) && extra_matcher_.Matches(args); } // Returns true if and only if this expectation should handle the given // arguments. bool ShouldHandleArguments(const ArgumentTuple& args) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); // In case the action count wasn't checked when the expectation // was defined (e.g. if this expectation has no WillRepeatedly() // or RetiresOnSaturation() clause), we check it when the // expectation is used for the first time. CheckActionCountIfNotDone(); return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args); } // Describes the result of matching the arguments against this // expectation to the given ostream. void ExplainMatchResultTo( const ArgumentTuple& args, ::std::ostream* os) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); if (is_retired()) { *os << " Expected: the expectation is active\n" << " Actual: it is retired\n"; } else if (!Matches(args)) { if (!TupleMatches(matchers_, args)) { ExplainMatchFailureTupleTo(matchers_, args, os); } StringMatchResultListener listener; if (!extra_matcher_.MatchAndExplain(args, &listener)) { *os << " Expected args: "; extra_matcher_.DescribeTo(os); *os << "\n Actual: don't match"; internal::PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } else if (!AllPrerequisitesAreSatisfied()) { *os << " Expected: all pre-requisites are satisfied\n" << " Actual: the following immediate pre-requisites " << "are not satisfied:\n"; ExpectationSet unsatisfied_prereqs; FindUnsatisfiedPrerequisites(&unsatisfied_prereqs); int i = 0; for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin(); it != unsatisfied_prereqs.end(); ++it) { it->expectation_base()->DescribeLocationTo(os); *os << "pre-requisite #" << i++ << "\n"; } *os << " (end of pre-requisites)\n"; } else { // This line is here just for completeness' sake. It will never // be executed as currently the ExplainMatchResultTo() function // is called only when the mock function call does NOT match the // expectation. *os << "The call matches the expectation.\n"; } } // Returns the action that should be taken for the current invocation. const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker, const ArgumentTuple& args) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); const int count = call_count(); Assert(count >= 1, __FILE__, __LINE__, "call_count() is <= 0 when GetCurrentAction() is " "called - this should never happen."); const int action_count = static_cast<int>(untyped_actions_.size()); if (action_count > 0 && !repeated_action_specified_ && count > action_count) { // If there is at least one WillOnce() and no WillRepeatedly(), // we warn the user when the WillOnce() clauses ran out. ::std::stringstream ss; DescribeLocationTo(&ss); ss << "Actions ran out in " << source_text() << "...\n" << "Called " << count << " times, but only " << action_count << " WillOnce()" << (action_count == 1 ? " is" : "s are") << " specified - "; mocker->DescribeDefaultActionTo(args, &ss); Log(kWarning, ss.str(), 1); } return count <= action_count ? *static_cast<const Action<F>*>( untyped_actions_[static_cast<size_t>(count - 1)]) : repeated_action(); } // Given the arguments of a mock function call, if the call will // over-saturate this expectation, returns the default action; // otherwise, returns the next action in this expectation. Also // describes *what* happened to 'what', and explains *why* Google // Mock does it to 'why'. This method is not const as it calls // IncrementCallCount(). A return value of NULL means the default // action. const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker, const ArgumentTuple& args, ::std::ostream* what, ::std::ostream* why) GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); if (IsSaturated()) { // We have an excessive call. IncrementCallCount(); *what << "Mock function called more times than expected - "; mocker->DescribeDefaultActionTo(args, what); DescribeCallCountTo(why); return nullptr; } IncrementCallCount(); RetireAllPreRequisites(); if (retires_on_saturation_ && IsSaturated()) { Retire(); } // Must be done after IncrementCount()! *what << "Mock function call matches " << source_text() <<"...\n"; return &(GetCurrentAction(mocker, args)); } // All the fields below won't change once the EXPECT_CALL() // statement finishes. FunctionMocker<F>* const owner_; ArgumentMatcherTuple matchers_; Matcher<const ArgumentTuple&> extra_matcher_; Action<F> repeated_action_; GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation); }; // class TypedExpectation // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for // specifying the default behavior of, or expectation on, a mock // function. // Note: class MockSpec really belongs to the ::testing namespace. // However if we define it in ::testing, MSVC will complain when // classes in ::testing::internal declare it as a friend class // template. To workaround this compiler bug, we define MockSpec in // ::testing::internal and import it into ::testing. // Logs a message including file and line number information. GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity, const char* file, int line, const std::string& message); template <typename F> class MockSpec { public: typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; typedef typename internal::Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple; // Constructs a MockSpec object, given the function mocker object // that the spec is associated with. MockSpec(internal::FunctionMocker<F>* function_mocker, const ArgumentMatcherTuple& matchers) : function_mocker_(function_mocker), matchers_(matchers) {} // Adds a new default action spec to the function mocker and returns // the newly created spec. internal::OnCallSpec<F>& InternalDefaultActionSetAt( const char* file, int line, const char* obj, const char* call) { LogWithLocation(internal::kInfo, file, line, std::string("ON_CALL(") + obj + ", " + call + ") invoked"); return function_mocker_->AddNewOnCallSpec(file, line, matchers_); } // Adds a new expectation spec to the function mocker and returns // the newly created spec. internal::TypedExpectation<F>& InternalExpectedAt( const char* file, int line, const char* obj, const char* call) { const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " + call + ")"); LogWithLocation(internal::kInfo, file, line, source_text + " invoked"); return function_mocker_->AddNewExpectation( file, line, source_text, matchers_); } // This operator overload is used to swallow the superfluous parameter list // introduced by the ON/EXPECT_CALL macros. See the macro comments for more // explanation. MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) { return *this; } private: template <typename Function> friend class internal::FunctionMocker; // The function mocker that owns this spec. internal::FunctionMocker<F>* const function_mocker_; // The argument matchers specified in the spec. ArgumentMatcherTuple matchers_; }; // class MockSpec // Wrapper type for generically holding an ordinary value or lvalue reference. // If T is not a reference type, it must be copyable or movable. // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless // T is a move-only value type (which means that it will always be copyable // if the current platform does not support move semantics). // // The primary template defines handling for values, but function header // comments describe the contract for the whole template (including // specializations). template <typename T> class ReferenceOrValueWrapper { public: // Constructs a wrapper from the given value/reference. explicit ReferenceOrValueWrapper(T value) : value_(std::move(value)) { } // Unwraps and returns the underlying value/reference, exactly as // originally passed. The behavior of calling this more than once on // the same object is unspecified. T Unwrap() { return std::move(value_); } // Provides nondestructive access to the underlying value/reference. // Always returns a const reference (more precisely, // const std::add_lvalue_reference<T>::type). The behavior of calling this // after calling Unwrap on the same object is unspecified. const T& Peek() const { return value_; } private: T value_; }; // Specialization for lvalue reference types. See primary template // for documentation. template <typename T> class ReferenceOrValueWrapper<T&> { public: // Workaround for debatable pass-by-reference lint warning (c-library-team // policy precludes NOLINT in this context) typedef T& reference; explicit ReferenceOrValueWrapper(reference ref) : value_ptr_(&ref) {} T& Unwrap() { return *value_ptr_; } const T& Peek() const { return *value_ptr_; } private: T* value_ptr_; }; // C++ treats the void type specially. For example, you cannot define // a