Mercurial > minori
view dep/pugixml/src/pugixml.cpp @ 347:a0aa8c8c4307
dep/anitomy: port to use UCS-4 rather than wide strings
rationale: wide strings are not the same on every platform, and
might not even be Unicode. (while they usually are, its possible
that they are not)
I was *going* to change StringToInt to use a string stream, but
outputting to an integer doesn't seem to work at all with UCS-4,
even though it ought to, so I just rolled my own that uses the
arabic digits only.
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Sun, 23 Jun 2024 10:32:09 -0400 |
parents | a45edd073f9e |
children |
line wrap: on
line source
/** * pugixml parser - version 1.14 * -------------------------------------------------------- * Copyright (C) 2006-2023, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) * Report bugs and download new versions at https://pugixml.org/ * * This library is distributed under the MIT License. See notice at the end * of this file. * * This work is based on the pugxml parser, which is: * Copyright (C) 2003, by Kristen Wegner (kristen@tima.net) */ #ifndef SOURCE_PUGIXML_CPP #define SOURCE_PUGIXML_CPP #include "pugixml.hpp" #include <stdlib.h> #include <stdio.h> #include <string.h> #include <assert.h> #include <limits.h> #ifdef PUGIXML_WCHAR_MODE # include <wchar.h> #endif #ifndef PUGIXML_NO_XPATH # include <math.h> # include <float.h> #endif #ifndef PUGIXML_NO_STL # include <istream> # include <ostream> # include <string> #endif // For placement new #include <new> // For load_file #if defined(__linux__) || defined(__APPLE__) #include <sys/stat.h> #endif #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4127) // conditional expression is constant # pragma warning(disable: 4324) // structure was padded due to __declspec(align()) # pragma warning(disable: 4702) // unreachable code # pragma warning(disable: 4996) // this function or variable may be unsafe #endif #if defined(_MSC_VER) && defined(__c2__) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wdeprecated" // this function or variable may be unsafe #endif #ifdef __INTEL_COMPILER # pragma warning(disable: 177) // function was declared but never referenced # pragma warning(disable: 279) // controlling expression is constant # pragma warning(disable: 1478 1786) // function was declared "deprecated" # pragma warning(disable: 1684) // conversion from pointer to same-sized integral type #endif #if defined(__BORLANDC__) && defined(PUGIXML_HEADER_ONLY) # pragma warn -8080 // symbol is declared but never used; disabling this inside push/pop bracket does not make the warning go away #endif #ifdef __BORLANDC__ # pragma option push # pragma warn -8008 // condition is always false # pragma warn -8066 // unreachable code #endif #ifdef __SNC__ // Using diag_push/diag_pop does not disable the warnings inside templates due to a compiler bug # pragma diag_suppress=178 // function was declared but never referenced # pragma diag_suppress=237 // controlling expression is constant #endif #ifdef __TI_COMPILER_VERSION__ # pragma diag_suppress 179 // function was declared but never referenced #endif // Inlining controls #if defined(_MSC_VER) && _MSC_VER >= 1300 # define PUGI_IMPL_NO_INLINE __declspec(noinline) #elif defined(__GNUC__) # define PUGI_IMPL_NO_INLINE __attribute__((noinline)) #else # define PUGI_IMPL_NO_INLINE #endif // Branch weight controls #if defined(__GNUC__) && !defined(__c2__) # define PUGI_IMPL_UNLIKELY(cond) __builtin_expect(cond, 0) #else # define PUGI_IMPL_UNLIKELY(cond) (cond) #endif // Simple static assertion #define PUGI_IMPL_STATIC_ASSERT(cond) { static const char condition_failed[(cond) ? 1 : -1] = {0}; (void)condition_failed[0]; } // Digital Mars C++ bug workaround for passing char loaded from memory via stack #ifdef __DMC__ # define PUGI_IMPL_DMC_VOLATILE volatile #else # define PUGI_IMPL_DMC_VOLATILE #endif // Integer sanitizer workaround; we only apply this for clang since gcc8 has no_sanitize but not unsigned-integer-overflow and produces "attribute directive ignored" warnings #if defined(__clang__) && defined(__has_attribute) # if __has_attribute(no_sanitize) # define PUGI_IMPL_UNSIGNED_OVERFLOW __attribute__((no_sanitize("unsigned-integer-overflow"))) # else # define PUGI_IMPL_UNSIGNED_OVERFLOW # endif #else # define PUGI_IMPL_UNSIGNED_OVERFLOW #endif // Borland C++ bug workaround for not defining ::memcpy depending on header include order (can't always use std::memcpy because some compilers don't have it at all) #if defined(__BORLANDC__) && !defined(__MEM_H_USING_LIST) using std::memcpy; using std::memmove; using std::memset; #endif // Old versions of GCC do not define ::malloc and ::free depending on header include order #if defined(__GNUC__) && (__GNUC__ < 3 || (__GNUC__ == 3 && __GNUC_MINOR__ < 4)) using std::malloc; using std::free; #endif // Some MinGW/GCC versions have headers that erroneously omit LLONG_MIN/LLONG_MAX/ULLONG_MAX definitions from limits.h in some configurations #if defined(PUGIXML_HAS_LONG_LONG) && defined(__GNUC__) && !defined(LLONG_MAX) && !defined(LLONG_MIN) && !defined(ULLONG_MAX) # define LLONG_MIN (-LLONG_MAX - 1LL) # define LLONG_MAX __LONG_LONG_MAX__ # define ULLONG_MAX (LLONG_MAX * 2ULL + 1ULL) #endif // In some environments MSVC is a compiler but the CRT lacks certain MSVC-specific features #if defined(_MSC_VER) && !defined(__S3E__) && !defined(_WIN32_WCE) # define PUGI_IMPL_MSVC_CRT_VERSION _MSC_VER #elif defined(_WIN32_WCE) # define PUGI_IMPL_MSVC_CRT_VERSION 1310 // MSVC7.1 #endif // Not all platforms have snprintf; we define a wrapper that uses snprintf if possible. This only works with buffers with a known size. #if __cplusplus >= 201103 # define PUGI_IMPL_SNPRINTF(buf, ...) snprintf(buf, sizeof(buf), __VA_ARGS__) #elif defined(PUGI_IMPL_MSVC_CRT_VERSION) && PUGI_IMPL_MSVC_CRT_VERSION >= 1400 # define PUGI_IMPL_SNPRINTF(buf, ...) _snprintf_s(buf, _countof(buf), _TRUNCATE, __VA_ARGS__) #elif defined(__APPLE__) && __clang_major__ >= 14 // Xcode 14 marks sprintf as deprecated while still using C++98 by default # define PUGI_IMPL_SNPRINTF(buf, fmt, arg1, arg2) snprintf(buf, sizeof(buf), fmt, arg1, arg2) #else # define PUGI_IMPL_SNPRINTF sprintf #endif // We put implementation details into an anonymous namespace in source mode, but have to keep it in non-anonymous namespace in header-only mode to prevent binary bloat. #ifdef PUGIXML_HEADER_ONLY # define PUGI_IMPL_NS_BEGIN namespace pugi { namespace impl { # define PUGI_IMPL_NS_END } } # define PUGI_IMPL_FN inline # define PUGI_IMPL_FN_NO_INLINE inline #else # if defined(_MSC_VER) && _MSC_VER < 1300 // MSVC6 seems to have an amusing bug with anonymous namespaces inside namespaces # define PUGI_IMPL_NS_BEGIN namespace pugi { namespace impl { # define PUGI_IMPL_NS_END } } # else # define PUGI_IMPL_NS_BEGIN namespace pugi { namespace impl { namespace { # define PUGI_IMPL_NS_END } } } # endif # define PUGI_IMPL_FN # define PUGI_IMPL_FN_NO_INLINE PUGI_IMPL_NO_INLINE #endif // uintptr_t #if (defined(_MSC_VER) && _MSC_VER < 1600) || (defined(__BORLANDC__) && __BORLANDC__ < 0x561) namespace pugi { # ifndef _UINTPTR_T_DEFINED typedef size_t uintptr_t; # endif typedef unsigned __int8 uint8_t; typedef unsigned __int16 uint16_t; typedef unsigned __int32 uint32_t; } #else # include <stdint.h> #endif // Memory allocation PUGI_IMPL_NS_BEGIN PUGI_IMPL_FN void* default_allocate(size_t size) { return malloc(size); } PUGI_IMPL_FN void default_deallocate(void* ptr) { free(ptr); } template <typename T> struct xml_memory_management_function_storage { static allocation_function allocate; static deallocation_function deallocate; }; // Global allocation functions are stored in class statics so that in header mode linker deduplicates them // Without a template<> we'll get multiple definitions of the same static template <typename T> allocation_function xml_memory_management_function_storage<T>::allocate = default_allocate; template <typename T> deallocation_function xml_memory_management_function_storage<T>::deallocate = default_deallocate; typedef xml_memory_management_function_storage<int> xml_memory; PUGI_IMPL_NS_END // String utilities PUGI_IMPL_NS_BEGIN // Get string length PUGI_IMPL_FN size_t strlength(const char_t* s) { assert(s); #ifdef PUGIXML_WCHAR_MODE return wcslen(s); #else return strlen(s); #endif } // Compare two strings PUGI_IMPL_FN bool strequal(const char_t* src, const char_t* dst) { assert(src && dst); #ifdef PUGIXML_WCHAR_MODE return wcscmp(src, dst) == 0; #else return strcmp(src, dst) == 0; #endif } // Compare lhs with [rhs_begin, rhs_end) PUGI_IMPL_FN bool strequalrange(const char_t* lhs, const char_t* rhs, size_t count) { for (size_t i = 0; i < count; ++i) if (lhs[i] != rhs[i]) return false; return lhs[count] == 0; } // Get length of wide string, even if CRT lacks wide character support PUGI_IMPL_FN size_t strlength_wide(const wchar_t* s) { assert(s); #ifdef PUGIXML_WCHAR_MODE return wcslen(s); #else const wchar_t* end = s; while (*end) end++; return static_cast<size_t>(end - s); #endif } PUGI_IMPL_NS_END // auto_ptr-like object for exception recovery PUGI_IMPL_NS_BEGIN template <typename T> struct auto_deleter { typedef void (*D)(T*); T* data; D deleter; auto_deleter(T* data_, D deleter_): data(data_), deleter(deleter_) { } ~auto_deleter() { if (data) deleter(data); } T* release() { T* result = data; data = 0; return result; } }; PUGI_IMPL_NS_END #ifdef PUGIXML_COMPACT PUGI_IMPL_NS_BEGIN class compact_hash_table { public: compact_hash_table(): _items(0), _capacity(0), _count(0) { } void clear() { if (_items) { xml_memory::deallocate(_items); _items = 0; _capacity = 0; _count = 0; } } void* find(const void* key) { if (_capacity == 0) return 0; item_t* item = get_item(key); assert(item); assert(item->key == key || (item->key == 0 && item->value == 0)); return item->value; } void insert(const void* key, void* value) { assert(_capacity != 0 && _count < _capacity - _capacity / 4); item_t* item = get_item(key); assert(item); if (item->key == 0) { _count++; item->key = key; } item->value = value; } bool reserve(size_t extra = 16) { if (_count + extra >= _capacity - _capacity / 4) return rehash(_count + extra); return true; } private: struct item_t { const void* key; void* value; }; item_t* _items; size_t _capacity; size_t _count; bool rehash(size_t count); item_t* get_item(const void* key) { assert(key); assert(_capacity > 0); size_t hashmod = _capacity - 1; size_t bucket = hash(key) & hashmod; for (size_t probe = 0; probe <= hashmod; ++probe) { item_t& probe_item = _items[bucket]; if (probe_item.key == key || probe_item.key == 0) return &probe_item; // hash collision, quadratic probing bucket = (bucket + probe + 1) & hashmod; } assert(false && "Hash table is full"); // unreachable return 0; } static PUGI_IMPL_UNSIGNED_OVERFLOW unsigned int hash(const void* key) { unsigned int h = static_cast<unsigned int>(reinterpret_cast<uintptr_t>(key) & 0xffffffff); // MurmurHash3 32-bit finalizer h ^= h >> 16; h *= 0x85ebca6bu; h ^= h >> 13; h *= 0xc2b2ae35u; h ^= h >> 16; return h; } }; PUGI_IMPL_FN_NO_INLINE bool compact_hash_table::rehash(size_t count) { size_t capacity = 32; while (count >= capacity - capacity / 4) capacity *= 2; compact_hash_table rt; rt._capacity = capacity; rt._items = static_cast<item_t*>(xml_memory::allocate(sizeof(item_t) * capacity)); if (!rt._items) return false; memset(rt._items, 0, sizeof(item_t) * capacity); for (size_t i = 0; i < _capacity; ++i) if (_items[i].key) rt.insert(_items[i].key, _items[i].value); if (_items) xml_memory::deallocate(_items); _capacity = capacity; _items = rt._items; assert(_count == rt._count); return true; } PUGI_IMPL_NS_END #endif PUGI_IMPL_NS_BEGIN #ifdef PUGIXML_COMPACT static const uintptr_t xml_memory_block_alignment = 4; #else static const uintptr_t xml_memory_block_alignment = sizeof(void*); #endif // extra metadata bits static const uintptr_t xml_memory_page_contents_shared_mask = 64; static const uintptr_t xml_memory_page_name_allocated_mask = 32; static const uintptr_t xml_memory_page_value_allocated_mask = 16; static const uintptr_t xml_memory_page_type_mask = 15; // combined masks for string uniqueness static const uintptr_t xml_memory_page_name_allocated_or_shared_mask = xml_memory_page_name_allocated_mask | xml_memory_page_contents_shared_mask; static const uintptr_t xml_memory_page_value_allocated_or_shared_mask = xml_memory_page_value_allocated_mask | xml_memory_page_contents_shared_mask; #ifdef PUGIXML_COMPACT #define PUGI_IMPL_GETHEADER_IMPL(object, page, flags) // unused #define PUGI_IMPL_GETPAGE_IMPL(header) (header).get_page() #else #define PUGI_IMPL_GETHEADER_IMPL(object, page, flags) (((reinterpret_cast<char*>(object) - reinterpret_cast<char*>(page)) << 8) | (flags)) // this macro casts pointers through void* to avoid 'cast increases required alignment of target type' warnings #define PUGI_IMPL_GETPAGE_IMPL(header) static_cast<impl::xml_memory_page*>(const_cast<void*>(static_cast<const void*>(reinterpret_cast<const char*>(&header) - (header >> 8)))) #endif #define PUGI_IMPL_GETPAGE(n) PUGI_IMPL_GETPAGE_IMPL((n)->header) #define PUGI_IMPL_NODETYPE(n) static_cast<xml_node_type>((n)->header & impl::xml_memory_page_type_mask) struct xml_allocator; struct xml_memory_page { static xml_memory_page* construct(void* memory) { xml_memory_page* result = static_cast<xml_memory_page*>(memory); result->allocator = 0; result->prev = 0; result->next = 0; result->busy_size = 0; result->freed_size = 0; #ifdef PUGIXML_COMPACT result->compact_string_base = 0; result->compact_shared_parent = 0; result->compact_page_marker = 0; #endif return result; } xml_allocator* allocator; xml_memory_page* prev; xml_memory_page* next; size_t busy_size; size_t freed_size; #ifdef PUGIXML_COMPACT char_t* compact_string_base; void* compact_shared_parent; uint32_t* compact_page_marker; #endif }; static const size_t xml_memory_page_size = #ifdef PUGIXML_MEMORY_PAGE_SIZE (PUGIXML_MEMORY_PAGE_SIZE) #else 32768 #endif - sizeof(xml_memory_page); struct xml_memory_string_header { uint16_t page_offset; // offset from page->data uint16_t full_size; // 0 if string occupies whole page }; struct xml_allocator { xml_allocator(xml_memory_page* root): _root(root), _busy_size(root->busy_size) { #ifdef PUGIXML_COMPACT _hash = 0; #endif } xml_memory_page* allocate_page(size_t data_size) { size_t size = sizeof(xml_memory_page) + data_size; // allocate block with some alignment, leaving memory for worst-case padding void* memory = xml_memory::allocate(size); if (!memory) return 0; // prepare page structure xml_memory_page* page = xml_memory_page::construct(memory); assert(page); assert(this == _root->allocator); page->allocator = this; return page; } static void deallocate_page(xml_memory_page* page) { xml_memory::deallocate(page); } void* allocate_memory_oob(size_t size, xml_memory_page*& out_page); void* allocate_memory(size_t size, xml_memory_page*& out_page) { if (PUGI_IMPL_UNLIKELY(_busy_size + size > xml_memory_page_size)) return allocate_memory_oob(size, out_page); void* buf = reinterpret_cast<char*>(_root) + sizeof(xml_memory_page) + _busy_size; _busy_size += size; out_page = _root; return buf; } #ifdef PUGIXML_COMPACT void* allocate_object(size_t size, xml_memory_page*& out_page) { void* result = allocate_memory(size + sizeof(uint32_t), out_page); if (!result) return 0; // adjust for marker ptrdiff_t offset = static_cast<char*>(result) - reinterpret_cast<char*>(out_page->compact_page_marker); if (PUGI_IMPL_UNLIKELY(static_cast<uintptr_t>(offset) >= 256 * xml_memory_block_alignment)) { // insert new marker uint32_t* marker = static_cast<uint32_t*>(result); *marker = static_cast<uint32_t>(reinterpret_cast<char*>(marker) - reinterpret_cast<char*>(out_page)); out_page->compact_page_marker = marker; // since we don't reuse the page space until we reallocate it, we can just pretend that we freed the marker block // this will make sure deallocate_memory correctly tracks the size out_page->freed_size += sizeof(uint32_t); return marker + 1; } else { // roll back uint32_t part _busy_size -= sizeof(uint32_t); return result; } } #else void* allocate_object(size_t size, xml_memory_page*& out_page) { return allocate_memory(size, out_page); } #endif void deallocate_memory(void* ptr, size_t size, xml_memory_page* page) { if (page == _root) page->busy_size = _busy_size; assert(ptr >= reinterpret_cast<char*>(page) + sizeof(xml_memory_page) && ptr < reinterpret_cast<char*>(page) + sizeof(xml_memory_page) + page->busy_size); (void)!ptr; page->freed_size += size; assert(page->freed_size <= page->busy_size); if (page->freed_size == page->busy_size) { if (page->next == 0) { assert(_root == page); // top page freed, just reset sizes page->busy_size = 0; page->freed_size = 0; #ifdef PUGIXML_COMPACT // reset compact state to maximize efficiency page->compact_string_base = 0; page->compact_shared_parent = 0; page->compact_page_marker = 0; #endif _busy_size = 0; } else { assert(_root != page); assert(page->prev); // remove from the list page->prev->next = page->next; page->next->prev = page->prev; // deallocate deallocate_page(page); } } } char_t* allocate_string(size_t length) { static const size_t max_encoded_offset = (1 << 16) * xml_memory_block_alignment; PUGI_IMPL_STATIC_ASSERT(xml_memory_page_size <= max_encoded_offset); // allocate memory for string and header block size_t size = sizeof(xml_memory_string_header) + length * sizeof(char_t); // round size up to block alignment boundary size_t full_size = (size + (xml_memory_block_alignment - 1)) & ~(xml_memory_block_alignment - 1); xml_memory_page* page; xml_memory_string_header* header = static_cast<xml_memory_string_header*>(allocate_memory(full_size, page)); if (!header) return 0; // setup header ptrdiff_t page_offset = reinterpret_cast<char*>(header) - reinterpret_cast<char*>(page) - sizeof(xml_memory_page); assert(page_offset % xml_memory_block_alignment == 0); assert(page_offset >= 0 && static_cast<size_t>(page_offset) < max_encoded_offset); header->page_offset = static_cast<uint16_t>(static_cast<size_t>(page_offset) / xml_memory_block_alignment); // full_size == 0 for large strings that occupy the whole page assert(full_size % xml_memory_block_alignment == 0); assert(full_size < max_encoded_offset || (page->busy_size == full_size && page_offset == 0)); header->full_size = static_cast<uint16_t>(full_size < max_encoded_offset ? full_size / xml_memory_block_alignment : 0); // round-trip through void* to avoid 'cast increases required alignment of target type' warning // header is guaranteed a pointer-sized alignment, which should be enough for char_t return static_cast<char_t*>(static_cast<void*>(header + 1)); } void deallocate_string(char_t* string) { // this function casts pointers through void* to avoid 'cast increases required alignment of target type' warnings // we're guaranteed the proper (pointer-sized) alignment on the input string if it was allocated via allocate_string // get header xml_memory_string_header* header = static_cast<xml_memory_string_header*>(static_cast<void*>(string)) - 1; assert(header); // deallocate size_t page_offset = sizeof(xml_memory_page) + header->page_offset * xml_memory_block_alignment; xml_memory_page* page = reinterpret_cast<xml_memory_page*>(static_cast<void*>(reinterpret_cast<char*>(header) - page_offset)); // if full_size == 0 then this string occupies the whole page size_t full_size = header->full_size == 0 ? page->busy_size : header->full_size * xml_memory_block_alignment; deallocate_memory(header, full_size, page); } bool reserve() { #ifdef PUGIXML_COMPACT return _hash->reserve(); #else return true; #endif } xml_memory_page* _root; size_t _busy_size; #ifdef PUGIXML_COMPACT compact_hash_table* _hash; #endif }; PUGI_IMPL_FN_NO_INLINE void* xml_allocator::allocate_memory_oob(size_t size, xml_memory_page*& out_page) { const size_t large_allocation_threshold = xml_memory_page_size / 4; xml_memory_page* page = allocate_page(size <= large_allocation_threshold ? xml_memory_page_size : size); out_page = page; if (!page) return 0; if (size <= large_allocation_threshold) { _root->busy_size = _busy_size; // insert page at the end of linked list page->prev = _root; _root->next = page; _root = page; _busy_size = size; } else { // insert page before the end of linked list, so that it is deleted as soon as possible // the last page is not deleted even if it's empty (see deallocate_memory) assert(_root->prev); page->prev = _root->prev; page->next = _root; _root->prev->next = page; _root->prev = page; page->busy_size = size; } return reinterpret_cast<char*>(page) + sizeof(xml_memory_page); } PUGI_IMPL_NS_END #ifdef PUGIXML_COMPACT PUGI_IMPL_NS_BEGIN static const uintptr_t compact_alignment_log2 = 2; static const uintptr_t compact_alignment = 1 << compact_alignment_log2; class compact_header { public: compact_header(xml_memory_page* page, unsigned int flags) { PUGI_IMPL_STATIC_ASSERT(xml_memory_block_alignment == compact_alignment); ptrdiff_t offset = (reinterpret_cast<char*>(this) - reinterpret_cast<char*>(page->compact_page_marker)); assert(offset % compact_alignment == 0 && static_cast<uintptr_t>(offset) < 256 * compact_alignment); _page = static_cast<unsigned char>(offset >> compact_alignment_log2); _flags = static_cast<unsigned char>(flags); } void operator&=(uintptr_t mod) { _flags &= static_cast<unsigned char>(mod); } void operator|=(uintptr_t mod) { _flags |= static_cast<unsigned char>(mod); } uintptr_t operator&(uintptr_t mod) const { return _flags & mod; } xml_memory_page* get_page() const { // round-trip through void* to silence 'cast increases required alignment of target type' warnings const char* page_marker = reinterpret_cast<const char*>(this) - (_page << compact_alignment_log2); const char* page = page_marker - *reinterpret_cast<const uint32_t*>(static_cast<const void*>(page_marker)); return const_cast<xml_memory_page*>(reinterpret_cast<const xml_memory_page*>(static_cast<const void*>(page))); } private: unsigned char _page; unsigned char _flags; }; PUGI_IMPL_FN xml_memory_page* compact_get_page(const void* object, int header_offset) { const compact_header* header = reinterpret_cast<const compact_header*>(static_cast<const char*>(object) - header_offset); return header->get_page(); } template <int header_offset, typename T> PUGI_IMPL_FN_NO_INLINE T* compact_get_value(const void* object) { return static_cast<T*>(compact_get_page(object, header_offset)->allocator->_hash->find(object)); } template <int header_offset, typename T> PUGI_IMPL_FN_NO_INLINE void compact_set_value(const void* object, T* value) { compact_get_page(object, header_offset)->allocator->_hash->insert(object, value); } template <typename T, int header_offset, int start = -126> class compact_pointer { public: compact_pointer(): _data(0) { } void operator=(const compact_pointer& rhs) { *this = rhs + 0; } void operator=(T* value) { if (value) { // value is guaranteed to be compact-aligned; 'this' is not // our decoding is based on 'this' aligned to compact alignment downwards (see operator T*) // so for negative offsets (e.g. -3) we need to adjust the diff by compact_alignment - 1 to // compensate for arithmetic shift rounding for negative values ptrdiff_t diff = reinterpret_cast<char*>(value) - reinterpret_cast<char*>(this); ptrdiff_t offset = ((diff + int(compact_alignment - 1)) >> compact_alignment_log2) - start; if (static_cast<uintptr_t>(offset) <= 253) _data = static_cast<unsigned char>(offset + 1); else { compact_set_value<header_offset>(this, value); _data = 255; } } else _data = 0; } operator T*() const { if (_data) { if (_data < 255) { uintptr_t base = reinterpret_cast<uintptr_t>(this) & ~(compact_alignment - 1); return reinterpret_cast<T*>(base + (_data - 1 + start) * compact_alignment); } else return compact_get_value<header_offset, T>(this); } else return 0; } T* operator->() const { return *this; } private: unsigned char _data; }; template <typename T, int header_offset> class compact_pointer_parent { public: compact_pointer_parent(): _data(0) { } void operator=(const compact_pointer_parent& rhs) { *this = rhs + 0; } void operator=(T* value) { if (value) { // value is guaranteed to be compact-aligned; 'this' is not // our decoding is based on 'this' aligned to compact alignment downwards (see operator T*) // so for negative offsets (e.g. -3) we need to adjust the diff by compact_alignment - 1 to // compensate for arithmetic shift behavior for negative values ptrdiff_t diff = reinterpret_cast<char*>(value) - reinterpret_cast<char*>(this); ptrdiff_t offset = ((diff + int(compact_alignment - 1)) >> compact_alignment_log2) + 65533; if (static_cast<uintptr_t>(offset) <= 65533) { _data = static_cast<unsigned short>(offset + 1); } else { xml_memory_page* page = compact_get_page(this, header_offset); if (PUGI_IMPL_UNLIKELY(page->compact_shared_parent == 0)) page->compact_shared_parent = value; if (page->compact_shared_parent == value) { _data = 65534; } else { compact_set_value<header_offset>(this, value); _data = 65535; } } } else { _data = 0; } } operator T*() const { if (_data) { if (_data < 65534) { uintptr_t base = reinterpret_cast<uintptr_t>(this) & ~(compact_alignment - 1); return reinterpret_cast<T*>(base + (_data - 1 - 65533) * compact_alignment); } else if (_data == 65534) return static_cast<T*>(compact_get_page(this, header_offset)->compact_shared_parent); else return compact_get_value<header_offset, T>(this); } else return 0; } T* operator->() const { return *this; } private: uint16_t _data; }; template <int header_offset, int base_offset> class compact_string { public: compact_string(): _data(0) { } void operator=(const compact_string& rhs) { *this = rhs + 0; } void operator=(char_t* value) { if (value) { xml_memory_page* page = compact_get_page(this, header_offset); if (PUGI_IMPL_UNLIKELY(page->compact_string_base == 0)) page->compact_string_base = value; ptrdiff_t offset = value - page->compact_string_base; if (static_cast<uintptr_t>(offset) < (65535 << 7)) { // round-trip through void* to silence 'cast increases required alignment of target type' warnings uint16_t* base = reinterpret_cast<uint16_t*>(static_cast<void*>(reinterpret_cast<char*>(this) - base_offset)); if (*base == 0) { *base = static_cast<uint16_t>((offset >> 7) + 1); _data = static_cast<unsigned char>((offset & 127) + 1); } else { ptrdiff_t remainder = offset - ((*base - 1) << 7); if (static_cast<uintptr_t>(remainder) <= 253) { _data = static_cast<unsigned char>(remainder + 1); } else { compact_set_value<header_offset>(this, value); _data = 255; } } } else { compact_set_value<header_offset>(this, value); _data = 255; } } else { _data = 0; } } operator char_t*() const { if (_data) { if (_data < 255) { xml_memory_page* page = compact_get_page(this, header_offset); // round-trip through void* to silence 'cast increases required alignment of target type' warnings const uint16_t* base = reinterpret_cast<const uint16_t*>(static_cast<const void*>(reinterpret_cast<const char*>(this) - base_offset)); assert(*base); ptrdiff_t offset = ((*base - 1) << 7) + (_data - 1); return page->compact_string_base + offset; } else { return compact_get_value<header_offset, char_t>(this); } } else return 0; } private: unsigned char _data; }; PUGI_IMPL_NS_END #endif #ifdef PUGIXML_COMPACT namespace pugi { struct xml_attribute_struct { xml_attribute_struct(impl::xml_memory_page* page): header(page, 0), namevalue_base(0) { PUGI_IMPL_STATIC_ASSERT(sizeof(xml_attribute_struct) == 8); } impl::compact_header header; uint16_t namevalue_base; impl::compact_string<4, 2> name; impl::compact_string<5, 3> value; impl::compact_pointer<xml_attribute_struct, 6> prev_attribute_c; impl::compact_pointer<xml_attribute_struct, 7, 0> next_attribute; }; struct xml_node_struct { xml_node_struct(impl::xml_memory_page* page, xml_node_type type): header(page, type), namevalue_base(0) { PUGI_IMPL_STATIC_ASSERT(sizeof(xml_node_struct) == 12); } impl::compact_header header; uint16_t namevalue_base; impl::compact_string<4, 2> name; impl::compact_string<5, 3> value; impl::compact_pointer_parent<xml_node_struct, 6> parent; impl::compact_pointer<xml_node_struct, 8, 0> first_child; impl::compact_pointer<xml_node_struct, 9> prev_sibling_c; impl::compact_pointer<xml_node_struct, 10, 0> next_sibling; impl::compact_pointer<xml_attribute_struct, 11, 0> first_attribute; }; } #else namespace pugi { struct xml_attribute_struct { xml_attribute_struct(impl::xml_memory_page* page): name(0), value(0), prev_attribute_c(0), next_attribute(0) { header = PUGI_IMPL_GETHEADER_IMPL(this, page, 0); } uintptr_t header; char_t* name; char_t* value; xml_attribute_struct* prev_attribute_c; xml_attribute_struct* next_attribute; }; struct xml_node_struct { xml_node_struct(impl::xml_memory_page* page, xml_node_type type): name(0), value(0), parent(0), first_child(0), prev_sibling_c(0), next_sibling(0), first_attribute(0) { header = PUGI_IMPL_GETHEADER_IMPL(this, page, type); } uintptr_t header; char_t* name; char_t* value; xml_node_struct* parent; xml_node_struct* first_child; xml_node_struct* prev_sibling_c; xml_node_struct* next_sibling; xml_attribute_struct* first_attribute; }; } #endif PUGI_IMPL_NS_BEGIN struct xml_extra_buffer { char_t* buffer; xml_extra_buffer* next; }; struct xml_document_struct: public xml_node_struct, public xml_allocator { xml_document_struct(xml_memory_page* page): xml_node_struct(page, node_document), xml_allocator(page), buffer(0), extra_buffers(0) { } const char_t* buffer; xml_extra_buffer* extra_buffers; #ifdef PUGIXML_COMPACT compact_hash_table hash; #endif }; template <typename Object> inline xml_allocator& get_allocator(const Object* object) { assert(object); return *PUGI_IMPL_GETPAGE(object)->allocator; } template <typename Object> inline xml_document_struct& get_document(const Object* object) { assert(object); return *static_cast<xml_document_struct*>(PUGI_IMPL_GETPAGE(object)->allocator); } PUGI_IMPL_NS_END // Low-level DOM operations PUGI_IMPL_NS_BEGIN inline xml_attribute_struct* allocate_attribute(xml_allocator& alloc) { xml_memory_page* page; void* memory = alloc.allocate_object(sizeof(xml_attribute_struct), page); if (!memory) return 0; return new (memory) xml_attribute_struct(page); } inline xml_node_struct* allocate_node(xml_allocator& alloc, xml_node_type type) { xml_memory_page* page; void* memory = alloc.allocate_object(sizeof(xml_node_struct), page); if (!memory) return 0; return new (memory) xml_node_struct(page, type); } inline void destroy_attribute(xml_attribute_struct* a, xml_allocator& alloc) { if (a->header & impl::xml_memory_page_name_allocated_mask) alloc.deallocate_string(a->name); if (a->header & impl::xml_memory_page_value_allocated_mask) alloc.deallocate_string(a->value); alloc.deallocate_memory(a, sizeof(xml_attribute_struct), PUGI_IMPL_GETPAGE(a)); } inline void destroy_node(xml_node_struct* n, xml_allocator& alloc) { if (n->header & impl::xml_memory_page_name_allocated_mask) alloc.deallocate_string(n->name); if (n->header & impl::xml_memory_page_value_allocated_mask) alloc.deallocate_string(n->value); for (xml_attribute_struct* attr = n->first_attribute; attr; ) { xml_attribute_struct* next = attr->next_attribute; destroy_attribute(attr, alloc); attr = next; } for (xml_node_struct* child = n->first_child; child; ) { xml_node_struct* next = child->next_sibling; destroy_node(child, alloc); child = next; } alloc.deallocate_memory(n, sizeof(xml_node_struct), PUGI_IMPL_GETPAGE(n)); } inline void append_node(xml_node_struct* child, xml_node_struct* node) { child->parent = node; xml_node_struct* head = node->first_child; if (head) { xml_node_struct* tail = head->prev_sibling_c; tail->next_sibling = child; child->prev_sibling_c = tail; head->prev_sibling_c = child; } else { node->first_child = child; child->prev_sibling_c = child; } } inline void prepend_node(xml_node_struct* child, xml_node_struct* node) { child->parent = node; xml_node_struct* head = node->first_child; if (head) { child->prev_sibling_c = head->prev_sibling_c; head->prev_sibling_c = child; } else child->prev_sibling_c = child; child->next_sibling = head; node->first_child = child; } inline void insert_node_after(xml_node_struct* child, xml_node_struct* node) { xml_node_struct* parent = node->parent; child->parent = parent; xml_node_struct* next = node->next_sibling; if (next) next->prev_sibling_c = child; else parent->first_child->prev_sibling_c = child; child->next_sibling = next; child->prev_sibling_c = node; node->next_sibling = child; } inline void insert_node_before(xml_node_struct* child, xml_node_struct* node) { xml_node_struct* parent = node->parent; child->parent = parent; xml_node_struct* prev = node->prev_sibling_c; if (prev->next_sibling) prev->next_sibling = child; else parent->first_child = child; child->prev_sibling_c = prev; child->next_sibling = node; node->prev_sibling_c = child; } inline void remove_node(xml_node_struct* node) { xml_node_struct* parent = node->parent; xml_node_struct* next = node->next_sibling; xml_node_struct* prev = node->prev_sibling_c; if (next) next->prev_sibling_c = prev; else parent->first_child->prev_sibling_c = prev; if (prev->next_sibling) prev->next_sibling = next; else parent->first_child = next; node->parent = 0; node->prev_sibling_c = 0; node->next_sibling = 0; } inline void append_attribute(xml_attribute_struct* attr, xml_node_struct* node) { xml_attribute_struct* head = node->first_attribute; if (head) { xml_attribute_struct* tail = head->prev_attribute_c; tail->next_attribute = attr; attr->prev_attribute_c = tail; head->prev_attribute_c = attr; } else { node->first_attribute = attr; attr->prev_attribute_c = attr; } } inline void prepend_attribute(xml_attribute_struct* attr, xml_node_struct* node) { xml_attribute_struct* head = node->first_attribute; if (head) { attr->prev_attribute_c = head->prev_attribute_c; head->prev_attribute_c = attr; } else attr->prev_attribute_c = attr; attr->next_attribute = head; node->first_attribute = attr; } inline void insert_attribute_after(xml_attribute_struct* attr, xml_attribute_struct* place, xml_node_struct* node) { xml_attribute_struct* next = place->next_attribute; if (next) next->prev_attribute_c = attr; else node->first_attribute->prev_attribute_c = attr; attr->next_attribute = next; attr->prev_attribute_c = place; place->next_attribute = attr; } inline void insert_attribute_before(xml_attribute_struct* attr, xml_attribute_struct* place, xml_node_struct* node) { xml_attribute_struct* prev = place->prev_attribute_c; if (prev->next_attribute) prev->next_attribute = attr; else node->first_attribute = attr; attr->prev_attribute_c = prev; attr->next_attribute = place; place->prev_attribute_c = attr; } inline void remove_attribute(xml_attribute_struct* attr, xml_node_struct* node) { xml_attribute_struct* next = attr->next_attribute; xml_attribute_struct* prev = attr->prev_attribute_c; if (next) next->prev_attribute_c = prev; else node->first_attribute->prev_attribute_c = prev; if (prev->next_attribute) prev->next_attribute = next; else node->first_attribute = next; attr->prev_attribute_c = 0; attr->next_attribute = 0; } PUGI_IMPL_FN_NO_INLINE xml_node_struct* append_new_node(xml_node_struct* node, xml_allocator& alloc, xml_node_type type = node_element) { if (!alloc.reserve()) return 0; xml_node_struct* child = allocate_node(alloc, type); if (!child) return 0; append_node(child, node); return child; } PUGI_IMPL_FN_NO_INLINE xml_attribute_struct* append_new_attribute(xml_node_struct* node, xml_allocator& alloc) { if (!alloc.reserve()) return 0; xml_attribute_struct* attr = allocate_attribute(alloc); if (!attr) return 0; append_attribute(attr, node); return attr; } PUGI_IMPL_NS_END // Helper classes for code generation PUGI_IMPL_NS_BEGIN struct opt_false { enum { value = 0 }; }; struct opt_true { enum { value = 1 }; }; PUGI_IMPL_NS_END // Unicode utilities PUGI_IMPL_NS_BEGIN inline uint16_t endian_swap(uint16_t value) { return static_cast<uint16_t>(((value & 0xff) << 8) | (value >> 8)); } inline uint32_t endian_swap(uint32_t value) { return ((value & 0xff) << 24) | ((value & 0xff00) << 8) | ((value & 0xff0000) >> 8) | (value >> 24); } struct utf8_counter { typedef size_t value_type; static value_type low(value_type result, uint32_t ch) { // U+0000..U+007F if (ch < 0x80) return result + 1; // U+0080..U+07FF else if (ch < 0x800) return result + 2; // U+0800..U+FFFF else return result + 3; } static value_type high(value_type result, uint32_t) { // U+10000..U+10FFFF return result + 4; } }; struct utf8_writer { typedef uint8_t* value_type; static value_type low(value_type result, uint32_t ch) { // U+0000..U+007F if (ch < 0x80) { *result = static_cast<uint8_t>(ch); return result + 1; } // U+0080..U+07FF else if (ch < 0x800) { result[0] = static_cast<uint8_t>(0xC0 | (ch >> 6)); result[1] = static_cast<uint8_t>(0x80 | (ch & 0x3F)); return result + 2; } // U+0800..U+FFFF else { result[0] = static_cast<uint8_t>(0xE0 | (ch >> 12)); result[1] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F)); result[2] = static_cast<uint8_t>(0x80 | (ch & 0x3F)); return result + 3; } } static value_type high(value_type result, uint32_t ch) { // U+10000..U+10FFFF result[0] = static_cast<uint8_t>(0xF0 | (ch >> 18)); result[1] = static_cast<uint8_t>(0x80 | ((ch >> 12) & 0x3F)); result[2] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F)); result[3] = static_cast<uint8_t>(0x80 | (ch & 0x3F)); return result + 4; } static value_type any(value_type result, uint32_t ch) { return (ch < 0x10000) ? low(result, ch) : high(result, ch); } }; struct utf16_counter { typedef size_t value_type; static value_type low(value_type result, uint32_t) { return result + 1; } static value_type high(value_type result, uint32_t) { return result + 2; } }; struct utf16_writer { typedef uint16_t* value_type; static value_type low(value_type result, uint32_t ch) { *result = static_cast<uint16_t>(ch); return result + 1; } static value_type high(value_type result, uint32_t ch) { uint32_t