Mercurial > minori
view dep/toml11/toml/lexer.hpp @ 337:a7d4e5107531
dep/animone: REFACTOR ALL THE THINGS
1: animone now has its own syntax divergent from anisthesia,
making different platforms actually have their own sections
2: process names in animone are now called `comm' (this will
probably break things). this is what its called in bsd/linux
so I'm just going to use it everywhere
3: the X11 code now checks for the existence of a UTF-8 window title
and passes it if available
4: ANYTHING THATS NOT LINUX IS 100% UNTESTED AND CAN AND WILL BREAK!
I still actually need to test the bsd code. to be honest I'm probably
going to move all of the bsds into separate files because they're
all essentially different operating systems at this point
author | Paper <paper@paper.us.eu.org> |
---|---|
date | Wed, 19 Jun 2024 12:51:15 -0400 |
parents | 3b355fa948c7 |
children |
line wrap: on
line source
// Copyright Toru Niina 2017. // Distributed under the MIT License. #ifndef TOML11_LEXER_HPP #define TOML11_LEXER_HPP #include <istream> #include <sstream> #include <stdexcept> #include "combinator.hpp" namespace toml { namespace detail { // these scans contents from current location in a container of char // and extract a region that matches their own pattern. // to see the implementation of each component, see combinator.hpp. using lex_wschar = either<character<' '>, character<'\t'>>; using lex_ws = repeat<lex_wschar, at_least<1>>; using lex_newline = either<character<'\n'>, sequence<character<'\r'>, character<'\n'>>>; using lex_lower = in_range<'a', 'z'>; using lex_upper = in_range<'A', 'Z'>; using lex_alpha = either<lex_lower, lex_upper>; using lex_digit = in_range<'0', '9'>; using lex_nonzero = in_range<'1', '9'>; using lex_oct_dig = in_range<'0', '7'>; using lex_bin_dig = in_range<'0', '1'>; using lex_hex_dig = either<lex_digit, in_range<'A', 'F'>, in_range<'a', 'f'>>; using lex_hex_prefix = sequence<character<'0'>, character<'x'>>; using lex_oct_prefix = sequence<character<'0'>, character<'o'>>; using lex_bin_prefix = sequence<character<'0'>, character<'b'>>; using lex_underscore = character<'_'>; using lex_plus = character<'+'>; using lex_minus = character<'-'>; using lex_sign = either<lex_plus, lex_minus>; // digit | nonzero 1*(digit | _ digit) using lex_unsigned_dec_int = either<sequence<lex_nonzero, repeat< either<lex_digit, sequence<lex_underscore, lex_digit>>, at_least<1>>>, lex_digit>; // (+|-)? unsigned_dec_int using lex_dec_int = sequence<maybe<lex_sign>, lex_unsigned_dec_int>; // hex_prefix hex_dig *(hex_dig | _ hex_dig) using lex_hex_int = sequence<lex_hex_prefix, sequence<lex_hex_dig, repeat< either<lex_hex_dig, sequence<lex_underscore, lex_hex_dig>>, unlimited>>>; // oct_prefix oct_dig *(oct_dig | _ oct_dig) using lex_oct_int = sequence<lex_oct_prefix, sequence<lex_oct_dig, repeat< either<lex_oct_dig, sequence<lex_underscore, lex_oct_dig>>, unlimited>>>; // bin_prefix bin_dig *(bin_dig | _ bin_dig) using lex_bin_int = sequence<lex_bin_prefix, sequence<lex_bin_dig, repeat< either<lex_bin_dig, sequence<lex_underscore, lex_bin_dig>>, unlimited>>>; // (dec_int | hex_int | oct_int | bin_int) using lex_integer = either<lex_bin_int, lex_oct_int, lex_hex_int, lex_dec_int>; // =========================================================================== using lex_inf = sequence<character<'i'>, character<'n'>, character<'f'>>; using lex_nan = sequence<character<'n'>, character<'a'>, character<'n'>>; using lex_special_float = sequence<maybe<lex_sign>, either<lex_inf, lex_nan>>; using lex_zero_prefixable_int = sequence<lex_digit, repeat<either<lex_digit, sequence<lex_underscore, lex_digit>>, unlimited>>; using lex_fractional_part = sequence<character<'.'