void-typed variable or pass a void value to a function. // ActionResultHolder<T> holds a value of type T, where T must be a // copyable type or void (T doesn't need to be default-constructable). // It hides the syntactic difference between void and other types, and // is used to unify the code for invoking both void-returning and // non-void-returning mock functions. // Untyped base class for ActionResultHolder<T>. class UntypedActionResultHolderBase { public: virtual ~UntypedActionResultHolderBase() {} // Prints the held value as an action's result to os. virtual void PrintAsActionResult(::std::ostream* os) const = 0; }; // This generic definition is used when T is not void. template <typename T> class ActionResultHolder : public UntypedActionResultHolderBase { public: // Returns the held value. Must not be called more than once. T Unwrap() { return result_.Unwrap(); } // Prints the held value as an action's result to os. void PrintAsActionResult(::std::ostream* os) const override { *os << "\n Returns: "; // T may be a reference type, so we don't use UniversalPrint(). UniversalPrinter<T>::Print(result_.Peek(), os); } // Performs the given mock function's default action and returns the // result in a new-ed ActionResultHolder. template <typename F> static ActionResultHolder* PerformDefaultAction( const FunctionMocker<F>* func_mocker, typename Function<F>::ArgumentTuple&& args, const std::string& call_description) { return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction( std::move(args), call_description))); } // Performs the given action and returns the result in a new-ed // ActionResultHolder. template <typename F> static ActionResultHolder* PerformAction( const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { return new ActionResultHolder( Wrapper(action.Perform(std::move(args)))); } private: typedef ReferenceOrValueWrapper<T> Wrapper; explicit ActionResultHolder(Wrapper result) : result_(std::move(result)) { } Wrapper result_; GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); }; // Specialization for T = void. template <> class ActionResultHolder<void> : public UntypedActionResultHolderBase { public: void Unwrap() { } void PrintAsActionResult(::std::ostream* /* os */) const override {} // Performs the given mock function's default action and returns ownership // of an empty ActionResultHolder*. template <typename F> static ActionResultHolder* PerformDefaultAction( const FunctionMocker<F>* func_mocker, typename Function<F>::ArgumentTuple&& args, const std::string& call_description) { func_mocker->PerformDefaultAction(std::move(args), call_description); return new ActionResultHolder; } // Performs the given action and returns ownership of an empty // ActionResultHolder*. template <typename F> static ActionResultHolder* PerformAction( const Action<F>& action, typename Function<F>::ArgumentTuple&& args) { action.Perform(std::move(args)); return new ActionResultHolder; } private: ActionResultHolder() {} GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder); }; template <typename F> class FunctionMocker; template <typename R, typename... Args> class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase { using F = R(Args...); public: using Result = R; using ArgumentTuple = std::tuple<Args...>; using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>; FunctionMocker() {} // There is no generally useful and implementable semantics of // copying a mock object, so copying a mock is usually a user error. // Thus we disallow copying function mockers. If the user really // wants to copy a mock object, they should implement their own copy // operation, for example: // // class MockFoo : public Foo { // public: // // Defines a copy constructor explicitly. // MockFoo(const MockFoo& src) {} // ... // }; FunctionMocker(const FunctionMocker&) = delete; FunctionMocker& operator=(const FunctionMocker&) = delete; // The destructor verifies that all expectations on this mock // function have been satisfied. If not, it will report Google Test // non-fatal failures for the violations. ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { MutexLock l(&g_gmock_mutex); VerifyAndClearExpectationsLocked(); Mock::UnregisterLocked(this); ClearDefaultActionsLocked(); } // Returns the ON_CALL spec that matches this mock function with the // given arguments; returns NULL if no matching ON_CALL is found. // L = * const OnCallSpec<F>* FindOnCallSpec( const ArgumentTuple& args) const { for (UntypedOnCallSpecs::const_reverse_iterator it = untyped_on_call_specs_.rbegin(); it != untyped_on_call_specs_.rend(); ++it) { const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it); if (spec->Matches(args)) return spec; } return nullptr; } // Performs the default action of this mock function on the given // arguments and returns the result. Asserts (or throws if // exceptions are enabled) with a helpful call descrption if there // is no valid return value. This method doesn't depend on the // mutable state of this object, and thus can be called concurrently // without locking. // L = * Result PerformDefaultAction(ArgumentTuple&& args, const std::string& call_description) const { const OnCallSpec<F>* const spec = this->FindOnCallSpec(args); if (spec != nullptr) { return spec->GetAction().Perform(std::move(args)); } const std::string message = call_description + "\n The mock function has no default action " "set, and its return type has no default value set."; #if GTEST_HAS_EXCEPTIONS if (!DefaultValue<Result>::Exists()) { throw std::runtime_error(message); } #else Assert(DefaultValue<Result>::Exists(), "", -1, message); #endif return DefaultValue<Result>::Get(); } // Performs the default action with the given arguments and returns // the action's result. The call description string will be used in // the error message to describe the call in the case the default // action fails. The caller is responsible for deleting the result. // L = * UntypedActionResultHolderBase* UntypedPerformDefaultAction( void* untyped_args, // must point to an ArgumentTuple const std::string& call_description) const override { ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); return ResultHolder::PerformDefaultAction(this, std::move(*args), call_description); } // Performs the given action with the given arguments and returns // the action's result. The caller is responsible for deleting the // result. // L = * UntypedActionResultHolderBase* UntypedPerformAction( const void* untyped_action, void* untyped_args) const override { // Make a copy of the action before performing it, in case the // action deletes the mock object (and thus deletes itself). const Action<F> action = *static_cast<const Action<F>*>(untyped_action); ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args); return ResultHolder::PerformAction(action, std::move(*args)); } // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked(): // clears the ON_CALL()s set on this mock function. void ClearDefaultActionsLocked() override GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); // Deleting our default actions may trigger other mock objects to be // deleted, for example if an action contains a reference counted smart // pointer to that mock object, and that is the last reference. So if we // delete our actions within the context of the global mutex we may deadlock // when this method is called again. Instead, make a copy of the set of // actions to delete, clear our set within the mutex, and then delete the // actions outside of the mutex. UntypedOnCallSpecs specs_to_delete; untyped_on_call_specs_.swap(specs_to_delete); g_gmock_mutex.Unlock(); for (UntypedOnCallSpecs::const_iterator it = specs_to_delete.begin(); it != specs_to_delete.end(); ++it) { delete static_cast<const OnCallSpec<F>*>(*it); } // Lock the mutex again, since the caller expects it to be locked when we // return. g_gmock_mutex.Lock(); } // Returns the result of invoking this mock function with the given // arguments. This function can be safely called from multiple // threads concurrently. Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { ArgumentTuple tuple(std::forward<Args>(args)...); std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>( this->UntypedInvokeWith(static_cast<void*>(&tuple)))); return holder->Unwrap(); } MockSpec<F> With(Matcher<Args>... m) { return MockSpec<F>(this, ::std::make_tuple(std::move(m)...)); } protected: template <typename Function> friend class MockSpec; typedef ActionResultHolder<Result> ResultHolder; // Adds and returns a default action spec for this mock function. OnCallSpec<F>& AddNewOnCallSpec( const char* file, int line, const ArgumentMatcherTuple& m) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m); untyped_on_call_specs_.push_back(on_call_spec); return *on_call_spec; } // Adds and returns an expectation spec for this mock function. TypedExpectation<F>& AddNewExpectation(const char* file, int line, const std::string& source_text, const ArgumentMatcherTuple& m) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line); TypedExpectation<F>* const expectation = new TypedExpectation<F>(this, file, line, source_text, m); const std::shared_ptr<ExpectationBase> untyped_expectation(expectation); // See the definition of untyped_expectations_ for why access to // it is unprotected here. untyped_expectations_.push_back(untyped_expectation); // Adds this expectation into the implicit sequence if there is one. Sequence* const implicit_sequence = g_gmock_implicit_sequence.get(); if (implicit_sequence != nullptr) { implicit_sequence->AddExpectation(Expectation(untyped_expectation)); } return *expectation; } private: template <typename Func> friend class TypedExpectation; // Some utilities needed for implementing UntypedInvokeWith(). // Describes what default action will be performed for the given // arguments. // L = * void DescribeDefaultActionTo(const ArgumentTuple& args, ::std::ostream* os) const { const OnCallSpec<F>* const spec = FindOnCallSpec(args); if (spec == nullptr) { *os << (std::is_void<Result>::value ? "returning directly.\n" : "returning default value.\n"); } else { *os << "taking default action specified at:\n" << FormatFileLocation(spec->file(), spec->line()) << "\n"; } } // Writes a message that the call is uninteresting (i.e. neither // explicitly expected nor explicitly unexpected) to the given // ostream. void UntypedDescribeUninterestingCall(const void* untyped_args, ::std::ostream* os) const override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); *os << "Uninteresting mock function call - "; DescribeDefaultActionTo(args, os); *os << " Function call: " << Name(); UniversalPrint(args, os); } // Returns the expectation that matches the given function arguments // (or NULL is there's no match); when a match is found, // untyped_action is set to point to the action that should be // performed (or NULL if the action is "do default"), and // is_excessive is modified to indicate whether the call exceeds the // expected number. // // Critical section: We must find the matching expectation and the // corresponding action that needs to be taken in an ATOMIC // transaction. Otherwise another thread may call this mock // method in the middle and mess up the state. // // However, performing the action has to be left out of the critical // section. The reason is that we have no control on what the // action does (it can invoke an arbitrary user function or even a // mock function) and excessive locking could cause a dead lock. const ExpectationBase* UntypedFindMatchingExpectation( const void* untyped_args, const void** untyped_action, bool* is_excessive, ::std::ostream* what, ::std::ostream* why) override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); MutexLock l(&g_gmock_mutex); TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args); if (exp == nullptr) { // A match wasn't found. this->FormatUnexpectedCallMessageLocked(args, what, why); return nullptr; } // This line must be done before calling GetActionForArguments(), // which will increment the call count for *exp and thus affect // its saturation status. *is_excessive = exp->IsSaturated(); const Action<F>* action = exp->GetActionForArguments(this, args, what, why); if (action != nullptr && action->IsDoDefault()) action = nullptr; // Normalize "do default" to NULL. *untyped_action = action; return exp; } // Prints the given function arguments to the ostream. void UntypedPrintArgs(const void* untyped_args, ::std::ostream* os) const override { const ArgumentTuple& args = *static_cast<const ArgumentTuple*>(untyped_args); UniversalPrint(args, os); } // Returns the expectation that matches the arguments, or NULL if no // expectation matches them. TypedExpectation<F>* FindMatchingExpectationLocked( const ArgumentTuple& args) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); // See the definition of untyped_expectations_ for why access to // it is unprotected here. for (typename UntypedExpectations::const_reverse_iterator it = untyped_expectations_.rbegin(); it != untyped_expectations_.rend(); ++it) { TypedExpectation<F>* const exp = static_cast<TypedExpectation<F>*>(it->get()); if (exp->ShouldHandleArguments(args)) { return exp; } } return nullptr; } // Returns a message that the arguments don't match any expectation. void FormatUnexpectedCallMessageLocked( const ArgumentTuple& args, ::std::ostream* os, ::std::ostream* why) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); *os << "\nUnexpected mock function call - "; DescribeDefaultActionTo(args, os); PrintTriedExpectationsLocked(args, why); } // Prints a list of expectations that have been tried against the // current mock function call. void PrintTriedExpectationsLocked( const ArgumentTuple& args, ::std::ostream* why) const GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) { g_gmock_mutex.AssertHeld(); const size_t count = untyped_expectations_.size(); *why << "Google Mock tried the following " << count << " " << (count == 1 ? "expectation, but it didn't match" : "expectations, but none matched") << ":\n"; for (size_t i = 0; i < count; i++) { TypedExpectation<F>* const expectation = static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get()); *why << "\n"; expectation->DescribeLocationTo(why); if (count > 1) { *why << "tried expectation #" << i << ": "; } *why << expectation->source_text() << "...\n"; expectation->ExplainMatchResultTo(args, why); expectation->DescribeCallCountTo(why); } } }; // class FunctionMocker // Reports an uninteresting call (whose description is in msg) in the // manner specified by 'reaction'. void ReportUninterestingCall(CallReaction reaction, const std::string& msg); } // namespace internal namespace internal { template <typename F> class MockFunction; template <typename R, typename... Args> class MockFunction<R(Args...)> { public: MockFunction(const MockFunction&) = delete; MockFunction& operator=(const MockFunction&) = delete; std::function<R(Args...)> AsStdFunction() { return [this](Args... args) -> R { return this->Call(std::forward<Args>(args)...); }; } // Implementation detail: the expansion of the MOCK_METHOD macro. R Call(Args... args) { mock_.SetOwnerAndName(this, "Call"); return mock_.Invoke(std::forward<Args>(args)...); } MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) { mock_.RegisterOwner(this); return mock_.With(std::move(m)...); } MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) { return this->gmock_Call(::testing::A<Args>()...); } protected: MockFunction() = default; ~MockFunction() = default; private: FunctionMocker<R(Args...)> mock_; }; /* The SignatureOf<F> struct is a meta-function returning function signature corresponding to the provided F argument. It makes use of MockFunction easier by allowing it to accept more F arguments than just function signatures. Specializations provided here cover only a signature type itself and std::function. However, if need be it can be easily extended to cover also other types (like for example boost::function). */ template <typename F> struct SignatureOf; template <typename R, typename... Args> struct SignatureOf<R(Args...)