msh = static_cast<uint32_t>(ch - 0x10000) >> 10; uint32_t lsh = static_cast<uint32_t>(ch - 0x10000) & 0x3ff; result[0] = static_cast<uint16_t>(0xD800 + msh); result[1] = static_cast<uint16_t>(0xDC00 + lsh); return result + 2; } static value_type any(value_type result, uint32_t ch) { return (ch < 0x10000) ? low(result, ch) : high(result, ch); } }; struct utf32_counter { typedef size_t value_type; static value_type low(value_type result, uint32_t) { return result + 1; } static value_type high(value_type result, uint32_t) { return result + 1; } }; struct utf32_writer { typedef uint32_t* value_type; static value_type low(value_type result, uint32_t ch) { *result = ch; return result + 1; } static value_type high(value_type result, uint32_t ch) { *result = ch; return result + 1; } static value_type any(value_type result, uint32_t ch) { *result = ch; return result + 1; } }; struct latin1_writer { typedef uint8_t* value_type; static value_type low(value_type result, uint32_t ch) { *result = static_cast<uint8_t>(ch > 255 ? '?' : ch); return result + 1; } static value_type high(value_type result, uint32_t ch) { (void)ch; *result = '?'; return result + 1; } }; struct utf8_decoder { typedef uint8_t type; template <typename Traits> static inline typename Traits::value_type process(const uint8_t* data, size_t size, typename Traits::value_type result, Traits) { const uint8_t utf8_byte_mask = 0x3f; while (size) { uint8_t lead = *data; // 0xxxxxxx -> U+0000..U+007F if (lead < 0x80) { result = Traits::low(result, lead); data += 1; size -= 1; // process aligned single-byte (ascii) blocks if ((reinterpret_cast<uintptr_t>(data) & 3) == 0) { // round-trip through void* to silence 'cast increases required alignment of target type' warnings while (size >= 4 && (*static_cast<const uint32_t*>(static_cast<const void*>(data)) & 0x80808080) == 0) { result = Traits::low(result, data[0]); result = Traits::low(result, data[1]); result = Traits::low(result, data[2]); result = Traits::low(result, data[3]); data += 4; size -= 4; } } } // 110xxxxx -> U+0080..U+07FF else if (static_cast<unsigned int>(lead - 0xC0) < 0x20 && size >= 2 && (data[1] & 0xc0) == 0x80) { result = Traits::low(result, ((lead & ~0xC0) << 6) | (data[1] & utf8_byte_mask)); data += 2; size -= 2; } // 1110xxxx -> U+0800-U+FFFF else if (static_cast<unsigned int>(lead - 0xE0) < 0x10 && size >= 3 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80) { result = Traits::low(result, ((lead & ~0xE0) << 12) | ((data[1] & utf8_byte_mask) << 6) | (data[2] & utf8_byte_mask)); data += 3; size -= 3; } // 11110xxx -> U+10000..U+10FFFF else if (static_cast<unsigned int>(lead - 0xF0) < 0x08 && size >= 4 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80 && (data[3] & 0xc0) == 0x80) { result = Traits::high(result, ((lead & ~0xF0) << 18) | ((data[1] & utf8_byte_mask) << 12) | ((data[2] & utf8_byte_mask) << 6) | (data[3] & utf8_byte_mask)); data += 4; size -= 4; } // 10xxxxxx or 11111xxx -> invalid else { data += 1; size -= 1; } } return result; } }; template <typename opt_swap> struct utf16_decoder { typedef uint16_t type; template <typename Traits> static inline typename Traits::value_type process(const uint16_t* data, size_t size, typename Traits::value_type result, Traits) { while (size) { uint16_t lead = opt_swap::value ? endian_swap(*data) : *data; // U+0000..U+D7FF if (lead < 0xD800) { result = Traits::low(result, lead); data += 1; size -= 1; } // U+E000..U+FFFF else if (static_cast<unsigned int>(lead - 0xE000) < 0x2000) { result = Traits::low(result, lead); data += 1; size -= 1; } // surrogate pair lead else if (static_cast<unsigned int>(lead - 0xD800) < 0x400 && size >= 2) { uint16_t next = opt_swap::value ? endian_swap(data[1]) : data[1]; if (static_cast<unsigned int>(next - 0xDC00) < 0x400) { result = Traits::high(result, 0x10000 + ((lead & 0x3ff) << 10) + (next & 0x3ff)); data += 2; size -= 2; } else { data += 1; size -= 1; } } else { data += 1; size -= 1; } } return result; } }; template <typename opt_swap> struct utf32_decoder { typedef uint32_t type; template <typename Traits> static inline typename Traits::value_type process(const uint32_t* data, size_t size, typename Traits::value_type result, Traits) { while (size) { uint32_t lead = opt_swap::value ? endian_swap(*data) : *data; // U+0000..U+FFFF if (lead < 0x10000) { result = Traits::low(result, lead); data += 1; size -= 1; } // U+10000..U+10FFFF else { result = Traits::high(result, lead); data += 1; size -= 1; } } return result; } }; struct latin1_decoder { typedef uint8_t type; template <typename Traits> static inline typename Traits::value_type process(const uint8_t* data, size_t size, typename Traits::value_type result, Traits) { while (size) { result = Traits::low(result, *data); data += 1; size -= 1; } return result; } }; template <size_t size> struct wchar_selector; template <> struct wchar_selector<2> { typedef uint16_t type; typedef utf16_counter counter; typedef utf16_writer writer; typedef utf16_decoder<opt_false> decoder; }; template <> struct wchar_selector<4> { typedef uint32_t type; typedef utf32_counter counter; typedef utf32_writer writer; typedef utf32_decoder<opt_false> decoder; }; typedef wchar_selector<sizeof(wchar_t)>::counter wchar_counter; typedef wchar_selector<sizeof(wchar_t)>::writer wchar_writer; struct wchar_decoder { typedef wchar_t type; template <typename Traits> static inline typename Traits::value_type process(const wchar_t* data, size_t size, typename Traits::value_type result, Traits traits) { typedef wchar_selector<sizeof(wchar_t)>::decoder decoder; return decoder::process(reinterpret_cast<const typename decoder::type*>(data), size, result, traits); } }; #ifdef PUGIXML_WCHAR_MODE PUGI_IMPL_FN void convert_wchar_endian_swap(wchar_t* result, const wchar_t* data, size_t length) { for (size_t i = 0; i < length; ++i) result[i] = static_cast<wchar_t>(endian_swap(static_cast<wchar_selector<sizeof(wchar_t)>::type>(data[i]))); } #endif PUGI_IMPL_NS_END PUGI_IMPL_NS_BEGIN enum chartype_t { ct_parse_pcdata = 1, // \0, &, \r, < ct_parse_attr = 2, // \0, &, \r, ', " ct_parse_attr_ws = 4, // \0, &, \r, ', ", \n, tab ct_space = 8, // \r, \n, space, tab ct_parse_cdata = 16, // \0, ], >, \r ct_parse_comment = 32, // \0, -, >, \r ct_symbol = 64, // Any symbol > 127, a-z, A-Z, 0-9, _, :, -, . ct_start_symbol = 128 // Any symbol > 127, a-z, A-Z, _, : }; static const unsigned char chartype_table[256] = { 55, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 63, 0, 0, // 0-15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16-31 8, 0, 6, 0, 0, 0, 7, 6, 0, 0, 0, 0, 0, 96, 64, 0, // 32-47 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 192, 0, 1, 0, 48, 0, // 48-63 0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 64-79 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 16, 0, 192, // 80-95 0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 96-111 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 0, 0, 0, // 112-127 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 128+ 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192 }; enum chartypex_t { ctx_special_pcdata = 1, // Any symbol >= 0 and < 32 (except \t, \r, \n), &, <, > ctx_special_attr = 2, // Any symbol >= 0 and < 32, &, <, ", ' ctx_start_symbol = 4, // Any symbol > 127, a-z, A-Z, _ ctx_digit = 8, // 0-9 ctx_symbol = 16 // Any symbol > 127, a-z, A-Z, 0-9, _, -, . }; static const unsigned char chartypex_table[256] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, // 0-15 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // 16-31 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 16, 16, 0, // 32-47 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 0, 0, 3, 0, 1, 0, // 48-63 0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 64-79 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 20, // 80-95 0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 96-111 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 0, // 112-127 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 128+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20 }; #ifdef PUGIXML_WCHAR_MODE #define PUGI_IMPL_IS_CHARTYPE_IMPL(c, ct, table) ((static_cast<unsigned int>(c) < 128 ? table[static_cast<unsigned int>(c)] : table[128]) & (ct)) #else #define PUGI_IMPL_IS_CHARTYPE_IMPL(c, ct, table) (table[static_cast<unsigned char>(c)] & (ct)) #endif #define PUGI_IMPL_IS_CHARTYPE(c, ct) PUGI_IMPL_IS_CHARTYPE_IMPL(c, ct, chartype_table) #define PUGI_IMPL_IS_CHARTYPEX(c, ct) PUGI_IMPL_IS_CHARTYPE_IMPL(c, ct, chartypex_table) PUGI_IMPL_FN bool is_little_endian() { unsigned int ui = 1; return *reinterpret_cast<unsigned char*>(&ui) == 1; } PUGI_IMPL_FN xml_encoding get_wchar_encoding() { PUGI_IMPL_STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4); if (sizeof(wchar_t) == 2) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be; else return is_little_endian() ? encoding_utf32_le : encoding_utf32_be; } PUGI_IMPL_FN bool parse_declaration_encoding(const uint8_t* data, size_t size, const uint8_t*& out_encoding, size_t& out_length) { #define PUGI_IMPL_SCANCHAR(ch) { if (offset >= size || data[offset] != ch) return false; offset++; } #define PUGI_IMPL_SCANCHARTYPE(ct) { while (offset < size && PUGI_IMPL_IS_CHARTYPE(data[offset], ct)) offset++; } // check if we have a non-empty XML declaration if (size < 6 || !((data[0] == '<') & (data[1] == '?') & (data[2] == 'x') & (data[3] == 'm') & (data[4] == 'l') && PUGI_IMPL_IS_CHARTYPE(data[5], ct_space))) return false; // scan XML declaration until the encoding field for (size_t i = 6; i + 1 < size; ++i) { // declaration can not contain ? in quoted values if (data[i] == '?') return false; if (data[i] == 'e' && data[i + 1] == 'n') { size_t offset = i; // encoding follows the version field which can't contain 'en' so this has to be the encoding if XML is well formed PUGI_IMPL_SCANCHAR('e'); PUGI_IMPL_SCANCHAR('n'); PUGI_IMPL_SCANCHAR('c'); PUGI_IMPL_SCANCHAR('o'); PUGI_IMPL_SCANCHAR('d'); PUGI_IMPL_SCANCHAR('i'); PUGI_IMPL_SCANCHAR('n'); PUGI_IMPL_SCANCHAR('g'); // S? = S? PUGI_IMPL_SCANCHARTYPE(ct_space); PUGI_IMPL_SCANCHAR('='); PUGI_IMPL_SCANCHARTYPE(ct_space); // the only two valid delimiters are ' and " uint8_t delimiter = (offset < size && data[offset] == '"') ? '"' : '\''; PUGI_IMPL_SCANCHAR(delimiter); size_t start = offset; out_encoding = data + offset; PUGI_IMPL_SCANCHARTYPE(ct_symbol); out_length = offset - start; PUGI_IMPL_SCANCHAR(delimiter); return true; } } return false; #undef PUGI_IMPL_SCANCHAR #undef PUGI_IMPL_SCANCHARTYPE } PUGI_IMPL_FN xml_encoding guess_buffer_encoding(const uint8_t* data, size_t size) { // skip encoding autodetection if input buffer is too small if (size < 4) return encoding_utf8; uint8_t d0 = data[0], d1 = data[1], d2 = data[2], d3 = data[3]; // look for BOM in first few bytes if (d0 == 0 && d1 == 0 && d2 == 0xfe && d3 == 0xff) return encoding_utf32_be; if (d0 == 0xff && d1 == 0xfe && d2 == 0 && d3 == 0) return encoding_utf32_le; if (d0 == 0xfe && d1 == 0xff) return encoding_utf16_be; if (d0 == 0xff && d1 == 0xfe) return encoding_utf16_le; if (d0 == 0xef && d1 == 0xbb && d2 == 0xbf) return encoding_utf8; // look for <, <? or <?xm in various encodings if (d0 == 0 && d1 == 0 && d2 == 0 && d3 == 0x3c) return encoding_utf32_be; if (d0 == 0x3c && d1 == 0 && d2 == 0 && d3 == 0) return encoding_utf32_le; if (d0 == 0 && d1 == 0x3c && d2 == 0 && d3 == 0x3f) return encoding_utf16_be; if (d0 == 0x3c && d1 == 0 && d2 == 0x3f && d3 == 0) return encoding_utf16_le; // look for utf16 < followed by node name (this may fail, but is better than utf8 since it's zero terminated so early) if (d0 == 0 && d1 == 0x3c) return encoding_utf16_be; if (d0 == 0x3c && d1 == 0) return encoding_utf16_le; // no known BOM detected; parse declaration const uint8_t* enc = 0; size_t enc_length = 0; if (d0 == 0x3c && d1 == 0x3f && d2 == 0x78 && d3 == 0x6d && parse_declaration_encoding(data, size, enc, enc_length)) { // iso-8859-1 (case-insensitive) if (enc_length == 10 && (enc[0] | ' ') == 'i' && (enc[1] | ' ') == 's' && (enc[2] | ' ') == 'o' && enc[3] == '-' && enc[4] == '8' && enc[5] == '8' && enc[6] == '5' && enc[7] == '9' && enc[8] == '-' && enc[9] == '1') return encoding_latin1; // latin1 (case-insensitive) if (enc_length == 6 && (enc[0] | ' ') == 'l' && (enc[1] | ' ') == 'a' && (enc[2] | ' ') == 't' && (enc[3] | ' ') == 'i' && (enc[4] | ' ') == 'n' && enc[5] == '1') return encoding_latin1; } return encoding_utf8; } PUGI_IMPL_FN xml_encoding get_buffer_encoding(xml_encoding encoding, const void* contents, size_t size) { // replace wchar encoding with utf implementation if (encoding == encoding_wchar) return get_wchar_encoding(); // replace utf16 encoding with utf16 with specific endianness if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be; // replace utf32 encoding with utf32 with specific endianness if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be; // only do autodetection if no explicit encoding is requested if (encoding != encoding_auto) return encoding; // try to guess encoding (based on XML specification, Appendix F.1) const uint8_t* data = static_cast<const uint8_t*>(contents); return guess_buffer_encoding(data, size); } PUGI_IMPL_FN bool get_mutable_buffer(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable) { size_t length = size / sizeof(char_t); if (is_mutable) { out_buffer = static_cast<char_t*>(const_cast<void*>(contents)); out_length = length; } else { char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!buffer) return false; if (contents) memcpy(buffer, contents, length * sizeof(char_t)); else assert(length == 0); buffer[length] = 0; out_buffer = buffer; out_length = length + 1; } return true; } #ifdef PUGIXML_WCHAR_MODE PUGI_IMPL_FN bool need_endian_swap_utf(xml_encoding le, xml_encoding re) { return (le == encoding_utf16_be && re == encoding_utf16_le) || (le == encoding_utf16_le && re == encoding_utf16_be) || (le == encoding_utf32_be && re == encoding_utf32_le) || (le == encoding_utf32_le && re == encoding_utf32_be); } PUGI_IMPL_FN bool convert_buffer_endian_swap(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable) { const char_t* data = static_cast<const char_t*>(contents); size_t length = size / sizeof(char_t); if (is_mutable) { char_t* buffer = const_cast<char_t*>(data); convert_wchar_endian_swap(buffer, data, length); out_buffer = buffer; out_length = length; } else { char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!buffer) return false; convert_wchar_endian_swap(buffer, data, length); buffer[length] = 0; out_buffer = buffer; out_length = length + 1; } return true; } template <typename D> PUGI_IMPL_FN bool convert_buffer_generic(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, D) { const typename D::type* data = static_cast<const typename D::type*>(contents); size_t data_length = size / sizeof(typename D::type); // first pass: get length in wchar_t units size_t length = D::process(data, data_length, 0, wchar_counter()); // allocate buffer of suitable length char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!buffer) return false; // second pass: convert utf16 input to wchar_t wchar_writer::value_type obegin = reinterpret_cast<wchar_writer::value_type>(buffer); wchar_writer::value_type oend = D::process(data, data_length, obegin, wchar_writer()); assert(oend == obegin + length); *oend = 0; out_buffer = buffer; out_length = length + 1; return true; } PUGI_IMPL_FN bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable) { // get native encoding xml_encoding wchar_encoding = get_wchar_encoding(); // fast path: no conversion required if (encoding == wchar_encoding) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable); // only endian-swapping is required if (need_endian_swap_utf(encoding, wchar_encoding)) return convert_buffer_endian_swap(out_buffer, out_length, contents, size, is_mutable); // source encoding is utf8 if (encoding == encoding_utf8) return convert_buffer_generic(out_buffer, out_length, contents, size, utf8_decoder()); // source encoding is utf16 if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; return (native_encoding == encoding) ? convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_false>()) : convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_true>()); } // source encoding is utf32 if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; return (native_encoding == encoding) ? convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_false>()) : convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_true>()); } // source encoding is latin1 if (encoding == encoding_latin1) return convert_buffer_generic(out_buffer, out_length, contents, size, latin1_decoder()); assert(false && "Invalid encoding"); // unreachable return false; } #else template <typename D> PUGI_IMPL_FN bool convert_buffer_generic(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, D) { const typename D::type* data = static_cast<const typename D::type*>(contents); size_t data_length = size / sizeof(typename D::type); // first pass: get length in utf8 units size_t length = D::process(data, data_length, 0, utf8_counter()); // allocate buffer of suitable length char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!buffer) return false; // second pass: convert utf16 input to utf8 uint8_t* obegin = reinterpret_cast<uint8_t*>(buffer); uint8_t* oend = D::process(data, data_length, obegin, utf8_writer()); assert(oend == obegin + length); *oend = 0; out_buffer = buffer; out_length = length + 1; return true; } PUGI_IMPL_FN size_t get_latin1_7bit_prefix_length(const uint8_t* data, size_t size) { for (size_t i = 0; i < size; ++i) if (data[i] > 127) return i; return size; } PUGI_IMPL_FN bool convert_buffer_latin1(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable) { const uint8_t* data = static_cast<const uint8_t*>(contents); size_t data_length = size; // get size of prefix that does not need utf8 conversion size_t prefix_length = get_latin1_7bit_prefix_length(data, data_length); assert(prefix_length <= data_length); const uint8_t* postfix = data + prefix_length; size_t postfix_length = data_length - prefix_length; // if no conversion is needed, just return the original buffer if (postfix_length == 0) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable); // first pass: get length in utf8 units size_t length = prefix_length + latin1_decoder::process(postfix, postfix_length, 0, utf8_counter()); // allocate buffer of suitable length char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!buffer) return false; // second pass: convert latin1 input to utf8 memcpy(buffer, data, prefix_length); uint8_t* obegin = reinterpret_cast<uint8_t*>(buffer); uint8_t* oend = latin1_decoder::process(postfix, postfix_length, obegin + prefix_length, utf8_writer()); assert(oend == obegin + length); *oend = 0; out_buffer = buffer; out_length = length + 1; return true; } PUGI_IMPL_FN bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable) { // fast path: no conversion required if (encoding == encoding_utf8) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable); // source encoding is utf16 if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; return (native_encoding == encoding) ? convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_false>()) : convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_true>()); } // source encoding is utf32 if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; return (native_encoding == encoding) ? convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_false>()) : convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_true>()); } // source encoding is latin1 if (encoding == encoding_latin1) return convert_buffer_latin1(out_buffer, out_length, contents, size, is_mutable); assert(false && "Invalid encoding"); // unreachable return false; } #endif PUGI_IMPL_FN size_t as_utf8_begin(const wchar_t* str, size_t length) { // get length in utf8 characters return wchar_decoder::process(str, length, 0, utf8_counter()); } PUGI_IMPL_FN void as_utf8_end(char* buffer, size_t size, const wchar_t* str, size_t length) { // convert to utf8 uint8_t* begin = reinterpret_cast<uint8_t*>(buffer); uint8_t* end = wchar_decoder::process(str, length, begin, utf8_writer()); assert(begin + size == end); (void)!end; (void)!size; } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN std::string as_utf8_impl(const wchar_t* str, size_t length) { // first pass: get length in utf8 characters size_t size = as_utf8_begin(str, length); // allocate resulting string std::string result; result.resize(size); // second pass: convert to utf8 if (size > 0) as_utf8_end(&result[0], size, str, length); return result; } PUGI_IMPL_FN std::basic_string<wchar_t> as_wide_impl(const char* str, size_t size) { const uint8_t* data = reinterpret_cast<const uint8_t*>(str); // first pass: get length in wchar_t units size_t length = utf8_decoder::process(data, size, 0, wchar_counter()); // allocate resulting string std::basic_string<wchar_t> result; result.resize(length); // second pass: convert to wchar_t if (length > 0) { wchar_writer::value_type begin = reinterpret_cast<wchar_writer::value_type>(&result[0]); wchar_writer::value_type end = utf8_decoder::process(data, size, begin, wchar_writer()); assert(begin + length == end); (void)!end; } return result; } #endif template <typename Header> inline bool strcpy_insitu_allow(size_t length, const Header& header, uintptr_t header_mask, char_t* target) { // never reuse shared memory if (header & xml_memory_page_contents_shared_mask) return false; size_t target_length = strlength(target); // always reuse document buffer memory if possible if ((header & header_mask) == 0) return target_length >= length; // reuse heap memory if waste is not too great const size_t reuse_threshold = 32; return target_length >= length && (target_length < reuse_threshold || target_length - length < target_length / 2); } template <typename String, typename Header> PUGI_IMPL_FN bool strcpy_insitu(String& dest, Header& header, uintptr_t header_mask, const char_t* source, size_t source_length) { assert((header & header_mask) == 0 || dest); // header bit indicates whether dest was previously allocated if (source_length == 0) { // empty string and null pointer are equivalent, so just deallocate old memory xml_allocator* alloc = PUGI_IMPL_GETPAGE_IMPL(header)->allocator; if (header & header_mask) alloc->deallocate_string(dest); // mark the string as not allocated dest = 0; header &= ~header_mask; return true; } else if (dest && strcpy_insitu_allow(source_length, header, header_mask, dest)) { // we can reuse old buffer, so just copy the new data (including zero terminator) memcpy(dest, source, source_length * sizeof(char_t)); dest[source_length] = 0; return true; } else { xml_allocator* alloc = PUGI_IMPL_GETPAGE_IMPL(header)->allocator; if (!alloc->reserve()) return false; // allocate new buffer char_t* buf = alloc->allocate_string(source_length + 1); if (!buf) return false; // copy the string (including zero terminator) memcpy(buf, source, source_length * sizeof(char_t)); buf[source_length] = 0; // deallocate old buffer (*after* the above to protect against overlapping memory and/or allocation failures) if (header & header_mask) alloc->deallocate_string(dest); // the string is now allocated, so set the flag dest = buf; header |= header_mask; return true; } } struct gap { char_t* end; size_t size; gap(): end(0), size(0) { } // Push new gap, move s count bytes further (skipping the gap). // Collapse previous gap. void push(char_t*& s, size_t count) { if (end) // there was a gap already; collapse it { // Move [old_gap_end, new_gap_start) to [old_gap_start, ...) assert(s >= end); memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end)); } s += count; // end of current gap // "merge" two gaps end = s; size += count; } // Collapse all gaps, return past-the-end pointer char_t* flush(char_t* s) { if (end) { // Move [old_gap_end, current_pos) to [old_gap_start, ...) assert(s >= end); memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end)); return s - size; } else return s; } }; PUGI_IMPL_FN char_t* strconv_escape(char_t* s, gap& g) { char_t* stre = s + 1; switch (*stre) { case '#': // &#... { unsigned int ucsc = 0; if (stre[1] == 'x') // &#x... (hex code) { stre += 2; char_t ch = *stre; if (ch == ';') return stre; for (;;) { if (static_cast<unsigned int>(ch - '0') <= 9) ucsc = 16 * ucsc + (ch - '0'); else if (static_cast<unsigned int>((ch | ' ') - 'a') <= 5) ucsc = 16 * ucsc + ((ch | ' ') - 'a' + 10); else if (ch == ';') break; else // cancel return stre; ch = *++stre; } ++stre; } else // &#... (dec code) { char_t ch = *++stre; if (ch == ';') return stre; for (;;) { if (static_cast<unsigned int>(ch - '0') <= 9) ucsc = 10 * ucsc + (ch - '0'); else if (ch == ';') break; else // cancel return stre; ch = *++stre; } ++stre; } #ifdef PUGIXML_WCHAR_MODE s = reinterpret_cast<char_t*>(wchar_writer::any(reinterpret_cast<wchar_writer::value_type>(s), ucsc)); #else s = reinterpret_cast<char_t*>(utf8_writer::any(reinterpret_cast<uint8_t*>(s), ucsc)); #endif g.push(s, stre - s); return stre; } case 'a': // &a { ++stre; if (*stre == 'm') // &am { if (*++stre == 'p' && *++stre == ';') // & { *s++ = '&'; ++stre; g.push(s, stre - s); return stre; } } else if (*stre == 'p') // &ap { if (*++stre == 'o' && *++stre == 's' && *++stre == ';') // ' { *s++ = '\''; ++stre; g.push(s, stre - s); return stre; } } break; } case 'g': // &g { if (*++stre == 't' && *++stre == ';') // > { *s++ = '>'; ++stre; g.push(s, stre - s); return stre; } break; } case 'l': // &l { if (*++stre == 't' && *++stre == ';') // < { *s++ = '<'; ++stre; g.push(s, stre - s); return stre; } break; } case 'q': // &q { if (*++stre == 'u' && *++stre == 'o' && *++stre == 't' && *++stre == ';') // " { *s++ = '"'; ++stre; g.push(s, stre - s); return stre; } break; } default: break; } return stre; } // Parser utilities #define PUGI_IMPL_ENDSWITH(c, e) ((c) == (e) || ((c) == 0 && endch == (e))) #define PUGI_IMPL_SKIPWS() { while (PUGI_IMPL_IS_CHARTYPE(*s, ct_space)) ++s; } #define PUGI_IMPL_OPTSET(OPT) ( optmsk & (OPT) ) #define PUGI_IMPL_PUSHNODE(TYPE) { cursor = append_new_node(cursor, *alloc, TYPE); if (!cursor) PUGI_IMPL_THROW_ERROR(status_out_of_memory, s); } #define PUGI_IMPL_POPNODE() { cursor = cursor->parent; } #define PUGI_IMPL_SCANFOR(X) { while (*s != 0 && !(X)) ++s; } #define PUGI_IMPL_SCANWHILE(X) { while (X) ++s; } #define PUGI_IMPL_SCANWHILE_UNROLL(X) { for (;;) { char_t ss = s[0]; if (PUGI_IMPL_UNLIKELY(!(X))) { break; } ss = s[1]; if (PUGI_IMPL_UNLIKELY(!(X))) { s += 1; break; } ss = s[2]; if (PUGI_IMPL_UNLIKELY(!(X))) { s += 2; break; } ss = s[3]; if (PUGI_IMPL_UNLIKELY(!(X))) { s += 3; break; } s += 4; } } #define PUGI_IMPL_ENDSEG() { ch = *s; *s = 0; ++s; } #define PUGI_IMPL_THROW_ERROR(err, m) return error_offset = m, error_status = err, static_cast<char_t*>(0) #define PUGI_IMPL_CHECK_ERROR(err, m) { if (*s == 0) PUGI_IMPL_THROW_ERROR(err, m); } PUGI_IMPL_FN char_t* strconv_comment(char_t* s, char_t endch) { gap g; while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_comment)); if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair { *s++ = '\n'; // replace first one with 0x0a if (*s == '\n') g.push(s, 1); } else if (s[0] == '-' && s[1] == '-' && PUGI_IMPL_ENDSWITH(s[2], '>')) // comment ends here { *g.flush(s) = 0; return s + (s[2] == '>' ? 3 : 2); } else if (*s == 0) { return 0; } else ++s; } } PUGI_IMPL_FN char_t* strconv_cdata(char_t* s, char_t endch) { gap g; while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_cdata)); if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair { *s++ = '\n'; // replace first one with 0x0a if (*s == '\n') g.push(s, 1); } else if (s[0] == ']' && s[1] == ']' && PUGI_IMPL_ENDSWITH(s[2], '>')) // CDATA ends here { *g.flush(s) = 0; return s + 1; } else if (*s == 0) { return 0; } else ++s; } } typedef char_t* (*strconv_pcdata_t)(char_t*); template <typename opt_trim, typename opt_eol, typename opt_escape> struct strconv_pcdata_impl { static char_t* parse(char_t* s) { gap g; char_t* begin = s; while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_pcdata)); if (*s == '<') // PCDATA ends here { char_t* end = g.flush(s); if (opt_trim::value) while (end > begin && PUGI_IMPL_IS_CHARTYPE(end[-1], ct_space)) --end; *end = 0; return s + 1; } else if (opt_eol::value && *s == '\r') // Either a single 0x0d or 0x0d 0x0a pair { *s++ = '\n'; // replace first one with 0x0a if (*s == '\n') g.push(s, 1); } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (*s == 0) { char_t* end = g.flush(s); if (opt_trim::value) while (end > begin && PUGI_IMPL_IS_CHARTYPE(end[-1], ct_space)) --end; *end = 0; return s; } else ++s; } } }; PUGI_IMPL_FN strconv_pcdata_t get_strconv_pcdata(unsigned int optmask) { PUGI_IMPL_STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20 && parse_trim_pcdata == 0x0800); switch (((optmask >> 4) & 3) | ((optmask >> 9) & 4)) // get bitmask for flags (trim eol escapes); this simultaneously checks 3 options from assertion above { case 0: return strconv_pcdata_impl<opt_false, opt_false, opt_false>::parse; case 1: return strconv_pcdata_impl<opt_false, opt_false, opt_true>::parse; case 2: return strconv_pcdata_impl<opt_false, opt_true, opt_false>::parse; case 3: return strconv_pcdata_impl<opt_false, opt_true, opt_true>::parse; case 4: return strconv_pcdata_impl<opt_true, opt_false, opt_false>::parse; case 5: return strconv_pcdata_impl<opt_true, opt_false, opt_true>::parse; case 6: return strconv_pcdata_impl<opt_true, opt_true, opt_false>::parse; case 7: return strconv_pcdata_impl<opt_true, opt_true, opt_true>::parse; default: assert(false); return 0; // unreachable } } typedef char_t* (*strconv_attribute_t)(char_t*, char_t); template <typename opt_escape> struct strconv_attribute_impl { static char_t* parse_wnorm(char_t* s, char_t end_quote) { gap g; // trim leading whitespaces if (PUGI_IMPL_IS_CHARTYPE(*s, ct_space)) { char_t* str = s; do ++str; while (PUGI_IMPL_IS_CHARTYPE(*str, ct_space)); g.push(s, str - s); } while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_attr_ws | ct_space)); if (*s == end_quote) { char_t* str = g.flush(s); do *str-- = 0; while (PUGI_IMPL_IS_CHARTYPE(*str, ct_space)); return s + 1; } else if (PUGI_IMPL_IS_CHARTYPE(*s, ct_space)) { *s++ = ' '; if (PUGI_IMPL_IS_CHARTYPE(*s, ct_space)) { char_t* str = s + 1; while (PUGI_IMPL_IS_CHARTYPE(*str, ct_space)) ++str; g.push(s, str - s); } } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } static char_t* parse_wconv(char_t* s, char_t end_quote) { gap g; while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_attr_ws)); if (*s == end_quote) { *g.flush(s) = 0; return s + 1; } else if (PUGI_IMPL_IS_CHARTYPE(*s, ct_space)) { if (*s == '\r') { *s++ = ' '; if (*s == '\n') g.push(s, 1); } else *s++ = ' '; } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } static char_t* parse_eol(char_t* s, char_t end_quote) { gap g; while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_attr)); if (*s == end_quote) { *g.flush(s) = 0; return s + 1; } else if (*s == '\r') { *s++ = '\n'; if (*s == '\n') g.push(s, 1); } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } static char_t* parse_simple(char_t* s, char_t end_quote) { gap g; while (true) { PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPE(ss, ct_parse_attr)); if (*s == end_quote) { *g.flush(s) = 0; return s + 1; } else if (opt_escape::value && *s == '&') { s = strconv_escape(s, g); } else if (!*s) { return 0; } else ++s; } } }; PUGI_IMPL_FN strconv_attribute_t get_strconv_attribute(unsigned int optmask) { PUGI_IMPL_STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20 && parse_wconv_attribute == 0x40 && parse_wnorm_attribute == 0x80); switch ((optmask >> 4) & 15) // get bitmask for flags (wnorm wconv eol escapes); this simultaneously checks 4 options from assertion above { case 0: return strconv_attribute_impl<opt_false>::parse_simple; case 1: return strconv_attribute_impl<opt_true>::parse_simple; case 2: return strconv_attribute_impl<opt_false>::parse_eol; case 3: return strconv_attribute_impl<opt_true>::parse_eol; case 4: return strconv_attribute_impl<opt_false>::parse_wconv; case 5: return strconv_attribute_impl<opt_true>::parse_wconv; case 6: return strconv_attribute_impl<opt_false>::parse_wconv; case 7: return strconv_attribute_impl<opt_true>::parse_wconv; case 8: return strconv_attribute_impl<opt_false>::parse_wnorm; case 9: return strconv_attribute_impl<opt_true>::parse_wnorm; case 10: return strconv_attribute_impl<opt_false>::parse_wnorm; case 11: return strconv_attribute_impl<opt_true>::parse_wnorm; case 12: return strconv_attribute_impl<opt_false>::parse_wnorm; case 13: return strconv_attribute_impl<opt_true>::parse_wnorm; case 14: return strconv_attribute_impl<opt_false>::parse_wnorm; case 15: return strconv_attribute_impl<opt_true>::parse_wnorm; default: assert(false); return 0; // unreachable } } inline xml_parse_result make_parse_result(xml_parse_status status, ptrdiff_t offset = 0) { xml_parse_result result; result.status = status; result.offset = offset; return result; } struct xml_parser { xml_allocator* alloc; char_t* error_offset; xml_parse_status error_status; xml_parser(xml_allocator* alloc_): alloc(alloc_), error_offset(0), error_status(status_ok) { } // DOCTYPE consists of nested sections of the following possible types: // <!-- ... -->, <? ... ?>, "...", '...' // <![...]]> // <!...> // First group can not contain nested groups // Second group can contain nested groups of the same type // Third group can contain all other groups char_t* parse_doctype_primitive(char_t* s) { if (*s == '"' || *s == '\'') { // quoted string char_t ch = *s++; PUGI_IMPL_SCANFOR(*s == ch); if (!*s) PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); s++; } else if (s[0] == '<' && s[1] == '?') { // <? ... ?> s += 2; PUGI_IMPL_SCANFOR(s[0] == '?' && s[1] == '>'); // no need for ENDSWITH because ?> can't terminate proper doctype if (!*s) PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); s += 2; } else if (s[0] == '<' && s[1] == '!' && s[2] == '-' && s[3] == '-') { s += 4; PUGI_IMPL_SCANFOR(s[0] == '-' && s[1] == '-' && s[2] == '>'); // no need for ENDSWITH because --> can't terminate proper doctype if (!*s) PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); s += 3; } else PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); return s; } char_t* parse_doctype_ignore(char_t* s) { size_t depth = 0; assert(s[0] == '<' && s[1] == '!' && s[2] == '['); s += 3; while (*s) { if (s[0] == '<' && s[1] == '!' && s[2] == '[') { // nested ignore section s += 3; depth++; } else if (s[0] == ']' && s[1] == ']' && s[2] == '>') { // ignore section end s += 3; if (depth == 0) return s; depth--; } else s++; } PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); } char_t* parse_doctype_group(char_t* s, char_t endch) { size_t depth = 0; assert((s[0] == '<' || s[0] == 0) && s[1] == '!'); s += 2; while (*s) { if (s[0] == '<' && s[1] == '!' && s[2] != '-') { if (s[2] == '[') { // ignore s = parse_doctype_ignore(s); if (!s) return s; } else { // some control group s += 2; depth++; } } else if (s[0] == '<' || s[0] == '"' || s[0] == '\'') { // unknown tag (forbidden), or some primitive group s = parse_doctype_primitive(s); if (!s) return s; } else if (*s == '>') { if (depth == 0) return s; depth--; s++; } else s++; } if (depth != 0 || endch != '>') PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); return s; } char_t* parse_exclamation(char_t* s, xml_node_struct* cursor, unsigned int optmsk, char_t endch) { // parse node contents, starting with exclamation mark ++s; if (*s == '-') // '<!-...' { ++s; if (*s == '-') // '<!--...' { ++s; if (PUGI_IMPL_OPTSET(parse_comments)) { PUGI_IMPL_PUSHNODE(node_comment); // Append a new node on the tree. cursor->value = s; // Save the offset. } if (PUGI_IMPL_OPTSET(parse_eol) && PUGI_IMPL_OPTSET(parse_comments)) { s = strconv_comment(s, endch); if (!s) PUGI_IMPL_THROW_ERROR(status_bad_comment, cursor->value); } else { // Scan for terminating '-->'. PUGI_IMPL_SCANFOR(s[0] == '-' && s[1] == '-' && PUGI_IMPL_ENDSWITH(s[2], '>')); PUGI_IMPL_CHECK_ERROR(status_bad_comment, s); if (PUGI_IMPL_OPTSET(parse_comments)) *s = 0; // Zero-terminate this segment at the first terminating '-'. s += (s[2] == '>' ? 3 : 2); // Step over the '\0->'. } } else PUGI_IMPL_THROW_ERROR(status_bad_comment, s); } else if (*s == '[') { // '<![CDATA[...' if (*++s=='C' && *++s=='D' && *++s=='A' && *++s=='T' && *++s=='A' && *++s == '[') { ++s; if (PUGI_IMPL_OPTSET(parse_cdata)) { PUGI_IMPL_PUSHNODE(node_cdata); // Append a new node on the tree. cursor->value = s; // Save the offset. if (PUGI_IMPL_OPTSET(parse_eol)) { s = strconv_cdata(s, endch); if (!s) PUGI_IMPL_THROW_ERROR(status_bad_cdata, cursor->value); } else { // Scan for terminating ']]>'. PUGI_IMPL_SCANFOR(s[0] == ']' && s[1] == ']' && PUGI_IMPL_ENDSWITH(s[2], '>')); PUGI_IMPL_CHECK_ERROR(status_bad_cdata, s); *s++ = 0; // Zero-terminate this segment. } } else // Flagged for discard, but we still have to scan for the terminator. { // Scan for terminating ']]>'. PUGI_IMPL_SCANFOR(s[0] == ']' && s[1] == ']' && PUGI_IMPL_ENDSWITH(s[2], '>')); PUGI_IMPL_CHECK_ERROR(status_bad_cdata, s); ++s; } s += (s[1] == '>' ? 