>, lex_zero_prefixable_int>; using lex_exponent_part = sequence<either<character<'e'>, character<'E'>>, maybe<lex_sign>, lex_zero_prefixable_int>; using lex_float = either<lex_special_float, sequence<lex_dec_int, either<lex_exponent_part, sequence<lex_fractional_part, maybe<lex_exponent_part>>>>>; // =========================================================================== using lex_true = sequence<character<'t'>, character<'r'>, character<'u'>, character<'e'>>; using lex_false = sequence<character<'f'>, character<'a'>, character<'l'>, character<'s'>, character<'e'>>; using lex_boolean = either<lex_true, lex_false>; // =========================================================================== using lex_date_fullyear = repeat<lex_digit, exactly<4>>; using lex_date_month = repeat<lex_digit, exactly<2>>; using lex_date_mday = repeat<lex_digit, exactly<2>>; using lex_time_delim = either<character<'T'>, character<'t'>, character<' '>>; using lex_time_hour = repeat<lex_digit, exactly<2>>; using lex_time_minute = repeat<lex_digit, exactly<2>>; using lex_time_second = repeat<lex_digit, exactly<2>>; using lex_time_secfrac = sequence<character<'.'>, repeat<lex_digit, at_least<1>>>; using lex_time_numoffset = sequence<either<character<'+'>, character<'-'>>, sequence<lex_time_hour, character<':'>, lex_time_minute>>; using lex_time_offset = either<character<'Z'>, character<'z'>, lex_time_numoffset>; using lex_partial_time = sequence<lex_time_hour, character<':'>, lex_time_minute, character<':'>, lex_time_second, maybe<lex_time_secfrac>>; using lex_full_date = sequence<lex_date_fullyear, character<'-'>, lex_date_month, character<'-'>, lex_date_mday>; using lex_full_time = sequence<lex_partial_time, lex_time_offset>; using lex_offset_date_time = sequence<lex_full_date, lex_time_delim, lex_full_time>; using lex_local_date_time = sequence<lex_full_date, lex_time_delim, lex_partial_time>; using lex_local_date = lex_full_date; using lex_local_time = lex_partial_time; // =========================================================================== using lex_quotation_mark = character<'"'>; using lex_basic_unescaped = exclude<either<in_range<0x00, 0x08>, // 0x09 (tab) is allowed in_range<0x0A, 0x1F>, character<0x22>, character<0x5C>, character<0x7F>>>; using lex_escape = character<'\\'>; using lex_escape_unicode_short = sequence<character<'u'>, repeat<lex_hex_dig, exactly<4>>>; using lex_escape_unicode_long = sequence<character<'U'>, repeat<lex_hex_dig, exactly<8>>>; using lex_escape_seq_char = either<character<'"'>, character<'\\'>, character<'b'>, character<'f'>, character<'n'>, character<'r'>, character<'t'>, #ifdef TOML11_USE_UNRELEASED_TOML_FEATURES character<'e'>, // ESC (0x1B) #endif lex_escape_unicode_short, lex_escape_unicode_long >; using lex_escaped = sequence<lex_escape, lex_escape_seq_char>; using lex_basic_char = either<lex_basic_unescaped, lex_escaped>; using lex_basic_string = sequence<lex_quotation_mark, repeat<lex_basic_char, unlimited>, lex_quotation_mark>; // After toml post-v0.5.0, it is explicitly clarified how quotes in ml-strings // are allowed to be used. // After this, the following strings are *explicitly* allowed. // - One or two `"`s in a multi-line basic string is allowed wherever it is. // - Three consecutive `"`s in a multi-line basic string is considered as a delimiter. // - One or two `"`s can appear just before or after the delimiter. // ```toml // str4 = """Here are two quotation marks: "". Simple enough.""" // str5 = """Here are three quotation marks: ""\".""" // str6 = """Here are fifteen quotation marks: ""\"""\"""\"""\"""\".""" // str7 = """"This," she said, "is just a pointless statement."""" // ``` // In the current implementation (v3.3.0), it is difficult to parse `str7` in // the above example. It is difficult to recognize `"` at the end of string body // collectly. It will be misunderstood as a `"""` delimiter and an additional, // invalid `"`. Like this: // ```console // what(): [error] toml::parse_table: invalid line format // --> hoge.toml // | // 13 | str7 = """"This," she said, "is just a pointless statement."""" // | ^- expected newline, but got '"'. // ``` // As a quick workaround for this problem, `lex_ml_basic_string_delim` was // split into two, `lex_ml_basic_string_open` and `lex_ml_basic_string_close`. // `lex_ml_basic_string_open` allows only `"""`. `_close` allows 3-5 `"`s. // In parse_ml_basic_string() function, the trailing `"`s will be attached to // the string body. // using lex_ml_basic_string_delim = repeat<lex_quotation_mark, exactly<3>>; using lex_ml_basic_string_open = lex_ml_basic_string_delim; using lex_ml_basic_string_close = sequence< repeat<lex_quotation_mark, exactly<3>>, maybe<lex_quotation_mark>, maybe<lex_quotation_mark> >; using lex_ml_basic_unescaped = exclude<either<in_range<0x00, 0x08>, // 0x09 is tab in_range<0x0A, 0x1F>, character<0x5C>, // backslash character<0x7F>, // DEL lex_ml_basic_string_delim>>; using lex_ml_basic_escaped_newline = sequence< lex_escape, maybe<lex_ws>, lex_newline, repeat<either<lex_ws, lex_newline>, unlimited>>; using lex_ml_basic_char = either<lex_ml_basic_unescaped, lex_escaped>; using lex_ml_basic_body = repeat<either<lex_ml_basic_char, lex_newline, lex_ml_basic_escaped_newline>, unlimited>; using lex_ml_basic_string = sequence<lex_ml_basic_string_open, lex_ml_basic_body, lex_ml_basic_string_close>; using lex_literal_char = exclude<either<in_range<0x00, 0x08>, in_range<0x0A, 0x1F>, character<0x7F>, character<0x27>>>; using lex_apostrophe = character<'\''>; using lex_literal_string = sequence<lex_apostrophe, repeat<lex_literal_char, unlimited>, lex_apostrophe>; // the same reason as above. using lex_ml_literal_string_delim = repeat<lex_apostrophe, exactly<3>>; using lex_ml_literal_string_open = lex_ml_literal_string_delim; using lex_ml_literal_string_close = sequence< repeat<lex_apostrophe, exactly<3>>, maybe<lex_apostrophe>, maybe<lex_apostrophe> >; using lex_ml_literal_char = exclude<either<in_range<0x00, 0x08>, in_range<0x0A, 0x1F>, character<0x7F>, lex_ml_literal_string_delim>>; using lex_ml_literal_body = repeat<either<lex_ml_literal_char, lex_newline>, unlimited>; using lex_ml_literal_string = sequence<lex_ml_literal_string_open, lex_ml_literal_body, lex_ml_literal_string_close>; using lex_string = either<lex_ml_basic_string, lex_basic_string, lex_ml_literal_string, lex_literal_string>; // =========================================================================== using lex_dot_sep = sequence<maybe<lex_ws>, character<'.'>, maybe<lex_ws>>; using lex_unquoted_key = repeat<either<lex_alpha, lex_digit, character<'-'>, character<'_'>>, at_least<1>>; using lex_quoted_key = either<lex_basic_string, lex_literal_string>; using lex_simple_key = either<lex_unquoted_key, lex_quoted_key>; using lex_dotted_key = sequence<lex_simple_key, repeat<sequence<lex_dot_sep, lex_simple_key>, at_least<1> > >; using lex_key = either<lex_dotted_key, lex_simple_key>; using lex_keyval_sep = sequence<maybe<lex_ws>, character<'='>, maybe<lex_ws>>; using lex_std_table_open = character<'['>; using lex_std_table_close = character<']'>; using lex_std_table = sequence<lex_std_table_open, maybe<lex_ws>, lex_key, maybe<lex_ws>, lex_std_table_close>; using lex_array_table_open = sequence<lex_std_table_open, lex_std_table_open>; using lex_array_table_close = sequence<lex_std_table_close, lex_std_table_close>; using lex_array_table = sequence<lex_array_table_open, maybe<lex_ws>, lex_key, maybe<lex_ws>, lex_array_table_close>; using lex_utf8_1byte = in_range<0x00, 0x7F>; using lex_utf8_2byte = sequence< in_range<'\xC2', '\xDF'>, in_range<'\x80', '\xBF'> >; using lex_utf8_3byte = sequence<either< sequence<character<'\xE0'>, in_range<'\xA0', '\xBF'>>, sequence<in_range<'\xE1', '\xEC'>, in_range<'\x80', '\xBF'>>, sequence<character<'\xED'>, in_range<'\x80', '\x9F'>>, sequence<in_range<'\xEE', '\xEF'>, in_range<'\x80', '\xBF'>> >, in_range<'\x80', '\xBF'>>; using lex_utf8_4byte = sequence<either< sequence<character<'\xF0'>, in_range<'\x90', '\xBF'>>, sequence<in_range<'\xF1', '\xF3'>, in_range<'\x80', '\xBF'>>, sequence<character<'\xF4'>, in_range<'\x80', '\x8F'>> >, in_range<'\x80', '\xBF'>, in_range<'\x80', '\xBF'>>; using lex_utf8_code = either< lex_utf8_1byte, lex_utf8_2byte, lex_utf8_3byte, lex_utf8_4byte >; using lex_comment_start_symbol = character<'#'>; using lex_non_eol_ascii = either<character<0x09>, in_range<0x20, 0x7E>>; using lex_comment = sequence<lex_comment_start_symbol, repeat<either< lex_non_eol_ascii, lex_utf8_2byte, lex_utf8_3byte, lex_utf8_4byte>, unlimited>>; } // detail } // toml #endif // TOML_LEXER_HPP