> { using type = R(Args...); }; template <typename F> struct SignatureOf<std::function<F>> : SignatureOf<F> {}; template <typename F> using SignatureOfT = typename SignatureOf<F>::type; } // namespace internal // A MockFunction<F> type has one mock method whose type is // internal::SignatureOfT<F>. It is useful when you just want your // test code to emit some messages and have Google Mock verify the // right messages are sent (and perhaps at the right times). For // example, if you are exercising code: // // Foo(1); // Foo(2); // Foo(3); // // and want to verify that Foo(1) and Foo(3) both invoke // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write: // // TEST(FooTest, InvokesBarCorrectly) { // MyMock mock; // MockFunction<void(string check_point_name)> check; // { // InSequence s; // // EXPECT_CALL(mock, Bar("a")); // EXPECT_CALL(check, Call("1")); // EXPECT_CALL(check, Call("2")); // EXPECT_CALL(mock, Bar("a")); // } // Foo(1); // check.Call("1"); // Foo(2); // check.Call("2"); // Foo(3); // } // // The expectation spec says that the first Bar("a") must happen // before check point "1", the second Bar("a") must happen after check // point "2", and nothing should happen between the two check // points. The explicit check points make it easy to tell which // Bar("a") is called by which call to Foo(). // // MockFunction<F> can also be used to exercise code that accepts // std::function<internal::SignatureOfT<F>> callbacks. To do so, use // AsStdFunction() method to create std::function proxy forwarding to // original object's Call. Example: // // TEST(FooTest, RunsCallbackWithBarArgument) { // MockFunction<int(string)> callback; // EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1)); // Foo(callback.AsStdFunction()); // } // // The internal::SignatureOfT<F> indirection allows to use other types // than just function signature type. This is typically useful when // providing a mock for a predefined std::function type. Example: // // using FilterPredicate = std::function<bool(string)>; // void MyFilterAlgorithm(FilterPredicate predicate); // // TEST(FooTest, FilterPredicateAlwaysAccepts) { // MockFunction<FilterPredicate> predicateMock; // EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true)); // MyFilterAlgorithm(predicateMock.AsStdFunction()); // } template <typename F> class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> { using Base = internal::MockFunction<internal::SignatureOfT<F>>; public: using Base::Base; }; // The style guide prohibits "using" statements in a namespace scope // inside a header file. However, the MockSpec class template is // meant to be defined in the ::testing namespace. The following line // is just a trick for working around a bug in MSVC 8.0, which cannot // handle it if we define MockSpec in ::testing. using internal::MockSpec; // Const(x) is a convenient function for obtaining a const reference // to x. This is useful for setting expectations on an overloaded // const mock method, e.g. // // class MockFoo : public FooInterface { // public: // MOCK_METHOD0(Bar, int()); // MOCK_CONST_METHOD0(Bar, int&()); // }; // // MockFoo foo; // // Expects a call to non-const MockFoo::Bar(). // EXPECT_CALL(foo, Bar()); // // Expects a call to const MockFoo::Bar(). // EXPECT_CALL(Const(foo), Bar()); template <typename T> inline const T& Const(const T& x) { return x; } // Constructs an Expectation object that references and co-owns exp. inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT : expectation_base_(exp.GetHandle().expectation_base()) {} } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is // required to avoid compile errors when the name of the method used in call is // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro // tests in internal/gmock-spec-builders_test.cc for more details. // // This macro supports statements both with and without parameter matchers. If // the parameter list is omitted, gMock will accept any parameters, which allows // tests to be written that don't need to encode the number of method // parameter. This technique may only be used for non-overloaded methods. // // // These are the same: // ON_CALL(mock, NoArgsMethod()).WillByDefault(...); // ON_CALL(mock, NoArgsMethod).WillByDefault(...); // // // As are these: // ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...); // ON_CALL(mock, TwoArgsMethod).WillByDefault(...); // // // Can also specify args if you want, of course: // ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...); // // // Overloads work as long as you specify parameters: // ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...); // ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...); // // // Oops! Which overload did you want? // ON_CALL(mock, OverloadedMethod).WillByDefault(...); // => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous // // How this works: The mock class uses two overloads of the gmock_Method // expectation setter method plus an operator() overload on the MockSpec object. // In the matcher list form, the macro expands to: // // // This statement: // ON_CALL(mock, TwoArgsMethod(_, 45))... // // // ...expands to: // mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)... // |-------------v---------------||------------v-------------| // invokes first overload swallowed by operator() // // // ...which is essentially: // mock.gmock_TwoArgsMethod(_, 45)... // // Whereas the form without a matcher list: // // // This statement: // ON_CALL(mock, TwoArgsMethod)... // // // ...expands to: // mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)... // |-----------------------v--------------------------| // invokes second overload // // // ...which is essentially: // mock.gmock_TwoArgsMethod(_, _)... // // The WithoutMatchers() argument is used to disambiguate overloads and to // block the caller from accidentally invoking the second overload directly. The // second argument is an internal type derived from the method signature. The // failure to disambiguate two overloads of this method in the ON_CALL statement // is how we block callers from setting expectations on overloaded methods. #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \ ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \ nullptr) \ .Setter(__FILE__, __LINE__, #mock_expr, #call) #define ON_CALL(obj, call) \ GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call) #define EXPECT_CALL(obj, call) \ GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call) #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_ namespace testing { namespace internal { template <typename T> using identity_t = T; template <typename Pattern> struct ThisRefAdjuster { template <typename T> using AdjustT = typename std::conditional< std::is_const<typename std::remove_reference<Pattern>::type>::value, typename std::conditional<std::is_lvalue_reference<Pattern>::value, const T&, const T&&>::type, typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&, T&&>::type>::type; template <typename MockType> static AdjustT<MockType> Adjust(const MockType& mock) { return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock)); } }; } // namespace internal // The style guide prohibits "using" statements in a namespace scope // inside a header file. However, the FunctionMocker class template // is meant to be defined in the ::testing namespace. The following // line is just a trick for working around a bug in MSVC 8.0, which // cannot handle it if we define FunctionMocker in ::testing. using internal::FunctionMocker; } // namespace testing #define MOCK_METHOD(...) \ GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \ GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ()) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \ GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \ GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \ GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \ GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \ GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \ GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \ GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \ (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args))) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \ GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__) #define GMOCK_INTERNAL_WRONG_ARITY(...) \ static_assert( \ false, \ "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \ "_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \ "enclosed in parentheses. If _Ret is a type with unprotected commas, " \ "it must also be enclosed in parentheses.") #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \ static_assert( \ GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \ GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.") #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \ static_assert( \ std::is_function<__VA_ARGS__>::value, \ "Signature must be a function type, maybe return type contains " \ "unprotected comma."); \ static_assert( \ ::testing::tuple_size<typename ::testing::internal::Function< \ __VA_ARGS__>::ArgumentTuple>::value == _N, \ "This method does not take " GMOCK_PP_STRINGIZE( \ _N) " arguments. Parenthesize all types with unprotected commas.") #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec) #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \ _Override, _Final, _NoexceptSpec, \ _CallType, _RefSpec, _Signature) \ typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \ _Signature)>::Result \ GMOCK_INTERNAL_EXPAND(_CallType) \ _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \ GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \ GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \ GMOCK_MOCKER_(_N, _Constness, _MethodName) \ .SetOwnerAndName(this, #_MethodName); \ return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \ } \ ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \ GMOCK_PP_IF(_Constness, const, ) _RefSpec { \ GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \ return GMOCK_MOCKER_(_N, _Constness, _MethodName) \ .