2 : 1); // Step over the last ']>'. } else PUGI_IMPL_THROW_ERROR(status_bad_cdata, s); } else if (s[0] == 'D' && s[1] == 'O' && s[2] == 'C' && s[3] == 'T' && s[4] == 'Y' && s[5] == 'P' && PUGI_IMPL_ENDSWITH(s[6], 'E')) { s -= 2; if (cursor->parent) PUGI_IMPL_THROW_ERROR(status_bad_doctype, s); char_t* mark = s + 9; s = parse_doctype_group(s, endch); if (!s) return s; assert((*s == 0 && endch == '>') || *s == '>'); if (*s) *s++ = 0; if (PUGI_IMPL_OPTSET(parse_doctype)) { while (PUGI_IMPL_IS_CHARTYPE(*mark, ct_space)) ++mark; PUGI_IMPL_PUSHNODE(node_doctype); cursor->value = mark; } } else if (*s == 0 && endch == '-') PUGI_IMPL_THROW_ERROR(status_bad_comment, s); else if (*s == 0 && endch == '[') PUGI_IMPL_THROW_ERROR(status_bad_cdata, s); else PUGI_IMPL_THROW_ERROR(status_unrecognized_tag, s); return s; } char_t* parse_question(char_t* s, xml_node_struct*& ref_cursor, unsigned int optmsk, char_t endch) { // load into registers xml_node_struct* cursor = ref_cursor; char_t ch = 0; // parse node contents, starting with question mark ++s; // read PI target char_t* target = s; if (!PUGI_IMPL_IS_CHARTYPE(*s, ct_start_symbol)) PUGI_IMPL_THROW_ERROR(status_bad_pi, s); PUGI_IMPL_SCANWHILE(PUGI_IMPL_IS_CHARTYPE(*s, ct_symbol)); PUGI_IMPL_CHECK_ERROR(status_bad_pi, s); // determine node type; stricmp / strcasecmp is not portable bool declaration = (target[0] | ' ') == 'x' && (target[1] | ' ') == 'm' && (target[2] | ' ') == 'l' && target + 3 == s; if (declaration ? PUGI_IMPL_OPTSET(parse_declaration) : PUGI_IMPL_OPTSET(parse_pi)) { if (declaration) { // disallow non top-level declarations if (cursor->parent) PUGI_IMPL_THROW_ERROR(status_bad_pi, s); PUGI_IMPL_PUSHNODE(node_declaration); } else { PUGI_IMPL_PUSHNODE(node_pi); } cursor->name = target; PUGI_IMPL_ENDSEG(); // parse value/attributes if (ch == '?') { // empty node if (!PUGI_IMPL_ENDSWITH(*s, '>')) PUGI_IMPL_THROW_ERROR(status_bad_pi, s); s += (*s == '>'); PUGI_IMPL_POPNODE(); } else if (PUGI_IMPL_IS_CHARTYPE(ch, ct_space)) { PUGI_IMPL_SKIPWS(); // scan for tag end char_t* value = s; PUGI_IMPL_SCANFOR(s[0] == '?' && PUGI_IMPL_ENDSWITH(s[1], '>')); PUGI_IMPL_CHECK_ERROR(status_bad_pi, s); if (declaration) { // replace ending ? with / so that 'element' terminates properly *s = '/'; // we exit from this function with cursor at node_declaration, which is a signal to parse() to go to LOC_ATTRIBUTES s = value; } else { // store value and step over > cursor->value = value; PUGI_IMPL_POPNODE(); PUGI_IMPL_ENDSEG(); s += (*s == '>'); } } else PUGI_IMPL_THROW_ERROR(status_bad_pi, s); } else { // scan for tag end PUGI_IMPL_SCANFOR(s[0] == '?' && PUGI_IMPL_ENDSWITH(s[1], '>')); PUGI_IMPL_CHECK_ERROR(status_bad_pi, s); s += (s[1] == '>' ? 2 : 1); } // store from registers ref_cursor = cursor; return s; } char_t* parse_tree(char_t* s, xml_node_struct* root, unsigned int optmsk, char_t endch) { strconv_attribute_t strconv_attribute = get_strconv_attribute(optmsk); strconv_pcdata_t strconv_pcdata = get_strconv_pcdata(optmsk); char_t ch = 0; xml_node_struct* cursor = root; char_t* mark = s; char_t* merged_pcdata = s; while (*s != 0) { if (*s == '<') { ++s; LOC_TAG: if (PUGI_IMPL_IS_CHARTYPE(*s, ct_start_symbol)) // '<#...' { PUGI_IMPL_PUSHNODE(node_element); // Append a new node to the tree. cursor->name = s; PUGI_IMPL_SCANWHILE_UNROLL(PUGI_IMPL_IS_CHARTYPE(ss, ct_symbol)); // Scan for a terminator. PUGI_IMPL_ENDSEG(); // Save char in 'ch', terminate & step over. if (ch == '>') { // end of tag } else if (PUGI_IMPL_IS_CHARTYPE(ch, ct_space)) { LOC_ATTRIBUTES: while (true) { PUGI_IMPL_SKIPWS(); // Eat any whitespace. if (PUGI_IMPL_IS_CHARTYPE(*s, ct_start_symbol)) // <... #... { xml_attribute_struct* a = append_new_attribute(cursor, *alloc); // Make space for this attribute. if (!a) PUGI_IMPL_THROW_ERROR(status_out_of_memory, s); a->name = s; // Save the offset. PUGI_IMPL_SCANWHILE_UNROLL(PUGI_IMPL_IS_CHARTYPE(ss, ct_symbol)); // Scan for a terminator. PUGI_IMPL_ENDSEG(); // Save char in 'ch', terminate & step over. if (PUGI_IMPL_IS_CHARTYPE(ch, ct_space)) { PUGI_IMPL_SKIPWS(); // Eat any whitespace. ch = *s; ++s; } if (ch == '=') // '<... #=...' { PUGI_IMPL_SKIPWS(); // Eat any whitespace. if (*s == '"' || *s == '\'') // '<... #="...' { ch = *s; // Save quote char to avoid breaking on "''" -or- '""'. ++s; // Step over the quote. a->value = s; // Save the offset. s = strconv_attribute(s, ch); if (!s) PUGI_IMPL_THROW_ERROR(status_bad_attribute, a->value); // After this line the loop continues from the start; // Whitespaces, / and > are ok, symbols and EOF are wrong, // everything else will be detected if (PUGI_IMPL_IS_CHARTYPE(*s, ct_start_symbol)) PUGI_IMPL_THROW_ERROR(status_bad_attribute, s); } else PUGI_IMPL_THROW_ERROR(status_bad_attribute, s); } else PUGI_IMPL_THROW_ERROR(status_bad_attribute, s); } else if (*s == '/') { ++s; if (*s == '>') { PUGI_IMPL_POPNODE(); s++; break; } else if (*s == 0 && endch == '>') { PUGI_IMPL_POPNODE(); break; } else PUGI_IMPL_THROW_ERROR(status_bad_start_element, s); } else if (*s == '>') { ++s; break; } else if (*s == 0 && endch == '>') { break; } else PUGI_IMPL_THROW_ERROR(status_bad_start_element, s); } // !!! } else if (ch == '/') // '<#.../' { if (!PUGI_IMPL_ENDSWITH(*s, '>')) PUGI_IMPL_THROW_ERROR(status_bad_start_element, s); PUGI_IMPL_POPNODE(); // Pop. s += (*s == '>'); } else if (ch == 0) { // we stepped over null terminator, backtrack & handle closing tag --s; if (endch != '>') PUGI_IMPL_THROW_ERROR(status_bad_start_element, s); } else PUGI_IMPL_THROW_ERROR(status_bad_start_element, s); } else if (*s == '/') { ++s; mark = s; char_t* name = cursor->name; if (!name) PUGI_IMPL_THROW_ERROR(status_end_element_mismatch, mark); while (PUGI_IMPL_IS_CHARTYPE(*s, ct_symbol)) { if (*s++ != *name++) PUGI_IMPL_THROW_ERROR(status_end_element_mismatch, mark); } if (*name) { if (*s == 0 && name[0] == endch && name[1] == 0) PUGI_IMPL_THROW_ERROR(status_bad_end_element, s); else PUGI_IMPL_THROW_ERROR(status_end_element_mismatch, mark); } PUGI_IMPL_POPNODE(); // Pop. PUGI_IMPL_SKIPWS(); if (*s == 0) { if (endch != '>') PUGI_IMPL_THROW_ERROR(status_bad_end_element, s); } else { if (*s != '>') PUGI_IMPL_THROW_ERROR(status_bad_end_element, s); ++s; } } else if (*s == '?') // '<?...' { s = parse_question(s, cursor, optmsk, endch); if (!s) return s; assert(cursor); if (PUGI_IMPL_NODETYPE(cursor) == node_declaration) goto LOC_ATTRIBUTES; } else if (*s == '!') // '<!...' { s = parse_exclamation(s, cursor, optmsk, endch); if (!s) return s; } else if (*s == 0 && endch == '?') PUGI_IMPL_THROW_ERROR(status_bad_pi, s); else PUGI_IMPL_THROW_ERROR(status_unrecognized_tag, s); } else { mark = s; // Save this offset while searching for a terminator. PUGI_IMPL_SKIPWS(); // Eat whitespace if no genuine PCDATA here. if (*s == '<' || !*s) { // We skipped some whitespace characters because otherwise we would take the tag branch instead of PCDATA one assert(mark != s); if (!PUGI_IMPL_OPTSET(parse_ws_pcdata | parse_ws_pcdata_single) || PUGI_IMPL_OPTSET(parse_trim_pcdata)) { continue; } else if (PUGI_IMPL_OPTSET(parse_ws_pcdata_single)) { if (s[0] != '<' || s[1] != '/' || cursor->first_child) continue; } } if (!PUGI_IMPL_OPTSET(parse_trim_pcdata)) s = mark; if (cursor->parent || PUGI_IMPL_OPTSET(parse_fragment)) { char_t* parsed_pcdata = s; s = strconv_pcdata(s); if (PUGI_IMPL_OPTSET(parse_embed_pcdata) && cursor->parent && !cursor->first_child && !cursor->value) { cursor->value = parsed_pcdata; // Save the offset. } else if (PUGI_IMPL_OPTSET(parse_merge_pcdata) && cursor->first_child && PUGI_IMPL_NODETYPE(cursor->first_child->prev_sibling_c) == node_pcdata) { assert(merged_pcdata >= cursor->first_child->prev_sibling_c->value); // Catch up to the end of last parsed value; only needed for the first fragment. merged_pcdata += strlength(merged_pcdata); size_t length = strlength(parsed_pcdata); // Must use memmove instead of memcpy as this move may overlap memmove(merged_pcdata, parsed_pcdata, (length + 1) * sizeof(char_t)); merged_pcdata += length; } else { xml_node_struct* prev_cursor = cursor; PUGI_IMPL_PUSHNODE(node_pcdata); // Append a new node on the tree. cursor->value = parsed_pcdata; // Save the offset. merged_pcdata = parsed_pcdata; // Used for parse_merge_pcdata above, cheaper to save unconditionally cursor = prev_cursor; // Pop since this is a standalone. } if (!*s) break; } else { PUGI_IMPL_SCANFOR(*s == '<'); // '...<' if (!*s) break; ++s; } // We're after '<' goto LOC_TAG; } } // check that last tag is closed if (cursor != root) PUGI_IMPL_THROW_ERROR(status_end_element_mismatch, s); return s; } #ifdef PUGIXML_WCHAR_MODE static char_t* parse_skip_bom(char_t* s) { unsigned int bom = 0xfeff; return (s[0] == static_cast<wchar_t>(bom)) ? s + 1 : s; } #else static char_t* parse_skip_bom(char_t* s) { return (s[0] == '\xef' && s[1] == '\xbb' && s[2] == '\xbf') ? s + 3 : s; } #endif static bool has_element_node_siblings(xml_node_struct* node) { while (node) { if (PUGI_IMPL_NODETYPE(node) == node_element) return true; node = node->next_sibling; } return false; } static xml_parse_result parse(char_t* buffer, size_t length, xml_document_struct* xmldoc, xml_node_struct* root, unsigned int optmsk) { // early-out for empty documents if (length == 0) return make_parse_result(PUGI_IMPL_OPTSET(parse_fragment) ? status_ok : status_no_document_element); // get last child of the root before parsing xml_node_struct* last_root_child = root->first_child ? root->first_child->prev_sibling_c + 0 : 0; // create parser on stack xml_parser parser(static_cast<xml_allocator*>(xmldoc)); // save last character and make buffer zero-terminated (speeds up parsing) char_t endch = buffer[length - 1]; buffer[length - 1] = 0; // skip BOM to make sure it does not end up as part of parse output char_t* buffer_data = parse_skip_bom(buffer); // perform actual parsing parser.parse_tree(buffer_data, root, optmsk, endch); xml_parse_result result = make_parse_result(parser.error_status, parser.error_offset ? parser.error_offset - buffer : 0); assert(result.offset >= 0 && static_cast<size_t>(result.offset) <= length); if (result) { // since we removed last character, we have to handle the only possible false positive (stray <) if (endch == '<') return make_parse_result(status_unrecognized_tag, length - 1); // check if there are any element nodes parsed xml_node_struct* first_root_child_parsed = last_root_child ? last_root_child->next_sibling + 0 : root->first_child + 0; if (!PUGI_IMPL_OPTSET(parse_fragment) && !has_element_node_siblings(first_root_child_parsed)) return make_parse_result(status_no_document_element, length - 1); } else { // roll back offset if it occurs on a null terminator in the source buffer if (result.offset > 0 && static_cast<size_t>(result.offset) == length - 1 && endch == 0) result.offset--; } return result; } }; // Output facilities PUGI_IMPL_FN xml_encoding get_write_native_encoding() { #ifdef PUGIXML_WCHAR_MODE return get_wchar_encoding(); #else return encoding_utf8; #endif } PUGI_IMPL_FN xml_encoding get_write_encoding(xml_encoding encoding) { // replace wchar encoding with utf implementation if (encoding == encoding_wchar) return get_wchar_encoding(); // replace utf16 encoding with utf16 with specific endianness if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be; // replace utf32 encoding with utf32 with specific endianness if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be; // only do autodetection if no explicit encoding is requested if (encoding != encoding_auto) return encoding; // assume utf8 encoding return encoding_utf8; } template <typename D, typename T> PUGI_IMPL_FN size_t convert_buffer_output_generic(typename T::value_type dest, const char_t* data, size_t length, D, T) { PUGI_IMPL_STATIC_ASSERT(sizeof(char_t) == sizeof(typename D::type)); typename T::value_type end = D::process(reinterpret_cast<const typename D::type*>(data), length, dest, T()); return static_cast<size_t>(end - dest) * sizeof(*dest); } template <typename D, typename T> PUGI_IMPL_FN size_t convert_buffer_output_generic(typename T::value_type dest, const char_t* data, size_t length, D, T, bool opt_swap) { PUGI_IMPL_STATIC_ASSERT(sizeof(char_t) == sizeof(typename D::type)); typename T::value_type end = D::process(reinterpret_cast<const typename D::type*>(data), length, dest, T()); if (opt_swap) { for (typename T::value_type i = dest; i != end; ++i) *i = endian_swap(*i); } return static_cast<size_t>(end - dest) * sizeof(*dest); } #ifdef PUGIXML_WCHAR_MODE PUGI_IMPL_FN size_t get_valid_length(const char_t* data, size_t length) { if (length < 1) return 0; // discard last character if it's the lead of a surrogate pair return (sizeof(wchar_t) == 2 && static_cast<unsigned int>(static_cast<uint16_t>(data[length - 1]) - 0xD800) < 0x400) ? length - 1 : length; } PUGI_IMPL_FN size_t convert_buffer_output(char_t* r_char, uint8_t* r_u8, uint16_t* r_u16, uint32_t* r_u32, const char_t* data, size_t length, xml_encoding encoding) { // only endian-swapping is required if (need_endian_swap_utf(encoding, get_wchar_encoding())) { convert_wchar_endian_swap(r_char, data, length); return length * sizeof(char_t); } // convert to utf8 if (encoding == encoding_utf8) return convert_buffer_output_generic(r_u8, data, length, wchar_decoder(), utf8_writer()); // convert to utf16 if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; return convert_buffer_output_generic(r_u16, data, length, wchar_decoder(), utf16_writer(), native_encoding != encoding); } // convert to utf32 if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; return convert_buffer_output_generic(r_u32, data, length, wchar_decoder(), utf32_writer(), native_encoding != encoding); } // convert to latin1 if (encoding == encoding_latin1) return convert_buffer_output_generic(r_u8, data, length, wchar_decoder(), latin1_writer()); assert(false && "Invalid encoding"); // unreachable return 0; } #else PUGI_IMPL_FN size_t get_valid_length(const char_t* data, size_t length) { if (length < 5) return 0; for (size_t i = 1; i <= 4; ++i) { uint8_t ch = static_cast<uint8_t>(data[length - i]); // either a standalone character or a leading one if ((ch & 0xc0) != 0x80) return length - i; } // there are four non-leading characters at the end, sequence tail is broken so might as well process the whole chunk return length; } PUGI_IMPL_FN size_t convert_buffer_output(char_t* /* r_char */, uint8_t* r_u8, uint16_t* r_u16, uint32_t* r_u32, const char_t* data, size_t length, xml_encoding encoding) { if (encoding == encoding_utf16_be || encoding == encoding_utf16_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be; return convert_buffer_output_generic(r_u16, data, length, utf8_decoder(), utf16_writer(), native_encoding != encoding); } if (encoding == encoding_utf32_be || encoding == encoding_utf32_le) { xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be; return convert_buffer_output_generic(r_u32, data, length, utf8_decoder(), utf32_writer(), native_encoding != encoding); } if (encoding == encoding_latin1) return convert_buffer_output_generic(r_u8, data, length, utf8_decoder(), latin1_writer()); assert(false && "Invalid encoding"); // unreachable return 0; } #endif class xml_buffered_writer { xml_buffered_writer(const xml_buffered_writer&); xml_buffered_writer& operator=(const xml_buffered_writer&); public: xml_buffered_writer(xml_writer& writer_, xml_encoding user_encoding): writer(writer_), bufsize(0), encoding(get_write_encoding(user_encoding)) { PUGI_IMPL_STATIC_ASSERT(bufcapacity >= 8); } size_t flush() { flush(buffer, bufsize); bufsize = 0; return 0; } void flush(const char_t* data, size_t size) { if (size == 0) return; // fast path, just write data if (encoding == get_write_native_encoding()) writer.write(data, size * sizeof(char_t)); else { // convert chunk size_t result = convert_buffer_output(scratch.data_char, scratch.data_u8, scratch.data_u16, scratch.data_u32, data, size, encoding); assert(result <= sizeof(scratch)); // write data writer.write(scratch.data_u8, result); } } void write_direct(const char_t* data, size_t length) { // flush the remaining buffer contents flush(); // handle large chunks if (length > bufcapacity) { if (encoding == get_write_native_encoding()) { // fast path, can just write data chunk writer.write(data, length * sizeof(char_t)); return; } // need to convert in suitable chunks while (length > bufcapacity) { // get chunk size by selecting such number of characters that are guaranteed to fit into scratch buffer // and form a complete codepoint sequence (i.e. discard start of last codepoint if necessary) size_t chunk_size = get_valid_length(data, bufcapacity); assert(chunk_size); // convert chunk and write flush(data, chunk_size); // iterate data += chunk_size; length -= chunk_size; } // small tail is copied below bufsize = 0; } memcpy(buffer + bufsize, data, length * sizeof(char_t)); bufsize += length; } void write_buffer(const char_t* data, size_t length) { size_t offset = bufsize; if (offset + length <= bufcapacity) { memcpy(buffer + offset, data, length * sizeof(char_t)); bufsize = offset + length; } else { write_direct(data, length); } } void write_string(const char_t* data) { // write the part of the string that fits in the buffer size_t offset = bufsize; while (*data && offset < bufcapacity) buffer[offset++] = *data++; // write the rest if (offset < bufcapacity) { bufsize = offset; } else { // backtrack a bit if we have split the codepoint size_t length = offset - bufsize; size_t extra = length - get_valid_length(data - length, length); bufsize = offset - extra; write_direct(data - extra, strlength(data) + extra); } } void write(char_t d0) { size_t offset = bufsize; if (offset > bufcapacity - 1) offset = flush(); buffer[offset + 0] = d0; bufsize = offset + 1; } void write(char_t d0, char_t d1) { size_t offset = bufsize; if (offset > bufcapacity - 2) offset = flush(); buffer[offset + 0] = d0; buffer[offset + 1] = d1; bufsize = offset + 2; } void write(char_t d0, char_t d1, char_t d2) { size_t offset = bufsize; if (offset > bufcapacity - 3) offset = flush(); buffer[offset + 0] = d0; buffer[offset + 1] = d1; buffer[offset + 2] = d2; bufsize = offset + 3; } void write(char_t d0, char_t d1, char_t d2, char_t d3) { size_t offset = bufsize; if (offset > bufcapacity - 4) offset = flush(); buffer[offset + 0] = d0; buffer[offset + 1] = d1; buffer[offset + 2] = d2; buffer[offset + 3] = d3; bufsize = offset + 4; } void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4) { size_t offset = bufsize; if (offset > bufcapacity - 5) offset = flush(); buffer[offset + 0] = d0; buffer[offset + 1] = d1; buffer[offset + 2] = d2; buffer[offset + 3] = d3; buffer[offset + 4] = d4; bufsize = offset + 5; } void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4, char_t d5) { size_t offset = bufsize; if (offset > bufcapacity - 6) offset = flush(); buffer[offset + 0] = d0; buffer[offset + 1] = d1; buffer[offset + 2] = d2; buffer[offset + 3] = d3; buffer[offset + 4] = d4; buffer[offset + 5] = d5; bufsize = offset + 6; } // utf8 maximum expansion: x4 (-> utf32) // utf16 maximum expansion: x2 (-> utf32) // utf32 maximum expansion: x1 enum { bufcapacitybytes = #ifdef PUGIXML_MEMORY_OUTPUT_STACK PUGIXML_MEMORY_OUTPUT_STACK #else 10240 #endif , bufcapacity = bufcapacitybytes / (sizeof(char_t) + 4) }; char_t buffer[bufcapacity]; union { uint8_t data_u8[4 * bufcapacity]; uint16_t data_u16[2 * bufcapacity]; uint32_t data_u32[bufcapacity]; char_t data_char[bufcapacity]; } scratch; xml_writer& writer; size_t bufsize; xml_encoding encoding; }; PUGI_IMPL_FN void text_output_escaped(xml_buffered_writer& writer, const char_t* s, chartypex_t type, unsigned int flags) { while (*s) { const char_t* prev = s; // While *s is a usual symbol PUGI_IMPL_SCANWHILE_UNROLL(!PUGI_IMPL_IS_CHARTYPEX(ss, type)); writer.write_buffer(prev, static_cast<size_t>(s - prev)); switch (*s) { case 0: break; case '&': writer.write('&', 'a', 'm', 'p', ';'); ++s; break; case '<': writer.write('&', 'l', 't', ';'); ++s; break; case '>': writer.write('&', 'g', 't', ';'); ++s; break; case '"': if (flags & format_attribute_single_quote) writer.write('"'); else writer.write('&', 'q', 'u', 'o', 't', ';'); ++s; break; case '\'': if (flags & format_attribute_single_quote) writer.write('&', 'a', 'p', 'o', 's', ';'); else writer.write('\''); ++s; break; default: // s is not a usual symbol { unsigned int ch = static_cast<unsigned int>(*s++); assert(ch < 32); if (!(flags & format_skip_control_chars)) writer.write('&', '#', static_cast<char_t>((ch / 10) + '0'), static_cast<char_t>((ch % 10) + '0'), ';'); } } } } PUGI_IMPL_FN void text_output(xml_buffered_writer& writer, const char_t* s, chartypex_t type, unsigned int flags) { if (flags & format_no_escapes) writer.write_string(s); else text_output_escaped(writer, s, type, flags); } PUGI_IMPL_FN void text_output_cdata(xml_buffered_writer& writer, const char_t* s) { do { writer.write('<', '!', '[', 'C', 'D'); writer.write('A', 'T', 'A', '['); const char_t* prev = s; // look for ]]> sequence - we can't output it as is since it terminates CDATA while (*s && !(s[0] == ']' && s[1] == ']' && s[2] == '>')) ++s; // skip ]] if we stopped at ]]>, > will go to the next CDATA section if (*s) s += 2; writer.write_buffer(prev, static_cast<size_t>(s - prev)); writer.write(']', ']', '>'); } while (*s); } PUGI_IMPL_FN void text_output_indent(xml_buffered_writer& writer, const char_t* indent, size_t indent_length, unsigned int depth) { switch (indent_length) { case 1: { for (unsigned int i = 0; i < depth; ++i) writer.write(indent[0]); break; } case 2: { for (unsigned int i = 0; i < depth; ++i) writer.write(indent[0], indent[1]); break; } case 3: { for (unsigned int i = 0; i < depth; ++i) writer.write(indent[0], indent[1], indent[2]); break; } case 4: { for (unsigned int i = 0; i < depth; ++i) writer.write(indent[0], indent[1], indent[2], indent[3]); break; } default: { for (unsigned int i = 0; i < depth; ++i) writer.write_buffer(indent, indent_length); } } } PUGI_IMPL_FN void node_output_comment(xml_buffered_writer& writer, const char_t* s) { writer.write('<', '!', '-', '-'); while (*s) { const char_t* prev = s; // look for -\0 or -- sequence - we can't output it since -- is illegal in comment body while (*s && !(s[0] == '-' && (s[1] == '-' || s[1] == 0))) ++s; writer.write_buffer(prev, static_cast<size_t>(s - prev)); if (*s) { assert(*s == '-'); writer.write('-', ' '); ++s; } } writer.write('-', '-', '>'); } PUGI_IMPL_FN void node_output_pi_value(xml_buffered_writer& writer, const char_t* s) { while (*s) { const char_t* prev = s; // look for ?> sequence - we can't output it since ?> terminates PI while (*s && !(s[0] == '?' && s[1] == '>')) ++s; writer.write_buffer(prev, static_cast<size_t>(s - prev)); if (*s) { assert(s[0] == '?' && s[1] == '>'); writer.write('?', ' ', '>'); s += 2; } } } PUGI_IMPL_FN void node_output_attributes(xml_buffered_writer& writer, xml_node_struct* node, const char_t* indent, size_t indent_length, unsigned int flags, unsigned int depth) { const char_t* default_name = PUGIXML_TEXT(":anonymous"); const char_t enquotation_char = (flags & format_attribute_single_quote) ? '\'' : '"'; for (xml_attribute_struct* a = node->first_attribute; a; a = a->next_attribute) { if ((flags & (format_indent_attributes | format_raw)) == format_indent_attributes) { writer.write('\n'); text_output_indent(writer, indent, indent_length, depth + 1); } else { writer.write(' '); } writer.write_string(a->name ? a->name + 0 : default_name); writer.write('=', enquotation_char); if (a->value) text_output(writer, a->value, ctx_special_attr, flags); writer.write(enquotation_char); } } PUGI_IMPL_FN bool node_output_start(xml_buffered_writer& writer, xml_node_struct* node, const char_t* indent, size_t indent_length, unsigned int flags, unsigned int depth) { const char_t* default_name = PUGIXML_TEXT(":anonymous"); const char_t* name = node->name ? node->name + 0 : default_name; writer.write('<'); writer.write_string(name); if (node->first_attribute) node_output_attributes(writer, node, indent, indent_length, flags, depth); // element nodes can have value if parse_embed_pcdata was used if (!node->value) { if (!node->first_child) { if (flags & format_no_empty_element_tags) { writer.write('>', '<', '/'); writer.write_string(name); writer.write('>'); return false; } else { if ((flags & format_raw) == 0) writer.write(' '); writer.write('/', '>'); return false; } } else { writer.write('>'); return true; } } else { writer.write('>'); text_output(writer, node->value, ctx_special_pcdata, flags); if (!node->first_child) { writer.write('<', '/'); writer.write_string(name); writer.write('>'); return false; } else { return true; } } } PUGI_IMPL_FN void node_output_end(xml_buffered_writer& writer, xml_node_struct* node) { const char_t* default_name = PUGIXML_TEXT(":anonymous"); const char_t* name = node->name ? node->name + 0 : default_name; writer.write('<', '/'); writer.write_string(name); writer.write('>'); } PUGI_IMPL_FN void node_output_simple(xml_buffered_writer& writer, xml_node_struct* node, unsigned int flags) { const char_t* default_name = PUGIXML_TEXT(":anonymous"); switch (PUGI_IMPL_NODETYPE(node)) { case node_pcdata: text_output(writer, node->value ? node->value + 0 : PUGIXML_TEXT(""), ctx_special_pcdata, flags); break; case node_cdata: text_output_cdata(writer, node->value ? node->value + 0 : PUGIXML_TEXT("")); break; case node_comment: node_output_comment(writer, node->value ? node->value + 0 : PUGIXML_TEXT("")); break; case node_pi: writer.write('<', '?'); writer.write_string(node->name ? node->name + 0 : default_name); if (node->value) { writer.write(' '); node_output_pi_value(writer, node->value); } writer.write('?', '>'); break; case node_declaration: writer.write('<', '?'); writer.write_string(node->name ? node->name + 0 : default_name); node_output_attributes(writer, node, PUGIXML_TEXT(""), 0, flags | format_raw, 0); writer.write('?', '>'); break; case node_doctype: writer.write('<', '!', 'D', 'O', 'C'); writer.write('T', 'Y', 'P', 'E'); if (node->value) { writer.write(' '); writer.write_string(node->value); } writer.write('>'); break; default: assert(false && "Invalid node type"); // unreachable } } enum indent_flags_t { indent_newline = 1, indent_indent = 2 }; PUGI_IMPL_FN void node_output(xml_buffered_writer& writer, xml_node_struct* root, const char_t* indent, unsigned int flags, unsigned int depth) { size_t indent_length = ((flags & (format_indent | format_indent_attributes)) && (flags & format_raw) == 0) ? strlength(indent) : 0; unsigned int indent_flags = indent_indent; xml_node_struct* node = root; do { assert(node); // begin writing current node if (PUGI_IMPL_NODETYPE(node) == node_pcdata || PUGI_IMPL_NODETYPE(node) == node_cdata) { node_output_simple(writer, node, flags); indent_flags = 0; } else { if ((indent_flags & indent_newline) && (flags & format_raw) == 0) writer.write('\n'); if ((indent_flags & indent_indent) && indent_length) text_output_indent(writer, indent, indent_length, depth); if (PUGI_IMPL_NODETYPE(node) == node_element) { indent_flags = indent_newline | indent_indent; if (node_output_start(writer, node, indent, indent_length, flags, depth)) { // element nodes can have value if parse_embed_pcdata was used if (node->value) indent_flags = 0; node = node->first_child; depth++; continue; } } else if (PUGI_IMPL_NODETYPE(node) == node_document) { indent_flags = indent_indent; if (node->first_child) { node = node->first_child; continue; } } else { node_output_simple(writer, node, flags); indent_flags = indent_newline | indent_indent; } } // continue to the next node while (node != root) { if (node->next_sibling) { node = node->next_sibling; break; } node = node->parent; // write closing node if (PUGI_IMPL_NODETYPE(node) == node_element) { depth--; if ((indent_flags & indent_newline) && (flags & format_raw) == 0) writer.write('\n'); if ((indent_flags & indent_indent) && indent_length) text_output_indent(writer, indent, indent_length, depth); node_output_end(writer, node); indent_flags = indent_newline | indent_indent; } } } while (node != root); if ((indent_flags & indent_newline) && (flags & format_raw) == 0) writer.write('\n'); } PUGI_IMPL_FN bool has_declaration(xml_node_struct* node) { for (xml_node_struct* child = node->first_child; child; child = child->next_sibling) { xml_node_type type = PUGI_IMPL_NODETYPE(child); if (type == node_declaration) return true; if (type == node_element) return false; } return false; } PUGI_IMPL_FN bool is_attribute_of(xml_attribute_struct* attr, xml_node_struct* node) { for (xml_attribute_struct* a = node->first_attribute; a; a = a->next_attribute) if (a == attr) return true; return false; } PUGI_IMPL_FN bool allow_insert_attribute(xml_node_type parent) { return parent == node_element || parent == node_declaration; } PUGI_IMPL_FN bool allow_insert_child(xml_node_type parent, xml_node_type child) { if (parent != node_document && parent != node_element) return false; if (child == node_document || child == node_null) return false; if (parent != node_document && (child == node_declaration || child == node_doctype)) return false; return true; } PUGI_IMPL_FN bool allow_move(xml_node parent, xml_node child) { // check that child can be a child of parent if (!allow_insert_child(parent.type(), child.type())) return false; // check that node is not moved between documents if (parent.root() != child.root()) return false; // check that new parent is not in the child subtree xml_node cur = parent; while (cur) { if (cur == child) return false; cur = cur.parent(); } return true; } template <typename String, typename Header> PUGI_IMPL_FN void node_copy_string(String& dest, Header& header, uintptr_t header_mask, char_t* source, Header& source_header, xml_allocator* alloc) { assert(!dest && (header & header_mask) == 0); // copies are performed into fresh nodes if (source) { if (alloc && (source_header & header_mask) == 0) { dest = source; // since strcpy_insitu can reuse document buffer memory we need to mark both source and dest as shared header |= xml_memory_page_contents_shared_mask; source_header |= xml_memory_page_contents_shared_mask; } else strcpy_insitu(dest, header, header_mask, source, strlength(source)); } } PUGI_IMPL_FN void node_copy_contents(xml_node_struct* dn, xml_node_struct* sn, xml_allocator* shared_alloc) { node_copy_string(dn->name, dn->header, xml_memory_page_name_allocated_mask, sn->name, sn->header, shared_alloc); node_copy_string(dn->value, dn->header, xml_memory_page_value_allocated_mask, sn->value, sn->header, shared_alloc); for (xml_attribute_struct* sa = sn->first_attribute; sa; sa = sa->next_attribute) { xml_attribute_struct* da = append_new_attribute(dn, get_allocator(dn)); if (da) { node_copy_string(da->name, da->header, xml_memory_page_name_allocated_mask, sa->name, sa->header, shared_alloc); node_copy_string(da->value, da->header, xml_memory_page_value_allocated_mask, sa->value, sa->header, shared_alloc); } } } PUGI_IMPL_FN void node_copy_tree(xml_node_struct* dn, xml_node_struct* sn) { xml_allocator& alloc = get_allocator(dn); xml_allocator* shared_alloc = (&alloc == &get_allocator(sn)) ? &alloc : 0; node_copy_contents(dn, sn, shared_alloc); xml_node_struct* dit = dn; xml_node_struct* sit = sn->first_child; while (sit && sit != sn) { // loop invariant: dit is inside the subtree rooted at dn assert(dit); // when a tree is copied into one of the descendants, we need to skip that subtree to avoid an infinite loop if (sit != dn) { xml_node_struct* copy = append_new_node(dit, alloc, PUGI_IMPL_NODETYPE(sit)); if (copy) { node_copy_contents(copy, sit, shared_alloc); if (sit->first_child) { dit = copy; sit = sit->first_child; continue; } } } // continue to the next node do { if (sit->next_sibling) { sit = sit->next_sibling; break; } sit = sit->parent; dit = dit->parent; // loop invariant: dit is inside the subtree rooted at dn while sit is inside sn assert(sit == sn || dit); } while (sit != sn); } assert(!sit || dit == dn->parent); } PUGI_IMPL_FN void node_copy_attribute(xml_attribute_struct* da, xml_attribute_struct* sa) { xml_allocator& alloc = get_allocator(da); xml_allocator* shared_alloc = (&alloc == &get_allocator(sa)) ? &alloc : 0; node_copy_string(da->name, da->header, xml_memory_page_name_allocated_mask, sa->name, sa->header, shared_alloc); node_copy_string(da->value, da->header, xml_memory_page_value_allocated_mask, sa->value, sa->header, shared_alloc); } inline bool is_text_node(xml_node_struct* node) { xml_node_type type = PUGI_IMPL_NODETYPE(node); return type == node_pcdata || type == node_cdata; } // get value with conversion functions template <typename U> PUGI_IMPL_FN PUGI_IMPL_UNSIGNED_OVERFLOW U string_to_integer(const char_t* value, U minv, U maxv) { U result = 0; const char_t* s = value; while (PUGI_IMPL_IS_CHARTYPE(*s, ct_space)) s++; bool negative = (*s == '-'); s += (*s == '+' || *s == '-'); bool overflow = false; if (s[0] == '0' && (s[1] | ' ') == 'x') { s += 2; // since overflow detection relies on length of the sequence skip leading zeros while (*s == '0') s++; const char_t* start = s; for (;;) { if (static_cast<unsigned>(*s - '0') < 10) result = result * 16 + (*s - '0'); else if (static_cast<unsigned>((*s | ' ') - 'a') < 6) result = result * 16 + ((*s | ' ') - 'a' + 10); else break; s++; } size_t digits = static_cast<size_t>(s - start); overflow = digits > sizeof(U) * 2; } else { // since overflow detection relies on length of the sequence skip leading zeros while (*s == '0') s++; const char_t* start = s; for (;;) { if (static_cast<unsigned>(*s - '0') < 10) result = result * 10 + (*s - '0'); else break; s++; } size_t digits = static_cast<size_t>(s - start); PUGI_IMPL_STATIC_ASSERT(sizeof(U) == 8 || sizeof(U) == 4 || sizeof(U) == 2); const size_t max_digits10 = sizeof(U) == 8 ? 20 : sizeof(U) == 4 ? 10 : 5; const char_t max_lead = sizeof(U) == 8 ? '1' : sizeof(U) == 4 ? '4' : '6'; const size_t high_bit = sizeof(U) * 8 - 1; overflow = digits >= max_digits10 && !(digits == max_digits10 && (*start < max_lead || (*start == max_lead && result >> high_bit))); } if (negative) { // Workaround for crayc++ CC-3059: Expected no overflow in routine. #ifdef _CRAYC return (overflow || result > ~minv + 1) ? minv : ~result + 1; #else return (overflow || result > 0 - minv) ? minv : 0 - result; #endif } else return (overflow || result > maxv) ? maxv : result; } PUGI_IMPL_FN int get_value_int(const char_t* value) { return string_to_integer<unsigned int>(value, static_cast<unsigned int>(INT_MIN), INT_MAX); } PUGI_IMPL_FN unsigned int get_value_uint(const char_t* value) { return string_to_integer<unsigned int>(value, 0, UINT_MAX); } PUGI_IMPL_FN double get_value_double(const char_t* value) { #ifdef PUGIXML_WCHAR_MODE return wcstod(value, 0); #else return strtod(value, 0); #endif } PUGI_IMPL_FN float get_value_float(const char_t* value) { #ifdef PUGIXML_WCHAR_MODE return static_cast<float>(wcstod(value, 0)); #else return static_cast<float>(strtod(value, 0)); #endif } PUGI_IMPL_FN bool get_value_bool(const char_t* value) { // only look at first char char_t first = *value; // 1*, t* (true), T* (True), y* (yes), Y* (YES) return (first == '1' || first == 't' || first == 'T' || first == 'y' || first == 'Y'); } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN long long get_value_llong(const char_t* value) { return string_to_integer<unsigned long long>(value, static_cast<unsigned long long>(LLONG_MIN), LLONG_MAX); } PUGI_IMPL_FN unsigned long long get_value_ullong(const char_t* value) { return string_to_integer<unsigned long long>(value, 0, ULLONG_MAX); } #endif template <typename U> PUGI_IMPL_FN PUGI_IMPL_UNSIGNED_OVERFLOW char_t* integer_to_string(char_t* begin, char_t* end, U value, bool negative) { char_t* result = end - 1; U rest = negative ? 0 - value : value; do { *result-- = static_cast<char_t>('0' + (rest % 10)); rest /= 10; } while (rest); assert(result >= begin); (void)begin; *result = '-'; return result + !negative; } // set value with conversion functions template <typename String, typename Header> PUGI_IMPL_FN bool set_value_ascii(String& dest, Header& header, uintptr_t header_mask, char* buf) { #ifdef PUGIXML_WCHAR_MODE char_t wbuf[128]; assert(strlen(buf) < sizeof(wbuf) / sizeof(wbuf[0])); size_t offset = 0; for (; buf[offset]; ++offset) wbuf[offset] = buf[offset]; return strcpy_insitu(dest, header, header_mask, wbuf, offset); #else return strcpy_insitu(dest, header, header_mask, buf, strlen(buf)); #endif } template <typename U, typename String, typename Header> PUGI_IMPL_FN bool set_value_integer(String& dest, Header& header, uintptr_t header_mask, U value, bool negative) { char_t buf[64]; char_t* end = buf + sizeof(buf) / sizeof(buf[0]); char_t* begin = integer_to_string(buf, end, value, negative); return strcpy_insitu(dest, header, header_mask, begin, end - begin); } template <typename String, typename Header> PUGI_IMPL_FN bool set_value_convert(String& dest, Header& header, uintptr_t header_mask, float value, int precision) { char buf[128]; PUGI_IMPL_SNPRINTF(buf, "%.*g", precision, double(value)); return set_value_ascii(dest, header, header_mask, buf); } template <typename String, typename Header> PUGI_IMPL_FN bool set_value_convert(String& dest, Header& header, uintptr_t header_mask, double value, int precision) { char buf[128]; PUGI_IMPL_SNPRINTF(buf, "%.*g", precision, value); return set_value_ascii(dest, header, header_mask, buf); } template <typename String, typename Header> PUGI_IMPL_FN bool set_value_bool(String& dest, Header& header, uintptr_t header_mask, bool value) { return strcpy_insitu(dest, header, header_mask, value ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false"), value ? 4 : 5); } PUGI_IMPL_FN xml_parse_result load_buffer_impl(xml_document_struct* doc, xml_node_struct* root, void* contents, size_t size, unsigned int options, xml_encoding encoding, bool is_mutable, bool own, char_t** out_buffer) { // check input buffer if (!contents && size) return make_parse_result(status_io_error); // get actual encoding xml_encoding buffer_encoding = impl::get_buffer_encoding(encoding, contents, size); // if convert_buffer below throws bad_alloc, we still need to deallocate contents if we own it auto_deleter<void> contents_guard(own ? contents : 0, xml_memory::deallocate); // get private buffer char_t* buffer = 0; size_t length = 0; // coverity[var_deref_model] if (!impl::convert_buffer(buffer, length, buffer_encoding, contents, size, is_mutable)) return impl::make_parse_result(status_out_of_memory); // after this we either deallocate contents (below) or hold on to it via doc->buffer, so we don't need to guard it contents_guard.release(); // delete original buffer if we performed a conversion if (own && buffer != contents && contents) impl::xml_memory::deallocate(contents); // grab onto buffer if it's our buffer, user is responsible for deallocating contents himself if (own || buffer != contents) *out_buffer = buffer; // store buffer for offset_debug doc->buffer = buffer; // parse xml_parse_result res = impl::xml_parser::parse(buffer, length, doc, root, options); // remember encoding res.encoding = buffer_encoding; return res; } // we need to get length of entire file to load it in memory; the only (relatively) sane way to do it is via seek/tell trick PUGI_IMPL_FN xml_parse_status get_file_size(FILE* file, size_t& out_result) { #if defined(__linux__) || defined(__APPLE__) // this simultaneously retrieves the file size and file mode (to guard against loading non-files) struct stat st; if (fstat(fileno(file), &st) != 0) return status_io_error; // anything that's not a regular file doesn't have a coherent length if (!S_ISREG(st.st_mode)) return status_io_error; typedef off_t length_type; length_type length = st.st_size; #elif defined(PUGI_IMPL_MSVC_CRT_VERSION) && PUGI_IMPL_MSVC_CRT_VERSION >= 1400 // there are 64-bit versions of fseek/ftell, let's use them typedef __int64 length_type; _fseeki64(file, 0, SEEK_END); length_type length = _ftelli64(file); _fseeki64(file, 0, SEEK_SET); #elif defined(__MINGW32__) && !defined(__NO_MINGW_LFS) && (!defined(__STRICT_ANSI__) || defined(__MINGW64_VERSION_MAJOR)) // there are 64-bit versions of fseek/ftell, let's use them typedef off64_t length_type; fseeko64(file, 0, SEEK_END); length_type length = ftello64(file); fseeko64(file, 0, SEEK_SET); #else // if this is a 32-bit OS, long is enough; if this is a unix system, long is 64-bit, which is enough; otherwise we can't do anything anyway. typedef long length_type; fseek(file, 0, SEEK_END); length_type length = ftell(file); fseek(file, 0, SEEK_SET); #endif // check for I/O errors if (length < 0) return status_io_error; // check for overflow size_t result = static_cast<size_t>(length); if (static_cast<length_type>(result) != length) return status_out_of_memory; // finalize out_result = result; return status_ok; } // This function assumes that buffer has extra sizeof(char_t) writable bytes after size PUGI_IMPL_FN size_t zero_terminate_buffer(void* buffer, size_t size, xml_encoding encoding) { // We only need to zero-terminate if encoding conversion does not do it for us #ifdef PUGIXML_WCHAR_MODE xml_encoding wchar_encoding = get_wchar_encoding(); if (encoding == wchar_encoding || need_endian_swap_utf(encoding, wchar_encoding)) { size_t length = size / sizeof(char_t); static_cast<char_t*>(buffer)[length] = 0; return (length + 1) * sizeof(char_t); } #else if (encoding == encoding_utf8) { static_cast<char*>(buffer)[size] = 0; return size + 1; } #endif return size; } PUGI_IMPL_FN xml_parse_result load_file_impl(xml_document_struct* doc, FILE* file, unsigned int options, xml_encoding encoding, char_t** out_buffer) { if (!file) return make_parse_result(status_file_not_found); // get file size (can result in I/O errors) size_t size = 0; xml_parse_status size_status = get_file_size(file, size); if (size_status != status_ok) return make_parse_result(size_status); size_t max_suffix_size = sizeof(char_t); // allocate buffer for the whole file char* contents = static_cast<char*>(xml_memory::allocate(size + max_suffix_size)); if (!contents) return make_parse_result(status_out_of_memory); // read file in memory size_t read_size = fread(contents, 1, size, file); if (read_size != size) { xml_memory::deallocate(contents); return make_parse_result(status_io_error); } xml_encoding real_encoding = get_buffer_encoding(encoding, contents, size); return load_buffer_impl(doc, doc, contents, zero_terminate_buffer(contents, size, real_encoding), options, real_encoding, true, true, out_buffer); } PUGI_IMPL_FN void close_file(FILE* file) { fclose(file); } #ifndef PUGIXML_NO_STL template <typename T> struct xml_stream_chunk { static xml_stream_chunk* create() { void* memory = xml_memory::allocate(sizeof(xml_stream_chunk)); if (!memory) return 0; return new (memory) xml_stream_chunk(); } static void destroy(xml_stream_chunk* chunk) { // free chunk chain while (chunk) { xml_stream_chunk* next_ = chunk->next; xml_memory::deallocate(chunk); chunk = next_; } } xml_stream_chunk(): next(0), size(0) { } xml_stream_chunk* next; size_t size; T data[xml_memory_page_size / sizeof(T)]; }; template <typename T> PUGI_IMPL_FN xml_parse_status load_stream_data_noseek(std::basic_istream<T>& stream, void** out_buffer, size_t* out_size) { auto_deleter<xml_stream_chunk<T> > chunks(0, xml_stream_chunk<T>::destroy); // read file to a chunk list size_t total = 0; xml_stream_chunk<T>* last = 0; while (!stream.eof()) { // allocate new chunk xml_stream_chunk<T>* chunk = xml_stream_chunk<T>::create(); if (!chunk) return status_out_of_memory; // append chunk to list if (last) last = last->next = chunk; else chunks.data = last = chunk; // read data to chunk stream.read(chunk->data, static_cast<std::streamsize>(sizeof(chunk->data) / sizeof(T))); chunk->size = static_cast<size_t>(stream.gcount()) * sizeof(T); // read may set failbit | eofbit in case gcount() is less than read length, so check for other I/O errors if (stream.bad() || (!stream.eof() && stream.fail())) return status_io_error; // guard against huge files (chunk size is small enough to make this overflow check work) if (total + chunk->size < total) return status_out_of_memory; total += chunk->size; } size_t max_suffix_size = sizeof(char_t); // copy chunk list to a contiguous buffer char* buffer = static_cast<char*>(xml_memory::allocate(total + max_suffix_size)); if (!buffer) return status_out_of_memory; char* write = buffer; for (xml_stream_chunk<T>* chunk = chunks.data; chunk; chunk = chunk->next) { assert(write + chunk->size <= buffer + total); memcpy(write, chunk->data, chunk->size); write += chunk->size; } assert(write == buffer + total); // return buffer *out_buffer = buffer; *out_size = total; return status_ok; } template <typename T> PUGI_IMPL_FN xml_parse_status load_stream_data_seek(std::basic_istream<T>& stream, void** out_buffer, size_t* out_size) { // get length of remaining data in stream typename std::basic_istream<T>::pos_type pos = stream.tellg(); stream.seekg(0, std::ios::end); std::streamoff length = stream.tellg() - pos; stream.seekg(pos); if (stream.fail() || pos < 0) return status_io_error; // guard against huge files size_t read_length = static_cast<size_t>(length); if (static_cast<std::streamsize>(read_length) != length || length < 0) return status_out_of_memory; size_t max_suffix_size = sizeof(char_t); // read stream data into memory (guard against stream exceptions with buffer holder) auto_deleter<void> buffer(xml_memory::allocate(read_length * sizeof(T) + max_suffix_size), xml_memory::deallocate); if (!buffer.data) return status_out_of_memory; stream.read(static_cast<T*>(buffer.data), static_cast<std::streamsize>(read_length)); // read may set failbit | eofbit in case gcount() is less than read_length (i.e. line ending conversion), so check for other I/O errors if (stream.bad() || (!stream.eof() && stream.fail())) return status_io_error; // return buffer size_t actual_length = static_cast<size_t>(stream.gcount()); assert(actual_length <= read_length); *out_buffer = buffer.release(); *out_size = actual_length * sizeof(T); return status_ok; } template <typename T> PUGI_IMPL_FN xml_parse_result load_stream_impl(xml_document_struct* doc, std::basic_istream<T>& stream, unsigned int options, xml_encoding encoding, char_t** out_buffer) { void* buffer = 0; size_t size = 0; xml_parse_status status = status_ok; // if stream has an error bit set, bail out (otherwise tellg() can fail and we'll clear error bits) if (stream.fail()) return make_parse_result(status_io_error); // load stream to memory (using seek-based implementation if possible, since it's faster and takes less memory) if (stream.tellg() < 0) { stream.clear(); // clear error flags that could be set by a failing tellg status = load_stream_data_noseek(stream, &buffer, &size); } else status = load_stream_data_seek(stream, &buffer, &size); if (status != status_ok) return make_parse_result(status); xml_encoding real_encoding = get_buffer_encoding(encoding, buffer, size); return load_buffer_impl(doc, doc, buffer, zero_terminate_buffer(buffer, size, real_encoding), options, real_encoding, true, true, out_buffer); } #endif #if defined(PUGI_IMPL_MSVC_CRT_VERSION) || defined(__BORLANDC__) || (defined(__MINGW32__) && (!defined(__STRICT_ANSI__) || defined(__MINGW64_VERSION_MAJOR))) PUGI_IMPL_FN FILE* open_file_wide(const wchar_t* path, const wchar_t* mode) { #if defined(PUGI_IMPL_MSVC_CRT_VERSION) && PUGI_IMPL_MSVC_CRT_VERSION >= 1400 FILE* file = 0; return _wfopen_s(&file, path, mode) == 0 ? file : 0; #else return _wfopen(path, mode); #endif } #else PUGI_IMPL_FN char* convert_path_heap(const wchar_t* str) { assert(str); // first pass: get length in utf8 characters size_t length = strlength_wide(str); size_t size = as_utf8_begin(str, length); // allocate resulting string char* result = static_cast<char*>(xml_memory::allocate(size + 1)); if (!result) return 0; // second pass: convert to utf8 as_utf8_end(result, size, str, length); // zero-terminate result[size] = 0; return result; } PUGI_IMPL_FN FILE* open_file_wide(const wchar_t* path, const wchar_t* mode) { // there is no standard function to open wide paths, so our best bet is to try utf8 path char* path_utf8 = convert_path_heap(path); if (!path_utf8) return 0; // convert mode to ASCII (we mirror _wfopen interface) char mode_ascii[4] = {0}; for (size_t i = 0; mode[i]; ++i) mode_ascii[i] = static_cast<char>(mode[i]); // try to open the utf8 path FILE* result = fopen(path_utf8, mode_ascii); // free dummy buffer xml_memory::deallocate(path_utf8); return result; } #endif PUGI_IMPL_FN FILE* open_file(const char* path, const char* mode) { #if defined(PUGI_IMPL_MSVC_CRT_VERSION) && PUGI_IMPL_MSVC_CRT_VERSION >= 1400 FILE* file = 0; return fopen_s(&file, path, mode) == 0 ? file : 0; #else return fopen(path, mode); #endif } PUGI_IMPL_FN bool save_file_impl(const xml_document& doc, FILE* file, const char_t* indent, unsigned int flags, xml_encoding encoding) { if (!file) return false; xml_writer_file writer(file); doc.save(writer, indent, flags, encoding); return fflush(file) == 0 && ferror(file) == 0; } struct name_null_sentry { xml_node_struct* node; char_t* name; name_null_sentry(xml_node_struct* node_): node(node_), name(node_->name) { node->name = 0; } ~name_null_sentry() { node->name = name; } }; PUGI_IMPL_NS_END namespace pugi { PUGI_IMPL_FN xml_writer::~xml_writer() { } PUGI_IMPL_FN xml_writer_file::xml_writer_file(void* file_): file(file_) { } PUGI_IMPL_FN void xml_writer_file::write(const void* data, size_t size) { size_t result = fwrite(data, 1, size, static_cast<FILE*>(file)); (void)!result; // unfortunately we can't do proper error handling here } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN xml_writer_stream::xml_writer_stream(std::basic_ostream<char, std::char_traits<char> >& stream): narrow_stream(&stream), wide_stream(0) { } PUGI_IMPL_FN xml_writer_stream::xml_writer_stream(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream): narrow_stream(0), wide_stream(&stream) { } PUGI_IMPL_FN void xml_writer_stream::write(const void* data, size_t size) { if (narrow_stream) { assert(!wide_stream); narrow_stream->write(reinterpret_cast<const char*>(data), static_cast<std::streamsize>(size)); } else { assert(wide_stream); assert(size % sizeof(wchar_t) == 0); wide_stream->write(reinterpret_cast<const wchar_t*>(data), static_cast<std::streamsize>(size / sizeof(wchar_t))); } } #endif PUGI_IMPL_FN xml_tree_walker::xml_tree_walker(): _depth(0) { } PUGI_IMPL_FN xml_tree_walker::~xml_tree_walker() { } PUGI_IMPL_FN int xml_tree_walker::depth() const { return _depth; } PUGI_IMPL_FN bool xml_tree_walker::begin(xml_node&) { return true; } PUGI_IMPL_FN bool xml_tree_walker::end(xml_node&) { return true; } PUGI_IMPL_FN xml_attribute::xml_attribute(): _attr(0) { } PUGI_IMPL_FN xml_attribute::xml_attribute(xml_attribute_struct* attr): _attr(attr) { } PUGI_IMPL_FN static void unspecified_bool_xml_attribute(xml_attribute***) { } PUGI_IMPL_FN xml_attribute::operator xml_attribute::unspecified_bool_type() const { return _attr ? unspecified_bool_xml_attribute : 0; } PUGI_IMPL_FN bool xml_attribute::operator!() const { return !_attr; } PUGI_IMPL_FN bool xml_attribute::operator==(const xml_attribute& r) const { return (_attr == r._attr); } PUGI_IMPL_FN bool xml_attribute::operator!=(const xml_attribute& r) const { return (_attr != r._attr); } PUGI_IMPL_FN bool xml_attribute::operator<(const xml_attribute& r) const { return (_attr < r._attr); } PUGI_IMPL_FN bool xml_attribute::operator>(const xml_attribute& r) const { return (_attr > r._attr); } PUGI_IMPL_FN bool xml_attribute::operator<=(const xml_attribute& r) const { return (_attr <= r._attr); } PUGI_IMPL_FN bool xml_attribute::operator>=(const xml_attribute& r) const { return (_attr >= r._attr); } PUGI_IMPL_FN xml_attribute xml_attribute::next_attribute() const { if (!_attr) return xml_attribute(); return xml_attribute(_attr->next_attribute); } PUGI_IMPL_FN xml_attribute xml_attribute::previous_attribute() const { if (!_attr) return xml_attribute(); xml_attribute_struct* prev = _attr->prev_attribute_c; return prev->next_attribute ? xml_attribute(prev) : xml_attribute(); } PUGI_IMPL_FN const char_t* xml_attribute::as_string(const char_t* def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? value : def; } PUGI_IMPL_FN int xml_attribute::as_int(int def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_int(value) : def; } PUGI_IMPL_FN unsigned int xml_attribute::as_uint(unsigned int def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_uint(value) : def; } PUGI_IMPL_FN double xml_attribute::as_double(double def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_double(value) : def; } PUGI_IMPL_FN float xml_attribute::as_float(float def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_float(value) : def; } PUGI_IMPL_FN bool xml_attribute::as_bool(bool def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_bool(value) : def; } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN long long xml_attribute::as_llong(long long def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_llong(value) : def; } PUGI_IMPL_FN unsigned long long xml_attribute::as_ullong(unsigned long long def) const { if (!_attr) return def; const char_t* value = _attr->value; return value ? impl::get_value_ullong(value) : def; } #endif PUGI_IMPL_FN bool xml_attribute::empty() const { return !_attr; } PUGI_IMPL_FN const char_t* xml_attribute::name() const { if (!_attr) return PUGIXML_TEXT(""); const char_t* name = _attr->name; return name ? name : PUGIXML_TEXT(""); } PUGI_IMPL_FN const char_t* xml_attribute::value() const { if (!_attr) return PUGIXML_TEXT(""); const char_t* value = _attr->value; return value ? value : PUGIXML_TEXT(""); } PUGI_IMPL_FN size_t xml_attribute::hash_value() const { return static_cast<size_t>(reinterpret_cast<uintptr_t>(_attr) / sizeof(xml_attribute_struct)); } PUGI_IMPL_FN xml_attribute_struct* xml_attribute::internal_object() const { return _attr; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(const char_t* rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(int rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(unsigned int rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(long rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(unsigned long rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(double rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(float rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(bool rhs) { set_value(rhs); return *this; } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(long long rhs) { set_value(rhs); return *this; } PUGI_IMPL_FN xml_attribute& xml_attribute::operator=(unsigned long long rhs) { set_value(rhs); return *this; } #endif PUGI_IMPL_FN bool xml_attribute::set_name(const char_t* rhs) { if (!_attr) return false; return impl::strcpy_insitu(_attr->name, _attr->header, impl::xml_memory_page_name_allocated_mask, rhs, impl::strlength(rhs)); } PUGI_IMPL_FN bool xml_attribute::set_name(const char_t* rhs, size_t size) { if (!_attr) return false; return impl::strcpy_insitu(_attr->name, _attr->header, impl::xml_memory_page_name_allocated_mask, rhs, size); } PUGI_IMPL_FN bool xml_attribute::set_value(const char_t* rhs) { if (!_attr) return false; return impl::strcpy_insitu(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, impl::strlength(rhs)); } PUGI_IMPL_FN bool xml_attribute::set_value(const char_t* rhs, size_t size) { if (!_attr) return false; return impl::strcpy_insitu(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, size); } PUGI_IMPL_FN bool xml_attribute::set_value(int rhs) { if (!_attr) return false; return impl::set_value_integer<unsigned int>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0); } PUGI_IMPL_FN bool xml_attribute::set_value(unsigned int rhs) { if (!_attr) return false; return impl::set_value_integer<unsigned int>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, false); } PUGI_IMPL_FN bool xml_attribute::set_value(long rhs) { if (!_attr) return false; return impl::set_value_integer<unsigned long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0); } PUGI_IMPL_FN bool xml_attribute::set_value(unsigned long rhs) { if (!_attr) return false; return impl::set_value_integer<unsigned long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, false); } PUGI_IMPL_FN bool xml_attribute::set_value(double rhs) { if (!_attr) return false; return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, default_double_precision); } PUGI_IMPL_FN bool xml_attribute::set_value(double rhs, int precision) { if (!_attr) return false; return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, precision); } PUGI_IMPL_FN bool xml_attribute::set_value(float rhs) { if (!_attr) return false; return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, default_float_precision); } PUGI_IMPL_FN bool xml_attribute::set_value(float rhs, int precision) { if (!_attr) return false; return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, precision); } PUGI_IMPL_FN bool xml_attribute::set_value(bool rhs) { if (!_attr) return false; return impl::set_value_bool(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs); } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN bool xml_attribute::set_value(long long rhs) { if (!_attr) return false; return impl::set_value_integer<unsigned long long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0); } PUGI_IMPL_FN bool xml_attribute::set_value(unsigned long long rhs) { if (!_attr) return false; return impl::set_value_integer<unsigned long long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, false); } #endif #ifdef __BORLANDC__ PUGI_IMPL_FN bool operator&&(const xml_attribute& lhs, bool rhs) { return (bool)lhs && rhs; } PUGI_IMPL_FN bool operator||(const xml_attribute& lhs, bool rhs) { return (bool)lhs || rhs; } #endif PUGI_IMPL_FN xml_node::xml_node(): _root(0) { } PUGI_IMPL_FN xml_node::xml_node(xml_node_struct* p): _root(p) { } PUGI_IMPL_FN static void unspecified_bool_xml_node(xml_node***) { } PUGI_IMPL_FN xml_node::operator xml_node::unspecified_bool_type() const { return _root ? unspecified_bool_xml_node : 0; } PUGI_IMPL_FN bool xml_node::operator!() const { return !_root; } PUGI_IMPL_FN xml_node::iterator xml_node::begin() const { return iterator(_root ? _root->first_child + 0 : 0, _root); } PUGI_IMPL_FN xml_node::iterator xml_node::end() const { return iterator(0, _root); } PUGI_IMPL_FN xml_node::attribute_iterator xml_node::attributes_begin() const { return attribute_iterator(_root ? _root->first_attribute + 0 : 0, _root); } PUGI_IMPL_FN xml_node::attribute_iterator xml_node::attributes_end() const { return attribute_iterator(0, _root); } PUGI_IMPL_FN xml_object_range<xml_node_iterator> xml_node::children() const { return xml_object_range<xml_node_iterator>(begin(), end()); } PUGI_IMPL_FN xml_object_range<xml_named_node_iterator> xml_node::children(const char_t* name_) const { return xml_object_range<xml_named_node_iterator>(xml_named_node_iterator(child(name_)._root, _root, name_), xml_named_node_iterator(0, _root, name_)); } PUGI_IMPL_FN xml_object_range<xml_attribute_iterator> xml_node::attributes() const { return xml_object_range<xml_attribute_iterator>(attributes_begin(), attributes_end()); } PUGI_IMPL_FN bool xml_node::operator==(const xml_node& r) const { return (_root == r._root); } PUGI_IMPL_FN bool xml_node::operator!=(const xml_node& r) const { return (_root != r._root); } PUGI_IMPL_FN bool xml_node::operator<(const xml_node& r) const { return (_root < r._root); } PUGI_IMPL_FN bool xml_node::operator>(const xml_node& r) const { return (_root > r._root); } PUGI_IMPL_FN bool xml_node::operator<=(const xml_node& r) const { return (_root <= r._root); } PUGI_IMPL_FN bool xml_node::operator>=(const xml_node& r) const { return (_root >= r._root); } PUGI_IMPL_FN bool xml_node::empty() const { return !_root; } PUGI_IMPL_FN const char_t* xml_node::name() const { if (!_root) return PUGIXML_TEXT(""); const char_t* name = _root->name; return name ? name : PUGIXML_TEXT(""); } PUGI_IMPL_FN xml_node_type xml_node::type() const { return _root ? PUGI_IMPL_NODETYPE(_root) : node_null; } PUGI_IMPL_FN const char_t* xml_node::value() const { if (!_root) return PUGIXML_TEXT(""); const char_t* value = _root->value; return value ? value : PUGIXML_TEXT(""); } PUGI_IMPL_FN xml_node xml_node::child(const char_t* name_) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) { const char_t* iname = i->name; if (iname && impl::strequal(name_, iname)) return xml_node(i); } return xml_node(); } PUGI_IMPL_FN xml_attribute xml_node::attribute(const char_t* name_) const { if (!_root) return xml_attribute(); for (xml_attribute_struct* i = _root->first_attribute; i; i = i->next_attribute) { const char_t* iname = i->name; if (iname && impl::strequal(name_, iname)) return xml_attribute(i); } return xml_attribute(); } PUGI_IMPL_FN xml_node xml_node::next_sibling(const char_t* name_) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->next_sibling; i; i = i->next_sibling) { const char_t* iname = i->name; if (iname && impl::strequal(name_, iname)) return xml_node(i); } return xml_node(); } PUGI_IMPL_FN xml_node xml_node::next_sibling() const { return _root ? xml_node(_root->next_sibling) : xml_node(); } PUGI_IMPL_FN xml_node xml_node::previous_sibling(const char_t* name_) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->prev_sibling_c; i->next_sibling; i = i->prev_sibling_c) { const char_t* iname = i->name; if (iname && impl::strequal(name_, iname)) return xml_node(i); } return xml_node(); } PUGI_IMPL_FN xml_attribute xml_node::attribute(const char_t* name_, xml_attribute& hint_) const { xml_attribute_struct* hint = hint_._attr; // if hint is not an attribute of node, behavior is not defined assert(!hint || (_root && impl::is_attribute_of(hint, _root))); if (!_root) return xml_attribute(); // optimistically search from hint up until the end for (xml_attribute_struct* i = hint; i; i = i->next_attribute) { const char_t* iname = i->name; if (iname && impl::strequal(name_, iname)) { // update hint to maximize efficiency of searching for consecutive attributes hint_._attr = i->next_attribute; return xml_attribute(i); } } // wrap around and search from the first attribute until the hint // 'j' null pointer check is technically redundant, but it prevents a crash in case the assertion above fails for (xml_attribute_struct* j = _root->first_attribute; j && j != hint; j = j->next_attribute) { const char_t* jname = j->name; if (jname && impl::strequal(name_, jname)) { // update hint to maximize efficiency of searching for consecutive attributes hint_._attr = j->next_attribute; return xml_attribute(j); } } return xml_attribute(); } PUGI_IMPL_FN xml_node xml_node::previous_sibling() const { if (!_root) return xml_node(); xml_node_struct* prev = _root->prev_sibling_c; return prev->next_sibling ? xml_node(prev) : xml_node(); } PUGI_IMPL_FN xml_node xml_node::parent() const { return _root ? xml_node(_root->parent) : xml_node(); } PUGI_IMPL_FN xml_node xml_node::root() const { return _root ? xml_node(&impl::get_document(_root)) : xml_node(); } PUGI_IMPL_FN xml_text xml_node::text() const { return xml_text(_root); } PUGI_IMPL_FN const char_t* xml_node::child_value() const { if (!_root) return PUGIXML_TEXT(""); // element nodes can have value if parse_embed_pcdata was used if (PUGI_IMPL_NODETYPE(_root) == node_element && _root->value) return _root->value; for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) { const char_t* ivalue = i->value; if (impl::is_text_node(i) && ivalue) return ivalue; } return PUGIXML_TEXT(""); } PUGI_IMPL_FN const char_t* xml_node::child_value(const char_t* name_) const { return child(name_).child_value(); } PUGI_IMPL_FN xml_attribute xml_node::first_attribute() const { if (!_root) return xml_attribute(); return xml_attribute(_root->first_attribute); } PUGI_IMPL_FN xml_attribute xml_node::last_attribute() const { if (!_root) return xml_attribute(); xml_attribute_struct* first = _root->first_attribute; return first ? xml_attribute(first->prev_attribute_c) : xml_attribute(); } PUGI_IMPL_FN xml_node xml_node::first_child() const { if (!_root) return xml_node(); return xml_node(_root->first_child); } PUGI_IMPL_FN xml_node xml_node::last_child() const { if (!_root) return xml_node(); xml_node_struct* first = _root->first_child; return first ? xml_node(first->prev_sibling_c) : xml_node(); } PUGI_IMPL_FN bool xml_node::set_name(const char_t* rhs) { xml_node_type type_ = _root ? PUGI_IMPL_NODETYPE(_root) : node_null; if (type_ != node_element && type_ != node_pi && type_ != node_declaration) return false; return impl::strcpy_insitu(_root->name, _root->header, impl::xml_memory_page_name_allocated_mask, rhs, impl::strlength(rhs)); } PUGI_IMPL_FN bool xml_node::set_name(const char_t* rhs, size_t size) { xml_node_type type_ = _root ? PUGI_IMPL_NODETYPE(_root) : node_null; if (type_ != node_element && type_ != node_pi && type_ != node_declaration) return false; return impl::strcpy_insitu(_root->name, _root->header, impl::xml_memory_page_name_allocated_mask, rhs, size); } PUGI_IMPL_FN bool xml_node::set_value(const char_t* rhs) { xml_node_type type_ = _root ? PUGI_IMPL_NODETYPE(_root) : node_null; if (type_ != node_pcdata && type_ != node_cdata && type_ != node_comment && type_ != node_pi && type_ != node_doctype) return false; return impl::strcpy_insitu(_root->value, _root->header, impl::xml_memory_page_value_allocated_mask, rhs, impl::strlength(rhs)); } PUGI_IMPL_FN bool xml_node::set_value(const char_t* rhs, size_t size) { xml_node_type type_ = _root ? PUGI_IMPL_NODETYPE(_root) : node_null; if (type_ != node_pcdata && type_ != node_cdata && type_ != node_comment && type_ != node_pi && type_ != node_doctype) return false; return impl::strcpy_insitu(_root->value, _root->header, impl::xml_memory_page_value_allocated_mask, rhs, size); } PUGI_IMPL_FN xml_attribute xml_node::append_attribute(const char_t* name_) { if (!impl::allow_insert_attribute(type())) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::append_attribute(a._attr, _root); a.set_name(name_); return a; } PUGI_IMPL_FN xml_attribute xml_node::prepend_attribute(const char_t* name_) { if (!impl::allow_insert_attribute(type())) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::prepend_attribute(a._attr, _root); a.set_name(name_); return a; } PUGI_IMPL_FN xml_attribute xml_node::insert_attribute_after(const char_t* name_, const xml_attribute& attr) { if (!impl::allow_insert_attribute(type())) return xml_attribute(); if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::insert_attribute_after(a._attr, attr._attr, _root); a.set_name(name_); return a; } PUGI_IMPL_FN xml_attribute xml_node::insert_attribute_before(const char_t* name_, const xml_attribute& attr) { if (!impl::allow_insert_attribute(type())) return xml_attribute(); if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::insert_attribute_before(a._attr, attr._attr, _root); a.set_name(name_); return a; } PUGI_IMPL_FN xml_attribute xml_node::append_copy(const xml_attribute& proto) { if (!proto) return xml_attribute(); if (!impl::allow_insert_attribute(type())) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::append_attribute(a._attr, _root); impl::node_copy_attribute(a._attr, proto._attr); return a; } PUGI_IMPL_FN xml_attribute xml_node::prepend_copy(const xml_attribute& proto) { if (!proto) return xml_attribute(); if (!impl::allow_insert_attribute(type())) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::prepend_attribute(a._attr, _root); impl::node_copy_attribute(a._attr, proto._attr); return a; } PUGI_IMPL_FN xml_attribute xml_node::insert_copy_after(const xml_attribute& proto, const xml_attribute& attr) { if (!proto) return xml_attribute(); if (!impl::allow_insert_attribute(type())) return xml_attribute(); if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::insert_attribute_after(a._attr, attr._attr, _root); impl::node_copy_attribute(a._attr, proto._attr); return a; } PUGI_IMPL_FN xml_attribute xml_node::insert_copy_before(const xml_attribute& proto, const xml_attribute& attr) { if (!proto) return xml_attribute(); if (!impl::allow_insert_attribute(type())) return xml_attribute(); if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_attribute(); xml_attribute a(impl::allocate_attribute(alloc)); if (!a) return xml_attribute(); impl::insert_attribute_before(a._attr, attr._attr, _root); impl::node_copy_attribute(a._attr, proto._attr); return a; } PUGI_IMPL_FN xml_node xml_node::append_child(xml_node_type type_) { if (!impl::allow_insert_child(type(), type_)) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::append_node(n._root, _root); if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } PUGI_IMPL_FN xml_node xml_node::prepend_child(xml_node_type type_) { if (!impl::allow_insert_child(type(), type_)) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::prepend_node(n._root, _root); if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } PUGI_IMPL_FN xml_node xml_node::insert_child_before(xml_node_type type_, const xml_node& node) { if (!impl::allow_insert_child(type(), type_)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::insert_node_before(n._root, node._root); if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } PUGI_IMPL_FN xml_node xml_node::insert_child_after(xml_node_type type_, const xml_node& node) { if (!impl::allow_insert_child(type(), type_)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::insert_node_after(n._root, node._root); if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml")); return n; } PUGI_IMPL_FN xml_node xml_node::append_child(const char_t* name_) { xml_node result = append_child(node_element); result.set_name(name_); return result; } PUGI_IMPL_FN xml_node xml_node::prepend_child(const char_t* name_) { xml_node result = prepend_child(node_element); result.set_name(name_); return result; } PUGI_IMPL_FN xml_node xml_node::insert_child_after(const char_t* name_, const xml_node& node) { xml_node result = insert_child_after(node_element, node); result.set_name(name_); return result; } PUGI_IMPL_FN xml_node xml_node::insert_child_before(const char_t* name_, const xml_node& node) { xml_node result = insert_child_before(node_element, node); result.set_name(name_); return result; } PUGI_IMPL_FN xml_node xml_node::append_copy(const xml_node& proto) { xml_node_type type_ = proto.type(); if (!impl::allow_insert_child(type(), type_)) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::append_node(n._root, _root); impl::node_copy_tree(n._root, proto._root); return n; } PUGI_IMPL_FN xml_node xml_node::prepend_copy(const xml_node& proto) { xml_node_type type_ = proto.type(); if (!impl::allow_insert_child(type(), type_)) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::prepend_node(n._root, _root); impl::node_copy_tree(n._root, proto._root); return n; } PUGI_IMPL_FN xml_node xml_node::insert_copy_after(const xml_node& proto, const xml_node& node) { xml_node_type type_ = proto.type(); if (!impl::allow_insert_child(type(), type_)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::insert_node_after(n._root, node._root); impl::node_copy_tree(n._root, proto._root); return n; } PUGI_IMPL_FN xml_node xml_node::insert_copy_before(const xml_node& proto, const xml_node& node) { xml_node_type type_ = proto.type(); if (!impl::allow_insert_child(type(), type_)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); xml_node n(impl::allocate_node(alloc, type_)); if (!n) return xml_node(); impl::insert_node_before(n._root, node._root); impl::node_copy_tree(n._root, proto._root); return n; } PUGI_IMPL_FN xml_node xml_node::append_move(const xml_node& moved) { if (!impl::allow_move(*this, moved)) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); // disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask; impl::remove_node(moved._root); impl::append_node(moved._root, _root); return moved; } PUGI_IMPL_FN xml_node xml_node::prepend_move(const xml_node& moved) { if (!impl::allow_move(*this, moved)) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); // disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask; impl::remove_node(moved._root); impl::prepend_node(moved._root, _root); return moved; } PUGI_IMPL_FN xml_node xml_node::insert_move_after(const xml_node& moved, const xml_node& node) { if (!impl::allow_move(*this, moved)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); if (moved._root == node._root) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); // disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask; impl::remove_node(moved._root); impl::insert_node_after(moved._root, node._root); return moved; } PUGI_IMPL_FN xml_node xml_node::insert_move_before(const xml_node& moved, const xml_node& node) { if (!impl::allow_move(*this, moved)) return xml_node(); if (!node._root || node._root->parent != _root) return xml_node(); if (moved._root == node._root) return xml_node(); impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return xml_node(); // disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask; impl::remove_node(moved._root); impl::insert_node_before(moved._root, node._root); return moved; } PUGI_IMPL_FN bool xml_node::remove_attribute(const char_t* name_) { return remove_attribute(attribute(name_)); } PUGI_IMPL_FN bool xml_node::remove_attribute(const xml_attribute& a) { if (!_root || !a._attr) return false; if (!impl::is_attribute_of(a._attr, _root)) return false; impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return false; impl::remove_attribute(a._attr, _root); impl::destroy_attribute(a._attr, alloc); return true; } PUGI_IMPL_FN bool xml_node::remove_attributes() { if (!_root) return false; impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return false; for (xml_attribute_struct* attr = _root->first_attribute; attr; ) { xml_attribute_struct* next = attr->next_attribute; impl::destroy_attribute(attr, alloc); attr = next; } _root->first_attribute = 0; return true; } PUGI_IMPL_FN bool xml_node::remove_child(const char_t* name_) { return remove_child(child(name_)); } PUGI_IMPL_FN bool xml_node::remove_child(const xml_node& n) { if (!_root || !n._root || n._root->parent != _root) return false; impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return false; impl::remove_node(n._root); impl::destroy_node(n._root, alloc); return true; } PUGI_IMPL_FN bool xml_node::remove_children() { if (!_root) return false; impl::xml_allocator& alloc = impl::get_allocator(_root); if (!alloc.reserve()) return false; for (xml_node_struct* cur = _root->first_child; cur; ) { xml_node_struct* next = cur->next_sibling; impl::destroy_node(cur, alloc); cur = next; } _root->first_child = 0; return true; } PUGI_IMPL_FN xml_parse_result xml_node::append_buffer(const void* contents, size_t size, unsigned int options, xml_encoding encoding) { // append_buffer is only valid for elements/documents if (!impl::allow_insert_child(type(), node_element)) return impl::make_parse_result(status_append_invalid_root); // append buffer can not merge PCDATA into existing PCDATA nodes if ((options & parse_merge_pcdata) != 0 && last_child().type() == node_pcdata) return impl::make_parse_result(status_append_invalid_root); // get document node impl::xml_document_struct* doc = &impl::get_document(_root); // disable document_buffer_order optimization since in a document with multiple buffers comparing buffer pointers does not make sense doc->header |= impl::xml_memory_page_contents_shared_mask; // get extra buffer element (we'll store the document fragment buffer there so that we can deallocate it later) impl::xml_memory_page* page = 0; impl::xml_extra_buffer* extra = static_cast<impl::xml_extra_buffer*>(doc->allocate_memory(sizeof(impl::xml_extra_buffer) + sizeof(void*), page)); (void)page; if (!extra) return impl::make_parse_result(status_out_of_memory); #ifdef PUGIXML_COMPACT // align the memory block to a pointer boundary; this is required for compact mode where memory allocations are only 4b aligned // note that this requires up to sizeof(void*)-1 additional memory, which the allocation above takes into account extra = reinterpret_cast<impl::xml_extra_buffer*>((reinterpret_cast<uintptr_t>(extra) + (sizeof(void*) - 1)) & ~(sizeof(void*) - 1)); #endif // add extra buffer to the list extra->buffer = 0; extra->next = doc->extra_buffers; doc->extra_buffers = extra; // name of the root has to be NULL before parsing - otherwise closing node mismatches will not be detected at the top level impl::name_null_sentry sentry(_root); return impl::load_buffer_impl(doc, _root, const_cast<void*>(contents), size, options, encoding, false, false, &extra->buffer); } PUGI_IMPL_FN xml_node xml_node::find_child_by_attribute(const char_t* name_, const char_t* attr_name, const char_t* attr_value) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) { const char_t* iname = i->name; if (iname && impl::strequal(name_, iname)) { for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute) { const char_t* aname = a->name; if (aname && impl::strequal(attr_name, aname)) { const char_t* avalue = a->value; if (impl::strequal(attr_value, avalue ? avalue : PUGIXML_TEXT(""))) return xml_node(i); } } } } return xml_node(); } PUGI_IMPL_FN xml_node xml_node::find_child_by_attribute(const char_t* attr_name, const char_t* attr_value) const { if (!