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \ } \ ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \ const ::testing::internal::WithoutMatchers&, \ GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \ GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \ return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \ _Constness, const, ) int _RefSpec>::Adjust(*this) \ .gmock_##_MethodName(GMOCK_PP_REPEAT( \ GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \ } \ mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \ GMOCK_MOCKER_(_N, _Constness, _MethodName) #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__ // Five Valid modifiers. #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \ GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple)) #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \ GMOCK_PP_HAS_COMMA( \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple)) #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \ GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple)) #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple) #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \ GMOCK_PP_IF( \ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \ _elem, ) #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple) #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \ GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \ GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), ) #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple) #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \ static_assert( \ (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \ GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \ GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \ GMOCK_PP_STRINGIZE( \ _elem) " cannot be recognized as a valid specification modifier."); // Modifiers implementation. #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem) #define GMOCK_INTERNAL_DETECT_CONST_I_const , #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem) #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override , #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem) #define GMOCK_INTERNAL_DETECT_FINAL_I_final , #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem) #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept , #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \ GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem) #define GMOCK_INTERNAL_DETECT_REF_I_ref , #define GMOCK_INTERNAL_UNPACK_ref(x) x #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \ GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \ GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \ (_elem) // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows // maybe they can be simplified somehow. #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \ GMOCK_INTERNAL_IS_CALLTYPE_I( \ GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg) #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \ GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \ GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg)) #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \ GMOCK_PP_IDENTITY _arg #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype // Note: The use of `identity_t` here allows _Ret to represent return types that // would normally need to be specified in a different way. For example, a method // returning a function pointer must be written as // // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...) // // But we only support placing the return type at the beginning. To handle this, // we wrap all calls in identity_t, so that a declaration will be expanded to // // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...) // // This allows us to work around the syntactic oddities of function/method // types. #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \ ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \ GMOCK_PP_REMOVE_PARENS, \ GMOCK_PP_IDENTITY)(_Ret)>( \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args)) #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \ GMOCK_PP_COMMA_IF(_i) \ GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \ GMOCK_PP_IDENTITY) \ (_elem) #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \ GMOCK_PP_COMMA_IF(_i) \ GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ gmock_a##_i #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \ GMOCK_PP_COMMA_IF(_i) \ ::std::forward<GMOCK_INTERNAL_ARG_O( \ _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i) #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \ GMOCK_PP_COMMA_IF(_i) \ GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \ gmock_a##_i #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \ GMOCK_PP_COMMA_IF(_i) \ gmock_a##_i #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \ GMOCK_PP_COMMA_IF(_i) \ ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>() #define GMOCK_INTERNAL_ARG_O(_i, ...) \ typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type #define GMOCK_INTERNAL_MATCHER_O(_i, ...) \ const ::testing::Matcher<typename ::testing::internal::Function< \ __VA_ARGS__>::template Arg<_i>::type>& #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__) #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__) #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__) #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__) #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__) #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__) #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__) #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__) #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__) #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__) #define MOCK_METHOD10(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__) #define MOCK_CONST_METHOD0(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__) #define MOCK_CONST_METHOD1(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__) #define MOCK_CONST_METHOD2(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__) #define MOCK_CONST_METHOD3(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__) #define MOCK_CONST_METHOD4(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__) #define MOCK_CONST_METHOD5(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__) #define MOCK_CONST_METHOD6(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__) #define MOCK_CONST_METHOD7(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__) #define MOCK_CONST_METHOD8(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__) #define MOCK_CONST_METHOD9(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__) #define MOCK_CONST_METHOD10(m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__) #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__) #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__) #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__) #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__) #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__) #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__) #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__) #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__) #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__) #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__) #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__) #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__) #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__) #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__) #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__) #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__) #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__) #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__) #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__) #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__) #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__) #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__) #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__) #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__) #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__) #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__) #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__) #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__) #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__) #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__) #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__) #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__) #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__) #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__) #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__) #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__) #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__) #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__) #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__) #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__) #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__) #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__) #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__) #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \ GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__) #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \ MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__) #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \ GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \ args_num, ::testing::internal::identity_t<__VA_ARGS__>); \ GMOCK_INTERNAL_MOCK_METHOD_IMPL( \ args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \ (::testing::internal::identity_t<__VA_ARGS__>)) #define GMOCK_MOCKER_(arity, constness, Method) \ GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__) #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic actions. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ #include <memory> #include <utility> // Include any custom callback actions added by the local installation. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ #endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_ // Sometimes you want to give an action explicit template parameters // that cannot be inferred from its value parameters. ACTION() and // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that // and can be viewed as an extension to ACTION() and ACTION_P*(). // // The syntax: // // ACTION_TEMPLATE(ActionName, // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } // // defines an action template that takes m explicit template // parameters and n value parameters. name_i is the name of the i-th // template parameter, and kind_i specifies whether it's a typename, // an integral constant, or a template. p_i is the name of the i-th // value parameter. // // Example: // // // DuplicateArg<k, T>(output) converts the k-th argument of the mock // // function to type T and copies it to *output. // ACTION_TEMPLATE(DuplicateArg, // HAS_2_TEMPLATE_PARAMS(int, k, typename, T), // AND_1_VALUE_PARAMS(output)) { // *output = T(::std::get<k>(args)); // } // ... // int n; // EXPECT_CALL(mock, Foo(_, _)) // .WillOnce(DuplicateArg<1, unsigned char>(&n)); // // To create an instance of an action template, write: // // ActionName<t1, ..., t_m>(v1, ..., v_n) // // where the ts are the template arguments and the vs are the value // arguments. The value argument types are inferred by the compiler. // If you want to explicitly specify the value argument types, you can // provide additional template arguments: // // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) // // where u_i is the desired type of v_i. // // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the // number of value parameters, but not on the number of template // parameters. Without the restriction, the meaning of the following // is unclear: // // OverloadedAction<int, bool>(x); // // Are we using a single-template-parameter action where 'bool' refers // to the type of x, or are we using a two-template-parameter action // where the compiler is asked to infer the type of x? // // Implementation notes: // // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for // implementing ACTION_TEMPLATE. The main trick we use is to create // new macro invocations when expanding a macro. For example, we have // // #define ACTION_TEMPLATE(name, template_params, value_params) // ... GMOCK_INTERNAL_DECL_##template_params ... // // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) // to expand to // // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... // // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the // preprocessor will continue to expand it to // // ... typename T ... // // This technique conforms to the C++ standard and is portable. It // allows us to implement action templates using O(N) code, where N is // the maximum number of template/value parameters supported. Without // using it, we'd have to devote O(N^2) amount of code to implement all // combinations of m and n. // Declares the template parameters. #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) kind0 name0, kind1 name1 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) kind0 name0, kind1 name1, kind2 name2 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \ kind2 name2, kind3 name3, kind4 name4 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \ kind5 name5, kind6 name6 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \ kind4 name4, kind5 name5, kind6 name6, kind7 name7 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \ kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \ kind8 name8 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \ kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \ kind6 name6, kind7 name7, kind8 name8, kind9 name9 // Lists the template parameters. #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1) name0, name1 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2) name0, name1, name2 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3) name0, name1, name2, name3 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \ name4 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \ name2, name3, name4, name5 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6) name0, name1, name2, name3, name4, name5, name6 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \ kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \ kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \ name6, name7, name8 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \ name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \ name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \ name3, name4, name5, name6, name7, name8, name9 // Declares the types of value parameters. #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \ typename p0##_type, typename p1##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \ typename p0##_type, typename p1##_type, typename p2##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \ typename p3##_type, typename p4##_type, typename p5##_type, \ typename p6##_type, typename p7##_type, typename p8##_type #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \ typename p2##_type, typename p3##_type, typename p4##_type, \ typename p5##_type, typename p6##_type, typename p7##_type, \ typename p8##_type, typename p9##_type // Initializes the value parameters. #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\ () #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\ (p0##_type gmock_p0) : p0(::std::move(gmock_p0)) #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\ (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)) #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\ (p0##_type gmock_p0, p1##_type gmock_p1, \ p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)) #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)) #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)) #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, \ p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ p5(::std::move(gmock_p5)) #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)) #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ p7(::std::move(gmock_p7)) #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, \ p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)) #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9)\ (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \ p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \ p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \ p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \ p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \ p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \ p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \ p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \ p9(::std::move(gmock_p9)) // Defines the copy constructor #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \ {} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134 #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default; #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default; // Declares the fields for storing the value parameters. #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0; #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \ p1##_type p1; #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \ p1##_type p1; p2##_type p2; #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \ p1##_type p1; p2##_type p2; p3##_type p3; #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \ p5##_type p5; p6##_type p6; p7##_type p7; #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \ p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \ p9##_type p9; // Lists the value parameters. #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \ p2, p3, p4 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \ p1, p2, p3, p4, p5 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0, p1, p2, p3, p4, p5, p6 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0, p1, p2, p3, p4, p5, p6, p7 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 // Lists the value parameter types. #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \ p1##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \ p1##_type, p2##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \ p0##_type, p1##_type, p2##_type, p3##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \ p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \ p6##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \ p5##_type, p6##_type, p7##_type, p8##_type, p9##_type // Declares the value parameters. #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \ p1##_type p1 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \ p1##_type p1, p2##_type p2 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \ p1##_type p1, p2##_type p2, p3##_type p3 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \ p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \ p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \ p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \ p5##_type p5, p6##_type p6, p7##_type p7 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \ p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \ p9##_type p9 // The suffix of the class template implementing the action template. #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS() #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7) P8 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8) P9 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \ p7, p8, p9) P10 // The name of the class template implementing the action template. #define GMOCK_ACTION_CLASS_(name, value_params)\ GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) #define ACTION_TEMPLATE(name, template_params, value_params) \ template <GMOCK_INTERNAL_DECL_##template_params \ GMOCK_INTERNAL_DECL_TYPE_##value_params> \ class GMOCK_ACTION_CLASS_(name, value_params) { \ public: \ explicit GMOCK_ACTION_CLASS_(name, value_params)( \ GMOCK_INTERNAL_DECL_##value_params) \ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ = default; , \ : impl_(std::make_shared<gmock_Impl>( \ GMOCK_INTERNAL_LIST_##value_params)) { }) \ GMOCK_ACTION_CLASS_(name, value_params)( \ const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \ GMOCK_INTERNAL_DEFN_COPY_##value_params \ GMOCK_ACTION_CLASS_(name, value_params)( \ GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \ GMOCK_INTERNAL_DEFN_COPY_##value_params \ template <typename F> \ operator ::testing::Action<F>() const { \ return GMOCK_PP_IF( \ GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ (::testing::internal::MakeAction<F, gmock_Impl>()), \ (::testing::internal::MakeAction<F>(impl_))); \ } \ private: \ class gmock_Impl { \ public: \ explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ GMOCK_INTERNAL_DEFN_##value_params \ }; \ GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \ , std::shared_ptr<const gmock_Impl> impl_;) \ }; \ template <GMOCK_INTERNAL_DECL_##template_params \ GMOCK_INTERNAL_DECL_TYPE_##value_params> \ GMOCK_ACTION_CLASS_(name, value_params)< \ GMOCK_INTERNAL_LIST_##template_params \ GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \ template <GMOCK_INTERNAL_DECL_##template_params \ GMOCK_INTERNAL_DECL_TYPE_##value_params> \ inline GMOCK_ACTION_CLASS_(name, value_params)< \ GMOCK_INTERNAL_LIST_##template_params \ GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \ GMOCK_INTERNAL_DECL_##value_params) { \ return GMOCK_ACTION_CLASS_(name, value_params)< \ GMOCK_INTERNAL_LIST_##template_params \ GMOCK_INTERNAL_LIST_TYPE_##value_params>( \ GMOCK_INTERNAL_LIST_##value_params); \ } \ template <GMOCK_INTERNAL_DECL_##template_params \ GMOCK_INTERNAL_DECL_TYPE_##value_params> \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type GMOCK_ACTION_CLASS_(name, value_params)< \ GMOCK_INTERNAL_LIST_##template_params \ GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const namespace testing { // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif namespace internal { // internal::InvokeArgument - a helper for InvokeArgument action. // The basic overloads are provided here for generic functors. // Overloads for other custom-callables are provided in the // internal/custom/gmock-generated-actions.h header. template <typename F, typename... Args> auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) { return f(args...); } template <std::size_t index, typename... Params> struct InvokeArgumentAction { template <typename... Args> auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument( std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)), std::declval<const Params&>()...)) { internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{}, std::forward<Args>(args)...); return params.Apply([&](const Params&... unpacked_params) { auto&& callable = args_tuple.template Get<index>(); return internal::InvokeArgument( std::forward<decltype(callable)>(callable), unpacked_params...); }); } internal::FlatTuple<Params...> params; }; } // namespace internal // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th // (0-based) argument, which must be a k-ary callable, of the mock // function, with arguments a1, a2, ..., a_k. // // Notes: // // 1. The arguments are passed by value by default. If you need to // pass an argument by reference, wrap it inside std::ref(). For // example, // // InvokeArgument<1>(5, string("Hello"), std::ref(foo)) // // passes 5 and string("Hello") by value, and passes foo by // reference. // // 2. If the callable takes an argument by reference but std::ref() is // not used, it will receive the reference to a copy of the value, // instead of the original value. For example, when the 0-th // argument of the mock function takes a const string&, the action // // InvokeArgument<0>(string("Hello")) // // makes a copy of the temporary string("Hello") object and passes a // reference of the copy, instead of the original temporary object, // to the callable. This makes it easy for a user to define an // InvokeArgument action from temporary values and have it performed // later. template <std::size_t index, typename... Params> internal::InvokeArgumentAction<index, typename std::decay<Params>::type...> InvokeArgument(Params&&... params) { return {internal::FlatTuple<typename std::decay<Params>::type...>( internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)}; } #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace testing #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_ // Copyright 2013, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some matchers that depend on gmock-matchers.h. // // Note that tests are implemented in gmock-matchers_test.cc rather than // gmock-more-matchers-test.cc. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ namespace testing { // Silence C4100 (unreferenced formal // parameter) for MSVC #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #if (_MSC_VER == 1900) // and silence C4800 (C4800: 'int *const ': forcing value // to bool 'true' or 'false') for MSVC 14 # pragma warning(disable:4800) #endif #endif // Defines a matcher that matches an empty container. The container must // support both size() and empty(), which all STL-like containers provide. MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") { if (arg.empty()) { return true; } *result_listener << "whose size is " << arg.size(); return false; } // Define a matcher that matches a value that evaluates in boolean // context to true. Useful for types that define "explicit operator // bool" operators and so can't be compared for equality with true // and false. MATCHER(IsTrue, negation ? "is false" : "is true") { return static_cast<bool>(arg); } // Define a matcher that matches a value that evaluates in boolean // context to false. Useful for types that define "explicit operator // bool" operators and so can't be compared for equality with true // and false. MATCHER(IsFalse, negation ? "is true" : "is false") { return !static_cast<bool>(arg); } #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace testing #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_ // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Implements class templates NiceMock, NaggyMock, and StrictMock. // // Given a mock class MockFoo that is created using Google Mock, // NiceMock<MockFoo> is a subclass of MockFoo that allows // uninteresting calls (i.e. calls to mock methods that have no // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo // that prints a warning when an uninteresting call occurs, and // StrictMock<MockFoo> is a subclass of MockFoo that treats all // uninteresting calls as errors. // // Currently a mock is naggy by default, so MockFoo and // NaggyMock<MockFoo> behave like the same. However, we will soon // switch the default behavior of mocks to be nice, as that in general // leads to more maintainable tests. When that happens, MockFoo will // stop behaving like NaggyMock<MockFoo> and start behaving like // NiceMock<MockFoo>. // // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of // their respective base class. Therefore you can write // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo // has a constructor that accepts (int, const char*), for example. // // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>, // and StrictMock<MockFoo> only works for mock methods defined using // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class. // If a mock method is defined in a base class of MockFoo, the "nice" // or "strict" modifier may not affect it, depending on the compiler. // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT // supported. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ #include <type_traits> namespace testing { template <class MockClass> class NiceMock; template <class MockClass> class NaggyMock; template <class MockClass> class StrictMock; namespace internal { template <typename T> std::true_type StrictnessModifierProbe(const NiceMock<T>&); template <typename T> std::true_type StrictnessModifierProbe(const NaggyMock<T>&); template <typename T> std::true_type StrictnessModifierProbe(const StrictMock<T>&); std::false_type StrictnessModifierProbe(...); template <typename T> constexpr bool HasStrictnessModifier() { return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value; } // Base classes that register and deregister with testing::Mock to alter the // default behavior around uninteresting calls. Inheriting from one of these // classes first and then MockClass ensures the MockClass constructor is run // after registration, and that the MockClass destructor runs before // deregistration. This guarantees that MockClass's constructor and destructor // run with the same level of strictness as its instance methods. #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \ (defined(_MSC_VER) || defined(__clang__)) // We need to mark these classes with this declspec to ensure that // the empty base class optimization is performed. #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases) #else #define GTEST_INTERNAL_EMPTY_BASE_CLASS #endif template <typename Base> class NiceMockImpl { public: NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); } ~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } }; template <typename Base> class NaggyMockImpl { public: NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); } ~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } }; template <typename Base> class StrictMockImpl { public: StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); } ~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); } }; } // namespace internal template <class MockClass> class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock : private internal::NiceMockImpl<MockClass>, public MockClass { public: static_assert(!internal::HasStrictnessModifier<MockClass>(), "Can't apply NiceMock to a class hierarchy that already has a " "strictness modifier. See " "https://google.github.io/googletest/" "gmock_cook_book.html#NiceStrictNaggy"); NiceMock() : MockClass() { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } // Ideally, we would inherit base class's constructors through a using // declaration, which would preserve their visibility. However, many existing // tests rely on the fact that current implementation reexports protected // constructors as public. These tests would need to be cleaned up first. // Single argument constructor is special-cased so that it can be // made explicit. template <typename A> explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } template <typename TArg1, typename TArg2, typename... An> NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args) : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), std::forward<An>(args)...) { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock); }; template <class MockClass> class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock : private internal::NaggyMockImpl<MockClass>, public MockClass { static_assert(!internal::HasStrictnessModifier<MockClass>(), "Can't apply NaggyMock to a class hierarchy that already has a " "strictness modifier. See " "https://google.github.io/googletest/" "gmock_cook_book.html#NiceStrictNaggy"); public: NaggyMock() : MockClass() { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } // Ideally, we would inherit base class's constructors through a using // declaration, which would preserve their visibility. However, many existing // tests rely on the fact that current implementation reexports protected // constructors as public. These tests would need to be cleaned up first. // Single argument constructor is special-cased so that it can be // made explicit. template <typename A> explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } template <typename TArg1, typename TArg2, typename... An> NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args) : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), std::forward<An>(args)...) { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock); }; template <class MockClass> class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock : private internal::StrictMockImpl<MockClass>, public MockClass { public: static_assert( !internal::HasStrictnessModifier<MockClass>(), "Can't apply StrictMock to a class hierarchy that already has a " "strictness modifier. See " "https://google.github.io/googletest/" "gmock_cook_book.html#NiceStrictNaggy"); StrictMock() : MockClass() { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } // Ideally, we would inherit base class's constructors through a using // declaration, which would preserve their visibility. However, many existing // tests rely on the fact that current implementation reexports protected // constructors as public. These tests would need to be cleaned up first. // Single argument constructor is special-cased so that it can be // made explicit. template <typename A> explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } template <typename TArg1, typename TArg2, typename... An> StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args) : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2), std::forward<An>(args)...) { static_assert(sizeof(*this) == sizeof(MockClass), "The impl subclass shouldn't introduce any padding"); } private: GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock); }; #undef GTEST_INTERNAL_EMPTY_BASE_CLASS } // namespace testing #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_ namespace testing { // Declares Google Mock flags that we want a user to use programmatically. GMOCK_DECLARE_bool_(catch_leaked_mocks); GMOCK_DECLARE_string_(verbose); GMOCK_DECLARE_int32_(default_mock_behavior); // Initializes Google Mock. This must be called before running the // tests. In particular, it parses the command line for the flags // that Google Mock recognizes. Whenever a Google Mock flag is seen, // it is removed from argv, and *argc is decremented. // // No value is returned. Instead, the Google Mock flag variables are // updated. // // Since Google Test is needed for Google Mock to work, this function // also initializes Google Test and parses its flags, if that hasn't // been done. GTEST_API_ void InitGoogleMock(int* argc, char** argv); // This overloaded version can be used in Windows programs compiled in // UNICODE mode. GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv); // This overloaded version can be used on Arduino/embedded platforms where // there is no argc/argv. GTEST_API_ void InitGoogleMock(); } // namespace testing #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_