_root) return xml_node(); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute) { const char_t* aname = a->name; if (aname && impl::strequal(attr_name, aname)) { const char_t* avalue = a->value; if (impl::strequal(attr_value, avalue ? avalue : PUGIXML_TEXT(""))) return xml_node(i); } } return xml_node(); } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN string_t xml_node::path(char_t delimiter) const { if (!_root) return string_t(); size_t offset = 0; for (xml_node_struct* i = _root; i; i = i->parent) { const char_t* iname = i->name; offset += (i != _root); offset += iname ? impl::strlength(iname) : 0; } string_t result; result.resize(offset); for (xml_node_struct* j = _root; j; j = j->parent) { if (j != _root) result[--offset] = delimiter; const char_t* jname = j->name; if (jname) { size_t length = impl::strlength(jname); offset -= length; memcpy(&result[offset], jname, length * sizeof(char_t)); } } assert(offset == 0); return result; } #endif PUGI_IMPL_FN xml_node xml_node::first_element_by_path(const char_t* path_, char_t delimiter) const { xml_node context = path_[0] == delimiter ? root() : *this; if (!context._root) return xml_node(); const char_t* path_segment = path_; while (*path_segment == delimiter) ++path_segment; const char_t* path_segment_end = path_segment; while (*path_segment_end && *path_segment_end != delimiter) ++path_segment_end; if (path_segment == path_segment_end) return context; const char_t* next_segment = path_segment_end; while (*next_segment == delimiter) ++next_segment; if (*path_segment == '.' && path_segment + 1 == path_segment_end) return context.first_element_by_path(next_segment, delimiter); else if (*path_segment == '.' && *(path_segment+1) == '.' && path_segment + 2 == path_segment_end) return context.parent().first_element_by_path(next_segment, delimiter); else { for (xml_node_struct* j = context._root->first_child; j; j = j->next_sibling) { const char_t* jname = j->name; if (jname && impl::strequalrange(jname, path_segment, static_cast<size_t>(path_segment_end - path_segment))) { xml_node subsearch = xml_node(j).first_element_by_path(next_segment, delimiter); if (subsearch) return subsearch; } } return xml_node(); } } PUGI_IMPL_FN bool xml_node::traverse(xml_tree_walker& walker) { walker._depth = -1; xml_node arg_begin(_root); if (!walker.begin(arg_begin)) return false; xml_node_struct* cur = _root ? _root->first_child + 0 : 0; if (cur) { ++walker._depth; do { xml_node arg_for_each(cur); if (!walker.for_each(arg_for_each)) return false; if (cur->first_child) { ++walker._depth; cur = cur->first_child; } else if (cur->next_sibling) cur = cur->next_sibling; else { while (!cur->next_sibling && cur != _root && cur->parent) { --walker._depth; cur = cur->parent; } if (cur != _root) cur = cur->next_sibling; } } while (cur && cur != _root); } assert(walker._depth == -1); xml_node arg_end(_root); return walker.end(arg_end); } PUGI_IMPL_FN size_t xml_node::hash_value() const { return static_cast<size_t>(reinterpret_cast<uintptr_t>(_root) / sizeof(xml_node_struct)); } PUGI_IMPL_FN xml_node_struct* xml_node::internal_object() const { return _root; } PUGI_IMPL_FN void xml_node::print(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const { if (!_root) return; impl::xml_buffered_writer buffered_writer(writer, encoding); impl::node_output(buffered_writer, _root, indent, flags, depth); buffered_writer.flush(); } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN void xml_node::print(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const { xml_writer_stream writer(stream); print(writer, indent, flags, encoding, depth); } PUGI_IMPL_FN void xml_node::print(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags, unsigned int depth) const { xml_writer_stream writer(stream); print(writer, indent, flags, encoding_wchar, depth); } #endif PUGI_IMPL_FN ptrdiff_t xml_node::offset_debug() const { if (!_root) return -1; impl::xml_document_struct& doc = impl::get_document(_root); // we can determine the offset reliably only if there is exactly once parse buffer if (!doc.buffer || doc.extra_buffers) return -1; switch (type()) { case node_document: return 0; case node_element: case node_declaration: case node_pi: return _root->name && (_root->header & impl::xml_memory_page_name_allocated_or_shared_mask) == 0 ? _root->name - doc.buffer : -1; case node_pcdata: case node_cdata: case node_comment: case node_doctype: return _root->value && (_root->header & impl::xml_memory_page_value_allocated_or_shared_mask) == 0 ? _root->value - doc.buffer : -1; default: assert(false && "Invalid node type"); // unreachable return -1; } } #ifdef __BORLANDC__ PUGI_IMPL_FN bool operator&&(const xml_node& lhs, bool rhs) { return (bool)lhs && rhs; } PUGI_IMPL_FN bool operator||(const xml_node& lhs, bool rhs) { return (bool)lhs || rhs; } #endif PUGI_IMPL_FN xml_text::xml_text(xml_node_struct* root): _root(root) { } PUGI_IMPL_FN xml_node_struct* xml_text::_data() const { if (!_root || impl::is_text_node(_root)) return _root; // element nodes can have value if parse_embed_pcdata was used if (PUGI_IMPL_NODETYPE(_root) == node_element && _root->value) return _root; for (xml_node_struct* node = _root->first_child; node; node = node->next_sibling) if (impl::is_text_node(node)) return node; return 0; } PUGI_IMPL_FN xml_node_struct* xml_text::_data_new() { xml_node_struct* d = _data(); if (d) return d; return xml_node(_root).append_child(node_pcdata).internal_object(); } PUGI_IMPL_FN xml_text::xml_text(): _root(0) { } PUGI_IMPL_FN static void unspecified_bool_xml_text(xml_text***) { } PUGI_IMPL_FN xml_text::operator xml_text::unspecified_bool_type() const { return _data() ? unspecified_bool_xml_text : 0; } PUGI_IMPL_FN bool xml_text::operator!() const { return !_data(); } PUGI_IMPL_FN bool xml_text::empty() const { return _data() == 0; } PUGI_IMPL_FN const char_t* xml_text::get() const { xml_node_struct* d = _data(); if (!d) return PUGIXML_TEXT(""); const char_t* value = d->value; return value ? value : PUGIXML_TEXT(""); } PUGI_IMPL_FN const char_t* xml_text::as_string(const char_t* def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? value : def; } PUGI_IMPL_FN int xml_text::as_int(int def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_int(value) : def; } PUGI_IMPL_FN unsigned int xml_text::as_uint(unsigned int def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_uint(value) : def; } PUGI_IMPL_FN double xml_text::as_double(double def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_double(value) : def; } PUGI_IMPL_FN float xml_text::as_float(float def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_float(value) : def; } PUGI_IMPL_FN bool xml_text::as_bool(bool def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_bool(value) : def; } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN long long xml_text::as_llong(long long def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_llong(value) : def; } PUGI_IMPL_FN unsigned long long xml_text::as_ullong(unsigned long long def) const { xml_node_struct* d = _data(); if (!d) return def; const char_t* value = d->value; return value ? impl::get_value_ullong(value) : def; } #endif PUGI_IMPL_FN bool xml_text::set(const char_t* rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::strcpy_insitu(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, impl::strlength(rhs)) : false; } PUGI_IMPL_FN bool xml_text::set(const char_t* rhs, size_t size) { xml_node_struct* dn = _data_new(); return dn ? impl::strcpy_insitu(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, size) : false; } PUGI_IMPL_FN bool xml_text::set(int rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_integer<unsigned int>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0) : false; } PUGI_IMPL_FN bool xml_text::set(unsigned int rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_integer<unsigned int>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, false) : false; } PUGI_IMPL_FN bool xml_text::set(long rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_integer<unsigned long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0) : false; } PUGI_IMPL_FN bool xml_text::set(unsigned long rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_integer<unsigned long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, false) : false; } PUGI_IMPL_FN bool xml_text::set(float rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, default_float_precision) : false; } PUGI_IMPL_FN bool xml_text::set(float rhs, int precision) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, precision) : false; } PUGI_IMPL_FN bool xml_text::set(double rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, default_double_precision) : false; } PUGI_IMPL_FN bool xml_text::set(double rhs, int precision) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, precision) : false; } PUGI_IMPL_FN bool xml_text::set(bool rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_bool(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs) : false; } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN bool xml_text::set(long long rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_integer<unsigned long long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0) : false; } PUGI_IMPL_FN bool xml_text::set(unsigned long long rhs) { xml_node_struct* dn = _data_new(); return dn ? impl::set_value_integer<unsigned long long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, false) : false; } #endif PUGI_IMPL_FN xml_text& xml_text::operator=(const char_t* rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(int rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(unsigned int rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(long rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(unsigned long rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(double rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(float rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(bool rhs) { set(rhs); return *this; } #ifdef PUGIXML_HAS_LONG_LONG PUGI_IMPL_FN xml_text& xml_text::operator=(long long rhs) { set(rhs); return *this; } PUGI_IMPL_FN xml_text& xml_text::operator=(unsigned long long rhs) { set(rhs); return *this; } #endif PUGI_IMPL_FN xml_node xml_text::data() const { return xml_node(_data()); } #ifdef __BORLANDC__ PUGI_IMPL_FN bool operator&&(const xml_text& lhs, bool rhs) { return (bool)lhs && rhs; } PUGI_IMPL_FN bool operator||(const xml_text& lhs, bool rhs) { return (bool)lhs || rhs; } #endif PUGI_IMPL_FN xml_node_iterator::xml_node_iterator() { } PUGI_IMPL_FN xml_node_iterator::xml_node_iterator(const xml_node& node): _wrap(node), _parent(node.parent()) { } PUGI_IMPL_FN xml_node_iterator::xml_node_iterator(xml_node_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent) { } PUGI_IMPL_FN bool xml_node_iterator::operator==(const xml_node_iterator& rhs) const { return _wrap._root == rhs._wrap._root && _parent._root == rhs._parent._root; } PUGI_IMPL_FN bool xml_node_iterator::operator!=(const xml_node_iterator& rhs) const { return _wrap._root != rhs._wrap._root || _parent._root != rhs._parent._root; } PUGI_IMPL_FN xml_node& xml_node_iterator::operator*() const { assert(_wrap._root); return _wrap; } PUGI_IMPL_FN xml_node* xml_node_iterator::operator->() const { assert(_wrap._root); return const_cast<xml_node*>(&_wrap); // BCC5 workaround } PUGI_IMPL_FN xml_node_iterator& xml_node_iterator::operator++() { assert(_wrap._root); _wrap._root = _wrap._root->next_sibling; return *this; } PUGI_IMPL_FN xml_node_iterator xml_node_iterator::operator++(int) { xml_node_iterator temp = *this; ++*this; return temp; } PUGI_IMPL_FN xml_node_iterator& xml_node_iterator::operator--() { _wrap = _wrap._root ? _wrap.previous_sibling() : _parent.last_child(); return *this; } PUGI_IMPL_FN xml_node_iterator xml_node_iterator::operator--(int) { xml_node_iterator temp = *this; --*this; return temp; } PUGI_IMPL_FN xml_attribute_iterator::xml_attribute_iterator() { } PUGI_IMPL_FN xml_attribute_iterator::xml_attribute_iterator(const xml_attribute& attr, const xml_node& parent): _wrap(attr), _parent(parent) { } PUGI_IMPL_FN xml_attribute_iterator::xml_attribute_iterator(xml_attribute_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent) { } PUGI_IMPL_FN bool xml_attribute_iterator::operator==(const xml_attribute_iterator& rhs) const { return _wrap._attr == rhs._wrap._attr && _parent._root == rhs._parent._root; } PUGI_IMPL_FN bool xml_attribute_iterator::operator!=(const xml_attribute_iterator& rhs) const { return _wrap._attr != rhs._wrap._attr || _parent._root != rhs._parent._root; } PUGI_IMPL_FN xml_attribute& xml_attribute_iterator::operator*() const { assert(_wrap._attr); return _wrap; } PUGI_IMPL_FN xml_attribute* xml_attribute_iterator::operator->() const { assert(_wrap._attr); return const_cast<xml_attribute*>(&_wrap); // BCC5 workaround } PUGI_IMPL_FN xml_attribute_iterator& xml_attribute_iterator::operator++() { assert(_wrap._attr); _wrap._attr = _wrap._attr->next_attribute; return *this; } PUGI_IMPL_FN xml_attribute_iterator xml_attribute_iterator::operator++(int) { xml_attribute_iterator temp = *this; ++*this; return temp; } PUGI_IMPL_FN xml_attribute_iterator& xml_attribute_iterator::operator--() { _wrap = _wrap._attr ? _wrap.previous_attribute() : _parent.last_attribute(); return *this; } PUGI_IMPL_FN xml_attribute_iterator xml_attribute_iterator::operator--(int) { xml_attribute_iterator temp = *this; --*this; return temp; } PUGI_IMPL_FN xml_named_node_iterator::xml_named_node_iterator(): _name(0) { } PUGI_IMPL_FN xml_named_node_iterator::xml_named_node_iterator(const xml_node& node, const char_t* name): _wrap(node), _parent(node.parent()), _name(name) { } PUGI_IMPL_FN xml_named_node_iterator::xml_named_node_iterator(xml_node_struct* ref, xml_node_struct* parent, const char_t* name): _wrap(ref), _parent(parent), _name(name) { } PUGI_IMPL_FN bool xml_named_node_iterator::operator==(const xml_named_node_iterator& rhs) const { return _wrap._root == rhs._wrap._root && _parent._root == rhs._parent._root; } PUGI_IMPL_FN bool xml_named_node_iterator::operator!=(const xml_named_node_iterator& rhs) const { return _wrap._root != rhs._wrap._root || _parent._root != rhs._parent._root; } PUGI_IMPL_FN xml_node& xml_named_node_iterator::operator*() const { assert(_wrap._root); return _wrap; } PUGI_IMPL_FN xml_node* xml_named_node_iterator::operator->() const { assert(_wrap._root); return const_cast<xml_node*>(&_wrap); // BCC5 workaround } PUGI_IMPL_FN xml_named_node_iterator& xml_named_node_iterator::operator++() { assert(_wrap._root); _wrap = _wrap.next_sibling(_name); return *this; } PUGI_IMPL_FN xml_named_node_iterator xml_named_node_iterator::operator++(int) { xml_named_node_iterator temp = *this; ++*this; return temp; } PUGI_IMPL_FN xml_named_node_iterator& xml_named_node_iterator::operator--() { if (_wrap._root) _wrap = _wrap.previous_sibling(_name); else { _wrap = _parent.last_child(); if (!impl::strequal(_wrap.name(), _name)) _wrap = _wrap.previous_sibling(_name); } return *this; } PUGI_IMPL_FN xml_named_node_iterator xml_named_node_iterator::operator--(int) { xml_named_node_iterator temp = *this; --*this; return temp; } PUGI_IMPL_FN xml_parse_result::xml_parse_result(): status(status_internal_error), offset(0), encoding(encoding_auto) { } PUGI_IMPL_FN xml_parse_result::operator bool() const { return status == status_ok; } PUGI_IMPL_FN const char* xml_parse_result::description() const { switch (status) { case status_ok: return "No error"; case status_file_not_found: return "File was not found"; case status_io_error: return "Error reading from file/stream"; case status_out_of_memory: return "Could not allocate memory"; case status_internal_error: return "Internal error occurred"; case status_unrecognized_tag: return "Could not determine tag type"; case status_bad_pi: return "Error parsing document declaration/processing instruction"; case status_bad_comment: return "Error parsing comment"; case status_bad_cdata: return "Error parsing CDATA section"; case status_bad_doctype: return "Error parsing document type declaration"; case status_bad_pcdata: return "Error parsing PCDATA section"; case status_bad_start_element: return "Error parsing start element tag"; case status_bad_attribute: return "Error parsing element attribute"; case status_bad_end_element: return "Error parsing end element tag"; case status_end_element_mismatch: return "Start-end tags mismatch"; case status_append_invalid_root: return "Unable to append nodes: root is not an element or document"; case status_no_document_element: return "No document element found"; default: return "Unknown error"; } } PUGI_IMPL_FN xml_document::xml_document(): _buffer(0) { _create(); } PUGI_IMPL_FN xml_document::~xml_document() { _destroy(); } #ifdef PUGIXML_HAS_MOVE PUGI_IMPL_FN xml_document::xml_document(xml_document&& rhs) PUGIXML_NOEXCEPT_IF_NOT_COMPACT: _buffer(0) { _create(); _move(rhs); } PUGI_IMPL_FN xml_document& xml_document::operator=(xml_document&& rhs) PUGIXML_NOEXCEPT_IF_NOT_COMPACT { if (this == &rhs) return *this; _destroy(); _create(); _move(rhs); return *this; } #endif PUGI_IMPL_FN void xml_document::reset() { _destroy(); _create(); } PUGI_IMPL_FN void xml_document::reset(const xml_document& proto) { reset(); impl::node_copy_tree(_root, proto._root); } PUGI_IMPL_FN void xml_document::_create() { assert(!_root); #ifdef PUGIXML_COMPACT // space for page marker for the first page (uint32_t), rounded up to pointer size; assumes pointers are at least 32-bit const size_t page_offset = sizeof(void*); #else const size_t page_offset = 0; #endif // initialize sentinel page PUGI_IMPL_STATIC_ASSERT(sizeof(impl::xml_memory_page) + sizeof(impl::xml_document_struct) + page_offset <= sizeof(_memory)); // prepare page structure impl::xml_memory_page* page = impl::xml_memory_page::construct(_memory); assert(page); page->busy_size = impl::xml_memory_page_size; // setup first page marker #ifdef PUGIXML_COMPACT // round-trip through void* to avoid 'cast increases required alignment of target type' warning page->compact_page_marker = reinterpret_cast<uint32_t*>(static_cast<void*>(reinterpret_cast<char*>(page) + sizeof(impl::xml_memory_page))); *page->compact_page_marker = sizeof(impl::xml_memory_page); #endif // allocate new root _root = new (reinterpret_cast<char*>(page) + sizeof(impl::xml_memory_page) + page_offset) impl::xml_document_struct(page); _root->prev_sibling_c = _root; // setup sentinel page page->allocator = static_cast<impl::xml_document_struct*>(_root); // setup hash table pointer in allocator #ifdef PUGIXML_COMPACT page->allocator->_hash = &static_cast<impl::xml_document_struct*>(_root)->hash; #endif // verify the document allocation assert(reinterpret_cast<char*>(_root) + sizeof(impl::xml_document_struct) <= _memory + sizeof(_memory)); } PUGI_IMPL_FN void xml_document::_destroy() { assert(_root); // destroy static storage if (_buffer) { impl::xml_memory::deallocate(_buffer); _buffer = 0; } // destroy extra buffers (note: no need to destroy linked list nodes, they're allocated using document allocator) for (impl::xml_extra_buffer* extra = static_cast<impl::xml_document_struct*>(_root)->extra_buffers; extra; extra = extra->next) { if (extra->buffer) impl::xml_memory::deallocate(extra->buffer); } // destroy dynamic storage, leave sentinel page (it's in static memory) impl::xml_memory_page* root_page = PUGI_IMPL_GETPAGE(_root); assert(root_page && !root_page->prev); assert(reinterpret_cast<char*>(root_page) >= _memory && reinterpret_cast<char*>(root_page) < _memory + sizeof(_memory)); for (impl::xml_memory_page* page = root_page->next; page; ) { impl::xml_memory_page* next = page->next; impl::xml_allocator::deallocate_page(page); page = next; } #ifdef PUGIXML_COMPACT // destroy hash table static_cast<impl::xml_document_struct*>(_root)->hash.clear(); #endif _root = 0; } #ifdef PUGIXML_HAS_MOVE PUGI_IMPL_FN void xml_document::_move(xml_document& rhs) PUGIXML_NOEXCEPT_IF_NOT_COMPACT { impl::xml_document_struct* doc = static_cast<impl::xml_document_struct*>(_root); impl::xml_document_struct* other = static_cast<impl::xml_document_struct*>(rhs._root); // save first child pointer for later; this needs hash access xml_node_struct* other_first_child = other->first_child; #ifdef PUGIXML_COMPACT // reserve space for the hash table up front; this is the only operation that can fail // if it does, we have no choice but to throw (if we have exceptions) if (other_first_child) { size_t other_children = 0; for (xml_node_struct* node = other_first_child; node; node = node->next_sibling) other_children++; // in compact mode, each pointer assignment could result in a hash table request // during move, we have to relocate document first_child and parents of all children // normally there's just one child and its parent has a pointerless encoding but // we assume the worst here if (!other->_hash->reserve(other_children + 1)) { #ifdef PUGIXML_NO_EXCEPTIONS return; #else throw std::bad_alloc(); #endif } } #endif // move allocation state // note that other->_root may point to the embedded document page, in which case we should keep original (empty) state if (other->_root != PUGI_IMPL_GETPAGE(other)) { doc->_root = other->_root; doc->_busy_size = other->_busy_size; } // move buffer state doc->buffer = other->buffer; doc->extra_buffers = other->extra_buffers; _buffer = rhs._buffer; #ifdef PUGIXML_COMPACT // move compact hash; note that the hash table can have pointers to other but they will be "inactive", similarly to nodes removed with remove_child doc->hash = other->hash; doc->_hash = &doc->hash; // make sure we don't access other hash up until the end when we reinitialize other document other->_hash = 0; #endif // move page structure impl::xml_memory_page* doc_page = PUGI_IMPL_GETPAGE(doc); assert(doc_page && !doc_page->prev && !doc_page->next); impl::xml_memory_page* other_page = PUGI_IMPL_GETPAGE(other); assert(other_page && !other_page->prev); // relink pages since root page is embedded into xml_document if (impl::xml_memory_page* page = other_page->next) { assert(page->prev == other_page); page->prev = doc_page; doc_page->next = page; other_page->next = 0; } // make sure pages point to the correct document state for (impl::xml_memory_page* page = doc_page->next; page; page = page->next) { assert(page->allocator == other); page->allocator = doc; #ifdef PUGIXML_COMPACT // this automatically migrates most children between documents and prevents ->parent assignment from allocating if (page->compact_shared_parent == other) page->compact_shared_parent = doc; #endif } // move tree structure assert(!doc->first_child); doc->first_child = other_first_child; for (xml_node_struct* node = other_first_child; node; node = node->next_sibling) { #ifdef PUGIXML_COMPACT // most children will have migrated when we reassigned compact_shared_parent assert(node->parent == other || node->parent == doc); node->parent = doc; #else assert(node->parent == other); node->parent = doc; #endif } // reset other document new (other) impl::xml_document_struct(PUGI_IMPL_GETPAGE(other)); rhs._buffer = 0; } #endif #ifndef PUGIXML_NO_STL PUGI_IMPL_FN xml_parse_result xml_document::load(std::basic_istream<char, std::char_traits<char> >& stream, unsigned int options, xml_encoding encoding) { reset(); return impl::load_stream_impl(static_cast<impl::xml_document_struct*>(_root), stream, options, encoding, &_buffer); } PUGI_IMPL_FN xml_parse_result xml_document::load(std::basic_istream<wchar_t, std::char_traits<wchar_t> >& stream, unsigned int options) { reset(); return impl::load_stream_impl(static_cast<impl::xml_document_struct*>(_root), stream, options, encoding_wchar, &_buffer); } #endif PUGI_IMPL_FN xml_parse_result xml_document::load_string(const char_t* contents, unsigned int options) { // Force native encoding (skip autodetection) #ifdef PUGIXML_WCHAR_MODE xml_encoding encoding = encoding_wchar; #else xml_encoding encoding = encoding_utf8; #endif return load_buffer(contents, impl::strlength(contents) * sizeof(char_t), options, encoding); } PUGI_IMPL_FN xml_parse_result xml_document::load(const char_t* contents, unsigned int options) { return load_string(contents, options); } PUGI_IMPL_FN xml_parse_result xml_document::load_file(const char* path_, unsigned int options, xml_encoding encoding) { reset(); using impl::auto_deleter; // MSVC7 workaround auto_deleter<FILE> file(impl::open_file(path_, "rb"), impl::close_file); return impl::load_file_impl(static_cast<impl::xml_document_struct*>(_root), file.data, options, encoding, &_buffer); } PUGI_IMPL_FN xml_parse_result xml_document::load_file(const wchar_t* path_, unsigned int options, xml_encoding encoding) { reset(); using impl::auto_deleter; // MSVC7 workaround auto_deleter<FILE> file(impl::open_file_wide(path_, L"rb"), impl::close_file); return impl::load_file_impl(static_cast<impl::xml_document_struct*>(_root), file.data, options, encoding, &_buffer); } PUGI_IMPL_FN xml_parse_result xml_document::load_buffer(const void* contents, size_t size, unsigned int options, xml_encoding encoding) { reset(); return impl::load_buffer_impl(static_cast<impl::xml_document_struct*>(_root), _root, const_cast<void*>(contents), size, options, encoding, false, false, &_buffer); } PUGI_IMPL_FN xml_parse_result xml_document::load_buffer_inplace(void* contents, size_t size, unsigned int options, xml_encoding encoding) { reset(); return impl::load_buffer_impl(static_cast<impl::xml_document_struct*>(_root), _root, contents, size, options, encoding, true, false, &_buffer); } PUGI_IMPL_FN xml_parse_result xml_document::load_buffer_inplace_own(void* contents, size_t size, unsigned int options, xml_encoding encoding) { reset(); return impl::load_buffer_impl(static_cast<impl::xml_document_struct*>(_root), _root, contents, size, options, encoding, true, true, &_buffer); } PUGI_IMPL_FN void xml_document::save(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding) const { impl::xml_buffered_writer buffered_writer(writer, encoding); if ((flags & format_write_bom) && encoding != encoding_latin1) { // BOM always represents the codepoint U+FEFF, so just write it in native encoding #ifdef PUGIXML_WCHAR_MODE unsigned int bom = 0xfeff; buffered_writer.write(static_cast<wchar_t>(bom)); #else buffered_writer.write('\xef', '\xbb', '\xbf'); #endif } if (!(flags & format_no_declaration) && !impl::has_declaration(_root)) { buffered_writer.write_string(PUGIXML_TEXT("<?xml version=\"1.0\"")); if (encoding == encoding_latin1) buffered_writer.write_string(PUGIXML_TEXT(" encoding=\"ISO-8859-1\"")); buffered_writer.write('?', '>'); if (!(flags & format_raw)) buffered_writer.write('\n'); } impl::node_output(buffered_writer, _root, indent, flags, 0); buffered_writer.flush(); } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN void xml_document::save(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding) const { xml_writer_stream writer(stream); save(writer, indent, flags, encoding); } PUGI_IMPL_FN void xml_document::save(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags) const { xml_writer_stream writer(stream); save(writer, indent, flags, encoding_wchar); } #endif PUGI_IMPL_FN bool xml_document::save_file(const char* path_, const char_t* indent, unsigned int flags, xml_encoding encoding) const { using impl::auto_deleter; // MSVC7 workaround auto_deleter<FILE> file(impl::open_file(path_, (flags & format_save_file_text) ? "w" : "wb"), impl::close_file); return impl::save_file_impl(*this, file.data, indent, flags, encoding) && fclose(file.release()) == 0; } PUGI_IMPL_FN bool xml_document::save_file(const wchar_t* path_, const char_t* indent, unsigned int flags, xml_encoding encoding) const { using impl::auto_deleter; // MSVC7 workaround auto_deleter<FILE> file(impl::open_file_wide(path_, (flags & format_save_file_text) ? L"w" : L"wb"), impl::close_file); return impl::save_file_impl(*this, file.data, indent, flags, encoding) && fclose(file.release()) == 0; } PUGI_IMPL_FN xml_node xml_document::document_element() const { assert(_root); for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling) if (PUGI_IMPL_NODETYPE(i) == node_element) return xml_node(i); return xml_node(); } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN std::string PUGIXML_FUNCTION as_utf8(const wchar_t* str) { assert(str); return impl::as_utf8_impl(str, impl::strlength_wide(str)); } PUGI_IMPL_FN std::string PUGIXML_FUNCTION as_utf8(const std::basic_string<wchar_t>& str) { return impl::as_utf8_impl(str.c_str(), str.size()); } PUGI_IMPL_FN std::basic_string<wchar_t> PUGIXML_FUNCTION as_wide(const char* str) { assert(str); return impl::as_wide_impl(str, strlen(str)); } PUGI_IMPL_FN std::basic_string<wchar_t> PUGIXML_FUNCTION as_wide(const std::string& str) { return impl::as_wide_impl(str.c_str(), str.size()); } #endif PUGI_IMPL_FN void PUGIXML_FUNCTION set_memory_management_functions(allocation_function allocate, deallocation_function deallocate) { impl::xml_memory::allocate = allocate; impl::xml_memory::deallocate = deallocate; } PUGI_IMPL_FN allocation_function PUGIXML_FUNCTION get_memory_allocation_function() { return impl::xml_memory::allocate; } PUGI_IMPL_FN deallocation_function PUGIXML_FUNCTION get_memory_deallocation_function() { return impl::xml_memory::deallocate; } } #if !defined(PUGIXML_NO_STL) && (defined(_MSC_VER) || defined(__ICC)) namespace std { // Workarounds for (non-standard) iterator category detection for older versions (MSVC7/IC8 and earlier) PUGI_IMPL_FN std::bidirectional_iterator_tag _Iter_cat(const pugi::xml_node_iterator&) { return std::bidirectional_iterator_tag(); } PUGI_IMPL_FN std::bidirectional_iterator_tag _Iter_cat(const pugi::xml_attribute_iterator&) { return std::bidirectional_iterator_tag(); } PUGI_IMPL_FN std::bidirectional_iterator_tag _Iter_cat(const pugi::xml_named_node_iterator&) { return std::bidirectional_iterator_tag(); } } #endif #if !defined(PUGIXML_NO_STL) && defined(__SUNPRO_CC) namespace std { // Workarounds for (non-standard) iterator category detection PUGI_IMPL_FN std::bidirectional_iterator_tag __iterator_category(const pugi::xml_node_iterator&) { return std::bidirectional_iterator_tag(); } PUGI_IMPL_FN std::bidirectional_iterator_tag __iterator_category(const pugi::xml_attribute_iterator&) { return std::bidirectional_iterator_tag(); } PUGI_IMPL_FN std::bidirectional_iterator_tag __iterator_category(const pugi::xml_named_node_iterator&) { return std::bidirectional_iterator_tag(); } } #endif #ifndef PUGIXML_NO_XPATH // STL replacements PUGI_IMPL_NS_BEGIN struct equal_to { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs == rhs; } }; struct not_equal_to { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs != rhs; } }; struct less { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs < rhs; } }; struct less_equal { template <typename T> bool operator()(const T& lhs, const T& rhs) const { return lhs <= rhs; } }; template <typename T> inline void swap(T& lhs, T& rhs) { T temp = lhs; lhs = rhs; rhs = temp; } template <typename I, typename Pred> PUGI_IMPL_FN I min_element(I begin, I end, const Pred& pred) { I result = begin; for (I it = begin + 1; it != end; ++it) if (pred(*it, *result)) result = it; return result; } template <typename I> PUGI_IMPL_FN void reverse(I begin, I end) { while (end - begin > 1) swap(*begin++, *--end); } template <typename I> PUGI_IMPL_FN I unique(I begin, I end) { // fast skip head while (end - begin > 1 && *begin != *(begin + 1)) begin++; if (begin == end) return begin; // last written element I write = begin++; // merge unique elements while (begin != end) { if (*begin != *write) *++write = *begin++; else begin++; } // past-the-end (write points to live element) return write + 1; } template <typename T, typename Pred> PUGI_IMPL_FN void insertion_sort(T* begin, T* end, const Pred& pred) { if (begin == end) return; for (T* it = begin + 1; it != end; ++it) { T val = *it; T* hole = it; // move hole backwards while (hole > begin && pred(val, *(hole - 1))) { *hole = *(hole - 1); hole--; } // fill hole with element *hole = val; } } template <typename I, typename Pred> inline I median3(I first, I middle, I last, const Pred& pred) { if (pred(*middle, *first)) swap(middle, first); if (pred(*last, *middle)) swap(last, middle); if (pred(*middle, *first)) swap(middle, first); return middle; } template <typename T, typename Pred> PUGI_IMPL_FN void partition3(T* begin, T* end, T pivot, const Pred& pred, T** out_eqbeg, T** out_eqend) { // invariant: array is split into 4 groups: = < ? > (each variable denotes the boundary between the groups) T* eq = begin; T* lt = begin; T* gt = end; while (lt < gt) { if (pred(*lt, pivot)) lt++; else if (*lt == pivot) swap(*eq++, *lt++); else swap(*lt, *--gt); } // we now have just 4 groups: = < >; move equal elements to the middle T* eqbeg = gt; for (T* it = begin; it != eq; ++it) swap(*it, *--eqbeg); *out_eqbeg = eqbeg; *out_eqend = gt; } template <typename I, typename Pred> PUGI_IMPL_FN void sort(I begin, I end, const Pred& pred) { // sort large chunks while (end - begin > 16) { // find median element I middle = begin + (end - begin) / 2; I median = median3(begin, middle, end - 1, pred); // partition in three chunks (< = >) I eqbeg, eqend; partition3(begin, end, *median, pred, &eqbeg, &eqend); // loop on larger half if (eqbeg - begin > end - eqend) { sort(eqend, end, pred); end = eqbeg; } else { sort(begin, eqbeg, pred); begin = eqend; } } // insertion sort small chunk insertion_sort(begin, end, pred); } PUGI_IMPL_FN bool hash_insert(const void** table, size_t size, const void* key) { assert(key); unsigned int h = static_cast<unsigned int>(reinterpret_cast<uintptr_t>(key)); // MurmurHash3 32-bit finalizer h ^= h >> 16; h *= 0x85ebca6bu; h ^= h >> 13; h *= 0xc2b2ae35u; h ^= h >> 16; size_t hashmod = size - 1; size_t bucket = h & hashmod; for (size_t probe = 0; probe <= hashmod; ++probe) { if (table[bucket] == 0) { table[bucket] = key; return true; } if (table[bucket] == key) return false; // hash collision, quadratic probing bucket = (bucket + probe + 1) & hashmod; } assert(false && "Hash table is full"); // unreachable return false; } PUGI_IMPL_NS_END // Allocator used for AST and evaluation stacks PUGI_IMPL_NS_BEGIN static const size_t xpath_memory_page_size = #ifdef PUGIXML_MEMORY_XPATH_PAGE_SIZE PUGIXML_MEMORY_XPATH_PAGE_SIZE #else 4096 #endif ; static const uintptr_t xpath_memory_block_alignment = sizeof(double) > sizeof(void*) ? sizeof(double) : sizeof(void*); struct xpath_memory_block { xpath_memory_block* next; size_t capacity; union { char data[xpath_memory_page_size]; double alignment; }; }; struct xpath_allocator { xpath_memory_block* _root; size_t _root_size; bool* _error; xpath_allocator(xpath_memory_block* root, bool* error = 0): _root(root), _root_size(0), _error(error) { } void* allocate(size_t size) { // round size up to block alignment boundary size = (size + xpath_memory_block_alignment - 1) & ~(xpath_memory_block_alignment - 1); if (_root_size + size <= _root->capacity) { void* buf = &_root->data[0] + _root_size; _root_size += size; return buf; } else { // make sure we have at least 1/4th of the page free after allocation to satisfy subsequent allocation requests size_t block_capacity_base = sizeof(_root->data); size_t block_capacity_req = size + block_capacity_base / 4; size_t block_capacity = (block_capacity_base > block_capacity_req) ? block_capacity_base : block_capacity_req; size_t block_size = block_capacity + offsetof(xpath_memory_block, data); xpath_memory_block* block = static_cast<xpath_memory_block*>(xml_memory::allocate(block_size)); if (!block) { if (_error) *_error = true; return 0; } block->next = _root; block->capacity = block_capacity; _root = block; _root_size = size; return block->data; } } void* reallocate(void* ptr, size_t old_size, size_t new_size) { // round size up to block alignment boundary old_size = (old_size + xpath_memory_block_alignment - 1) & ~(xpath_memory_block_alignment - 1); new_size = (new_size + xpath_memory_block_alignment - 1) & ~(xpath_memory_block_alignment - 1); // we can only reallocate the last object assert(ptr == 0 || static_cast<char*>(ptr) + old_size == &_root->data[0] + _root_size); // try to reallocate the object inplace if (ptr && _root_size - old_size + new_size <= _root->capacity) { _root_size = _root_size - old_size + new_size; return ptr; } // allocate a new block void* result = allocate(new_size); if (!result) return 0; // we have a new block if (ptr) { // copy old data (we only support growing) assert(new_size >= old_size); memcpy(result, ptr, old_size); // free the previous page if it had no other objects assert(_root->data == result); assert(_root->next); if (_root->next->data == ptr) { // deallocate the whole page, unless it was the first one xpath_memory_block* next = _root->next->next; if (next) { xml_memory::deallocate(_root->next); _root->next = next; } } } return result; } void revert(const xpath_allocator& state) { // free all new pages xpath_memory_block* cur = _root; while (cur != state._root) { xpath_memory_block* next = cur->next; xml_memory::deallocate(cur); cur = next; } // restore state _root = state._root; _root_size = state._root_size; } void release() { xpath_memory_block* cur = _root; assert(cur); while (cur->next) { xpath_memory_block* next = cur->next; xml_memory::deallocate(cur); cur = next; } } }; struct xpath_allocator_capture { xpath_allocator_capture(xpath_allocator* alloc): _target(alloc), _state(*alloc) { } ~xpath_allocator_capture() { _target->revert(_state); } xpath_allocator* _target; xpath_allocator _state; }; struct xpath_stack { xpath_allocator* result; xpath_allocator* temp; }; struct xpath_stack_data { xpath_memory_block blocks[2]; xpath_allocator result; xpath_allocator temp; xpath_stack stack; bool oom; xpath_stack_data(): result(blocks + 0, &oom), temp(blocks + 1, &oom), oom(false) { blocks[0].next = blocks[1].next = 0; blocks[0].capacity = blocks[1].capacity = sizeof(blocks[0].data); stack.result = &result; stack.temp = &temp; } ~xpath_stack_data() { result.release(); temp.release(); } }; PUGI_IMPL_NS_END // String class PUGI_IMPL_NS_BEGIN class xpath_string { const char_t* _buffer; bool _uses_heap; size_t _length_heap; static char_t* duplicate_string(const char_t* string, size_t length, xpath_allocator* alloc) { char_t* result = static_cast<char_t*>(alloc->allocate((length + 1) * sizeof(char_t))); if (!result) return 0; memcpy(result, string, length * sizeof(char_t)); result[length] = 0; return result; } xpath_string(const char_t* buffer, bool uses_heap_, size_t length_heap): _buffer(buffer), _uses_heap(uses_heap_), _length_heap(length_heap) { } public: static xpath_string from_const(const char_t* str) { return xpath_string(str, false, 0); } static xpath_string from_heap_preallocated(const char_t* begin, const char_t* end) { assert(begin <= end && *end == 0); return xpath_string(begin, true, static_cast<size_t>(end - begin)); } static xpath_string from_heap(const char_t* begin, const char_t* end, xpath_allocator* alloc) { assert(begin <= end); if (begin == end) return xpath_string(); size_t length = static_cast<size_t>(end - begin); const char_t* data = duplicate_string(begin, length, alloc); return data ? xpath_string(data, true, length) : xpath_string(); } xpath_string(): _buffer(PUGIXML_TEXT("")), _uses_heap(false), _length_heap(0) { } void append(const xpath_string& o, xpath_allocator* alloc) { // skip empty sources if (!*o._buffer) return; // fast append for constant empty target and constant source if (!*_buffer && !_uses_heap && !o._uses_heap) { _buffer = o._buffer; } else { // need to make heap copy size_t target_length = length(); size_t source_length = o.length(); size_t result_length = target_length + source_length; // allocate new buffer char_t* result = static_cast<char_t*>(alloc->reallocate(_uses_heap ? const_cast<char_t*>(_buffer) : 0, (target_length + 1) * sizeof(char_t), (result_length + 1) * sizeof(char_t))); if (!result) return; // append first string to the new buffer in case there was no reallocation if (!_uses_heap) memcpy(result, _buffer, target_length * sizeof(char_t)); // append second string to the new buffer memcpy(result + target_length, o._buffer, source_length * sizeof(char_t)); result[result_length] = 0; // finalize _buffer = result; _uses_heap = true; _length_heap = result_length; } } const char_t* c_str() const { return _buffer; } size_t length() const { return _uses_heap ? _length_heap : strlength(_buffer); } char_t* data(xpath_allocator* alloc) { // make private heap copy if (!_uses_heap) { size_t length_ = strlength(_buffer); const char_t* data_ = duplicate_string(_buffer, length_, alloc); if (!data_) return 0; _buffer = data_; _uses_heap = true; _length_heap = length_; } return const_cast<char_t*>(_buffer); } bool empty() const { return *_buffer == 0; } bool operator==(const xpath_string& o) const { return strequal(_buffer, o._buffer); } bool operator!=(const xpath_string& o) const { return !strequal(_buffer, o._buffer); } bool uses_heap() const { return _uses_heap; } }; PUGI_IMPL_NS_END PUGI_IMPL_NS_BEGIN PUGI_IMPL_FN bool starts_with(const char_t* string, const char_t* pattern) { while (*pattern && *string == *pattern) { string++; pattern++; } return *pattern == 0; } PUGI_IMPL_FN const char_t* find_char(const char_t* s, char_t c) { #ifdef PUGIXML_WCHAR_MODE return wcschr(s, c); #else return strchr(s, c); #endif } PUGI_IMPL_FN const char_t* find_substring(const char_t* s, const char_t* p) { #ifdef PUGIXML_WCHAR_MODE // MSVC6 wcsstr bug workaround (if s is empty it always returns 0) return (*p == 0) ? s : wcsstr(s, p); #else return strstr(s, p); #endif } // Converts symbol to lower case, if it is an ASCII one PUGI_IMPL_FN char_t tolower_ascii(char_t ch) { return static_cast<unsigned int>(ch - 'A') < 26 ? static_cast<char_t>(ch | ' ') : ch; } PUGI_IMPL_FN xpath_string string_value(const xpath_node& na, xpath_allocator* alloc) { if (na.attribute()) return xpath_string::from_const(na.attribute().value()); else { xml_node n = na.node(); switch (n.type()) { case node_pcdata: case node_cdata: case node_comment: case node_pi: return xpath_string::from_const(n.value()); case node_document: case node_element: { xpath_string result; // element nodes can have value if parse_embed_pcdata was used if (n.value()[0]) result.append(xpath_string::from_const(n.value()), alloc); xml_node cur = n.first_child(); while (cur && cur != n) { if (cur.type() == node_pcdata || cur.type() == node_cdata) result.append(xpath_string::from_const(cur.value()), alloc); if (cur.first_child()) cur = cur.first_child(); else if (cur.next_sibling()) cur = cur.next_sibling(); else { while (!cur.next_sibling() && cur != n) cur = cur.parent(); if (cur != n) cur = cur.next_sibling(); } } return result; } default: return xpath_string(); } } } PUGI_IMPL_FN bool node_is_before_sibling(xml_node_struct* ln, xml_node_struct* rn) { assert(ln->parent == rn->parent); // there is no common ancestor (the shared parent is null), nodes are from different documents if (!ln->parent) return ln < rn; // determine sibling order xml_node_struct* ls = ln; xml_node_struct* rs = rn; while (ls && rs) { if (ls == rn) return true; if (rs == ln) return false; ls = ls->next_sibling; rs = rs->next_sibling; } // if rn sibling chain ended ln must be before rn return !rs; } PUGI_IMPL_FN bool node_is_before(xml_node_struct* ln, xml_node_struct* rn) { // find common ancestor at the same depth, if any xml_node_struct* lp = ln; xml_node_struct* rp = rn; while (lp && rp && lp->parent != rp->parent) { lp = lp->parent; rp = rp->parent; } // parents are the same! if (lp && rp) return node_is_before_sibling(lp, rp); // nodes are at different depths, need to normalize heights bool left_higher = !lp; while (lp) { lp = lp->parent; ln = ln->parent; } while (rp) { rp = rp->parent; rn = rn->parent; } // one node is the ancestor of the other if (ln == rn) return left_higher; // find common ancestor... again while (ln->parent != rn->parent) { ln = ln->parent; rn = rn->parent; } return node_is_before_sibling(ln, rn); } PUGI_IMPL_FN bool node_is_ancestor(xml_node_struct* parent, xml_node_struct* node) { while (node && node != parent) node = node->parent; return parent && node == parent; } PUGI_IMPL_FN const void* document_buffer_order(const xpath_node& xnode) { xml_node_struct* node = xnode.node().internal_object(); if (node) { if ((get_document(node).header & xml_memory_page_contents_shared_mask) == 0) { if (node->name && (node->header & impl::xml_memory_page_name_allocated_or_shared_mask) == 0) return node->name; if (node->value && (node->header & impl::xml_memory_page_value_allocated_or_shared_mask) == 0) return node->value; } return 0; } xml_attribute_struct* attr = xnode.attribute().internal_object(); if (attr) { if ((get_document(attr).header & xml_memory_page_contents_shared_mask) == 0) { if ((attr->header & impl::xml_memory_page_name_allocated_or_shared_mask) == 0) return attr->name; if ((attr->header & impl::xml_memory_page_value_allocated_or_shared_mask) == 0) return attr->value; } return 0; } return 0; } struct document_order_comparator { bool operator()(const xpath_node& lhs, const xpath_node& rhs) const { // optimized document order based check const void* lo = document_buffer_order(lhs); const void* ro = document_buffer_order(rhs); if (lo && ro) return lo < ro; // slow comparison xml_node ln = lhs.node(), rn = rhs.node(); // compare attributes if (lhs.attribute() && rhs.attribute()) { // shared parent if (lhs.parent() == rhs.parent()) { // determine sibling order for (xml_attribute a = lhs.attribute(); a; a = a.next_attribute()) if (a == rhs.attribute()) return true; return false; } // compare attribute parents ln = lhs.parent(); rn = rhs.parent(); } else if (lhs.attribute()) { // attributes go after the parent element if (lhs.parent() == rhs.node()) return false; ln = lhs.parent(); } else if (rhs.attribute()) { // attributes go after the parent element if (rhs.parent() == lhs.node()) return true; rn = rhs.parent(); } if (ln == rn) return false; if (!ln || !rn) return ln < rn; return node_is_before(ln.internal_object(), rn.internal_object()); } }; PUGI_IMPL_FN double gen_nan() { #if defined(__STDC_IEC_559__) || ((FLT_RADIX - 0 == 2) && (FLT_MAX_EXP - 0 == 128) && (FLT_MANT_DIG - 0 == 24)) PUGI_IMPL_STATIC_ASSERT(sizeof(float) == sizeof(uint32_t)); typedef uint32_t UI; // BCC5 workaround union { float f; UI i; } u; u.i = 0x7fc00000; return double(u.f); #else // fallback const volatile double zero = 0.0; return zero / zero; #endif } PUGI_IMPL_FN bool is_nan(double value) { #if defined(PUGI_IMPL_MSVC_CRT_VERSION) || defined(__BORLANDC__) return !!_isnan(value); #elif defined(fpclassify) && defined(FP_NAN) return fpclassify(value) == FP_NAN; #else // fallback const volatile double v = value; return v != v; #endif } PUGI_IMPL_FN const char_t* convert_number_to_string_special(double value) { #if defined(PUGI_IMPL_MSVC_CRT_VERSION) || defined(__BORLANDC__) if (_finite(value)) return (value == 0) ? PUGIXML_TEXT("0") : 0; if (_isnan(value)) return PUGIXML_TEXT("NaN"); return value > 0 ? PUGIXML_TEXT("Infinity") : PUGIXML_TEXT("-Infinity"); #elif defined(fpclassify) && defined(FP_NAN) && defined(FP_INFINITE) && defined(FP_ZERO) switch (fpclassify(value)) { case FP_NAN: return PUGIXML_TEXT("NaN"); case FP_INFINITE: return value > 0 ? PUGIXML_TEXT("Infinity") : PUGIXML_TEXT("-Infinity"); case FP_ZERO: return PUGIXML_TEXT("0"); default: return 0; } #else // fallback const volatile double v = value; if (v == 0) return PUGIXML_TEXT("0"); if (v != v) return PUGIXML_TEXT("NaN"); if (v * 2 == v) return value > 0 ? PUGIXML_TEXT("Infinity") : PUGIXML_TEXT("-Infinity"); return 0; #endif } PUGI_IMPL_FN bool convert_number_to_boolean(double value) { return (value != 0 && !is_nan(value)); } PUGI_IMPL_FN void truncate_zeros(char* begin, char* end) { while (begin != end && end[-1] == '0') end--; *end = 0; } // gets mantissa digits in the form of 0.xxxxx with 0. implied and the exponent #if defined(PUGI_IMPL_MSVC_CRT_VERSION) && PUGI_IMPL_MSVC_CRT_VERSION >= 1400 PUGI_IMPL_FN void convert_number_to_mantissa_exponent(double value, char (&buffer)[32], char** out_mantissa, int* out_exponent) { // get base values int sign, exponent; _ecvt_s(buffer, sizeof(buffer), value, DBL_DIG + 1, &exponent, &sign); // truncate redundant zeros truncate_zeros(buffer, buffer + strlen(buffer)); // fill results *out_mantissa = buffer; *out_exponent = exponent; } #else PUGI_IMPL_FN void convert_number_to_mantissa_exponent(double value, char (&buffer)[32], char** out_mantissa, int* out_exponent) { // get a scientific notation value with IEEE DBL_DIG decimals PUGI_IMPL_SNPRINTF(buffer, "%.*e", DBL_DIG, value); // get the exponent (possibly negative) char* exponent_string = strchr(buffer, 'e'); assert(exponent_string); int exponent = atoi(exponent_string + 1); // extract mantissa string: skip sign char* mantissa = buffer[0] == '-' ? buffer + 1 : buffer; assert(mantissa[0] != '0' && (mantissa[1] == '.' || mantissa[1] == ',')); // divide mantissa by 10 to eliminate integer part mantissa[1] = mantissa[0]; mantissa++; exponent++; // remove extra mantissa digits and zero-terminate mantissa truncate_zeros(mantissa, exponent_string); // fill results *out_mantissa = mantissa; *out_exponent = exponent; } #endif PUGI_IMPL_FN xpath_string convert_number_to_string(double value, xpath_allocator* alloc) { // try special number conversion const char_t* special = convert_number_to_string_special(value); if (special) return xpath_string::from_const(special); // get mantissa + exponent form char mantissa_buffer[32]; char* mantissa; int exponent; convert_number_to_mantissa_exponent(value, mantissa_buffer, &mantissa, &exponent); // allocate a buffer of suitable length for the number size_t result_size = strlen(mantissa_buffer) + (exponent > 0 ? exponent : -exponent) + 4; char_t* result = static_cast<char_t*>(alloc->allocate(sizeof(char_t) * result_size)); if (!result) return xpath_string(); // make the number! char_t* s = result; // sign if (value < 0) *s++ = '-'; // integer part if (exponent <= 0) { *s++ = '0'; } else { while (exponent > 0) { assert(*mantissa == 0 || static_cast<unsigned int>(*mantissa - '0') <= 9); *s++ = *mantissa ? *mantissa++ : '0'; exponent--; } } // fractional part if (*mantissa) { // decimal point *s++ = '.'; // extra zeroes from negative exponent while (exponent < 0) { *s++ = '0'; exponent++; } // extra mantissa digits while (*mantissa) { assert(static_cast<unsigned int>(*mantissa - '0') <= 9); *s++ = *mantissa++; } } // zero-terminate assert(s < result + result_size); *s = 0; return xpath_string::from_heap_preallocated(result, s); } PUGI_IMPL_FN bool check_string_to_number_format(const char_t* string) { // parse leading whitespace while (PUGI_IMPL_IS_CHARTYPE(*string, ct_space)) ++string; // parse sign if (*string == '-') ++string; if (!*string) return false; // if there is no integer part, there should be a decimal part with at least one digit if (!PUGI_IMPL_IS_CHARTYPEX(string[0], ctx_digit) && (string[0] != '.' || !PUGI_IMPL_IS_CHARTYPEX(string[1], ctx_digit))) return false; // parse integer part while (PUGI_IMPL_IS_CHARTYPEX(*string, ctx_digit)) ++string; // parse decimal part if (*string == '.') { ++string; while (PUGI_IMPL_IS_CHARTYPEX(*string, ctx_digit)) ++string; } // parse trailing whitespace while (PUGI_IMPL_IS_CHARTYPE(*string, ct_space)) ++string; return *string == 0; } PUGI_IMPL_FN double convert_string_to_number(const char_t* string) { // check string format if (!check_string_to_number_format(string)) return gen_nan(); // parse string #ifdef PUGIXML_WCHAR_MODE return wcstod(string, 0); #else return strtod(string, 0); #endif } PUGI_IMPL_FN bool convert_string_to_number_scratch(char_t (&buffer)[32], const char_t* begin, const char_t* end, double* out_result) { size_t length = static_cast<size_t>(end - begin); char_t* scratch = buffer; if (length >= sizeof(buffer) / sizeof(buffer[0])) { // need to make dummy on-heap copy scratch = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!scratch) return false; } // copy string to zero-terminated buffer and perform conversion memcpy(scratch, begin, length * sizeof(char_t)); scratch[length] = 0; *out_result = convert_string_to_number(scratch); // free dummy buffer if (scratch != buffer) xml_memory::deallocate(scratch); return true; } PUGI_IMPL_FN double round_nearest(double value) { return floor(value + 0.5); } PUGI_IMPL_FN double round_nearest_nzero(double value) { // same as round_nearest, but returns -0 for [-0.5, -0] // ceil is used to differentiate between +0 and -0 (we return -0 for [-0.5, -0] and +0 for +0) return (value >= -0.5 && value <= 0) ? ceil(value) : floor(value + 0.5); } PUGI_IMPL_FN const char_t* qualified_name(const xpath_node& node) { return node.attribute() ? node.attribute().name() : node.node().name(); } PUGI_IMPL_FN const char_t* local_name(const xpath_node& node) { const char_t* name = qualified_name(node); const char_t* p = find_char(name, ':'); return p ? p + 1 : name; } struct namespace_uri_predicate { const char_t* prefix; size_t prefix_length; namespace_uri_predicate(const char_t* name) { const char_t* pos = find_char(name, ':'); prefix = pos ? name : 0; prefix_length = pos ? static_cast<size_t>(pos - name) : 0; } bool operator()(xml_attribute a) const { const char_t* name = a.name(); if (!starts_with(name, PUGIXML_TEXT("xmlns"))) return false; return prefix ? name[5] == ':' && strequalrange(name + 6, prefix, prefix_length) : name[5] == 0; } }; PUGI_IMPL_FN const char_t* namespace_uri(xml_node node) { namespace_uri_predicate pred = node.name(); xml_node p = node; while (p) { xml_attribute a = p.find_attribute(pred); if (a) return a.value(); p = p.parent(); } return PUGIXML_TEXT(""); } PUGI_IMPL_FN const char_t* namespace_uri(xml_attribute attr, xml_node parent) { namespace_uri_predicate pred = attr.name(); // Default namespace does not apply to attributes if (!pred.prefix) return PUGIXML_TEXT(""); xml_node p = parent; while (p) { xml_attribute a = p.find_attribute(pred); if (a) return a.value(); p = p.parent(); } return PUGIXML_TEXT(""); } PUGI_IMPL_FN const char_t* namespace_uri(const xpath_node& node) { return node.attribute() ? namespace_uri(node.attribute(), node.parent()) : namespace_uri(node.node()); } PUGI_IMPL_FN char_t* normalize_space(char_t* buffer) { char_t* write = buffer; for (char_t* it = buffer; *it; ) { char_t ch = *it++; if (PUGI_IMPL_IS_CHARTYPE(ch, ct_space)) { // replace whitespace sequence with single space while (PUGI_IMPL_IS_CHARTYPE(*it, ct_space)) it++; // avoid leading spaces if (write != buffer) *write++ = ' '; } else *write++ = ch; } // remove trailing space if (write != buffer && PUGI_IMPL_IS_CHARTYPE(write[-1], ct_space)) write--; // zero-terminate *write = 0; return write; } PUGI_IMPL_FN char_t* translate(char_t* buffer, const char_t* from, const char_t* to, size_t to_length) { char_t* write = buffer; while (*buffer) { PUGI_IMPL_DMC_VOLATILE char_t ch = *buffer++; const char_t* pos = find_char(from, ch); if (!pos) *write++ = ch; // do not process else if (static_cast<size_t>(pos - from) < to_length) *write++ = to[pos - from]; // replace } // zero-terminate *write = 0; return write; } PUGI_IMPL_FN unsigned char* translate_table_generate(xpath_allocator* alloc, const char_t* from, const char_t* to) { unsigned char table[128] = {0}; while (*from) { unsigned int fc = static_cast<unsigned int>(*from); unsigned int tc = static_cast<unsigned int>(*to); if (fc >= 128 || tc >= 128) return 0; // code=128 means "skip character" if (!table[fc]) table[fc] = static_cast<unsigned char>(tc ? tc : 128); from++; if (tc) to++; } for (int i = 0; i < 128; ++i) if (!table[i]) table[i] = static_cast<unsigned char>(i); void* result = alloc->allocate(sizeof(table)); if (!result) return 0; memcpy(result, table, sizeof(table)); return static_cast<unsigned char*>(result); } PUGI_IMPL_FN char_t* translate_table(char_t* buffer, const unsigned char* table) { char_t* write = buffer; while (*buffer) { char_t ch = *buffer++; unsigned int index = static_cast<unsigned int>(ch); if (index < 128) { unsigned char code = table[index]; // code=128 means "skip character" (table size is 128 so 128 can be a special value) // this code skips these characters without extra branches *write = static_cast<char_t>(code); write += 1 - (code >> 7); } else { *write++ = ch; } } // zero-terminate *write = 0; return write; } inline bool is_xpath_attribute(const char_t* name) { return !(starts_with(name, PUGIXML_TEXT("xmlns")) && (name[5] == 0 || name[5] == ':')); } struct xpath_variable_boolean: xpath_variable { xpath_variable_boolean(): xpath_variable(xpath_type_boolean), value(false) { } bool value; char_t name[1]; }; struct xpath_variable_number: xpath_variable { xpath_variable_number(): xpath_variable(xpath_type_number), value(0) { } double value; char_t name[1]; }; struct xpath_variable_string: xpath_variable { xpath_variable_string(): xpath_variable(xpath_type_string), value(0) { } ~xpath_variable_string() { if (value) xml_memory::deallocate(value); } char_t* value; char_t name[1]; }; struct xpath_variable_node_set: xpath_variable { xpath_variable_node_set(): xpath_variable(xpath_type_node_set) { } xpath_node_set value; char_t name[1]; }; static const xpath_node_set dummy_node_set; PUGI_IMPL_FN PUGI_IMPL_UNSIGNED_OVERFLOW unsigned int hash_string(const char_t* str) { // Jenkins one-at-a-time hash (http://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time) unsigned int result = 0; while (*str) { result += static_cast<unsigned int>(*str++); result += result << 10; result ^= result >> 6; } result += result << 3; result ^= result >> 11; result += result << 15; return result; } template <typename T> PUGI_IMPL_FN T* new_xpath_variable(const char_t* name) { size_t length = strlength(name); if (length == 0) return 0; // empty variable names are invalid // $$ we can't use offsetof(T, name) because T is non-POD, so we just allocate additional length characters void* memory = xml_memory::allocate(sizeof(T) + length * sizeof(char_t)); if (!memory) return 0; T* result = new (memory) T(); memcpy(result->name, name, (length + 1) * sizeof(char_t)); return result; } PUGI_IMPL_FN xpath_variable* new_xpath_variable(xpath_value_type type, const char_t* name) { switch (type) { case xpath_type_node_set: return new_xpath_variable<xpath_variable_node_set>(name); case xpath_type_number: return new_xpath_variable<xpath_variable_number>(name); case xpath_type_string: return new_xpath_variable<xpath_variable_string>(name); case xpath_type_boolean: return new_xpath_variable<xpath_variable_boolean>(name); default: return 0; } } template <typename T> PUGI_IMPL_FN void delete_xpath_variable(T* var) { var->~T(); xml_memory::deallocate(var); } PUGI_IMPL_FN void delete_xpath_variable(xpath_value_type type, xpath_variable* var) { switch (type) { case xpath_type_node_set: delete_xpath_variable(static_cast<xpath_variable_node_set*>(var)); break; case xpath_type_number: delete_xpath_variable(static_cast<xpath_variable_number*>(var)); break; case xpath_type_string: delete_xpath_variable(static_cast<xpath_variable_string*>(var)); break; case xpath_type_boolean: delete_xpath_variable(static_cast<xpath_variable_boolean*>(var)); break; default: assert(false && "Invalid variable type"); // unreachable } } PUGI_IMPL_FN bool copy_xpath_variable(xpath_variable* lhs, const xpath_variable* rhs) { switch (rhs->type()) { case xpath_type_node_set: return lhs->set(static_cast<const xpath_variable_node_set*>(rhs)->value); case xpath_type_number: return lhs->set(static_cast<const xpath_variable_number*>(rhs)->value); case xpath_type_string: return lhs->set(static_cast<const xpath_variable_string*>(rhs)->value); case xpath_type_boolean: return lhs->set(static_cast<const xpath_variable_boolean*>(rhs)->value); default: assert(false && "Invalid variable type"); // unreachable return false; } } PUGI_IMPL_FN bool get_variable_scratch(char_t (&buffer)[32], xpath_variable_set* set, const char_t* begin, const char_t* end, xpath_variable** out_result) { size_t length = static_cast<size_t>(end - begin); char_t* scratch = buffer; if (length >= sizeof(buffer) / sizeof(buffer[0])) { // need to make dummy on-heap copy scratch = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t))); if (!scratch) return false; } // copy string to zero-terminated buffer and perform lookup memcpy(scratch, begin, length * sizeof(char_t)); scratch[length] = 0; *out_result = set->get(scratch); // free dummy buffer if (scratch != buffer) xml_memory::deallocate(scratch); return true; } PUGI_IMPL_NS_END // Internal node set class PUGI_IMPL_NS_BEGIN PUGI_IMPL_FN xpath_node_set::type_t xpath_get_order(const xpath_node* begin, const xpath_node* end) { if (end - begin < 2) return xpath_node_set::type_sorted; document_order_comparator cmp; bool first = cmp(begin[0], begin[1]); for (const xpath_node* it = begin + 1; it + 1 < end; ++it) if (cmp(it[0], it[1]) != first) return xpath_node_set::type_unsorted; return first ? xpath_node_set::type_sorted : xpath_node_set::type_sorted_reverse; } PUGI_IMPL_FN xpath_node_set::type_t xpath_sort(xpath_node* begin, xpath_node* end, xpath_node_set::type_t type, bool rev) { xpath_node_set::type_t order = rev ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted; if (type == xpath_node_set::type_unsorted) { xpath_node_set::type_t sorted = xpath_get_order(begin, end); if (sorted == xpath_node_set::type_unsorted) { sort(begin, end, document_order_comparator()); type = xpath_node_set::type_sorted; } else type = sorted; } if (type != order) reverse(begin, end); return order; } PUGI_IMPL_FN xpath_node xpath_first(const xpath_node* begin, const xpath_node* end, xpath_node_set::type_t type) { if (begin == end) return xpath_node(); switch (type) { case xpath_node_set::type_sorted: return *begin; case xpath_node_set::type_sorted_reverse: return *(end - 1); case xpath_node_set::type_unsorted: return *min_element(begin, end, document_order_comparator()); default: assert(false && "Invalid node set type"); // unreachable return xpath_node(); } } class xpath_node_set_raw { xpath_node_set::type_t _type; xpath_node* _begin; xpath_node* _end; xpath_node* _eos; public: xpath_node_set_raw(): _type(xpath_node_set::type_unsorted), _begin(0), _end(0), _eos(0) { } xpath_node* begin() const { return _begin; } xpath_node* end() const { return _end; } bool empty() const { return _begin == _end; } size_t size() const { return static_cast<size_t>(_end - _begin); } xpath_node first() const { return xpath_first(_begin, _end, _type); } void push_back_grow(const xpath_node& node, xpath_allocator* alloc); void push_back(const xpath_node& node, xpath_allocator* alloc) { if (_end != _eos) *_end++ = node; else push_back_grow(node, alloc); } void append(const xpath_node* begin_, const xpath_node* end_, xpath_allocator* alloc) { if (begin_ == end_) return; size_t size_ = static_cast<size_t>(_end - _begin); size_t capacity = static_cast<size_t>(_eos - _begin); size_t count = static_cast<size_t>(end_ - begin_); if (size_ + count > capacity) { // reallocate the old array or allocate a new one xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), (size_ + count) * sizeof(xpath_node))); if (!data) return; // finalize _begin = data; _end = data + size_; _eos = data + size_ + count; } memcpy(_end, begin_, count * sizeof(xpath_node)); _end += count; } void sort_do() { _type = xpath_sort(_begin, _end, _type, false); } void truncate(xpath_node* pos) { assert(_begin <= pos && pos <= _end); _end = pos; } void remove_duplicates(xpath_allocator* alloc) { if (_type == xpath_node_set::type_unsorted && _end - _begin > 2) { xpath_allocator_capture cr(alloc); size_t size_ = static_cast<size_t>(_end - _begin); size_t hash_size = 1; while (hash_size < size_ + size_ / 2) hash_size *= 2; const void** hash_data = static_cast<const void**>(alloc->allocate(hash_size * sizeof(void**))); if (!hash_data) return; memset(hash_data, 0, hash_size * sizeof(const void**)); xpath_node* write = _begin; for (xpath_node* it = _begin; it != _end; ++it) { const void* attr = it->attribute().internal_object(); const void* node = it->node().internal_object(); const void* key = attr ? attr : node; if (key && hash_insert(hash_data, hash_size, key)) { *write++ = *it; } } _end = write; } else { _end = unique(_begin, _end); } } xpath_node_set::type_t type() const { return _type; } void set_type(xpath_node_set::type_t value) { _type = value; } }; PUGI_IMPL_FN_NO_INLINE void xpath_node_set_raw::push_back_grow(const xpath_node& node, xpath_allocator* alloc) { size_t capacity = static_cast<size_t>(_eos - _begin); // get new capacity (1.5x rule) size_t new_capacity = capacity + capacity / 2 + 1; // reallocate the old array or allocate a new one xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), new_capacity * sizeof(xpath_node))); if (!data) return; // finalize _begin = data; _end = data + capacity; _eos = data + new_capacity; // push *_end++ = node; } PUGI_IMPL_NS_END PUGI_IMPL_NS_BEGIN struct xpath_context { xpath_node n; size_t position, size; xpath_context(const xpath_node& n_, size_t position_, size_t size_): n(n_), position(position_), size(size_) { } }; enum lexeme_t { lex_none = 0, lex_equal, lex_not_equal, lex_less, lex_greater, lex_less_or_equal, lex_greater_or_equal, lex_plus, lex_minus, lex_multiply, lex_union, lex_var_ref, lex_open_brace, lex_close_brace, lex_quoted_string, lex_number, lex_slash, lex_double_slash, lex_open_square_brace, lex_close_square_brace, lex_string, lex_comma, lex_axis_attribute, lex_dot, lex_double_dot, lex_double_colon, lex_eof }; struct xpath_lexer_string { const char_t* begin; const char_t* end; xpath_lexer_string(): begin(0), end(0) { } bool operator==(const char_t* other) const { size_t length = static_cast<size_t>(end - begin); return strequalrange(other, begin, length); } }; class xpath_lexer { const char_t* _cur; const char_t* _cur_lexeme_pos; xpath_lexer_string _cur_lexeme_contents; lexeme_t _cur_lexeme; public: explicit xpath_lexer(const char_t* query): _cur(query) { next(); } const char_t* state() const { return _cur; } void next() { const char_t* cur = _cur; while (PUGI_IMPL_IS_CHARTYPE(*cur, ct_space)) ++cur; // save lexeme position for error reporting _cur_lexeme_pos = cur; switch (*cur) { case 0: _cur_lexeme = lex_eof; break; case '>': if (*(cur+1) == '=') { cur += 2; _cur_lexeme = lex_greater_or_equal; } else { cur += 1; _cur_lexeme = lex_greater; } break; case '<': if (*(cur+1) == '=') { cur += 2; _cur_lexeme = lex_less_or_equal; } else { cur += 1; _cur_lexeme = lex_less; } break; case '!': if (*(cur+1) == '=') { cur += 2; _cur_lexeme = lex_not_equal; } else { _cur_lexeme = lex_none; } break; case '=': cur += 1; _cur_lexeme = lex_equal; break; case '+': cur += 1; _cur_lexeme = lex_plus; break; case '-': cur += 1; _cur_lexeme = lex_minus; break; case '*': cur += 1; _cur_lexeme = lex_multiply; break; case '|': cur += 1; _cur_lexeme = lex_union; break; case '$': cur += 1; if (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_start_symbol)) { _cur_lexeme_contents.begin = cur; while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_symbol)) cur++; if (cur[0] == ':' && PUGI_IMPL_IS_CHARTYPEX(cur[1], ctx_symbol)) // qname { cur++; // : while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_symbol)) cur++; } _cur_lexeme_contents.end = cur; _cur_lexeme = lex_var_ref; } else { _cur_lexeme = lex_none; } break; case '(': cur += 1; _cur_lexeme = lex_open_brace; break; case ')': cur += 1; _cur_lexeme = lex_close_brace; break; case '[': cur += 1; _cur_lexeme = lex_open_square_brace; break; case ']': cur += 1; _cur_lexeme = lex_close_square_brace; break; case ',': cur += 1; _cur_lexeme = lex_comma; break; case '/': if (*(cur+1) == '/') { cur += 2; _cur_lexeme = lex_double_slash; } else { cur += 1; _cur_lexeme = lex_slash; } break; case '.': if (*(cur+1) == '.') { cur += 2; _cur_lexeme = lex_double_dot; } else if (PUGI_IMPL_IS_CHARTYPEX(*(cur+1), ctx_digit)) { _cur_lexeme_contents.begin = cur; // . ++cur; while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_digit)) cur++; _cur_lexeme_contents.end = cur; _cur_lexeme = lex_number; } else { cur += 1; _cur_lexeme = lex_dot; } break; case '@': cur += 1; _cur_lexeme = lex_axis_attribute; break; case '"': case '\'': { char_t terminator = *cur; ++cur; _cur_lexeme_contents.begin = cur; while (*cur && *cur != terminator) cur++; _cur_lexeme_contents.end = cur; if (!*cur) _cur_lexeme = lex_none; else { cur += 1; _cur_lexeme = lex_quoted_string; } break; } case ':': if (*(cur+1) == ':') { cur += 2; _cur_lexeme = lex_double_colon; } else { _cur_lexeme = lex_none; } break; default: if (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_digit)) { _cur_lexeme_contents.begin = cur; while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_digit)) cur++; if (*cur == '.') { cur++; while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_digit)) cur++; } _cur_lexeme_contents.end = cur; _cur_lexeme = lex_number; } else if (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_start_symbol)) { _cur_lexeme_contents.begin = cur; while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_symbol)) cur++; if (cur[0] == ':') { if (cur[1] == '*') // namespace test ncname:* { cur += 2; // :* } else if (PUGI_IMPL_IS_CHARTYPEX(cur[1], ctx_symbol)) // namespace test qname { cur++; // : while (PUGI_IMPL_IS_CHARTYPEX(*cur, ctx_symbol)) cur++; } } _cur_lexeme_contents.end = cur; _cur_lexeme = lex_string; } else { _cur_lexeme = lex_none; } } _cur = cur; } lexeme_t current() const { return _cur_lexeme; } const char_t* current_pos() const { return _cur_lexeme_pos; } const xpath_lexer_string& contents() const { assert(_cur_lexeme == lex_var_ref || _cur_lexeme == lex_number || _cur_lexeme == lex_string || _cur_lexeme == lex_quoted_string); return _cur_lexeme_contents; } }; enum ast_type_t { ast_unknown, ast_op_or, // left or right ast_op_and, // left and right ast_op_equal, // left = right ast_op_not_equal, // left != right ast_op_less, // left < right ast_op_greater, // left > right ast_op_less_or_equal, // left <= right ast_op_greater_or_equal, // left >= right ast_op_add, // left + right ast_op_subtract, // left - right ast_op_multiply, // left * right ast_op_divide, // left / right ast_op_mod, // left % right ast_op_negate, // left - right ast_op_union, // left | right ast_predicate, // apply predicate to set; next points to next predicate ast_filter, // select * from left where right ast_string_constant, // string constant ast_number_constant, // number constant ast_variable, // variable ast_func_last, // last() ast_func_position, // position() ast_func_count, // count(left) ast_func_id, // id(left) ast_func_local_name_0, // local-name() ast_func_local_name_1, // local-name(left) ast_func_namespace_uri_0, // namespace-uri() ast_func_namespace_uri_1, // namespace-uri(left) ast_func_name_0, // name() ast_func_name_1, // name(left) ast_func_string_0, // string() ast_func_string_1, // string(left) ast_func_concat, // concat(left, right, siblings) ast_func_starts_with, // starts_with(left, right) ast_func_contains, // contains(left, right) ast_func_substring_before, // substring-before(left, right) ast_func_substring_after, // substring-after(left, right) ast_func_substring_2, // substring(left, right) ast_func_substring_3, // substring(left, right, third) ast_func_string_length_0, // string-length() ast_func_string_length_1, // string-length(left) ast_func_normalize_space_0, // normalize-space() ast_func_normalize_space_1, // normalize-space(left) ast_func_translate, // translate(left, right, third) ast_func_boolean, // boolean(left) ast_func_not, // not(left) ast_func_true, // true() ast_func_false, // false() ast_func_lang, // lang(left) ast_func_number_0, // number() ast_func_number_1, // number(left) ast_func_sum, // sum(left) ast_func_floor, // floor(left) ast_func_ceiling, // ceiling(left) ast_func_round, // round(left) ast_step, // process set left with step ast_step_root, // select root node ast_opt_translate_table, // translate(left, right, third) where right/third are constants ast_opt_compare_attribute // @name = 'string' }; enum axis_t { axis_ancestor, axis_ancestor_or_self, axis_attribute, axis_child, axis_descendant, axis_descendant_or_self, axis_following, axis_following_sibling, axis_namespace, axis_parent, axis_preceding, axis_preceding_sibling, axis_self }; enum nodetest_t { nodetest_none, nodetest_name, nodetest_type_node, nodetest_type_comment, nodetest_type_pi, nodetest_type_text, nodetest_pi, nodetest_all, nodetest_all_in_namespace }; enum predicate_t { predicate_default, predicate_posinv, predicate_constant, predicate_constant_one }; enum nodeset_eval_t { nodeset_eval_all, nodeset_eval_any, nodeset_eval_first }; template <axis_t N> struct axis_to_type { static const axis_t axis; }; template <axis_t N> const axis_t axis_to_type<N>::axis = N; class xpath_ast_node { private: // node type char _type; char _rettype; // for ast_step char _axis; // for ast_step/ast_predicate/ast_filter char _test; // tree node structure xpath_ast_node* _left; xpath_ast_node* _right; xpath_ast_node* _next; union { // value for ast_string_constant const char_t* string; // value for ast_number_constant double number; // variable for ast_variable xpath_variable* variable; // node test for ast_step (node name/namespace/node type/pi target) const char_t* nodetest; // table for ast_opt_translate_table const unsigned char* table; } _data; xpath_ast_node(const xpath_ast_node&); xpath_ast_node& operator=(const xpath_ast_node&); template <class Comp> static bool compare_eq(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp) { xpath_value_type lt = lhs->rettype(), rt = rhs->rettype(); if (lt != xpath_type_node_set && rt != xpath_type_node_set) { if (lt == xpath_type_boolean || rt == xpath_type_boolean) return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack)); else if (lt == xpath_type_number || rt == xpath_type_number) return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack)); else if (lt == xpath_type_string || rt == xpath_type_string) { xpath_allocator_capture cr(stack.result); xpath_string ls = lhs->eval_string(c, stack); xpath_string rs = rhs->eval_string(c, stack); return comp(ls, rs); } } else if (lt == xpath_type_node_set && rt == xpath_type_node_set) { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ls = lhs->eval_node_set(c, stack, nodeset_eval_all); xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all); for (const xpath_node* li = ls.begin(); li != ls.end(); ++li) for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(string_value(*li, stack.result), string_value(*ri, stack.result))) return true; } return false; } else { if (lt == xpath_type_node_set) { swap(lhs, rhs); swap(lt, rt); } if (lt == xpath_type_boolean) return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack)); else if (lt == xpath_type_number) { xpath_allocator_capture cr(stack.result); double l = lhs->eval_number(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str()))) return true; } return false; } else if (lt == xpath_type_string) { xpath_allocator_capture cr(stack.result); xpath_string l = lhs->eval_string(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(l, string_value(*ri, stack.result))) return true; } return false; } } assert(false && "Wrong types"); // unreachable return false; } static bool eval_once(xpath_node_set::type_t type, nodeset_eval_t eval) { return type == xpath_node_set::type_sorted ? eval != nodeset_eval_all : eval == nodeset_eval_any; } template <class Comp> static bool compare_rel(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp) { xpath_value_type lt = lhs->rettype(), rt = rhs->rettype(); if (lt != xpath_type_node_set && rt != xpath_type_node_set) return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack)); else if (lt == xpath_type_node_set && rt == xpath_type_node_set) { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ls = lhs->eval_node_set(c, stack, nodeset_eval_all); xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all); for (const xpath_node* li = ls.begin(); li != ls.end(); ++li) { xpath_allocator_capture cri(stack.result); double l = convert_string_to_number(string_value(*li, stack.result).c_str()); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture crii(stack.result); if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str()))) return true; } } return false; } else if (lt != xpath_type_node_set && rt == xpath_type_node_set) { xpath_allocator_capture cr(stack.result); double l = lhs->eval_number(c, stack); xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all); for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri) { xpath_allocator_capture cri(stack.result); if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str()))) return true; } return false; } else if (lt == xpath_type_node_set && rt != xpath_type_node_set) { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ls = lhs->eval_node_set(c, stack, nodeset_eval_all); double r = rhs->eval_number(c, stack); for (const xpath_node* li = ls.begin(); li != ls.end(); ++li) { xpath_allocator_capture cri(stack.result); if (comp(convert_string_to_number(string_value(*li, stack.result).c_str()), r)) return true; } return false; } else { assert(false && "Wrong types"); // unreachable return false; } } static void apply_predicate_boolean(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack, bool once) { assert(ns.size() >= first); assert(expr->rettype() != xpath_type_number); size_t i = 1; size_t size = ns.size() - first; xpath_node* last = ns.begin() + first; // remove_if... or well, sort of for (xpath_node* it = last; it != ns.end(); ++it, ++i) { xpath_context c(*it, i, size); if (expr->eval_boolean(c, stack)) { *last++ = *it; if (once) break; } } ns.truncate(last); } static void apply_predicate_number(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack, bool once) { assert(ns.size() >= first); assert(expr->rettype() == xpath_type_number); size_t i = 1; size_t size = ns.size() - first; xpath_node* last = ns.begin() + first; // remove_if... or well, sort of for (xpath_node* it = last; it != ns.end(); ++it, ++i) { xpath_context c(*it, i, size); if (expr->eval_number(c, stack) == static_cast<double>(i)) { *last++ = *it; if (once) break; } } ns.truncate(last); } static void apply_predicate_number_const(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack) { assert(ns.size() >= first); assert(expr->rettype() == xpath_type_number); size_t size = ns.size() - first; xpath_node* last = ns.begin() + first; xpath_node cn; xpath_context c(cn, 1, size); double er = expr->eval_number(c, stack); if (er >= 1.0 && er <= static_cast<double>(size)) { size_t eri = static_cast<size_t>(er); if (er == static_cast<double>(eri)) { xpath_node r = last[eri - 1]; *last++ = r; } } ns.truncate(last); } void apply_predicate(xpath_node_set_raw& ns, size_t first, const xpath_stack& stack, bool once) { if (ns.size() == first) return; assert(_type == ast_filter || _type == ast_predicate); if (_test == predicate_constant || _test == predicate_constant_one) apply_predicate_number_const(ns, first, _right, stack); else if (_right->rettype() == xpath_type_number) apply_predicate_number(ns, first, _right, stack, once); else apply_predicate_boolean(ns, first, _right, stack, once); } void apply_predicates(xpath_node_set_raw& ns, size_t first, const xpath_stack& stack, nodeset_eval_t eval) { if (ns.size() == first) return; bool last_once = eval_once(ns.type(), eval); for (xpath_ast_node* pred = _right; pred; pred = pred->_next) pred->apply_predicate(ns, first, stack, !pred->_next && last_once); } bool step_push(xpath_node_set_raw& ns, xml_attribute_struct* a, xml_node_struct* parent, xpath_allocator* alloc) { assert(a); const char_t* name = a->name ? a->name + 0 : PUGIXML_TEXT(""); switch (_test) { case nodetest_name: if (strequal(name, _data.nodetest) && is_xpath_attribute(name)) { ns.push_back(xpath_node(xml_attribute(a), xml_node(parent)), alloc); return true; } break; case nodetest_type_node: case nodetest_all: if (is_xpath_attribute(name)) { ns.push_back(xpath_node(xml_attribute(a), xml_node(parent)), alloc); return true; } break; case nodetest_all_in_namespace: if (starts_with(name, _data.nodetest) && is_xpath_attribute(name)) { ns.push_back(xpath_node(xml_attribute(a), xml_node(parent)), alloc); return true; } break; default: ; } return false; } bool step_push(xpath_node_set_raw& ns, xml_node_struct* n, xpath_allocator* alloc) { assert(n); xml_node_type type = PUGI_IMPL_NODETYPE(n); switch (_test) { case nodetest_name: if (type == node_element && n->name && strequal(n->name, _data.nodetest)) { ns.push_back(xml_node(n), alloc); return true; } break; case nodetest_type_node: ns.push_back(xml_node(n), alloc); return true; case nodetest_type_comment: if (type == node_comment) { ns.push_back(xml_node(n), alloc); return true; } break; case nodetest_type_text: if (type == node_pcdata || type == node_cdata) { ns.push_back(xml_node(n), alloc); return true; } break; case nodetest_type_pi: if (type == node_pi) { ns.push_back(xml_node(n), alloc); return true; } break; case nodetest_pi: if (type == node_pi && n->name && strequal(n->name, _data.nodetest)) { ns.push_back(xml_node(n), alloc); return true; } break; case nodetest_all: if (type == node_element) { ns.push_back(xml_node(n), alloc); return true; } break; case nodetest_all_in_namespace: if (type == node_element && n->name && starts_with(n->name, _data.nodetest)) { ns.push_back(xml_node(n), alloc); return true; } break; default: assert(false && "Unknown axis"); // unreachable } return false; } template <class T> void step_fill(xpath_node_set_raw& ns, xml_node_struct* n, xpath_allocator* alloc, bool once, T) { const axis_t axis = T::axis; switch (axis) { case axis_attribute: { for (xml_attribute_struct* a = n->first_attribute; a; a = a->next_attribute) if (step_push(ns, a, n, alloc) & once) return; break; } case axis_child: { for (xml_node_struct* c = n->first_child; c; c = c->next_sibling) if (step_push(ns, c, alloc) & once) return; break; } case axis_descendant: case axis_descendant_or_self: { if (axis == axis_descendant_or_self) if (step_push(ns, n, alloc) & once) return; xml_node_struct* cur = n->first_child; while (cur) { if (step_push(ns, cur, alloc) & once) return; if (cur->first_child) cur = cur->first_child; else { while (!cur->next_sibling) { cur = cur->parent; if (cur == n) return; } cur = cur->next_sibling; } } break; } case axis_following_sibling: { for (xml_node_struct* c = n->next_sibling; c; c = c->next_sibling) if (step_push(ns, c, alloc) & once) return; break; } case axis_preceding_sibling: { for (xml_node_struct* c = n->prev_sibling_c; c->next_sibling; c = c->prev_sibling_c) if (step_push(ns, c, alloc) & once) return; break; } case axis_following: { xml_node_struct* cur = n; // exit from this node so that we don't include descendants while (!cur->next_sibling) { cur = cur->parent; if (!cur) return; } cur = cur->next_sibling; while (cur) { if (step_push(ns, cur, alloc) & once) return; if (cur->first_child) cur = cur->first_child; else { while (!cur->next_sibling) { cur = cur->parent; if (!cur) return; } cur = cur->next_sibling; } } break; } case axis_preceding: { xml_node_struct* cur = n; // exit from this node so that we don't include descendants while (!cur->prev_sibling_c->next_sibling) { cur = cur->parent; if (!cur) return; } cur = cur->prev_sibling_c; while (cur) { if (cur->first_child) cur = cur->first_child->prev_sibling_c; else { // leaf node, can't be ancestor if (step_push(ns, cur, alloc) & once) return; while (!cur->prev_sibling_c->next_sibling) { cur = cur->parent; if (!cur) return; if (!node_is_ancestor(cur, n)) if (step_push(ns, cur, alloc) & once) return; } cur = cur->prev_sibling_c; } } break; } case axis_ancestor: case axis_ancestor_or_self: { if (axis == axis_ancestor_or_self) if (step_push(ns, n, alloc) & once) return; xml_node_struct* cur = n->parent; while (cur) { if (step_push(ns, cur, alloc) & once) return; cur = cur->parent; } break; } case axis_self: { step_push(ns, n, alloc); break; } case axis_parent: { if (n->parent) step_push(ns, n->parent, alloc); break; } default: assert(false && "Unimplemented axis"); // unreachable } } template <class T> void step_fill(xpath_node_set_raw& ns, xml_attribute_struct* a, xml_node_struct* p, xpath_allocator* alloc, bool once, T v) { const axis_t axis = T::axis; switch (axis) { case axis_ancestor: case axis_ancestor_or_self: { if (axis == axis_ancestor_or_self && _test == nodetest_type_node) // reject attributes based on principal node type test if (step_push(ns, a, p, alloc) & once) return; xml_node_struct* cur = p; while (cur) { if (step_push(ns, cur, alloc) & once) return; cur = cur->parent; } break; } case axis_descendant_or_self: case axis_self: { if (_test == nodetest_type_node) // reject attributes based on principal node type test step_push(ns, a, p, alloc); break; } case axis_following: { xml_node_struct* cur = p; while (cur) { if (cur->first_child) cur = cur->first_child; else { while (!cur->next_sibling) { cur = cur->parent; if (!cur) return; } cur = cur->next_sibling; } if (step_push(ns, cur, alloc) & once) return; } break; } case axis_parent: { step_push(ns, p, alloc); break; } case axis_preceding: { // preceding:: axis does not include attribute nodes and attribute ancestors (they are the same as parent's ancestors), so we can reuse node preceding step_fill(ns, p, alloc, once, v); break; } default: assert(false && "Unimplemented axis"); // unreachable } } template <class T> void step_fill(xpath_node_set_raw& ns, const xpath_node& xn, xpath_allocator* alloc, bool once, T v) { const axis_t axis = T::axis; const bool axis_has_attributes = (axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_descendant_or_self || axis == axis_following || axis == axis_parent || axis == axis_preceding || axis == axis_self); if (xn.node()) step_fill(ns, xn.node().internal_object(), alloc, once, v); else if (axis_has_attributes && xn.attribute() && xn.parent()) step_fill(ns, xn.attribute().internal_object(), xn.parent().internal_object(), alloc, once, v); } template <class T> xpath_node_set_raw step_do(const xpath_context& c, const xpath_stack& stack, nodeset_eval_t eval, T v) { const axis_t axis = T::axis; const bool axis_reverse = (axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_preceding || axis == axis_preceding_sibling); const xpath_node_set::type_t axis_type = axis_reverse ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted; bool once = (axis == axis_attribute && _test == nodetest_name) || (!_right && eval_once(axis_type, eval)) || // coverity[mixed_enums] (_right && !_right->_next && _right->_test == predicate_constant_one); xpath_node_set_raw ns; ns.set_type(axis_type); if (_left) { xpath_node_set_raw s = _left->eval_node_set(c, stack, nodeset_eval_all); // self axis preserves the original order if (axis == axis_self) ns.set_type(s.type()); for (const xpath_node* it = s.begin(); it != s.end(); ++it) { size_t size = ns.size(); // in general, all axes generate elements in a particular order, but there is no order guarantee if axis is applied to two nodes if (axis != axis_self && size != 0) ns.set_type(xpath_node_set::type_unsorted); step_fill(ns, *it, stack.result, once, v); if (_right) apply_predicates(ns, size, stack, eval); } } else { step_fill(ns, c.n, stack.result, once, v); if (_right) apply_predicates(ns, 0, stack, eval); } // child, attribute and self axes always generate unique set of nodes // for other axis, if the set stayed sorted, it stayed unique because the traversal algorithms do not visit the same node twice if (axis != axis_child && axis != axis_attribute && axis != axis_self && ns.type() == xpath_node_set::type_unsorted) ns.remove_duplicates(stack.temp); return ns; } public: xpath_ast_node(ast_type_t type, xpath_value_type rettype_, const char_t* value): _type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(0), _right(0), _next(0) { assert(type == ast_string_constant); _data.string = value; } xpath_ast_node(ast_type_t type, xpath_value_type rettype_, double value): _type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(0), _right(0), _next(0) { assert(type == ast_number_constant); _data.number = value; } xpath_ast_node(ast_type_t type, xpath_value_type rettype_, xpath_variable* value): _type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(0), _right(0), _next(0) { assert(type == ast_variable); _data.variable = value; } xpath_ast_node(ast_type_t type, xpath_value_type rettype_, xpath_ast_node* left = 0, xpath_ast_node* right = 0): _type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(left), _right(right), _next(0) { } xpath_ast_node(ast_type_t type, xpath_ast_node* left, axis_t axis, nodetest_t test, const char_t* contents): _type(static_cast<char>(type)), _rettype(xpath_type_node_set), _axis(static_cast<char>(axis)), _test(static_cast<char>(test)), _left(left), _right(0), _next(0) { assert(type == ast_step); _data.nodetest = contents; } xpath_ast_node(ast_type_t type, xpath_ast_node* left, xpath_ast_node* right, predicate_t test): _type(static_cast<char>(type)), _rettype(xpath_type_node_set), _axis(0), _test(static_cast<char>(test)), _left(left), _right(right), _next(0) { assert(type == ast_filter || type == ast_predicate); } void set_next(xpath_ast_node* value) { _next = value; } void set_right(xpath_ast_node* value) { _right = value; } bool eval_boolean(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_op_or: return _left->eval_boolean(c, stack) || _right->eval_boolean(c, stack); case ast_op_and: return _left->eval_boolean(c, stack) && _right->eval_boolean(c, stack); case ast_op_equal: return compare_eq(_left, _right, c, stack, equal_to()); case ast_op_not_equal: return compare_eq(_left, _right, c, stack, not_equal_to()); case ast_op_less: return compare_rel(_left, _right, c, stack, less()); case ast_op_greater: return compare_rel(_right, _left, c, stack, less()); case ast_op_less_or_equal: return compare_rel(_left, _right, c, stack, less_equal()); case ast_op_greater_or_equal: return compare_rel(_right, _left, c, stack, less_equal()); case ast_func_starts_with: { xpath_allocator_capture cr(stack.result); xpath_string lr = _left->eval_string(c, stack); xpath_string rr = _right->eval_string(c, stack); return starts_with(lr.c_str(), rr.c_str()); } case ast_func_contains: { xpath_allocator_capture cr(stack.result); xpath_string lr = _left->eval_string(c, stack); xpath_string rr = _right->eval_string(c, stack); return find_substring(lr.c_str(), rr.c_str()) != 0; } case ast_func_boolean: return _left->eval_boolean(c, stack); case ast_func_not: return !_left->eval_boolean(c, stack); case ast_func_true: return true; case ast_func_false: return false; case ast_func_lang: { if (c.n.attribute()) return false; xpath_allocator_capture cr(stack.result); xpath_string lang = _left->eval_string(c, stack); for (xml_node n = c.n.node(); n; n = n.parent()) { xml_attribute a = n.attribute(PUGIXML_TEXT("xml:lang")); if (a) { const char_t* value = a.value(); // strnicmp / strncasecmp is not portable for (const char_t* lit = lang.c_str(); *lit; ++lit) { if (tolower_ascii(*lit) != tolower_ascii(*value)) return false; ++value; } return *value == 0 || *value == '-'; } } return false; } case ast_opt_compare_attribute: { const char_t* value = (_right->_type == ast_string_constant) ? _right->_data.string : _right->_data.variable->get_string(); xml_attribute attr = c.n.node().attribute(_left->_data.nodetest); return attr && strequal(attr.value(), value) && is_xpath_attribute(attr.name()); } case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_boolean) return _data.variable->get_boolean(); // variable needs to be converted to the correct type, this is handled by the fallthrough block below break; } default: ; } // none of the ast types that return the value directly matched, we need to perform type conversion switch (_rettype) { case xpath_type_number: return convert_number_to_boolean(eval_number(c, stack)); case xpath_type_string: { xpath_allocator_capture cr(stack.result); return !eval_string(c, stack).empty(); } case xpath_type_node_set: { xpath_allocator_capture cr(stack.result); return !eval_node_set(c, stack, nodeset_eval_any).empty(); } default: assert(false && "Wrong expression for return type boolean"); // unreachable return false; } } double eval_number(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_op_add: return _left->eval_number(c, stack) + _right->eval_number(c, stack); case ast_op_subtract: return _left->eval_number(c, stack) - _right->eval_number(c, stack); case ast_op_multiply: return _left->eval_number(c, stack) * _right->eval_number(c, stack); case ast_op_divide: return _left->eval_number(c, stack) / _right->eval_number(c, stack); case ast_op_mod: return fmod(_left->eval_number(c, stack), _right->eval_number(c, stack)); case ast_op_negate: return -_left->eval_number(c, stack); case ast_number_constant: return _data.number; case ast_func_last: return static_cast<double>(c.size); case ast_func_position: return static_cast<double>(c.position); case ast_func_count: { xpath_allocator_capture cr(stack.result); return static_cast<double>(_left->eval_node_set(c, stack, nodeset_eval_all).size()); } case ast_func_string_length_0: { xpath_allocator_capture cr(stack.result); return static_cast<double>(string_value(c.n, stack.result).length()); } case ast_func_string_length_1: { xpath_allocator_capture cr(stack.result); return static_cast<double>(_left->eval_string(c, stack).length()); } case ast_func_number_0: { xpath_allocator_capture cr(stack.result); return convert_string_to_number(string_value(c.n, stack.result).c_str()); } case ast_func_number_1: return _left->eval_number(c, stack); case ast_func_sum: { xpath_allocator_capture cr(stack.result); double r = 0; xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_all); for (const xpath_node* it = ns.begin(); it != ns.end(); ++it) { xpath_allocator_capture cri(stack.result); r += convert_string_to_number(string_value(*it, stack.result).c_str()); } return r; } case ast_func_floor: { double r = _left->eval_number(c, stack); return r == r ? floor(r) : r; } case ast_func_ceiling: { double r = _left->eval_number(c, stack); return r == r ? ceil(r) : r; } case ast_func_round: return round_nearest_nzero(_left->eval_number(c, stack)); case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_number) return _data.variable->get_number(); // variable needs to be converted to the correct type, this is handled by the fallthrough block below break; } default: ; } // none of the ast types that return the value directly matched, we need to perform type conversion switch (_rettype) { case xpath_type_boolean: return eval_boolean(c, stack) ? 1 : 0; case xpath_type_string: { xpath_allocator_capture cr(stack.result); return convert_string_to_number(eval_string(c, stack).c_str()); } case xpath_type_node_set: { xpath_allocator_capture cr(stack.result); return convert_string_to_number(eval_string(c, stack).c_str()); } default: assert(false && "Wrong expression for return type number"); // unreachable return 0; } } xpath_string eval_string_concat(const xpath_context& c, const xpath_stack& stack) { assert(_type == ast_func_concat); xpath_allocator_capture ct(stack.temp); // count the string number size_t count = 1; for (xpath_ast_node* nc = _right; nc; nc = nc->_next) count++; // allocate a buffer for temporary string objects xpath_string* buffer = static_cast<xpath_string*>(stack.temp->allocate(count * sizeof(xpath_string))); if (!buffer) return xpath_string(); // evaluate all strings to temporary stack xpath_stack swapped_stack = {stack.temp, stack.result}; buffer[0] = _left->eval_string(c, swapped_stack); size_t pos = 1; for (xpath_ast_node* n = _right; n; n = n->_next, ++pos) buffer[pos] = n->eval_string(c, swapped_stack); assert(pos == count); // get total length size_t length = 0; for (size_t i = 0; i < count; ++i) length += buffer[i].length(); // create final string char_t* result = static_cast<char_t*>(stack.result->allocate((length + 1) * sizeof(char_t))); if (!result) return xpath_string(); char_t* ri = result; for (size_t j = 0; j < count; ++j) for (const char_t* bi = buffer[j].c_str(); *bi; ++bi) *ri++ = *bi; *ri = 0; return xpath_string::from_heap_preallocated(result, ri); } xpath_string eval_string(const xpath_context& c, const xpath_stack& stack) { switch (_type) { case ast_string_constant: return xpath_string::from_const(_data.string); case ast_func_local_name_0: { xpath_node na = c.n; return xpath_string::from_const(local_name(na)); } case ast_func_local_name_1: { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_first); xpath_node na = ns.first(); return xpath_string::from_const(local_name(na)); } case ast_func_name_0: { xpath_node na = c.n; return xpath_string::from_const(qualified_name(na)); } case ast_func_name_1: { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_first); xpath_node na = ns.first(); return xpath_string::from_const(qualified_name(na)); } case ast_func_namespace_uri_0: { xpath_node na = c.n; return xpath_string::from_const(namespace_uri(na)); } case ast_func_namespace_uri_1: { xpath_allocator_capture cr(stack.result); xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_first); xpath_node na = ns.first(); return xpath_string::from_const(namespace_uri(na)); } case ast_func_string_0: return string_value(c.n, stack.result); case ast_func_string_1: return _left->eval_string(c, stack); case ast_func_concat: return eval_string_concat(c, stack); case ast_func_substring_before: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); xpath_string p = _right->eval_string(c, swapped_stack); const char_t* pos = find_substring(s.c_str(), p.c_str()); return pos ? xpath_string::from_heap(s.c_str(), pos, stack.result) : xpath_string(); } case ast_func_substring_after: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); xpath_string p = _right->eval_string(c, swapped_stack); const char_t* pos = find_substring(s.c_str(), p.c_str()); if (!pos) return xpath_string(); const char_t* rbegin = pos + p.length(); const char_t* rend = s.c_str() + s.length(); return s.uses_heap() ? xpath_string::from_heap(rbegin, rend, stack.result) : xpath_string::from_const(rbegin); } case ast_func_substring_2: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); size_t s_length = s.length(); double first = round_nearest(_right->eval_number(c, stack)); if (is_nan(first)) return xpath_string(); // NaN else if (first >= static_cast<double>(s_length + 1)) return xpath_string(); size_t pos = first < 1 ? 1 : static_cast<size_t>(first); assert(1 <= pos && pos <= s_length + 1); const char_t* rbegin = s.c_str() + (pos - 1); const char_t* rend = s.c_str() + s.length(); return s.uses_heap() ? xpath_string::from_heap(rbegin, rend, stack.result) : xpath_string::from_const(rbegin); } case ast_func_substring_3: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, swapped_stack); size_t s_length = s.length(); double first = round_nearest(_right->eval_number(c, stack)); double last = first + round_nearest(_right->_next->eval_number(c, stack)); if (is_nan(first) || is_nan(last)) return xpath_string(); else if (first >= static_cast<double>(s_length + 1)) return xpath_string(); else if (first >= last) return xpath_string(); else if (last < 1) return xpath_string(); size_t pos = first < 1 ? 1 : static_cast<size_t>(first); size_t end = last >= static_cast<double>(s_length + 1) ? s_length + 1 : static_cast<size_t>(last); assert(1 <= pos && pos <= end && end <= s_length + 1); const char_t* rbegin = s.c_str() + (pos - 1); const char_t* rend = s.c_str() + (end - 1); return (end == s_length + 1 && !s.uses_heap()) ? xpath_string::from_const(rbegin) : xpath_string::from_heap(rbegin, rend, stack.result); } case ast_func_normalize_space_0: { xpath_string s = string_value(c.n, stack.result); char_t* begin = s.data(stack.result); if (!begin) return xpath_string(); char_t* end = normalize_space(begin); return xpath_string::from_heap_preallocated(begin, end); } case ast_func_normalize_space_1: { xpath_string s = _left->eval_string(c, stack); char_t* begin = s.data(stack.result); if (!begin) return xpath_string(); char_t* end = normalize_space(begin); return xpath_string::from_heap_preallocated(begin, end); } case ast_func_translate: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_string s = _left->eval_string(c, stack); xpath_string from = _right->eval_string(c, swapped_stack); xpath_string to = _right->_next->eval_string(c, swapped_stack); char_t* begin = s.data(stack.result); if (!begin) return xpath_string(); char_t* end = translate(begin, from.c_str(), to.c_str(), to.length()); return xpath_string::from_heap_preallocated(begin, end); } case ast_opt_translate_table: { xpath_string s = _left->eval_string(c, stack); char_t* begin = s.data(stack.result); if (!begin) return xpath_string(); char_t* end = translate_table(begin, _data.table); return xpath_string::from_heap_preallocated(begin, end); } case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_string) return xpath_string::from_const(_data.variable->get_string()); // variable needs to be converted to the correct type, this is handled by the fallthrough block below break; } default: ; } // none of the ast types that return the value directly matched, we need to perform type conversion switch (_rettype) { case xpath_type_boolean: return xpath_string::from_const(eval_boolean(c, stack) ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false")); case xpath_type_number: return convert_number_to_string(eval_number(c, stack), stack.result); case xpath_type_node_set: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_node_set_raw ns = eval_node_set(c, swapped_stack, nodeset_eval_first); return ns.empty() ? xpath_string() : string_value(ns.first(), stack.result); } default: assert(false && "Wrong expression for return type string"); // unreachable return xpath_string(); } } xpath_node_set_raw eval_node_set(const xpath_context& c, const xpath_stack& stack, nodeset_eval_t eval) { switch (_type) { case ast_op_union: { xpath_allocator_capture cr(stack.temp); xpath_stack swapped_stack = {stack.temp, stack.result}; xpath_node_set_raw ls = _left->eval_node_set(c, stack, eval); xpath_node_set_raw rs = _right->eval_node_set(c, swapped_stack, eval); // we can optimize merging two sorted sets, but this is a very rare operation, so don't bother ls.set_type(xpath_node_set::type_unsorted); ls.append(rs.begin(), rs.end(), stack.result); ls.remove_duplicates(stack.temp); return ls; } case ast_filter: { xpath_node_set_raw set = _left->eval_node_set(c, stack, _test == predicate_constant_one ? nodeset_eval_first : nodeset_eval_all); // either expression is a number or it contains position() call; sort by document order if (_test != predicate_posinv) set.sort_do(); bool once = eval_once(set.type(), eval); apply_predicate(set, 0, stack, once); return set; } case ast_func_id: return xpath_node_set_raw(); case ast_step: { switch (_axis) { case axis_ancestor: return step_do(c, stack, eval, axis_to_type<axis_ancestor>()); case axis_ancestor_or_self: return step_do(c, stack, eval, axis_to_type<axis_ancestor_or_self>()); case axis_attribute: return step_do(c, stack, eval, axis_to_type<axis_attribute>()); case axis_child: return step_do(c, stack, eval, axis_to_type<axis_child>()); case axis_descendant: return step_do(c, stack, eval, axis_to_type<axis_descendant>()); case axis_descendant_or_self: return step_do(c, stack, eval, axis_to_type<axis_descendant_or_self>()); case axis_following: return step_do(c, stack, eval, axis_to_type<axis_following>()); case axis_following_sibling: return step_do(c, stack, eval, axis_to_type<axis_following_sibling>()); case axis_namespace: // namespaced axis is not supported return xpath_node_set_raw(); case axis_parent: return step_do(c, stack, eval, axis_to_type<axis_parent>()); case axis_preceding: return step_do(c, stack, eval, axis_to_type<axis_preceding>()); case axis_preceding_sibling: return step_do(c, stack, eval, axis_to_type<axis_preceding_sibling>()); case axis_self: return step_do(c, stack, eval, axis_to_type<axis_self>()); default: assert(false && "Unknown axis"); // unreachable return xpath_node_set_raw(); } } case ast_step_root: { assert(!_right); // root step can't have any predicates xpath_node_set_raw ns; ns.set_type(xpath_node_set::type_sorted); if (c.n.node()) ns.push_back(c.n.node().root(), stack.result); else if (c.n.attribute()) ns.push_back(c.n.parent().root(), stack.result); return ns; } case ast_variable: { assert(_rettype == _data.variable->type()); if (_rettype == xpath_type_node_set) { const xpath_node_set& s = _data.variable->get_node_set(); xpath_node_set_raw ns; ns.set_type(s.type()); ns.append(s.begin(), s.end(), stack.result); return ns; } // variable needs to be converted to the correct type, this is handled by the fallthrough block below break; } default: ; } // none of the ast types that return the value directly matched, but conversions to node set are invalid assert(false && "Wrong expression for return type node set"); // unreachable return xpath_node_set_raw(); } void optimize(xpath_allocator* alloc) { if (_left) _left->optimize(alloc); if (_right) _right->optimize(alloc); if (_next) _next->optimize(alloc); // coverity[var_deref_model] optimize_self(alloc); } void optimize_self(xpath_allocator* alloc) { // Rewrite [position()=expr] with [expr] // Note that this step has to go before classification to recognize [position()=1] if ((_type == ast_filter || _type == ast_predicate) && _right && // workaround for clang static analyzer (_right is never null for ast_filter/ast_predicate) _right->_type == ast_op_equal && _right->_left->_type == ast_func_position && _right->_right->_rettype == xpath_type_number) { _right = _right->_right; } // Classify filter/predicate ops to perform various optimizations during evaluation if ((_type == ast_filter || _type == ast_predicate) && _right) // workaround for clang static analyzer (_right is never null for ast_filter/ast_predicate) { assert(_test == predicate_default); if (_right->_type == ast_number_constant && _right->_data.number == 1.0) _test = predicate_constant_one; else if (_right->_rettype == xpath_type_number && (_right->_type == ast_number_constant || _right->_type == ast_variable || _right->_type == ast_func_last)) _test = predicate_constant; else if (_right->_rettype != xpath_type_number && _right->is_posinv_expr()) _test = predicate_posinv; } // Rewrite descendant-or-self::node()/child::foo with descendant::foo // The former is a full form of //foo, the latter is much faster since it executes the node test immediately // Do a similar kind of rewrite for self/descendant/descendant-or-self axes // Note that we only rewrite positionally invariant steps (//foo[1] != /descendant::foo[1]) if (_type == ast_step && (_axis == axis_child || _axis == axis_self || _axis == axis_descendant || _axis == axis_descendant_or_self) && _left && _left->_type == ast_step && _left->_axis == axis_descendant_or_self && _left->_test == nodetest_type_node && !_left->_right && is_posinv_step()) { if (_axis == axis_child || _axis == axis_descendant) _axis = axis_descendant; else _axis = axis_descendant_or_self; _left = _left->_left; } // Use optimized lookup table implementation for translate() with constant arguments if (_type == ast_func_translate && _right && // workaround for clang static analyzer (_right is never null for ast_func_translate) _right->_type == ast_string_constant && _right->_next->_type == ast_string_constant) { unsigned char* table = translate_table_generate(alloc, _right->_data.string, _right->_next->_data.string); if (table) { _type = ast_opt_translate_table; _data.table = table; } } // Use optimized path for @attr = 'value' or @attr = $value if (_type == ast_op_equal && _left && _right && // workaround for clang static analyzer and Coverity (_left and _right are never null for ast_op_equal) // coverity[mixed_enums] _left->_type == ast_step && _left->_axis == axis_attribute && _left->_test == nodetest_name && !_left->_left && !_left->_right && (_right->_type == ast_string_constant || (_right->_type == ast_variable && _right->_rettype == xpath_type_string))) { _type = ast_opt_compare_attribute; } } bool is_posinv_expr() const { switch (_type) { case ast_func_position: case ast_func_last: return false; case ast_string_constant: case ast_number_constant: case ast_variable: return true; case ast_step: case ast_step_root: return true; case ast_predicate: case ast_filter: return true; default: if (_left && !_left->is_posinv_expr()) return false; for (xpath_ast_node* n = _right; n; n = n->_next) if (!n->is_posinv_expr()) return false; return true; } } bool is_posinv_step() const { assert(_type == ast_step); for (xpath_ast_node* n = _right; n; n = n->_next) { assert(n->_type == ast_predicate); if (n->_test != predicate_posinv) return false; } return true; } xpath_value_type rettype() const { return static_cast<xpath_value_type>(_rettype); } }; static const size_t xpath_ast_depth_limit = #ifdef PUGIXML_XPATH_DEPTH_LIMIT PUGIXML_XPATH_DEPTH_LIMIT #else 1024 #endif ; struct xpath_parser { xpath_allocator* _alloc; xpath_lexer _lexer; const char_t* _query; xpath_variable_set* _variables; xpath_parse_result* _result; char_t _scratch[32]; size_t _depth; xpath_ast_node* error(const char* message) { _result->error = message; _result->offset = _lexer.current_pos() - _query; return 0; } xpath_ast_node* error_oom() { assert(_alloc->_error); *_alloc->_error = true; return 0; } xpath_ast_node* error_rec() { return error("Exceeded maximum allowed query depth"); } void* alloc_node() { return _alloc->allocate(sizeof(xpath_ast_node)); } xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, const char_t* value) { void* memory = alloc_node(); return memory ? new (memory) xpath_ast_node(type, rettype, value) : 0; } xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, double value) { void* memory = alloc_node(); return memory ? new (memory) xpath_ast_node(type, rettype, value) : 0; } xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, xpath_variable* value) { void* memory = alloc_node(); return memory ? new (memory) xpath_ast_node(type, rettype, value) : 0; } xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, xpath_ast_node* left = 0, xpath_ast_node* right = 0) { void* memory = alloc_node(); return memory ? new (memory) xpath_ast_node(type, rettype, left, right) : 0; } xpath_ast_node* alloc_node(ast_type_t type, xpath_ast_node* left, axis_t axis, nodetest_t test, const char_t* contents) { void* memory = alloc_node(); return memory ? new (memory) xpath_ast_node(type, left, axis, test, contents) : 0; } xpath_ast_node* alloc_node(ast_type_t type, xpath_ast_node* left, xpath_ast_node* right, predicate_t test) { void* memory = alloc_node(); return memory ? new (memory) xpath_ast_node(type, left, right, test) : 0; } const char_t* alloc_string(const xpath_lexer_string& value) { if (!value.begin) return PUGIXML_TEXT(""); size_t length = static_cast<size_t>(value.end - value.begin); char_t* c = static_cast<char_t*>(_alloc->allocate((length + 1) * sizeof(char_t))); if (!c) return 0; memcpy(c, value.begin, length * sizeof(char_t)); c[length] = 0; return c; } xpath_ast_node* parse_function(const xpath_lexer_string& name, size_t argc, xpath_ast_node* args[2]) { switch (name.begin[0]) { case 'b': if (name == PUGIXML_TEXT("boolean") && argc == 1) return alloc_node(ast_func_boolean, xpath_type_boolean, args[0]); break; case 'c': if (name == PUGIXML_TEXT("count") && argc == 1) { if (args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set"); return alloc_node(ast_func_count, xpath_type_number, args[0]); } else if (name == PUGIXML_TEXT("contains") && argc == 2) return alloc_node(ast_func_contains, xpath_type_boolean, args[0], args[1]); else if (name == PUGIXML_TEXT("concat") && argc >= 2) return alloc_node(ast_func_concat, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("ceiling") && argc == 1) return alloc_node(ast_func_ceiling, xpath_type_number, args[0]); break; case 'f': if (name == PUGIXML_TEXT("false") && argc == 0) return alloc_node(ast_func_false, xpath_type_boolean); else if (name == PUGIXML_TEXT("floor") && argc == 1) return alloc_node(ast_func_floor, xpath_type_number, args[0]); break; case 'i': if (name == PUGIXML_TEXT("id") && argc == 1) return alloc_node(ast_func_id, xpath_type_node_set, args[0]); break; case 'l': if (name == PUGIXML_TEXT("last") && argc == 0) return alloc_node(ast_func_last, xpath_type_number); else if (name == PUGIXML_TEXT("lang") && argc == 1) return alloc_node(ast_func_lang, xpath_type_boolean, args[0]); else if (name == PUGIXML_TEXT("local-name") && argc <= 1) { if (argc == 1 && args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set"); return alloc_node(argc == 0 ? ast_func_local_name_0 : ast_func_local_name_1, xpath_type_string, args[0]); } break; case 'n': if (name == PUGIXML_TEXT("name") && argc <= 1) { if (argc == 1 && args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set"); return alloc_node(argc == 0 ? ast_func_name_0 : ast_func_name_1, xpath_type_string, args[0]); } else if (name == PUGIXML_TEXT("namespace-uri") && argc <= 1) { if (argc == 1 && args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set"); return alloc_node(argc == 0 ? ast_func_namespace_uri_0 : ast_func_namespace_uri_1, xpath_type_string, args[0]); } else if (name == PUGIXML_TEXT("normalize-space") && argc <= 1) return alloc_node(argc == 0 ? ast_func_normalize_space_0 : ast_func_normalize_space_1, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("not") && argc == 1) return alloc_node(ast_func_not, xpath_type_boolean, args[0]); else if (name == PUGIXML_TEXT("number") && argc <= 1) return alloc_node(argc == 0 ? ast_func_number_0 : ast_func_number_1, xpath_type_number, args[0]); break; case 'p': if (name == PUGIXML_TEXT("position") && argc == 0) return alloc_node(ast_func_position, xpath_type_number); break; case 'r': if (name == PUGIXML_TEXT("round") && argc == 1) return alloc_node(ast_func_round, xpath_type_number, args[0]); break; case 's': if (name == PUGIXML_TEXT("string") && argc <= 1) return alloc_node(argc == 0 ? ast_func_string_0 : ast_func_string_1, xpath_type_string, args[0]); else if (name == PUGIXML_TEXT("string-length") && argc <= 1) return alloc_node(argc == 0 ? ast_func_string_length_0 : ast_func_string_length_1, xpath_type_number, args[0]); else if (name == PUGIXML_TEXT("starts-with") && argc == 2) return alloc_node(ast_func_starts_with, xpath_type_boolean, args[0], args[1]); else if (name == PUGIXML_TEXT("substring-before") && argc == 2) return alloc_node(ast_func_substring_before, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("substring-after") && argc == 2) return alloc_node(ast_func_substring_after, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("substring") && (argc == 2 || argc == 3)) return alloc_node(argc == 2 ? ast_func_substring_2 : ast_func_substring_3, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("sum") && argc == 1) { if (args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set"); return alloc_node(ast_func_sum, xpath_type_number, args[0]); } break; case 't': if (name == PUGIXML_TEXT("translate") && argc == 3) return alloc_node(ast_func_translate, xpath_type_string, args[0], args[1]); else if (name == PUGIXML_TEXT("true") && argc == 0) return alloc_node(ast_func_true, xpath_type_boolean); break; default: break; } return error("Unrecognized function or wrong parameter count"); } axis_t parse_axis_name(const xpath_lexer_string& name, bool& specified) { specified = true; switch (name.begin[0]) { case 'a': if (name == PUGIXML_TEXT("ancestor")) return axis_ancestor; else if (name == PUGIXML_TEXT("ancestor-or-self")) return axis_ancestor_or_self; else if (name == PUGIXML_TEXT("attribute")) return axis_attribute; break; case 'c': if (name == PUGIXML_TEXT("child")) return axis_child; break; case 'd': if (name == PUGIXML_TEXT("descendant")) return axis_descendant; else if (name == PUGIXML_TEXT("descendant-or-self")) return axis_descendant_or_self; break; case 'f': if (name == PUGIXML_TEXT("following")) return axis_following; else if (name == PUGIXML_TEXT("following-sibling")) return axis_following_sibling; break; case 'n': if (name == PUGIXML_TEXT("namespace")) return axis_namespace; break; case 'p': if (name == PUGIXML_TEXT("parent")) return axis_parent; else if (name == PUGIXML_TEXT("preceding")) return axis_preceding; else if (name == PUGIXML_TEXT("preceding-sibling")) return axis_preceding_sibling; break; case 's': if (name == PUGIXML_TEXT("self")) return axis_self; break; default: break; } specified = false; return axis_child; } nodetest_t parse_node_test_type(const xpath_lexer_string& name) { switch (name.begin[0]) { case 'c': if (name == PUGIXML_TEXT("comment")) return nodetest_type_comment; break; case 'n': if (name == PUGIXML_TEXT("node")) return nodetest_type_node; break; case 'p': if (name == PUGIXML_TEXT("processing-instruction")) return nodetest_type_pi; break; case 't': if (name == PUGIXML_TEXT("text")) return nodetest_type_text; break; default: break; } return nodetest_none; } // PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall xpath_ast_node* parse_primary_expression() { switch (_lexer.current()) { case lex_var_ref: { xpath_lexer_string name = _lexer.contents(); if (!_variables) return error("Unknown variable: variable set is not provided"); xpath_variable* var = 0; if (!get_variable_scratch(_scratch, _variables, name.begin, name.end, &var)) return error_oom(); if (!var) return error("Unknown variable: variable set does not contain the given name"); _lexer.next(); return alloc_node(ast_variable, var->type(), var); } case lex_open_brace: { _lexer.next(); xpath_ast_node* n = parse_expression(); if (!n) return 0; if (_lexer.current() != lex_close_brace) return error("Expected ')' to match an opening '('"); _lexer.next(); return n; } case lex_quoted_string: { const char_t* value = alloc_string(_lexer.contents()); if (!value) return 0; _lexer.next(); return alloc_node(ast_string_constant, xpath_type_string, value); } case lex_number: { double value = 0; if (!convert_string_to_number_scratch(_scratch, _lexer.contents().begin, _lexer.contents().end, &value)) return error_oom(); _lexer.next(); return alloc_node(ast_number_constant, xpath_type_number, value); } case lex_string: { xpath_ast_node* args[2] = {0}; size_t argc = 0; xpath_lexer_string function = _lexer.contents(); _lexer.next(); xpath_ast_node* last_arg = 0; if (_lexer.current() != lex_open_brace) return error("Unrecognized function call"); _lexer.next(); size_t old_depth = _depth; while (_lexer.current() != lex_close_brace) { if (argc > 0) { if (_lexer.current() != lex_comma) return error("No comma between function arguments"); _lexer.next(); } if (++_depth > xpath_ast_depth_limit) return error_rec(); xpath_ast_node* n = parse_expression(); if (!n) return 0; if (argc < 2) args[argc] = n; else last_arg->set_next(n); argc++; last_arg = n; } _lexer.next(); _depth = old_depth; return parse_function(function, argc, args); } default: return error("Unrecognizable primary expression"); } } // FilterExpr ::= PrimaryExpr | FilterExpr Predicate // Predicate ::= '[' PredicateExpr ']' // PredicateExpr ::= Expr xpath_ast_node* parse_filter_expression() { xpath_ast_node* n = parse_primary_expression(); if (!n) return 0; size_t old_depth = _depth; while (_lexer.current() == lex_open_square_brace) { _lexer.next(); if (++_depth > xpath_ast_depth_limit) return error_rec(); if (n->rettype() != xpath_type_node_set) return error("Predicate has to be applied to node set"); xpath_ast_node* expr = parse_expression(); if (!expr) return 0; n = alloc_node(ast_filter, n, expr, predicate_default); if (!n) return 0; if (_lexer.current() != lex_close_square_brace) return error("Expected ']' to match an opening '['"); _lexer.next(); } _depth = old_depth; return n; } // Step ::= AxisSpecifier NodeTest Predicate* | AbbreviatedStep // AxisSpecifier ::= AxisName '::' | '@'? // NodeTest ::= NameTest | NodeType '(' ')' | 'processing-instruction' '(' Literal ')' // NameTest ::= '*' | NCName ':' '*' | QName // AbbreviatedStep ::= '.' | '..' xpath_ast_node* parse_step(xpath_ast_node* set) { if (set && set->rettype() != xpath_type_node_set) return error("Step has to be applied to node set"); bool axis_specified = false; axis_t axis = axis_child; // implied child axis if (_lexer.current() == lex_axis_attribute) { axis = axis_attribute; axis_specified = true; _lexer.next(); } else if (_lexer.current() == lex_dot) { _lexer.next(); if (_lexer.current() == lex_open_square_brace) return error("Predicates are not allowed after an abbreviated step"); return alloc_node(ast_step, set, axis_self, nodetest_type_node, 0); } else if (_lexer.current() == lex_double_dot) { _lexer.next(); if (_lexer.current() == lex_open_square_brace) return error("Predicates are not allowed after an abbreviated step"); return alloc_node(ast_step, set, axis_parent, nodetest_type_node, 0); } nodetest_t nt_type = nodetest_none; xpath_lexer_string nt_name; if (_lexer.current() == lex_string) { // node name test nt_name = _lexer.contents(); _lexer.next(); // was it an axis name? if (_lexer.current() == lex_double_colon) { // parse axis name if (axis_specified) return error("Two axis specifiers in one step"); axis = parse_axis_name(nt_name, axis_specified); if (!axis_specified) return error("Unknown axis"); // read actual node test _lexer.next(); if (_lexer.current() == lex_multiply) { nt_type = nodetest_all; nt_name = xpath_lexer_string(); _lexer.next(); } else if (_lexer.current() == lex_string) { nt_name = _lexer.contents(); _lexer.next(); } else { return error("Unrecognized node test"); } } if (nt_type == nodetest_none) { // node type test or processing-instruction if (_lexer.current() == lex_open_brace) { _lexer.next(); if (_lexer.current() == lex_close_brace) { _lexer.next(); nt_type = parse_node_test_type(nt_name); if (nt_type == nodetest_none) return error("Unrecognized node type"); nt_name = xpath_lexer_string(); } else if (nt_name == PUGIXML_TEXT("processing-instruction")) { if (_lexer.current() != lex_quoted_string) return error("Only literals are allowed as arguments to processing-instruction()"); nt_type = nodetest_pi; nt_name = _lexer.contents(); _lexer.next(); if (_lexer.current() != lex_close_brace) return error("Unmatched brace near processing-instruction()"); _lexer.next(); } else { return error("Unmatched brace near node type test"); } } // QName or NCName:* else { if (nt_name.end - nt_name.begin > 2 && nt_name.end[-2] == ':' && nt_name.end[-1] == '*') // NCName:* { nt_name.end--; // erase * nt_type = nodetest_all_in_namespace; } else { nt_type = nodetest_name; } } } } else if (_lexer.current() == lex_multiply) { nt_type = nodetest_all; _lexer.next(); } else { return error("Unrecognized node test"); } const char_t* nt_name_copy = alloc_string(nt_name); if (!nt_name_copy) return 0; xpath_ast_node* n = alloc_node(ast_step, set, axis, nt_type, nt_name_copy); if (!n) return 0; size_t old_depth = _depth; xpath_ast_node* last = 0; while (_lexer.current() == lex_open_square_brace) { _lexer.next(); if (++_depth > xpath_ast_depth_limit) return error_rec(); xpath_ast_node* expr = parse_expression(); if (!expr) return 0; xpath_ast_node* pred = alloc_node(ast_predicate, 0, expr, predicate_default); if (!pred) return 0; if (_lexer.current() != lex_close_square_brace) return error("Expected ']' to match an opening '['"); _lexer.next(); if (last) last->set_next(pred); else n->set_right(pred); last = pred; } _depth = old_depth; return n; } // RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step xpath_ast_node* parse_relative_location_path(xpath_ast_node* set) { xpath_ast_node* n = parse_step(set); if (!n) return 0; size_t old_depth = _depth; while (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash) { lexeme_t l = _lexer.current(); _lexer.next(); if (l == lex_double_slash) { n = alloc_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0); if (!n) return 0; ++_depth; } if (++_depth > xpath_ast_depth_limit) return error_rec(); n = parse_step(n); if (!n) return 0; } _depth = old_depth; return n; } // LocationPath ::= RelativeLocationPath | AbsoluteLocationPath // AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath xpath_ast_node* parse_location_path() { if (_lexer.current() == lex_slash) { _lexer.next(); xpath_ast_node* n = alloc_node(ast_step_root, xpath_type_node_set); if (!n) return 0; // relative location path can start from axis_attribute, dot, double_dot, multiply and string lexemes; any other lexeme means standalone root path lexeme_t l = _lexer.current(); if (l == lex_string || l == lex_axis_attribute || l == lex_dot || l == lex_double_dot || l == lex_multiply) return parse_relative_location_path(n); else return n; } else if (_lexer.current() == lex_double_slash) { _lexer.next(); xpath_ast_node* n = alloc_node(ast_step_root, xpath_type_node_set); if (!n) return 0; n = alloc_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0); if (!n) return 0; return parse_relative_location_path(n); } // else clause moved outside of if because of bogus warning 'control may reach end of non-void function being inlined' in gcc 4.0.1 return parse_relative_location_path(0); } // PathExpr ::= LocationPath // | FilterExpr // | FilterExpr '/' RelativeLocationPath // | FilterExpr '//' RelativeLocationPath // UnionExpr ::= PathExpr | UnionExpr '|' PathExpr // UnaryExpr ::= UnionExpr | '-' UnaryExpr xpath_ast_node* parse_path_or_unary_expression() { // Clarification. // PathExpr begins with either LocationPath or FilterExpr. // FilterExpr begins with PrimaryExpr // PrimaryExpr begins with '$' in case of it being a variable reference, // '(' in case of it being an expression, string literal, number constant or // function call. if (_lexer.current() == lex_var_ref || _lexer.current() == lex_open_brace || _lexer.current() == lex_quoted_string || _lexer.current() == lex_number || _lexer.current() == lex_string) { if (_lexer.current() == lex_string) { // This is either a function call, or not - if not, we shall proceed with location path const char_t* state = _lexer.state(); while (PUGI_IMPL_IS_CHARTYPE(*state, ct_space)) ++state; if (*state != '(') return parse_location_path(); // This looks like a function call; however this still can be a node-test. Check it. if (parse_node_test_type(_lexer.contents()) != nodetest_none) return parse_location_path(); } xpath_ast_node* n = parse_filter_expression(); if (!n) return 0; if (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash) { lexeme_t l = _lexer.current(); _lexer.next(); if (l == lex_double_slash) { if (n->rettype() != xpath_type_node_set) return error("Step has to be applied to node set"); n = alloc_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0); if (!n) return 0; } // select from location path return parse_relative_location_path(n); } return n; } else if (_lexer.current() == lex_minus) { _lexer.next(); // precedence 7+ - only parses union expressions xpath_ast_node* n = parse_expression(7); if (!n) return 0; return alloc_node(ast_op_negate, xpath_type_number, n); } else { return parse_location_path(); } } struct binary_op_t { ast_type_t asttype; xpath_value_type rettype; int precedence; binary_op_t(): asttype(ast_unknown), rettype(xpath_type_none), precedence(0) { } binary_op_t(ast_type_t asttype_, xpath_value_type rettype_, int precedence_): asttype(asttype_), rettype(rettype_), precedence(precedence_) { } static binary_op_t parse(xpath_lexer& lexer) { switch (lexer.current()) { case lex_string: if (lexer.contents() == PUGIXML_TEXT("or")) return binary_op_t(ast_op_or, xpath_type_boolean, 1); else if (lexer.contents() == PUGIXML_TEXT("and")) return binary_op_t(ast_op_and, xpath_type_boolean, 2); else if (lexer.contents() == PUGIXML_TEXT("div")) return binary_op_t(ast_op_divide, xpath_type_number, 6); else if (lexer.contents() == PUGIXML_TEXT("mod")) return binary_op_t(ast_op_mod, xpath_type_number, 6); else return binary_op_t(); case lex_equal: return binary_op_t(ast_op_equal, xpath_type_boolean, 3); case lex_not_equal: return binary_op_t(ast_op_not_equal, xpath_type_boolean, 3); case lex_less: return binary_op_t(ast_op_less, xpath_type_boolean, 4); case lex_greater: return binary_op_t(ast_op_greater, xpath_type_boolean, 4); case lex_less_or_equal: return binary_op_t(ast_op_less_or_equal, xpath_type_boolean, 4); case lex_greater_or_equal: return binary_op_t(ast_op_greater_or_equal, xpath_type_boolean, 4); case lex_plus: return binary_op_t(ast_op_add, xpath_type_number, 5); case lex_minus: return binary_op_t(ast_op_subtract, xpath_type_number, 5); case lex_multiply: return binary_op_t(ast_op_multiply, xpath_type_number, 6); case lex_union: return binary_op_t(ast_op_union, xpath_type_node_set, 7); default: return binary_op_t(); } } }; xpath_ast_node* parse_expression_rec(xpath_ast_node* lhs, int limit) { binary_op_t op = binary_op_t::parse(_lexer); while (op.asttype != ast_unknown && op.precedence >= limit) { _lexer.next(); if (++_depth > xpath_ast_depth_limit) return error_rec(); xpath_ast_node* rhs = parse_path_or_unary_expression(); if (!rhs) return 0; binary_op_t nextop = binary_op_t::parse(_lexer); while (nextop.asttype != ast_unknown && nextop.precedence > op.precedence) { rhs = parse_expression_rec(rhs, nextop.precedence); if (!rhs) return 0; nextop = binary_op_t::parse(_lexer); } if (op.asttype == ast_op_union && (lhs->rettype() != xpath_type_node_set || rhs->rettype() != xpath_type_node_set)) return error("Union operator has to be applied to node sets"); lhs = alloc_node(op.asttype, op.rettype, lhs, rhs); if (!lhs) return 0; op = binary_op_t::parse(_lexer); } return lhs; } // Expr ::= OrExpr // OrExpr ::= AndExpr | OrExpr 'or' AndExpr // AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr // EqualityExpr ::= RelationalExpr // | EqualityExpr '=' RelationalExpr // | EqualityExpr '!=' RelationalExpr // RelationalExpr ::= AdditiveExpr // | RelationalExpr '<' AdditiveExpr // | RelationalExpr '>' AdditiveExpr // | RelationalExpr '<=' AdditiveExpr // | RelationalExpr '>=' AdditiveExpr // AdditiveExpr ::= MultiplicativeExpr // | AdditiveExpr '+' MultiplicativeExpr // | AdditiveExpr '-' MultiplicativeExpr // MultiplicativeExpr ::= UnaryExpr // | MultiplicativeExpr '*' UnaryExpr // | MultiplicativeExpr 'div' UnaryExpr // | MultiplicativeExpr 'mod' UnaryExpr xpath_ast_node* parse_expression(int limit = 0) { size_t old_depth = _depth; if (++_depth > xpath_ast_depth_limit) return error_rec(); xpath_ast_node* n = parse_path_or_unary_expression(); if (!n) return 0; n = parse_expression_rec(n, limit); _depth = old_depth; return n; } xpath_parser(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result): _alloc(alloc), _lexer(query), _query(query), _variables(variables), _result(result), _depth(0) { } xpath_ast_node* parse() { xpath_ast_node* n = parse_expression(); if (!n) return 0; assert(_depth == 0); // check if there are unparsed tokens left if (_lexer.current() != lex_eof) return error("Incorrect query"); return n; } static xpath_ast_node* parse(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result) { xpath_parser parser(query, variables, alloc, result); return parser.parse(); } }; struct xpath_query_impl { static xpath_query_impl* create() { void* memory = xml_memory::allocate(sizeof(xpath_query_impl)); if (!memory) return 0; return new (memory) xpath_query_impl(); } static void destroy(xpath_query_impl* impl) { // free all allocated pages impl->alloc.release(); // free allocator memory (with the first page) xml_memory::deallocate(impl); } xpath_query_impl(): root(0), alloc(&block, &oom), oom(false) { block.next = 0; block.capacity = sizeof(block.data); } xpath_ast_node* root; xpath_allocator alloc; xpath_memory_block block; bool oom; }; PUGI_IMPL_FN impl::xpath_ast_node* evaluate_node_set_prepare(xpath_query_impl* impl) { if (!impl) return 0; if (impl->root->rettype() != xpath_type_node_set) { #ifdef PUGIXML_NO_EXCEPTIONS return 0; #else xpath_parse_result res; res.error = "Expression does not evaluate to node set"; throw xpath_exception(res); #endif } return impl->root; } PUGI_IMPL_NS_END namespace pugi { #ifndef PUGIXML_NO_EXCEPTIONS PUGI_IMPL_FN xpath_exception::xpath_exception(const xpath_parse_result& result_): _result(result_) { assert(_result.error); } PUGI_IMPL_FN const char* xpath_exception::what() const throw() { return _result.error; } PUGI_IMPL_FN const xpath_parse_result& xpath_exception::result() const { return _result; } #endif PUGI_IMPL_FN xpath_node::xpath_node() { } PUGI_IMPL_FN xpath_node::xpath_node(const xml_node& node_): _node(node_) { } PUGI_IMPL_FN xpath_node::xpath_node(const xml_attribute& attribute_, const xml_node& parent_): _node(attribute_ ? parent_ : xml_node()), _attribute(attribute_) { } PUGI_IMPL_FN xml_node xpath_node::node() const { return _attribute ? xml_node() : _node; } PUGI_IMPL_FN xml_attribute xpath_node::attribute() const { return _attribute; } PUGI_IMPL_FN xml_node xpath_node::parent() const { return _attribute ? _node : _node.parent(); } PUGI_IMPL_FN static void unspecified_bool_xpath_node(xpath_node***) { } PUGI_IMPL_FN xpath_node::operator xpath_node::unspecified_bool_type() const { return (_node || _attribute) ? unspecified_bool_xpath_node : 0; } PUGI_IMPL_FN bool xpath_node::operator!() const { return !(_node || _attribute); } PUGI_IMPL_FN bool xpath_node::operator==(const xpath_node& n) const { return _node == n._node && _attribute == n._attribute; } PUGI_IMPL_FN bool xpath_node::operator!=(const xpath_node& n) const { return _node != n._node || _attribute != n._attribute; } #ifdef __BORLANDC__ PUGI_IMPL_FN bool operator&&(const xpath_node& lhs, bool rhs) { return (bool)lhs && rhs; } PUGI_IMPL_FN bool operator||(const xpath_node& lhs, bool rhs) { return (bool)lhs || rhs; } #endif PUGI_IMPL_FN void xpath_node_set::_assign(const_iterator begin_, const_iterator end_, type_t type_) { assert(begin_ <= end_); size_t size_ = static_cast<size_t>(end_ - begin_); // use internal buffer for 0 or 1 elements, heap buffer otherwise xpath_node* storage = (size_ <= 1) ? _storage : static_cast<xpath_node*>(impl::xml_memory::allocate(size_ * sizeof(xpath_node))); if (!storage) { #ifdef PUGIXML_NO_EXCEPTIONS return; #else throw std::bad_alloc(); #endif } // deallocate old buffer if (_begin != _storage) impl::xml_memory::deallocate(_begin); // size check is necessary because for begin_ = end_ = nullptr, memcpy is UB if (size_) memcpy(storage, begin_, size_ * sizeof(xpath_node)); _begin = storage; _end = storage + size_; _type = type_; } #ifdef PUGIXML_HAS_MOVE PUGI_IMPL_FN void xpath_node_set::_move(xpath_node_set& rhs) PUGIXML_NOEXCEPT { _type = rhs._type; _storage[0] = rhs._storage[0]; _begin = (rhs._begin == rhs._storage) ? _storage : rhs._begin; _end = _begin + (rhs._end - rhs._begin); rhs._type = type_unsorted; rhs._begin = rhs._storage; rhs._end = rhs._storage; } #endif PUGI_IMPL_FN xpath_node_set::xpath_node_set(): _type(type_unsorted), _begin(_storage), _end(_storage) { } PUGI_IMPL_FN xpath_node_set::xpath_node_set(const_iterator begin_, const_iterator end_, type_t type_): _type(type_unsorted), _begin(_storage), _end(_storage) { _assign(begin_, end_, type_); } PUGI_IMPL_FN xpath_node_set::~xpath_node_set() { if (_begin != _storage) impl::xml_memory::deallocate(_begin); } PUGI_IMPL_FN xpath_node_set::xpath_node_set(const xpath_node_set& ns): _type(type_unsorted), _begin(_storage), _end(_storage) { _assign(ns._begin, ns._end, ns._type); } PUGI_IMPL_FN xpath_node_set& xpath_node_set::operator=(const xpath_node_set& ns) { if (this == &ns) return *this; _assign(ns._begin, ns._end, ns._type); return *this; } #ifdef PUGIXML_HAS_MOVE PUGI_IMPL_FN xpath_node_set::xpath_node_set(xpath_node_set&& rhs) PUGIXML_NOEXCEPT: _type(type_unsorted), _begin(_storage), _end(_storage) { _move(rhs); } PUGI_IMPL_FN xpath_node_set& xpath_node_set::operator=(xpath_node_set&& rhs) PUGIXML_NOEXCEPT { if (this == &rhs) return *this; if (_begin != _storage) impl::xml_memory::deallocate(_begin); _move(rhs); return *this; } #endif PUGI_IMPL_FN xpath_node_set::type_t xpath_node_set::type() const { return _type; } PUGI_IMPL_FN size_t xpath_node_set::size() const { return _end - _begin; } PUGI_IMPL_FN bool xpath_node_set::empty() const { return _begin == _end; } PUGI_IMPL_FN const xpath_node& xpath_node_set::operator[](size_t index) const { assert(index < size()); return _begin[index]; } PUGI_IMPL_FN xpath_node_set::const_iterator xpath_node_set::begin() const { return _begin; } PUGI_IMPL_FN xpath_node_set::const_iterator xpath_node_set::end() const { return _end; } PUGI_IMPL_FN void xpath_node_set::sort(bool reverse) { _type = impl::xpath_sort(_begin, _end, _type, reverse); } PUGI_IMPL_FN xpath_node xpath_node_set::first() const { return impl::xpath_first(_begin, _end, _type); } PUGI_IMPL_FN xpath_parse_result::xpath_parse_result(): error("Internal error"), offset(0) { } PUGI_IMPL_FN xpath_parse_result::operator bool() const { return error == 0; } PUGI_IMPL_FN const char* xpath_parse_result::description() const { return error ? error : "No error"; } PUGI_IMPL_FN xpath_variable::xpath_variable(xpath_value_type type_): _type(type_), _next(0) { } PUGI_IMPL_FN const char_t* xpath_variable::name() const { switch (_type) { case xpath_type_node_set: return static_cast<const impl::xpath_variable_node_set*>(this)->name; case xpath_type_number: return static_cast<const impl::xpath_variable_number*>(this)->name; case xpath_type_string: return static_cast<const impl::xpath_variable_string*>(this)->name; case xpath_type_boolean: return static_cast<const impl::xpath_variable_boolean*>(this)->name; default: assert(false && "Invalid variable type"); // unreachable return 0; } } PUGI_IMPL_FN xpath_value_type xpath_variable::type() const { return _type; } PUGI_IMPL_FN bool xpath_variable::get_boolean() const { return (_type == xpath_type_boolean) ? static_cast<const impl::xpath_variable_boolean*>(this)->value : false; } PUGI_IMPL_FN double xpath_variable::get_number() const { return (_type == xpath_type_number) ? static_cast<const impl::xpath_variable_number*>(this)->value : impl::gen_nan(); } PUGI_IMPL_FN const char_t* xpath_variable::get_string() const { const char_t* value = (_type == xpath_type_string) ? static_cast<const impl::xpath_variable_string*>(this)->value : 0; return value ? value : PUGIXML_TEXT(""); } PUGI_IMPL_FN const xpath_node_set& xpath_variable::get_node_set() const { return (_type == xpath_type_node_set) ? static_cast<const impl::xpath_variable_node_set*>(this)->value : impl::dummy_node_set; } PUGI_IMPL_FN bool xpath_variable::set(bool value) { if (_type != xpath_type_boolean) return false; static_cast<impl::xpath_variable_boolean*>(this)->value = value; return true; } PUGI_IMPL_FN bool xpath_variable::set(double value) { if (_type != xpath_type_number) return false; static_cast<impl::xpath_variable_number*>(this)->value = value; return true; } PUGI_IMPL_FN bool xpath_variable::set(const char_t* value) { if (_type != xpath_type_string) return false; impl::xpath_variable_string* var = static_cast<impl::xpath_variable_string*>(this); // duplicate string size_t size = (impl::strlength(value) + 1) * sizeof(char_t); char_t* copy = static_cast<char_t*>(impl::xml_memory::allocate(size)); if (!copy) return false; memcpy(copy, value, size); // replace old string if (var->value) impl::xml_memory::deallocate(var->value); var->value = copy; return true; } PUGI_IMPL_FN bool xpath_variable::set(const xpath_node_set& value) { if (_type != xpath_type_node_set) return false; static_cast<impl::xpath_variable_node_set*>(this)->value = value; return true; } PUGI_IMPL_FN xpath_variable_set::xpath_variable_set() { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) _data[i] = 0; } PUGI_IMPL_FN xpath_variable_set::~xpath_variable_set() { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) _destroy(_data[i]); } PUGI_IMPL_FN xpath_variable_set::xpath_variable_set(const xpath_variable_set& rhs) { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) _data[i] = 0; _assign(rhs); } PUGI_IMPL_FN xpath_variable_set& xpath_variable_set::operator=(const xpath_variable_set& rhs) { if (this == &rhs) return *this; _assign(rhs); return *this; } #ifdef PUGIXML_HAS_MOVE PUGI_IMPL_FN xpath_variable_set::xpath_variable_set(xpath_variable_set&& rhs) PUGIXML_NOEXCEPT { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) { _data[i] = rhs._data[i]; rhs._data[i] = 0; } } PUGI_IMPL_FN xpath_variable_set& xpath_variable_set::operator=(xpath_variable_set&& rhs) PUGIXML_NOEXCEPT { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) { _destroy(_data[i]); _data[i] = rhs._data[i]; rhs._data[i] = 0; } return *this; } #endif PUGI_IMPL_FN void xpath_variable_set::_assign(const xpath_variable_set& rhs) { xpath_variable_set temp; for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) if (rhs._data[i] && !_clone(rhs._data[i], &temp._data[i])) return; _swap(temp); } PUGI_IMPL_FN void xpath_variable_set::_swap(xpath_variable_set& rhs) { for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i) { xpath_variable* chain = _data[i]; _data[i] = rhs._data[i]; rhs._data[i] = chain; } } PUGI_IMPL_FN xpath_variable* xpath_variable_set::_find(const char_t* name) const { const size_t hash_size = sizeof(_data) / sizeof(_data[0]); size_t hash = impl::hash_string(name) % hash_size; // look for existing variable for (xpath_variable* var = _data[hash]; var; var = var->_next) if (impl::strequal(var->name(), name)) return var; return 0; } PUGI_IMPL_FN bool xpath_variable_set::_clone(xpath_variable* var, xpath_variable** out_result) { xpath_variable* last = 0; while (var) { // allocate storage for new variable xpath_variable* nvar = impl::new_xpath_variable(var->_type, var->name()); if (!nvar) return false; // link the variable to the result immediately to handle failures gracefully if (last) last->_next = nvar; else *out_result = nvar; last = nvar; // copy the value; this can fail due to out-of-memory conditions if (!impl::copy_xpath_variable(nvar, var)) return false; var = var->_next; } return true; } PUGI_IMPL_FN void xpath_variable_set::_destroy(xpath_variable* var) { while (var) { xpath_variable* next = var->_next; impl::delete_xpath_variable(var->_type, var); var = next; } } PUGI_IMPL_FN xpath_variable* xpath_variable_set::add(const char_t* name, xpath_value_type type) { const size_t hash_size = sizeof(_data) / sizeof(_data[0]); size_t hash = impl::hash_string(name) % hash_size; // look for existing variable for (xpath_variable* var = _data[hash]; var; var = var->_next) if (impl::strequal(var->name(), name)) return var->type() == type ? var : 0; // add new variable xpath_variable* result = impl::new_xpath_variable(type, name); if (result) { result->_next = _data[hash]; _data[hash] = result; } return result; } PUGI_IMPL_FN bool xpath_variable_set::set(const char_t* name, bool value) { xpath_variable* var = add(name, xpath_type_boolean); return var ? var->set(value) : false; } PUGI_IMPL_FN bool xpath_variable_set::set(const char_t* name, double value) { xpath_variable* var = add(name, xpath_type_number); return var ? var->set(value) : false; } PUGI_IMPL_FN bool xpath_variable_set::set(const char_t* name, const char_t* value) { xpath_variable* var = add(name, xpath_type_string); return var ? var->set(value) : false; } PUGI_IMPL_FN bool xpath_variable_set::set(const char_t* name, const xpath_node_set& value) { xpath_variable* var = add(name, xpath_type_node_set); return var ? var->set(value) : false; } PUGI_IMPL_FN xpath_variable* xpath_variable_set::get(const char_t* name) { return _find(name); } PUGI_IMPL_FN const xpath_variable* xpath_variable_set::get(const char_t* name) const { return _find(name); } PUGI_IMPL_FN xpath_query::xpath_query(const char_t* query, xpath_variable_set* variables): _impl(0) { impl::xpath_query_impl* qimpl = impl::xpath_query_impl::create(); if (!qimpl) { #ifdef PUGIXML_NO_EXCEPTIONS _result.error = "Out of memory"; #else throw std::bad_alloc(); #endif } else { using impl::auto_deleter; // MSVC7 workaround auto_deleter<impl::xpath_query_impl> impl(qimpl, impl::xpath_query_impl::destroy); qimpl->root = impl::xpath_parser::parse(query, variables, &qimpl->alloc, &_result); if (qimpl->root) { qimpl->root->optimize(&qimpl->alloc); _impl = impl.release(); _result.error = 0; } else { #ifdef PUGIXML_NO_EXCEPTIONS if (qimpl->oom) _result.error = "Out of memory"; #else if (qimpl->oom) throw std::bad_alloc(); throw xpath_exception(_result); #endif } } } PUGI_IMPL_FN xpath_query::xpath_query(): _impl(0) { } PUGI_IMPL_FN xpath_query::~xpath_query() { if (_impl) impl::xpath_query_impl::destroy(static_cast<impl::xpath_query_impl*>(_impl)); } #ifdef PUGIXML_HAS_MOVE PUGI_IMPL_FN xpath_query::xpath_query(xpath_query&& rhs) PUGIXML_NOEXCEPT { _impl = rhs._impl; _result = rhs._result; rhs._impl = 0; rhs._result = xpath_parse_result(); } PUGI_IMPL_FN xpath_query& xpath_query::operator=(xpath_query&& rhs) PUGIXML_NOEXCEPT { if (this == &rhs) return *this; if (_impl) impl::xpath_query_impl::destroy(static_cast<impl::xpath_query_impl*>(_impl)); _impl = rhs._impl; _result = rhs._result; rhs._impl = 0; rhs._result = xpath_parse_result(); return *this; } #endif PUGI_IMPL_FN xpath_value_type xpath_query::return_type() const { if (!_impl) return xpath_type_none; return static_cast<impl::xpath_query_impl*>(_impl)->root->rettype(); } PUGI_IMPL_FN bool xpath_query::evaluate_boolean(const xpath_node& n) const { if (!_impl) return false; impl::xpath_context c(n, 1, 1); impl::xpath_stack_data sd; bool r = static_cast<impl::xpath_query_impl*>(_impl)->root->eval_boolean(c, sd.stack); if (sd.oom) { #ifdef PUGIXML_NO_EXCEPTIONS return false; #else throw std::bad_alloc(); #endif } return r; } PUGI_IMPL_FN double xpath_query::evaluate_number(const xpath_node& n) const { if (!_impl) return impl::gen_nan(); impl::xpath_context c(n, 1, 1); impl::xpath_stack_data sd; double r = static_cast<impl::xpath_query_impl*>(_impl)->root->eval_number(c, sd.stack); if (sd.oom) { #ifdef PUGIXML_NO_EXCEPTIONS return impl::gen_nan(); #else throw std::bad_alloc(); #endif } return r; } #ifndef PUGIXML_NO_STL PUGI_IMPL_FN string_t xpath_query::evaluate_string(const xpath_node& n) const { if (!_impl) return string_t(); impl::xpath_context c(n, 1, 1); impl::xpath_stack_data sd; impl::xpath_string r = static_cast<impl::xpath_query_impl*>(_impl)->root->eval_string(c, sd.stack); if (sd.oom) { #ifdef PUGIXML_NO_EXCEPTIONS return string_t(); #else throw std::bad_alloc(); #endif } return string_t(r.c_str(), r.length()); } #endif PUGI_IMPL_FN size_t xpath_query::evaluate_string(char_t* buffer, size_t capacity, const xpath_node& n) const { impl::xpath_context c(n, 1, 1); impl::xpath_stack_data sd; impl::xpath_string r = _impl ? static_cast<impl::xpath_query_impl*>(_impl)->root->eval_string(c, sd.stack) : impl::xpath_string(); if (sd.oom) { #ifdef PUGIXML_NO_EXCEPTIONS r = impl::xpath_string(); #else throw std::bad_alloc(); #endif } size_t full_size = r.length() + 1; if (capacity > 0) { size_t size = (full_size < capacity) ? full_size : capacity; assert(size > 0); memcpy(buffer, r.c_str(), (size - 1) * sizeof(char_t)); buffer[size - 1] = 0; } return full_size; } PUGI_IMPL_FN xpath_node_set xpath_query::evaluate_node_set(const xpath_node& n) const { impl::xpath_ast_node* root = impl::evaluate_node_set_prepare(static_cast<impl::xpath_query_impl*>(_impl)); if (!root) return xpath_node_set(); impl::xpath_context c(n, 1, 1); impl::xpath_stack_data sd; impl::xpath_node_set_raw r = root->eval_node_set(c, sd.stack, impl::nodeset_eval_all); if (sd.oom) { #ifdef PUGIXML_NO_EXCEPTIONS return xpath_node_set(); #else throw std::bad_alloc(); #endif } return xpath_node_set(r.begin(), r.end(), r.type()); } PUGI_IMPL_FN xpath_node xpath_query::evaluate_node(const xpath_node& n) const { impl::xpath_ast_node* root = impl::evaluate_node_set_prepare(static_cast<impl::xpath_query_impl*>(_impl)); if (!root) return xpath_node(); impl::xpath_context c(n, 1, 1); impl::xpath_stack_data sd; impl::xpath_node_set_raw r = root->eval_node_set(c, sd.stack, impl::nodeset_eval_first); if (sd.oom) { #ifdef PUGIXML_NO_EXCEPTIONS return xpath_node(); #else throw std::bad_alloc(); #endif } return r.first(); } PUGI_IMPL_FN const xpath_parse_result& xpath_query::result() const { return _result; } PUGI_IMPL_FN static void unspecified_bool_xpath_query(xpath_query***) { } PUGI_IMPL_FN xpath_query::operator xpath_query::unspecified_bool_type() const { return _impl ? unspecified_bool_xpath_query : 0; } PUGI_IMPL_FN bool xpath_query::operator!() const { return !_impl; } PUGI_IMPL_FN xpath_node xml_node::select_node(const char_t* query, xpath_variable_set* variables) const { xpath_query q(query, variables); return q.evaluate_node(*this); } PUGI_IMPL_FN xpath_node xml_node::select_node(const xpath_query& query) const { return query.evaluate_node(*this); } PUGI_IMPL_FN xpath_node_set xml_node::select_nodes(const char_t* query, xpath_variable_set* variables) const { xpath_query q(query, variables); return q.evaluate_node_set(*this); } PUGI_IMPL_FN xpath_node_set xml_node::select_nodes(const xpath_query& query) const { return query.evaluate_node_set(*this); } PUGI_IMPL_FN xpath_node xml_node::select_single_node(const char_t* query, xpath_variable_set* variables) const { xpath_query q(query, variables); return q.evaluate_node(*this); } PUGI_IMPL_FN xpath_node xml_node::select_single_node(const xpath_query& query) const { return query.evaluate_node(*this); } } #endif #ifdef __BORLANDC__ # pragma option pop #endif // Intel C++ does not properly keep warning state for function templates, // so popping warning state at the end of translation unit leads to warnings in the middle. #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) # pragma warning(pop) #endif #if defined(_MSC_VER) && defined(__c2__) # pragma clang diagnostic pop #endif // Undefine all local macros (makes sure we're not leaking macros in header-only mode) #undef PUGI_IMPL_NO_INLINE #undef PUGI_IMPL_UNLIKELY #undef PUGI_IMPL_STATIC_ASSERT #undef PUGI_IMPL_DMC_VOLATILE #undef PUGI_IMPL_UNSIGNED_OVERFLOW #undef PUGI_IMPL_MSVC_CRT_VERSION #undef PUGI_IMPL_SNPRINTF #undef PUGI_IMPL_NS_BEGIN #undef PUGI_IMPL_NS_END #undef PUGI_IMPL_FN #undef PUGI_IMPL_FN_NO_INLINE #undef PUGI_IMPL_GETHEADER_IMPL #undef PUGI_IMPL_GETPAGE_IMPL #undef PUGI_IMPL_GETPAGE #undef PUGI_IMPL_NODETYPE #undef PUGI_IMPL_IS_CHARTYPE_IMPL #undef PUGI_IMPL_IS_CHARTYPE #undef PUGI_IMPL_IS_CHARTYPEX #undef PUGI_IMPL_ENDSWITH #undef PUGI_IMPL_SKIPWS #undef PUGI_IMPL_OPTSET #undef PUGI_IMPL_PUSHNODE #undef PUGI_IMPL_POPNODE #undef PUGI_IMPL_SCANFOR #undef PUGI_IMPL_SCANWHILE #undef PUGI_IMPL_SCANWHILE_UNROLL #undef PUGI_IMPL_ENDSEG #undef PUGI_IMPL_THROW_ERROR #undef PUGI_IMPL_CHECK_ERROR #endif /** * Copyright (c) 2006-2023 Arseny Kapoulkine * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */